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rollout of charging infrastructure. Vehicles were separated into private use and business
use vehicles, and the timings of EV usage events were divided into weekday and weekend
events. Along with a descriptive analysis of the results, interquartile range (IQR) and anal-
ysis of variance (ANOVA) analyses were employed to quantify and characterise EV user
behaviour. An early morning peak in charging behaviour was identified, and state of charge
(SOC), charge consumption, and time and distance since last charge analyses indicate EV
users charge more frequently than required. Trip event patterns identify the fact that
EVs are generally available to be charged overnight, reducing demand on the electrical grid
during peak hours. Trip distance analyses show that EVs are typically driven short dis-
tances, confirming their suitability to urban driving environments. The results can not only
account for the effects of EV integration into the Irish vehicle fleet, but it can also provide
information on the likely impacts of mass integration into European energy systems.
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Introduction

The electrification of transportation is desired by many European countries due to concerns over the growth of the trans-
portation sector and its associated greenhouse gas emissions, fossil fuel depletion, and urban air pollution. In 2011, the trans-
portation sector in the European Union consumed 364.1 million tons of oil equivalent (Mtoe), accounting for 33% of the total
energy consumption, the highest of any sector (European Commission, 2013). Globally, fuel consumption in the transporta-
tion sector is dominated by fossil fuels, with just 3% of road transportation being generated from renewable sources in 2011
(REN21, 2013).

Various European countries have set targets in terms of greenhouse gas (GHG) reductions and electric vehicle (EV) pen-
etration levels in order to combat issues of climate change and oil dependence. The European Union has committed to reduc-
ing its GHG emissions by 20% by 2020 when compared to 1990 levels (European Environment Agency, 2013). Furthermore,
Ireland has announced plans to have 10% of the Irish car fleet powered by electricity by 2020 (Dempsey, 2008).
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Studies have shown the potential EVs exhibit to improve emission levels and assist in achieving long-term climate goals
when coupled with low carbon-generated electricity. In an Irish context, Brady and O’Mahony (2011) found net reductions in
carbon dioxide (CO,) and other tailpipe emissions under various EV penetration scenarios. Davis and Figliozzi (2013) arrived
at similar conclusions, estimating reductions in all harmful air pollutants, resulting in improved public health, especially in
urban environments. Faria et al. (2012) and Thiel et al. (2010) conducted well-to-wheel (WtW) analyses concluding that EVs
are clearly and robustly preferred in terms of CO, emissions.

The benefits of EV adoption are met with numerous barriers with respect to their seamless integration into the existing
transportation network. Integrating large numbers of electric vehicles into a country’s transportation network can incur a
large capital investment and difficulties arise in determining where to site such facilities (Schroeder and Traber, 2012). In
addition to the difficulties that arise in the costs of the provision of capital infrastructure, the potential for local imbalances
in the electrical grid due to the addition of charging facilities may require mediation measures such as grid reinforcements
which can be complex in nature (Bayram et al., 2013). Huang et al. (2013) reported however, that if properly managed and
controlled, an increased number of electric vehicles can have very positive impacts on electrical grid systems particularly in
areas such as stabilising intermittent renewable energy sources (such as wind energy) and providing power supply through
vehicle batteries during peak grid loading. Rezaee et al. (2013) noted that the loads arising from electric vehicles is difficult to
predict and therefore their potential impacts cannot be well defined. In that regard, it has been noted that not enough
research has thus far been conducted on the likely behaviours of EV users and their associated impacts on society
(National Research Council, 2013). In order to better understand these effects that EVs will incur, various projects have been
developed to analyse the behavioural and mobility patterns of EV users. An early example of one such trial was the MINI-E
field study which was carried out in the USA, the UK and Germany starting in 2009 (Cocron et al., 2011) the results of which
indicated a positive attitude to pure EVs amongst users where range was limited. There have been a number of other exam-
ples of EV trials including: the SwitchEV trial (Robinson et al., 2013), the EV Project trials (Smart et al., 2013), the CABLED
trial (Bruce et al., 2012) and the ECOtality trials (Saxton, 2012). It must be noted that the majority of these trials have been
concentrated in large population cities in a more urban environment or amongst urban city commuter belts (Franke et al.,
2014a). Other trials are also ongoing in the wider area of electric transportation and are not just focused on passenger car
units. The FREVUE trial (FREVUE, 2015) focuses on freight electric vehicles in urban Europe and the ZeEUS trial (ZeEUS,
2015) is investigating zero emission urban bus systems. The city of Malaga has embarked on a project entitled ZeM2All
(ZeM2All, 2015) which seeks to find an integrated solution for future city transport involving electric vehicles together with
other sustainable transport systems. Many of the early EV trial projects had, as one of their primary aims, the promotion of
EV acceptance by allowing users to experience ‘driving electric’ and reporting back on their experiences and this has exposed
generally positive attitudes amongst EV trial users (Biihler et al., 2014). It has been reported from many of these studies that
one common issue that arises amongst EV trial users is the issue of range limitation (Franke et al., 2012, 2014a,b). In response
to these increasingly common range anxiety concerns, various studies have taken place and are ongoing which seek to inves-
tigate how the effects of these concerns can be quantified and alleviated without major advances in EV range (Rauh et al.,
2015).

Given the existence of the trials mentioned above, there still exists limited availability of real EV data and primarily data
which is applicable to small population cities and suburban/rural settings such as is predominantly the case in Ireland, for
example. This limited availability of data relating to EV usage has contributed to assumptions being made during modelling
for research and infrastructure planning purposes. Wi et al. (2013) and Molina et al. (2012) assume arrival and departure
times of EVs and the battery states of charge (SOC) before and after charge events. Lojowska et al. (2012) and Tamor
et al. (2013) use national travel surveys to derive EV data from internal combustion engine vehicle (ICEV) data for trip mak-
ing behaviour. The usage and analysis of real EV data may assist in strengthening research conclusions and reduce the neg-
ative effects of assumptions.

As such, the primary aim of this paper is to conduct in-depth analyses of the charge and trip events recorded by a fleet of
EVs in Ireland as part of the Green eMotion project (Green eMotion, 2015), a pan-European project developing the European
framework for an interoperable electromobility system. An understanding of the likely usage patterns of EV users is critical
to the rollout of charging infrastructure and the management and distribution of this charging infrastructure is imperative to
the success of EV integration. The timings and consumption patterns of charge events can provide an opportunity to deter-
mine the effects of EV integration on the electrical grid. Trip usage characteristics, such as the daily distance travelled per EV
and number of trips undertaken per vehicle per day, can further develop an understanding of the usage patterns and prob-
able timings of energy demands. Direct evidence is provided for the assessment of consumer preferences in a wide range of
areas. This analysis can not only account for the effects of EV integration into the Irish vehicle fleet, but it can also provide
information on the likely impacts of mass integration into European energy systems.

Data collection and infrastructure

Ireland as an EV study area

Ireland is uniquely placed to become a model for EV integration. The size and location of the country combine to provide
almost ideal circumstances for the nationwide use of a clean, efficient transport network powered by renewable sources. As
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an island state with closely spaced urban centres the country is ideal geographically for the widespread use of electric trans-
port. Ireland also has tremendous potential to generate large amounts of electricity from renewable sources, particularly
wind power. The Irish government has published the National Renewable Energy Action Plan, which commits to producing
10% of all road transport energy from renewable sources by 2020, equating to 482 kilotonnes of oil equivalent (ktoe) or
5606 gigawatt-hours (GW h) (DCENR, 2009). The adoption of the EV is seen as integral to this initiative.

As the state’s largest energy provider, the Electricity Supply Board (ESB) have a central role to play in the electrification of
Ireland’s road transport fleet, primarily with their “ecars” initiative (ESB, 2014). As such, the ESB are endeavouring to develop
a nationwide infrastructure capable of fully supporting the number of EVs planned for Irish roads. Almost 1000 publically
accessible charge points have been installed in the country up to the end of 2013. Every town in Ireland with a population
of greater than 1500 people will have a minimum of one charge point. Fast chargers will be installed across the nation’s
motorways to create “electric highways” between the major urban centres, and 50 of these fast chargers have already been
installed.

In order to promote the adoption of EVs throughout the country, the Irish government are providing a number of financial
incentives, the most significant of which is a €5000 grant towards the purchase of any vehicle with CO, emissions of less than
75 g per kilometre. A budget of €5 m was allocated to this fund, allowing the first 1000 EV adopters to avail of the scheme.
Furthermore, EVs are exempt from Ireland’s vehicle registration tax (VRT), and as Ireland’s road tax is based on CO, emission
levels, EVs fall into the lowest tax category. In addition, the first 2000 citizens to adopt an EV avail of home charge point
installation free of charge. As such, the Irish government is actively seeking to achieve the goal of 10% EVs by 2020.

Monitored vehicles

As part of the Green eMotion pan-European project, fifteen EVs were deployed and monitored in the Irish demonstration
region of the project during the trial period. All vehicles are of the same make and model, the Mitsubishi i-MiEV, which is a
four-seater battery electric-vehicle (BEV), drawing all of its propulsive power directly from the on-board battery rather than
using plug-in hybrid electric vehicle (PHEV) technology, combining the battery with an internal combustion engine (ICE). All
of the monitored vehicles are owned by the ESB, a private company, and are leased or “loaned” at the ESB’s discretion.

Each of the vehicles are fitted with a lithium-ion battery pack with a storage capacity of 16 kW h, and the electric motors
within each vehicle have a nominal power consumption value of 47 kW. The electric motor provides 180 N m of torque,
enabling the vehicles to be capable of reaching a top speed of 130 km/h. The regenerative braking system within the vehicles
allows for the transfer of kinetic energy from momentum back into the battery, which causes deceleration whenever the dri-
ver takes their foot off the accelerator. The battery can be charged from empty in approximately 8 h, and the maximum
achievable range under ideal driving conditions is 130 km. The range limit is based on the best available information along
with data returned from the vehicles. The vehicles were manufactured in 2010, and as such it is worth noting that battery
technology has improved since then to achieve longer ranges and higher top speeds.

In order to investigate whether there are differences between the behaviours of various categories of EV users, the vehi-
cles were separated into two use cases: business use and private use. Seven of the vehicles are business use vehicles, mean-
ing that the vehicles are used for business purposes independently of the owner. The remaining eight vehicles are private use
vehicles, used for private purposes independently of the owner. These vehicles are leased to the successful applicants of the
ESB e-Car ambassador programme, which aims to promote electric vehicle ownership in Ireland. The vehicles are essentially
“loaned” to the selected candidates for no charge, with a lease agreement in place for legal purposes only. The different use
cases enable the analysis of the differing schedules of use and the different behavioural characteristics of the user types to be
conducted.

Data collection

The monitored vehicles were deployed in March 2011, and data was collected up until February 2014, encompassing
three years of data collection. In order to maximise and diversify the dataset, the private use vehicles were leased and trialled
for periods of four months meaning that, in general, every private use EV user in the trial could be considered an early stage
EV user. As such, in total there were 72 unique users of the private use vehicles during the analysis period. The business use
vehicles were used as pool vehicles by employees of the ESB, allowing the employees to use the vehicles whenever desired.
The usage rate of each of the business use vehicles remained high throughout the analysis period.

Data was collected from the EVs via data logging equipment installed within the vehicle infrastructure. These data loggers
were configured to read information from each vehicle’s control area network (CAN) bus and to store these data in internal
memory. In addition, the location and time information of each vehicle were monitored using a global positioning system
(GPS) device and this information was also stored in internal memory. GPS data and CAN bus messages were logged every
five seconds and every one second, respectively. Various parameters of data were recorded, allowing for a review of the
actual behavioural and usage patterns of the EVs during the trial period.

Data was then automatically uploaded via general packet radio service (GPRS) with a file transfer protocol (FTP) each
night. In order to distinguish each EV, hence facilitating the analysis of the different use cases, a unique ID was assigned
to each EV. Trip and charge events were recorded, defined by the initial and final time of each event. The data were then
collected by the Irish fleet management company Transpoco (Transpoco, 2014), allowing the data to be readily downloaded
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and analysed. While Dublin is considered the primary location for data collection of the business use vehicles, the private use
vehicles were distributed throughout the country.

Vehicle deployment

Throughout the three year period of data collection, the business use vehicles were available as required by employees at
the ESB. For the first four month trial period for the private use vehicles, the trial participants were selected from a pool of
ESB employees who had expressed prior interest in engaging in the trial. Following this initial period, an application process
was opened to the public through various forms of advertising whereby EV enthusiasts would declare their interest in leas-
ing a vehicle (at no charge) for a four month period with the intention that the EV would replace the primary household
vehicle. The trial attracted over 20,000 applicants, and the vehicles were rotated to selected users for four month cycles.

As well as fulfilling the necessary financial and legal requirements, the selection process was structured to achieve a num-
ber of criteria:

o A mixture of male and female EV users.

¢ A mixture of age cohorts.

o Distribution of the vehicles nationwide.

e Varying travel-to-work distances.

e A variety of businesses and places of work.

Detailed information was not available on each specific user, however given that the selection process was tailored to
ensure an adequate demographic mix the dataset can be considered as representative as possible, within the constraints
of confidentiality and data protection promised to the trial participants. As part of the trial process, the selected candidates
had a charging facility installed at their home. These were standard external single phase 16 A (3.7 kW) wall box units. In
addition, the entire public charging network was available for the candidates’ use. The public infrastructure includes stan-
dard charging units located in various locations such as street parking, train and bus stations, fuel stations and shopping cen-
tres. These charging units can supply power at either 16 A (3.7 kW) or 32 A (22 kW) depending on the car that connects to
charge; for this study the Mitsubishi i-MiEV would be limited to 3.7 kW from these chargers. In addition there is a connected
network of fast (DC) chargers around the country located adjacent to major highways; these units are rated at either 63 A
(44 kW) or 120 A (50 kW). The Mitsubishi i-MiEV can connect to these fast chargers using the on-board socket connection.
The trial therefore represented the same charging opportunities that would be available to all other EV users in the country
who were not partaking in the trial and therefore the conclusions from this study can be considered representative of actual
EV user behaviour and are therefore relevant to other countries when planning for EVs.

Methods
Aims and objectives

Using a selection of the parameters of data returned by the EVs, the aim of the analysis was to profile the behaviours of EV
users in terms of their charge and trip making patterns. Due to data confidentiality issues, user specific information was not
available to accompany the data results such as their age, location or sex, however the selection process was structured to
ensure that an adequate mix of demographics was included. In that regard the results can therefore be considered represen-
tative of typical EV users for countries similar to Ireland across a range of potential owners. The data was disaggregated into
private and business use cases which is described in more detail in section ‘Aggregation and disaggregation’. It is useful to
determine how EVs are being utilised through time with respect to the implications these behaviours may have on the elec-
trical grid and on whether the vehicles are being driven in a manner similar to ICEV driving. Through investigating the charg-
ing events recorded by data loggers, the timings of the charges and their consumptions can be analysed, along with how the
vehicles are being used between charges and the likely state of charge remaining in vehicle batteries before and after
charges.

With regard to trip events, the timings of trips can show when the vehicles are not in use and may therefore be available
to be charged. The usage characteristics of EVs, such as the distances travelled and the energy discharged during typical trip
events, can assist in determining the likely consumer preferences for the EVs. Therefore, possible market penetration out-
comes may be predicted through the analysis of these usage patterns. The evaluation of real-world data from the usage
of EVs may also provide information on the theoretical assumptions thus far used in EV analyses and modelling.

Categories of data

Of the various categories of data returned, a selection of thirteen parameters was chosen for analysis, with six parameters
encompassing charging events and the remaining seven parameters involving trip events. The parameters were chosen due
to their ability to best characterise EV user behaviours, both in terms of the investigation of differences between vehicle use
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Table 1
Categories of data chosen for analysis.
Category of data Description
Charge start time The charge start time records the instance of power flow from the electricity supply to the EV, rather than the plug-in
time (hh:mm:ss)
Charge consumption The charge consumption is the total amount of energy consumed by an EV during a charge event (kW h)
Distance since last charge  This records the distance travelled by an EV in between two consecutive charging events (km)
Time since last charge This records the time that has elapsed in between two consecutive charging events (min)
Initial state of charge This is the percentage of battery capacity remaining in an EV’s battery prior to a charge event (%)
Final state of charge This is the percentage of battery capacity within an EV’s battery after a charge event (%)
Journey start time The journey start time records the start time of every individual trip made by an EV (hh:mm:ss)
First journey start time The first journey start time only takes into account the start time of the first trip of the day made per EV (hh:mm:ss)
Final journey finish time The final journey finish time only takes into account the end time of the final trip of the day made per EV (hh:mm:ss)
Number of trips per day This records the distribution of the number of trips a given EV makes during a given day
Daily distance travelled This records the distribution of the total distance travelled by a given EV during a given day (km)
Energy discharged during  This records the total amount of energy consumed during each individual trip event made by an EV (kW h)
trips
Trip distance This records the distribution of the distance of each individual trip made during the analysis period (km)

cases and to analyse associated effects on the electrical grid. Table 1 displays the variables of interest chosen for further
analysis.

The dataset was treated prior to the analysis in order to identify and remove any erroneous data entries that could poten-
tially distort the analyses. A number of technical bounds were decided upon wherein values violating these bounds were
removed from consideration. The bounds were based on the technical feasibility limits for the vehicle technology in use
as well as values that could misrepresent the typified behaviours of EV users. Technical filters were created in order to
remove these errors, and were applied to the aggregated dataset using a series of Macros developed in Microsoft Visual Basic
for Microsoft Excel 2007. Following the filtration process, further data quality checks were performed to ensure the dataset
was ready to be used for the resultant analyses. Primarily due to some limitations of the data loggers within the vehicles in
processing and storing data on a second-by-second basis, errors were returned in the dataset. The errors were identified and
eliminated in advance of data analysis. Values outside the feasible technical bounds of the battery technology, such as dis-
tances or consumption values in excess of the capacity limits of the battery, were removed. Additionally, incorrect entries
such as negative charge consumptions or duplicate entries were removed. As such, an extensive data filtering process
was administered on the dataset. Following the filtration process, 9.4% of the data were deemed to be unusable and were
discarded, and further data quality checks were subsequently performed on the datasets. It must be noted that due to the
filtration process, different categories of data are based on varying numbers of events.

Aggregation and disaggregation

In order to formulate a better understanding of the differing behaviours of variant EV user types and between varying
times of the week, the dataset was disaggregated in two ways - the different use cases for the vehicles were separated,
and charge and trip registers were considered during weekdays and weekends. Initially, an aggregate analysis of all returned
dynamic events was conducted without dividing the data into neither use cases nor days of the week. This was administered
both to determine the effects and behaviours of all monitored vehicles as a unit, and also to provide a means of comparison
on which to base the results of the disaggregated analyses.

Disaggregating the dataset into business use and private use vehicles allows for comparisons to be made regarding the
probable timings of various events and their associated magnitudes. In terms of the analysis of weekday and weekend
events, it is expected that differences will be evident in the behaviours of EV users during these time periods due to the vari-
ation in vehicle usage patterns between commuting and recreational activities. This also allows for further analyses to be
conducted comparing the different use cases across the different time periods, such as determining whether there are beha-
vioural differences in business use vehicles during weekdays and weekends.

Statistical analyses

Along with the descriptive analysis of the resultant behavioural trends returned in the dataset, a series of statistical anal-
yses are conducted in order to quantify the results. An interquartile range (IQR) analysis was conducted on various analyses,
where applicable. This is administered by dividing the range between the maximum and minimum returned values of an
analysis into quartiles. The median, a measure of central tendency that corresponds to the 50th percentile, is found, and
the IQR is the range between the 25th and 75th percentiles, used as a measure of the spread of the data. The IQR can be inves-
tigated to focus on common behaviour and ignore atypical behaviour by concentrating on the most frequently returned
results and ignoring the extremes of the range.

In order to examine the potential differences in user behaviour between vehicle use cases and between days of the week,
analysis of variance (ANOVA) was used. The ANOVA tests had an alpha significance level of 0.05 and were carried out with
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the data segregated into six different categories; aggregated private and business use cases were analysed with all use cases
further segregated into both weekday and weekend time periods. The output from the ANOVA analysis was then used to
construct 95% confidence intervals for each of the group means which were then compared using post hoc tests which fol-
lowed the Hochberg GT2 methodology. This method allowed observed differences between group means to be categorised as
being statistically significant or not.

Results
EV user charging behaviour

During the study period there were 5838 charge events recorded. As a means of understanding and characterising the
more common behaviours of EV users, thereby reducing the inherent variation in the returned parameters, the interquartile
ranges (IQR) of various categories of data were investigated, along with the maximum and minimum returned values in the
dataset. As such, Table 2 displays the IQR analysis for the aggregate EV user charging behaviour results, while Tables 3 and 4
display the IQR analysis of EV user charging behaviour for the private and business use vehicles, respectively. The analysis
was applicable to three of the variables of interest, shown in the first column of each table. For the aggregate results and for
the vehicle use cases, parameters were found for the total returned registers, along with entries falling on weekdays and
weekends in order to inspect whether there are notable differences in user behaviours during these different timeframes
and between these vehicle use cases. With regard to the aggregated charge consumption for users, it can be seen that the
IQR tends to consist of a range of approximately 5 kW h, thereby accounting for an appreciable amount of variation. From
the aggregate results, it can be seen that vehicles tended to consume more energy during weekends. Upon further investi-
gation, it was found this increase in charge consumption could primarily be attributed to business use vehicles, with private
use vehicles exhibiting a smaller increase in charge consumption during weekends. The maximum and minimum values are
constant across all analyses due to the method of calculation. The analysis for the distance travelled between consecutive
charging events revealed a central tendency to travel approximately 25-30 km between charging events.

Considerable variation was evident when analysing the time elapsed between consecutive charging events. The median
value reveals a tendency to charge within approximately 18 h of the previous charging event, but a wide range is covered by
the IQR. From the aggregate analysis a trend was found for longer times between charge events to occur at weekends, com-
parable with the distance since last charge analysis, where greater distances were travelled between charge events at week-
ends - it was discovered that this could be assigned to the business use vehicles.

A plot showing the charge start time distribution is given in Fig. 1. A peak in charge start times can be seen between 07:30
and 09:00 with a steady number of charge events then beginning throughout the day until values begin to reduce between
00:00 and 07:00. The peak in AM charge starts is likely due to EVs being plugged in following early morning trips; however

Table 2
IQR analysis of EV user charging behaviour for aggregate vehicle registers.
Category of data Register Minimum Q1 Median Q3 Maximum
Charge consumption (kW h) Total 0.63 239 4.54 7.56 11.97
Weekday 0.63 239 4.54 7.56 11.97
Weekend 0.63 3.02 5.29 8.13 11.97
Distance SLC (km) Total 0.52 13.63 27.07 43.66 129.08
Weekday 0.52 13.24 26.28 42.70 129.08
Weekend 0.65 16.49 31.17 49.25 126.80
Time SLC (min) Total 6.00 268.00 1094.00 1710.50 10062.00
Weekday 6.00 245.00 1073.00 1614.00 10062.00
Weekend 6.00 408.00 1196.00 2137.00 9932.00
Table 3
IQR analysis of EV user charging for private use vehicle registers.
Category of data Register Minimum Q1 Median Q3 Maximum
Charge Consumption (kW h) Total 0.63 2.39 4.54 7.56 11.97
Weekday 0.63 2.39 4.54 7.43 11.97
Weekend 0.63 2.77 4.54 7.75 11.97
Distance SLC (km) Total 0.61 12.78 25.41 43.65 129.08
Weekday 0.61 12.57 24.98 43.07 129.08
Weekend 1.19 14.76 26.49 47.30 126.80
Time SLC (min) Total 6.00 213.00 1023.00 1879.00 10062.00
Weekday 6.00 200.50 1029.00 1996.50 10062.00

Weekend 6.00 311.25 986.50 1619.00 9932.00
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Table 4
IQR analysis of EV user charging for business use vehicle registers.
Category of data Register Minimum Q1 Median Q3 Maximum
Charge consumption (kW h) Total 0.63 239 4.54 7.56 11.97
Weekday 0.63 2.39 4.54 7.56 11.97
Weekend 0.63 3.15 5.29 8.13 11.97
Distance SLC (km) Total 0.52 14.38 27.98 43.66 128.39
Weekday 0.52 13.61 27.03 42.32 128.39
Weekend 0.65 18.32 33.31 50.97 126.54
Time SLC (min) Total 6.00 324.00 1136.00 1662.00 9987.00
Weekday 6.00 283.25 1100.50 1513.75 9987.00
Weekend 7.00 637.00 1271.00 2338.50 8606.00
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Fig. 2. Distance since last charge event distribution for aggregated dataset.

the AM peak was not expected and is not mirrored with a PM peak following the evening peak traffic period, with just a
slight increase in the number of events evident.

The mean distance driven between charging events was 30.57 km with a median value of 27.66 km. The maximum dis-
tance driven between charge events was 129.08 km. An analysis of the recorded charge event data for all vehicles (i.e. both
private and business use cases) during the full duration of the study showed that for 90.2% of cases the distance driven since
the vehicle was last charged was less than 60 km. A plot showing the distribution of distance driven in between consecutive
charge events is given in Fig. 2. 97.8% of charge events were undertaken when the distance since the last charge event was
less than 80 km. Given that all of the vehicles included in this study have a reported range of 130 km (Mitsubishi i-MiEV), it
would appear that the drivers are not willing to drive their EV beyond a considerable ‘buffer’ range before charging.



214 P. Weldon et al./ Transportation Research Part D 43 (2016) 207-225

Table 5
Post hoc test groupings for distance since last charge event (km).
Factor N Subset for alpha = 0.05
1 2 3
Private weekday 2461 29.10
Private aggregate 2836 2947 2947
Business weekday 2693 30.41 3041
Business aggregate 3213 31.24 31.24
Private weekend 375 31.90
Business weekend 520 35.57

Means for groups in homogeneous subsets are displayed.
a. Uses harmonic mean sample size = 976.976.
b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
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Fig. 3. Time since last charge event distribution for aggregated dataset.

The ANOVA test for the distance since last charge variable resulted in a p-value of less than 0.05; this was based on 5
degrees of freedom (df) with an associated F-value of 9.94 and an effect size of 0.43%. The resulting post hoc test groupings
are presented in Table 5; groupings that do not share a subset group number are statistically significantly different from each
other.

The comparison of the six group means for the distance since last charge category shows that both weekend use cases are
statistically different from the remaining groups. The private weekend use case vehicles have a lower mean distance
between charging events whilst this mean distance is higher for business weekend use case vehicles. The mean distance
since last charge event for the six groups lies between 29.11 km and 35.58 km and this is significantly below the range of
the vehicle at 100% SOC, confirming that regular charging is occurring regardless of the available range. This compares
favourably with the IQR analysis which indicated that the largest proportion of charge events took place when less than
50 km had been driven since a prior charging event. Given that the means for all groups are considerably below the range
of the vehicles, it is clear that the distance since last charge is low regardless of the time period or use case.

Fig. 3 gives the distribution of the elapsed time since EVs were last charged over the duration of the study. With respect to
the x-axis, the bands of time are separated by six hours up until 3 days, after which each band of time represents 24 h. This
was done in order to distinguish between the more common shorter charging times. The mean duration between charging
events was 1524 min (25.4 h) with a median value of 1094 min (18.2 h). 71.09% of charge events took place within 24 h of
the previous charge, with the greatest proportion occurring within 6 h of the last charge (28.08%). EV users are therefore
charging their vehicles in regular patterns and this may explain the apparent lack of use of the available range of the vehicles.

A comparison between the means of the aggregated data and the individual use cases showed that business use vehicle
charge events took place after a shorter duration following the previous charge event when compared to the private use case,
and this will be investigated further in the IQR analysis. This is likely due to the higher availability of charge facilities for
business use vehicles. It is clear that EVs are being used for shorter trips and then being charged regardless of the remaining
available range. An examination of the initial state of charge (SOC) data, analysing the percentage of battery capacity remain-
ing in a battery prior to a charging event, also identifies this trend in charge patterns. As shown in Fig. 4, 58.7% of charge
events took place when the SOC of the EV battery before the charge event was above 50%. Only 6.29% of charge events took
place when the SOC of the vehicle’s battery before the charge event was 20% or less. Given the previous trends with respect
to distance travelled between charging events, it is interesting to note that 25.5% of charge events took place when the state
of charge of the EV battery before the charge was greater than 80%. As would be expected, the SOC after charge events was
100% in almost all cases.
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Fig. 5. Vehicle charge event energy consumption for aggregated dataset.
Table 6
ANOVA post hoc test results for charge event energy consumption (kW h).
Factor N Subset for alpha = 0.05
1 2
Private weekday 1709 4.87
Private aggregate 2077 4.95
Business weekday 2555 5.06
Business aggregate 3071 5.15
Private weekend 368 5.25 5.25
Business weekend 516 5.58

Means for groups in homogeneous subsets are displayed.

a. Uses harmonic mean sample size = 925.618.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not
guaranteed.

The plot of the distribution of charge event energy consumption data is given in Fig. 5. The highest proportion (26.2%) of
charge events consumed between 2 and 4 kW h of energy. The highest amount of energy consumed during a single charge
event was 11.97 kW h, due to the battery capacity reserve limits, and the mean energy consumption for all charge events
was 4.46 kW h with a median value of 3.78 kW h.

The ANOVA test for the charge event energy consumption variable resulted in a p-value of less than 0.05 (df = 5; F=6.09;
Effect size = 0.29%). The post hoc test results are shown in Table 6. The test was unable to separate the group means with
only the weekend business group statistically significantly different from the other group means at the 0.05 significance
level. It follows that this group would have a higher charge consumption value given that the mean distance since last charge
for this group was higher and therefore more charging would be required when a charge event did take place. The mean
charge event energy consumption values for the six groups lie between 4.87 kW h and 5.60 kW h.
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Table 7
IQR analysis of EV driver behaviour for aggregate vehicle registers.
Category of data Register Minimum Q1 Median Q3 Maximum
Energy discharged - trip events (kW h) Total 0.59 0.65 1.28 1.94 11.60
Weekday 0.59 0.65 1.29 2.00 11.60
Weekend 0.61 0.64 1.27 1.91 9.67
Distance travelled per vehicle per day (km) Total 0.51 13.00 26.40 43.57 426.47
Weekday 0.51 13.86 27.72 44,57 426.47
Weekend 0.64 10.24 21.78 39.31 169.24
Number of trips per vehicle per day Total 1 3 5 7 27
Weekday 1 3 5 7 27
Weekend 1 3 5 7 21
Trip distance (km) Total 0.50 1.94 411 8.88 101.92
Weekday 0.50 1.97 4.18 9.23 101.92
Weekend 0.50 1.84 3.77 7.91 75.67
Table 8
IQR analysis of EV driver behaviour for private use vehicle registers.
Category of data Register Minimum Q1 Median Q3 Maximum
Energy discharged - trip events (kW h) Total 0.59 0.65 1.28 1.94 11.60
Weekday 0.59 0.65 1.29 2.00 11.60
Weekend 0.61 0.64 1.27 1.91 9.67
Distance travelled per vehicle per day (km) Total 0.51 13.00 26.40 43.57 426.47
Weekday 0.51 13.86 27.72 44,57 426.47
Weekend 0.64 10.24 21.78 39.31 169.24
Number of trips per vehicle per day Total 1 3 5 7 27
Weekday 1 3 5 7 27
Weekend 1 3 5 7 21
Trip distance (km) Total 0.50 1.94 411 8.88 101.92
Weekday 0.50 1.97 4.18 9.23 101.92
Weekend 0.50 1.84 3.77 7.91 75.67
Table 9
IQR analysis of EV driver behaviour for business use vehicle registers.
Category of data Register Minimum Q1 Median Q3 Maximum
Energy discharged - trip events (kW h) Total 0.59 0.65 1.28 1.94 10.39
Weekday 0.59 0.65 1.29 2.00 10.39
Weekend 0.61 0.64 1.27 1.91 9.67
Distance travelled per vehicle per day (km) Total 0.51 13.38 26.71 42.52 426.47
Weekday 0.51 14.76 28.08 43.41 426.47
Weekend 0.76 10.18 21.72 38.33 169.24
Number of trips per vehicle per day Total 1 3 5 7 27
Weekday 1 3 5 7 27
Weekend 1 3 4 7 19
Trip distance (km) Total 0.50 1.96 4.10 8.92 93.59
Weekday 0.50 1.97 4.13 9.23 93.59
Weekend 0.50 1.90 3.80 8.13 75.67

EV user driving behaviour analysis

During the study 44,411 trips were undertaken, with a total distance driven of 307,469 km. The mean trip distance during
the study period was 6.92 km with a median value of 4.11 km. Table 7 displays the IQR analysis for the aggregate EV driver
behaviour results, while Tables 8 and 9 display the IQR analysis of EV driver behaviour for the private and business use vehi-
cles, respectively. The analysis was applicable to four of the variables of interest, shown in the first column of each table. In a
similar manner to the EV charging behaviour analysis (section ‘EV user charging behaviour’), parameters were found for the
total returned registers, along with entries falling on weekdays and weekends in order to inspect whether there are notable
differences in user behaviours during these different timeframes and between these vehicle use cases.

When analysing the variation in the energy discharged during trip events, it could be seen that little variation was evi-
dent, as indicated by the narrow ranges of the IQRs in all cases. Across all times and all use cases, the range from the min-
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imum to the 3rd quartile covers less than 1.5 kW h, showing a more consistent behaviour with regard to the energy dis-
charged during trip events and with very slight differences between the analyses. The maximum values indicate that the
battery capacity was almost used fully during some trips, but this is not representative of more typical EV user behaviour.
The analysis for the daily distance travelled is highly comparable with the distance travelled between charging events (see
section ‘EV user charging behaviour’), indicating that individuals tend to charge their vehicles after they have completed
their daily travels. In contrast to the distance since last charge variable, it was discovered that EV users tended to drive
shorter daily distances at the weekends, and this was consistent across all use case analyses. The IQR of approximately
30 km represents moderate amounts of variation in travel behaviour.

With respect to the number of trips travelled per day, it can be seen that little variation is evident across use cases and
times. In all cases, the IQR covers the range from 3 to 7 trips per day, with the majority of analyses returning a median result
of 5 trips per day. The minimum number of trips undertaken in all cases is 1 trip. The analysis of individual trip distances
returned registers in the lower ranges of trip distances, with the 3rd quartile values being less than 10 km in all cases.
The distribution of trip distances can be compared to the energy discharged during trip events, with similar small ranges
being returned. This shows that EVs are typically used for trips of shorter distances, confirming the well documented sug-
gestions that EVs are appropriate for urban driving conditions and are well suited as a secondary vehicle in a household. It
was also discovered that shorter trip distances are made during weekends when compared to weekdays for all use case anal-
yses. This is reinforced by the fact that the maximum trip distance driven in all cases occurred on weekdays rather than
weekends.

An analysis of journey start and finish times was carried out using the aggregated data with further segregation into use
cases and weekday and weekend occurrences for each category of data. For the aggregated data, journey start times showed
3 clear peaks during the day; 07:00-10:00, 13:00-15:00, and 17:00-19:00. The distribution of journey start times for the
aggregated dataset is shown in Fig. 6. A similar distribution for journey finish times was observed with the times shifted
slightly later in the day.

The aggregated data was segregated into private and business use cases in order to identify potential differences in EV
user behaviours. For both the aggregated and use case data, differences in the journey start/finish time distributions were
observed when weekday and weekend data plots were compared. Plots of the journey start time distributions for the aggre-
gated dataset segregated into weekday and weekend occurrences are given in Fig. 7. Weekend journey start times occur later
and over a longer time period and the three distinct peaks observed previously do not emerge, instead taking a bell-curve
shape. Fig. 8 shows the distribution of both first journey start and final journey finish times for the aggregated data.

In addition to the start and finish times of journeys, the number and distance of journeys undertaken by EV users were
also recorded and analysed. The mean number of trips per vehicle per day was 5.39 with a median value of 5. The distribu-
tion of the number of trips per vehicle per day which was counted from the aggregated data is shown in Fig. 9. A wide vari-
ation in trip distribution is shown; however, the greatest proportion of recorded trips per vehicle per day occurs in the range
of 2-5 trips per vehicle per day.

A p-value of less than 0.05 resulted from the ANOVA test of the number of trips per vehicle per day (df = 5, F = 6.89, Effect
size = 0.18%) and the subsequent post hoc test output is given in Table 10. It can be seen that business use case vehicles
undertake the highest mean number of trips during weekdays and this is statistically significantly different from all other
groups. It can also be seen that both private and business use case groups for weekdays and weekends are statistically sig-
nificantly different from each other.

The distribution of individual trip distances is shown in Fig. 10. The longest recorded trip was 101.92 km and again this is
well below the reported range of the EVs which is 130 km. The majority of trips undertaken during the study period were
less than 10 km. 97.6% of trips were below 30 km with just 0.24% of trips above 50 km in distance. Similar trip distances were
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Fig. 6. Journey start time distribution for aggregated dataset.
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Fig. 8. (a) First journey start time distribution and (b) final journey finish time distribution for aggregated dataset.
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Fig. 9. Number of trips per vehicle per day for aggregated dataset.

observed for weekday and weekend travel periods. The average trip distance of 6.92 km recorded during this trial is some-
what lower than the comparable figure for internal combustion engine vehicles (ICEVs) of 10.7 km in the greater Dublin area
(DTO, 2006).

In addition to individual trip distance analysis, the aggregated total daily travel distance per vehicle was also investigated.
The mean daily distance travelled for all use cases was 32.17 km with a median value of 26.39 km and a highest recorded
daily travel distance of 426.47 km. Given the regular charging patterns that were observed previously it is interesting to note
that a number of charge events would have been required to achieve this trip, with fast chargers likely being employed to
achieve this distance. This would indicate that EV users were not discouraged from making longer daily travel arrangements;
however, only 2% of daily travel distances exceeded 100 km with just 19.46% exceeding 50 km. It is therefore clear that EV
users did not use vehicles for high daily travel distances. Summary statistics for daily travel distances for each of the use
cases are given in Table 11.



P. Weldon et al./ Transportation Research Part D 43 (2016) 207-225 219

Table 10

Post hoc test groupings for the number of trips per vehicle per day.
Factor N Subset for alpha = 0.05

1 2 3

Business weekend 1085 5.03
Private weekend 915 5.21 5.21
Private aggregate 4395 5.32 532 5.32
Private weekday 3480 535 535
Business aggregate 4933 5.47 5.47
Business weekday 3848 5.6

Means for groups in homogeneous subsets are displayed.
a. Uses harmonic mean sample size = 2005.325.
b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
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Fig. 10. Vehicle trip distance distribution for aggregated dataset.
Table 11
Summary statistics for daily distance travelled per vehicle for aggregated dataset.

Description Private use Business use
Mean/Median daily travel distance (km) 33.26/26.04 31.19/26.71
Highest recorded daily travel distance (km) 292.51 426.47
Proportion of daily travel distances > 100 km (%) 2.93 1.29
Proportion of daily travel distances > 50 km (%) 21.12 17.81

Table 12
Post hoc test groupings for trip distance (km).
Factor N Subset for alpha = 0.05
1 2 3 4 5
Private weekend 4649 5.92
Business weekend 4704 6.43
Business aggregate 22,895 6.72 6.72
Business weekday 18,191 6.79
Private aggregate 21,510 7.14
Private weekday 16,861 7.48

Means for groups in homogeneous subsets are displayed.
a. Uses harmonic mean sample size = 9491.667.
b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

P-values of less than 0.05 again resulted from the ANOVA tests for both vehicle trip distance (df =5, F=42.41, Effect
size = 0.24%) and daily distance travelled per vehicle (df = 5, F = 21.34, Effect size = 0.57%). The resulting post hoc test results
are shown in Tables 12 and 13 respectively. When considering only individual trip distances for each of the six groups of data
it can be seen that the two aggregated datasets for private and business use cases are statistically significantly different, and
in fact each of the four disaggregated use case datasets do not share a subset grouping. Private use vehicles undertake the
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Table 13
Post hoc test groupings for distance travelled per vehicle per day (km).
Factor N Subset for alpha = 0.05
1 2 3
Business weekend 1085 27.69
Private weekend 915 27.82
Business aggregate 4933 31.2
Business weekday 3848 32.19
Private aggregate 4395 33.26 33.26
Private weekday 3480 34.7

Means for groups in homogeneous subsets are displayed.
a. Uses harmonic mean sample size = 2005.325.
b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
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Fig. 11. Energy discharged during trip events distribution for aggregated dataset.

longest mean trip distances for weekdays (7.48 km) and this group also recorded the shortest mean trip distances at week-
ends (5.92 km).

Further interesting results emerge when the same data is analysed for the distance travelled per vehicle per day. The post
hoc groupings (Table 13) cannot separate private and business use case data for weekends indicating that their means are
statistically similar. However this is not the case for weekday daily trip distances as the use case means are statistically sig-
nificantly different from each other - private use case vehicles undertake higher mean daily trip distances than business use
vehicles during weekdays.

During the study period a total of 30.41 MW h of energy was consumed by the EVs during those trip events that returned
a value for the amount of energy that was discharged. The majority of trip events consumed between 0 and 2 kW h with only
4.1% of trip events consuming more than 4 kW h of energy. A plot of the energy discharged during trip events is given in
Fig. 11.

The p-value arising from the ANOVA analyses for the energy discharged during trip events was less than 0.05 (df =5,
F=13.05, Effect size = 0.17%). A clear pattern emerges in the post hoc test groupings shown in Table 14 below, with weekday
and weekend differences emerging. Both private use and business use weekend means cannot be separated and similarly
both group weekday means cannot be separated. Therefore, on average, weekday trips will consume 1.66-1.679 kW h of
energy with weekend trips consuming 1.47-1.53 kW h.

Relating the quantity of energy discharged to the associated trip distances provides useful information on the vehicles’
specific energy consumption. Using this parameter of energy discharged during trip event and matching it with the corre-
sponding trip distance, an average vehicle specific energy consumption of 0.164 kW h/km was found during the study. This
can be compared to the NEDC (Dieselnet, 2013) test value of 0.135 kW h/km and is approximately 20% higher. This higher
value could be due to the way in which the vehicles were driven with air conditioning, heating, lights and entertainment all
potentially adding to the load on the battery. In addition, the actual consumption of the vehicle is affected by the road
terrain.

Charge and journey timing analysis

The timing of EV charge events has the potential to have a significant impact on energy demand on the national grid when
the penetration of EVs into the general vehicle fleet reaches appreciable levels. The results of the aggregate analysis indicate
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Table 14

ANOVA post hoc test results for energy discharged during trip events (kW h).
Factor N Subset for alpha = 0.05

1 2

Private weekend 1610 147
Business weekend 2268 1.53
Private aggregate 7297 1.62
Business aggregate 11,283 1.65
Private weekday 5687 1.66
Business weekday 9015 1.68

Means for groups in homogeneous subsets are displayed.
a. Uses harmonic mean sample size = 3810.800.
b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not

guaranteed.
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Fig. 12. (a) Weekday and (b) Weekend charge start time distributions for aggregated dataset.

a substantial peak in the morning, with almost 20% of charge events beginning between 08:00 and 10:00. While it may have
been assumed that this peak could be attributable to business use vehicles, upon further analysis it was observed that the
peak is present for private use vehicles also. Due to the fact that charge events were recorded by the vehicles rather than the
charge points, this can primarily be ascribed to an incentive available in Ireland whereby all electricity from public charge
points was free until July 2014. These behavioural patterns show the potential effectiveness of providing free electricity for
charging.

As shown in Fig. 12, considerable differences in user behaviours were noted when comparing weekday and weekend
charging behaviour. From the aggregate analysis on weekends, two peaks beginning at 11:00 and 17:00 were identified, rep-
resenting potentially high demand on the electrical grid during on-peak times during weekends. This may be due to the
aforementioned free public charge point electricity incentive, since individuals may be more likely to charge at home rather
than in public locations at weekends.

When considering the influence of EVs on supply networks, it must be noted that the impact EVs will have does not solely
depend on the charge-usage level of the vehicles; from a demand management perspective it is useful to know when the
energy will be required from the grid. As such, the analysis of travel timing can provide information on the likely time frames
for vehicle recharging. The analysis of the first journey start and final journey end time each day allows for a further analysis
of vehicle availability, thus giving an indication of the likely time frames for vehicle recharging. When these analyses are
considered together, the start and end times of daily travel clearly show when the vehicles will be stationary for extended
periods of time. Fig. 13 shows the start and end time of daily travel for the aggregated data, with Fig. 13(a) displaying the
distribution for weekday registers and Fig. 13(b) showing the distribution for weekend registers. The y-axis accounts for
the percentage occurrence of the start and end time for each time slot.

The distribution of the first journey start times on weekends is more gradual when compared with weekdays, with daily
travel tending to start slightly later in the day leading into a steadier decline, and it is more comparable with the gradual
distribution of final journey finish times. The central portions of these distributions between the two relative peaks clearly
show the times when it is likely the vehicles are in use and are therefore unable to be recharged. The results confirm the
already well documented opportunity to charge electric vehicles during the night valley of low electricity demand, thereby
enhancing the efficiency of the grid and generation plants. It must also be noted that the finish times of daily travel pose a
possible risk of grid overloading due to potential consumer preferences to recharge their vehicle immediately following the
last journey of the day, however this risk will be mitigated through the use of managed charging.

Fig. 14 displays the daily distance travelled vs. the number of trips made per vehicle per day for the aggregated data,
exploring the range of distance travelled for each number of trips. The primary y-axis shows the average daily distance trav-
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Fig. 13. Weekday start and end time of daily travel and (b) weekend start and end time of daily travel for aggregated dataset.
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Fig. 14. Daily distance travelled vs. number of trips per day for aggregated dataset.

elled per number of trips, represented by the columns. The secondary y-axis is related to the maximum and minimum dis-
tances recorded for the corresponding daily trip count, indicated by the vertical black lines. All events were recorded in
kilometres.

As would be expected, there is a notable trend for the average daily distance travelled to increase with an increase in the
number of trips per day. With regard to the maximum and minimum daily distances recorded per number of daily trips, it
can be seen that considerable variation exists, with the vertical lines covering a wide range of distances in most cases. As the
number of trips increases, the minimum distance travelled tends to increase, but there is no dominant pattern evident with
respect to the maximum distance travelled. It can be seen that the maximum distance travelled, equal to 426.47 km, was
made in 13 individual trips. This case is attributable to a business use vehicle, and it is very likely the vehicle utilised fast
charging infrastructure in order to be capable of completing this distance in a single day. The second largest daily distance
of 292.51 km was made in 6 trips, and this is attributable to a private use vehicle.

Discussion and conclusions
Discussion

Interesting findings in relation to vehicle charging patterns emerged from the results of this study. The mean charge event
energy consumption values for the six groups analysed were between 4.9 kW h and 5.6 kW h. Knowledge of this mean
charge consumption range can be used with projected EV market penetration values to estimate the likely future load on
the national electricity grid from charging and this can aid in determining any grid reinforcements that may be required.
The availability of user data assigned to two use cases allowed a comparison to be made between the two groups and the
results showed that business use vehicles tended to be used in a very different manner to private use vehicles for some
charge and trip variables and very similarly for others. Given that the results of the charge event energy consumption men-
tioned above indicate that business and private use case EVs have similar charging demands with respect to energy, it is pos-
sible to estimate their demands as a combined load to the grid without the need for more complex analysis. In regard to



P. Weldon et al./ Transportation Research Part D 43 (2016) 207-225 223

vehicle charging frequency a clear difference between the two groups was observed with business use vehicles charged less
frequently than private use vehicles across all analyses; it was also seen that business use vehicles also exhibited less vari-
ation in their charging demands. Private use vehicles therefore tend to be charged in a more irregular fashion based on the
consumer preferences and in this regard the load profiles observed in this study can be used to inform interested EV stake-
holders on normal behaviour in the absence of managed charging. This behaviour may have implications on the electrical
grid as the varying charging demand of this group may not be entirely mitigated through the future incorporation of man-
aged charging. In addition their need to charge frequently may impact on the provision of charging facilities.

A clear trend that was observed across all groups was that drivers are not willing to drive their EV beyond a considerable
‘buffer’ range before charging. The distance since last charge parameter is the best means of accessing users’ charging habits
relative to their vehicles’ range. EV users were found to travel only 30 km on average between charging events which when
compared to the vehicles’ range of 130 km, clearly indicates that individuals are unwilling to use the entire capacity of their
batteries and instead opt to charge more frequently than would be required. Given that the means for all use case and aggre-
gate groups were considerably below the range of the vehicles, it is clear that the distance since last charge is low regardless
of the time period during the week or use case. The related parameter of time since last charge helps to quantify the fre-
quency of these charging demands. It was seen that 71.09% of all charge events took place within 24 h of the previous charge,
with the greatest proportion occurring within 6 h of the last charge (28.08%). EV users are therefore charging their vehicles in
regular patterns and this may explain the apparent lack of use of the available range of the vehicles. If charging follows a
regular pattern and daily trip distances are short, then the available range will rarely be approached. This frequent regular
charging pattern will have impacts on the national electricity grid given that users appear to charge on a regular basis even
when an adequate range is still available to them. It is anticipated that night charging is most suitable given the lower unit
costs and spare capacity in the electricity grid. However, the peak in the time band denoting less than 6 h between consec-
utive charging events would indicate that users are not following this anticipated pattern as widely as would have been
expected. In essence EV users were found to charge their vehicle batteries during almost any opportunity that was available
to them which emphasises the need for charging facilities. An interesting trend in these results was that across both use
cases there was a propensity for longer distances to be travelled between charging events during weekends indicating that
the regular charging behaviour observed is more prevalent during the working week. When comparing between use cases it
was seen that business use vehicles tend to travel greater distances between charging events across all time periods when
compared to private use vehicles which is possibly associated with the business aspect of their travel requirements. The time
and distance since last charge parameters demonstrated that charging occurs on a regular basis regardless of the charge
remaining in the vehicle battery. Examining the results from the battery SOC confirmed these trends. However it is quite
surprising that 25.5% of charge events took place when the state of charge of the EV battery before the charge was greater
than 80%. This could possibly point to habitual charging. It has been reported that an EV battery will retain approximately
80% of its original maximum capacity after 10 years and 3000 charging cycles (LiFePO4, 2010). In addition, Winther and Holst
(2015) reported negligible degradation in battery performance over time with repeated charging. A charging frequency of 1
or more charges per day exceeds this reported value of 300 charging cycles per year, however a study by Marongiu et al.
(2015) on the performance of lithium-ion EV batteries indicated that whilst reduced depth-of-discharge (DOD) values for
EV battery packs would increase the total number of charging events over their lifetime, the effect would be to reduce bat-
tery cycle aging. Relating charging behaviour to vehicle usage for trips is an important consideration and therefore the
energy consumed during trip events is of interest. The results showed that on average weekday trips will consume 1.66-
1.68 kW h of energy with weekend trips consuming 1.47-1.53 kW h. This information is useful when predicting the impacts
on the electrical grid and also on the EV battery life. Given that the batteries contained with the vehicles are 16 kW h (with a
usable capacity of 12.6 KW h), it can be seen that mean trip energy consumption is a small proportion of the available power
and this is related to the short and frequent nature of trips undertaken. The trends suggest that the observed charging beha-
viour was determined by individual needs rather than being influenced by larger concerns such as demand management. As
such, the results indicate the very real potential to optimise EV charging through the smart management of energy delivery
such as managed charging.

When examining how the vehicles were used from a travel perspective, the results of this study again highlight interest-
ing trends. Trips made by EV tended to be short and frequent and this is reflected in the charging patterns that were dis-
cussed previously. Average trip distances recorded during this study were found to be shorter than those recorded by
comparable ICEV users. It was also discovered that shorter trip distances are made during weekends when compared to
weekdays for all use case analyses. This is reinforced by the fact that the maximum trip distance driven in all cases occurred
on weekdays rather than weekends. Vehicles are therefore being used for higher numbers of trips during weekdays with
lower numbers of trips recorded at weekends. Business use vehicles have the highest mean number of trips during weekdays
and these trips were shown to be short (~7 km), it can therefore be concluded that business use case vehicles are being used
for a higher number of short trips during weekdays with private use vehicles being used for trips that are of longer distances
with less trips being made. Given that range anxiety has been shown to be an issue for EV users in previous studies, it would
appear that the usage patterns for business use vehicles identified in this study would be well suited to EVs as the range
would not present such an issue.

The frequency of trips and the daily distance travelled in an EV is of considerable importance when planning the infras-
tructure to support the influx of electrified road transportation. Dependent on a user’s preferred travel behaviour, long travel
distances and numerous trips per day will likely require a greater network of public charging infrastructure due to the
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greater energy consumption during travel. Similarly, EV users who make multiple trips comprising short distances may only
be able to charge their vehicles at night, thereby placing a potential additional load on the grid in the absence of managed
charging. The maximum distance travelled in this study was 426.47 km which was made in 13 individual trips. This case is
attributable to a business use vehicle, and it is very likely the vehicle utilised fast charging infrastructure in order to be cap-
able of completing this distance in a single day. The second largest daily distance of 292.51 km was made in 6 trips, and this
is attributable to a private use vehicle. The considerable variation in the dataset shows that different forms of charging
infrastructure, such as fast charging, would be required to cater for the differences in user behaviour particularly in extend-
ing the range. However when taking into consideration the distances travelled daily by EVs in this study, the advantages of
fast charging may not be desirable when weighted against the potential negative impacts on battery life. A study by Adany
et al. (2013) indicated that the current passed through EV battery cells when charging and discharging has a large impact on
battery performance and lifetime and therefore the high currents involved in fast charging could have negative impacts on
battery life. In addition, fast charging facilities can be impractical from a cost perspective and also limit the possibility of
reducing grid impacts from EV’s through the absence of managed charging options. The current batteries do not like large
currents as they degrade much more quickly with this procedure and it reduces energy efficiency. When comparing between
weekday and weekday trips, EV users tended to drive shorter daily distances at the weekends, and this was consistent across
all use case analyses. It was also noted that almost 30% of registers recorded greater than 7 trips per vehicle per day during
the study. This would again indicate that public recharging infrastructure may be required to account for this variation in the
number of trips particularly if overall trip distances are to be increased.

Conclusions

The findings from this study provide useful information relating to EV charging and driving behaviour to inform other
small and medium size cities and regions where EV usage would predominantly take place in a suburban or rural settings.
Through the analysis of the timing and consumption patterns of charge events instigated by EV users, information can be
obtained regarding the likely periods of high energy demand from the grid, as well as the magnitude of this energy demand.
A large early morning peak was observed for the charge start time distribution, with a somewhat constant distribution
throughout the remainder of the day with moderate variation, occurring across all use cases. Significant differences were
noted between weekdays and weekends. The charge consumption values show a large degree of variation in EV charging
behaviour, dependent on the battery’s initial state of charge. Through an analysis of the distance and time between consec-
utive charging events, it was also shown that EV users tend to charge their vehicles frequently, thereby placing unnecessary
additional demands on the electrical grid. As the data was recorded in the absence of managed charging facilities, the poten-
tial for smart charging and load valley filling is clearly evident from the results.

Analysis of EV user trip data has shown that trips are predominantly frequent in number per day and short in distance. It
is not clear whether this trend is caused by the user having anxiety about the range of their EV or whether it is based on
consumer preference, as a regular charging pattern was also observed. Given that EV users tended to make short trips with
predominately low daily travel distances, home charging at night would be most suitable to accommodate the required jour-
ney ranges. It would seem clear that business users undertook a higher number of short trips during weekdays when com-
pared to private users and given the likelihood of available charging facilities at the workplace this could be a possible future
target area for the promotion of EVs in order to achieve a higher penetration.

EV users tended to charge their vehicles at regular intervals without using the available range of their batteries and this
was reflected both in the SOC before charge events and also the distances travelled between consecutive charge events. It
would appear that EV users develop a regular charging routine similar to one that they would adopt for an electrical device
such as a mobile phone or touch screen computer. This approach may be adopted by users to ensure a fully charged battery
to maximise their range at all times or simply the user may be making a decision to plug in their EV at all times when not in
use. Given this regular charging pattern that was observed, the power required from and the likely impacts on the national
electricity grid can be easily predicted. However the battery life of the vehicle may be negatively affected from this type of
use given that battery integrity is usually based on a limited number of charge cycles. With respect to the national public
charging infrastructure, it would appear that based on the trends observed an extensive public slow charging network would
not be required. Instead the focus of the provision of a national charging infrastructure should be to provide fast charging
facilities. The provision of fast charging facilities may be more effective at shifting EV users to making longer trips and higher
daily travel distances given the current behaviour of EV users.
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