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How to calibrate the parameters of car-following models based on observed traffic data is a
vital problem in traffic simulation. Usually, the core of calibration is cast into an optimiza-
tion problem, in which the decision variables are car-following model parameters and the
objective function usually characterizes the difference between empirical vehicle move-
ments and their simulated correspondences. Since the objective function is usually nonlin-
ear and non-convex, various greedy or stochastic algorithms had been proposed during the
last two decades. However, the performance of these algorithms remains to be further
examined. In this paper, we revisit this important problem with a special focus on the geo-
metric feature of the objective function. First, we prove that, from a global perspective,
most existing objective functions are Lipschitz continuous. Second, we show that, from a
local perspective, many of these objective functions are relatively flat around the global
optimal solution. Based on these two features, we propose a new global optimization algo-
rithm that integrates global direct search and local gradient search to find the optimal solu-
tion in an efficient manner. We compare this new algorithm with several existing
algorithms, including Nelder–Mead (NM) algorithm, sequential quadratic programming
(SQP) algorithm, genetic algorithm (GA), and simultaneous perturbation stochastic approx-
imation (SPSA) algorithm, on NGSIM trajectory datasets. Results demonstrate that the pro-
posed algorithm has a fast convergence speed and a high probability of finding the global
optimal solution. Moreover, it has only two major configuration parameters that can be
easily determined in practice.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Microscopic simulation plays an important role in the analysis and design of traffic facilities. It provides a flexible
platform on which various traffic scenarios can be studied in a controlled maneuver without disrupting real-world traffic
(Chung and Dumont, 2009; Barceló, 2010). Usually, a traffic simulation platform consists of several models which address
different aspects of traffic behavior. In this paper, we will focus on longitudinal car-following models (Punzo and
Simonelli, 2005; Gunay, 2007; Punzo and Tripodi, 2007; Kesting and Treiber, 2008; Ossen and Hoogendoorn, 2008;
Tordeux et al., 2010; Chen et al., 2012, 2015; Ciuffo et al., 2012a,b).
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Most microscopic simulation tools adopt certain ordinary difference equations characterized by a few parameters to
model drivers’ car-following actions. In order to guarantee the selected simulation models well reproduce traffic phenomena
observed in practice, different calibration methods have been proposed to appropriately determine the model parameters
(Wu et al., 2003; Ahn et al., 2004; Brockfeld et al., 2005; Panwai and Dia, 2005; Punzo and Simonelli, 2005; Kesting and
Treiber, 2008; Ossen and Hoogendoorn, 2008; Punzo et al., 2012).

In some microscopic car-following models, a few parameters have physical equivalents in reality, e.g., desired velocity
used in Gipps’ car-following model (Gipps, 1981; Wilson, 2001; Punzo and Tripodi, 2007; Ciuffo et al., 2012a,b). Other
macroscopic features of traffic flow parameters, e.g., free flow velocity, critical density and jam density, are important in
many models and can be straightforwardly estimated from loop detector data (Rakha et al., 2007; Rakha and Gao, 2011).
However, in lots of car-following models, more parameters cannot be simply derived from macroscopic measurements
(Zhang and Kim, 2005; Punzo and Simonelli, 2005; Kesting and Treiber, 2008; Ossen and Hoogendoorn, 2008; Ciuffo and
Punzo, 2014).

As a result, the car-following model calibration using empirical vehicle trajectory data gained increasing interests
recently, since trajectory data provided much more details of driving actions on the microscopic level (Punzo and
Simonelli, 2005; Kesting and Treiber, 2008; Ossen and Hoogendoorn, 2009; Chiabaut et al., 2010; Punzo et al., 2012). There
was an approach used for the first time in car-following calibration by Ossen and Hoogendoorn (2008) and successively by
Punzo et al. (2012), making use of laboratory experiments to compare algorithms in a fair way, that is using the model itself
to generate synthetic data on which performing calibration. This allows the analysist to know what the global optimum is.
How to accurately estimate model parameters from trajectory then becomes an issue of importance; since none of existing
car-following models can perfectly fit all of the empirical trajectories, due to various influence factors such as time-varying
dynamics of driving actions (Wagner, 2012; Koutsopoulos and Farah, 2012), heterogeneity of different drivers (Ossen and
Hoogendoorn, 2007, 2011; Wang et al., 2010), measurement noises (Kesting and Treiber, 2008; Ossen and Hoogendoorn,
2008) and asymmetric characteristics in car-following and their impacts on traffic flow evolution (Li et al., 2013a; Wei
and Liu, 2013).

Recently, Punzo et al. (2012) made a deep investigation about methodological aspects in the calibration of car-following
models, including a comparison of optimization algorithms. Further, different indicators were proposed to measure algo-
rithm performance not only in terms of the objective function value but also in terms of the distance of calibrated parameters
from the global ones. In that research, the optimization performance indicator was proposed to provide a measure of the
accuracy of the best solution in a calibration experiment in terms of both the parameter values and the score of the objective
function. In this paper, we follow the same measures of performance (time series of the follower’s speed and spacing
between leader and follower) and adopt one of the goodness-of-fit functions (i.e., root mean square error) used in Punzo
et al. (2012), since the normalized optimization performance indicator cannot be achieved due to unknown true global opti-
mum. The main methodological contribution of this study is to propose a combined two-stage optimization algorithm for
trajectory data based car-following calibration.

In many solutions for the car-following model calibration, parameters were taken as constant and uncertainties were
viewed as an additive disturbance to system dynamics. The core of calibration can thus be casted into an optimization prob-
lem, in which decision variables are model parameters and the objective function usually characterizes the difference
between empirical vehicle movements and their simulated correspondences.

In the simulation, usually two consecutive vehicles are considered at one time. The state of the leading vehicle is updated
according to empirical observations, and the state of the following vehicle is updated via the selected car-following model.
According to simulation settings, we can further categorize the existing calibration approaches into two types (Wagner et al.,
2010; Treiber and Kesting, 2013a).

The first category is called local-fit or direct-fit, the endogenous model variables are compared against the data,
separately for each data point. Specifically, the empirical position and velocity information of both vehicles are used as
input at each simulation time step. Consequently, the outputs of the car-following model at the next time steps can be
calculated. The modeled accelerations are compared against the empirical ones, separately for each time step, to obtain
the samples of additive disturbance. If the distribution of additive disturbances is further assumed, we can directly fit
the car-following model with respect to these sampled disturbances. For example, the maximum likelihood estimation
(MLE) was applied to maximize the ‘‘agreement” of model parameters with the observed data (Hoogendoorn and
Ossen, 2005; Hoogendoorn and Hoogendoorn, 2010; Kim et al., 2013). Since the induced variables (usually the accelera-
tions at different time steps) are separable in the objective function, the optimization problems of this category are
usually easy to solve.

The second category is called global-fit or indirect-fit, a complete data trajectory is compared with a simulated trajectory.
The car-following model is not directly calibrated by independently comparing the endogenous model variables with the
observations. Instead, only the empirical position and velocity information of the leading vehicle are used as input at each
time step. The initial state of the following vehicle is given, too. Then, the movements of the following vehicle at the rest of
time steps are calculated sequentially. Finally, the simulated trajectory is compared with the empirical one. Since the
induced variables (usually the velocities or positions at different time steps) are determined in a sequential manner, the
objective functions of this category are usually nonlinear, non-convex and difficult to optimize.

It was demonstrated in Punzo and Simonelli (2005), Wagner et al. (2010), and Treiber and Kesting (2013a) that these two
kinds of approaches might generate notably different choices of parameter values, although the same trajectory dataset was
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used. In some benchmark datasets, global-fit approaches yield better performance, partly because the memory mechanism
of the global-fit approaches adds additional bounded constraints to some parameters (especially ac/deceleration parameters)
and prevents them to be too large or too small.

So, how to solve the optimization problem for the global-fit approaches received consistent interests (e.g., Brockfeld et al.,
2003). In this paper, we will focus on this important problem.

A number of greedy search algorithms were used to find acceptable solutions. Brockfeld et al. (2005) applied the
Nelder–Mead (NM) algorithm (Nelder and Mead, 1965; Lagarias et al., 1998) to solve the formulated optimization problem.
They found that the NM algorithm was easy to get stuck at local minima, because of the non-convexity of the objective
function. So, the authors suggested to restart the algorithm many times (at least three runs and usually more) with different
initialization values of decision variables. Similarly, Ossen and Hoogendoorn (2008) repeated the whole calibration proce-
dure several times and used different measures of performance as the objective every time. Alternatively, the sequential
quadratic programming (SQP) algorithm was adopted in Wang et al. (2010). However, SQP algorithm did not guarantee
to converge to global minima, either.

Several stochastic algorithms had been applied for this problem, too. For example, genetic algorithm (GA) was used to
calibrate microscopic simulation models in Ma and Abdulhai (2002), Schultz and Rilett (2004), and Park and Qi (2005).
Simultaneous perturbation stochastic approximation (SPSA) algorithm was adopted to find the best parameters in Ma
et al. (2007) and Lee and Ozbay (2009). In the literature, a few global–local optimization studies were conducted in car-
following or traffic microsimulation model calibration (Ciuffo and Punzo, 2010; Punzo et al., 2011; Ciuffo et al., 2012a,b).
Punzo et al. (2012) successfully applied the OptQuest multistart algorithm that combined the seeking behavior of a
gradient-based local nonlinear programming solver with the global optimization abilities of a scatter search. Since candidate
starting points are generated either by a scatter search heuristic or by a randomized process, it would be difficult to select
starting points and control the transition from the global stage to local stage. The computational complexity of these stochas-
tic algorithms still needs further discussions.

This paper revisits the car-following model calibration problem from a different viewpoint. First, we prove that, from a
global perspective, most existing objective functions are Lipschitz continuous. Moreover, we show that, from a local perspec-
tive, many of these objective functions are relatively flat around the global optimal solution. Based on these two features, we
propose a new global optimization algorithm that integrates global direct search and local gradient search to find the opti-
mal solution. The proposed combined algorithm is based on detailed analysis of features of the objective functions used in
car-following calibration. We have solved a critical problem that exists in most combined algorithms, that is, how to deter-
mine the transition condition between global search and local search. In the first stage, the new algorithm applies the
Lipschitz search algorithm (Jones et al., 1993) to determine a few candidate subspace that most likely contains the global
optimal solution. Then in the second stage, based on those potentially optimal subspace, either SQP or the trust region
(Fletcher et al., 2002) algorithm can be applied to search the global optimum with a fast speed. Besides, there is another
important reason to propose the Lipschitz optimization algorithm with local search, i.e. easily implemented configuration
parameters. Only two parameters with physical meanings for determining convergence termination need pre-selection,
i.e. critical normalized size of global–local transition and number of multi-start potentially optimal subspace. The explicit
feature makes the combined algorithm probably be widely used in different car-following calibration problems. Results
demonstrate that the proposed algorithm has a fast convergence speed and a high probability of finding the global optimal
solution.

To better present our findings, the rest of this paper is arranged as follows. Section 2 briefly reviews several existing direct
search algorithms for parameter calibration, and their performance will be compared in Section 5.2. Then Section 3 presents
the car-following model calibration problem and then discusses the Lipschitz continuous property of the objective functions.
Section 4 presents the new algorithm that utilizes the Lipschitz continuous property to accelerate searching. Numerical tests
on field trajectory sets are provided in Section 5 to compare the new algorithm with some existing algorithms and demon-
strate its efficiency. Finally, Section 6 concludes the paper.
2. Several existing algorithms for parameter calibration

Among numerous algorithms proposed for car-following calibrations, we will revisit four representative ones here:
Nelder–Mead (NM) algorithm, sequential quadratic programming (SQP) algorithm, genetic algorithm (GA), and simultane-
ous perturbation stochastic approximation (SPSA) algorithm:

(1) In Brockfeld et al. (2005), the Nelder–Mead algorithm (Nelder and Mead, 1965; Lagarias et al., 1998) was used to find
an optimal solution for the calibration problem. The NM algorithm starts with an initial set of points that form a simplex (a
convex hull of ðnþ 1Þ vertices in n dimensions with nonzero volume). In each iteration, we compare the objective function
values at the vertices of this simplex and determine the worst corner point. Then, we attempt to replace the worst point by
introducing a new vertex in a pre-selected way and form a new simplex. The iteration terminates if the objective function
values at the vertices of the current simplex satisfy a certain form of the descent condition compared to those for the
previous simplex.

The NM algorithm is a deterministic local direct search algorithm, because it transforms the worst vertex through a num-
ber of operations about the centroid of the current simplex and gradually expands the searching set. It may be trapped into a
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local optimal solution. The NM simplex method is an efficient local search procedure but its convergence is extremely sen-
sitive to the selected starting point. Moreover, the original NM algorithm is a direct search method for multidimensional
unconstrained optimization but is not designed for constrained problems.

(2) The SQP algorithm is a frequently-used algorithm for constrained optimization problems (Nocedal and Wright, 2006).
In each iteration of the SQP algorithm (Fletcher and Powell, 1963; Fletcher et al., 2002), it first approximates the original
optimization problem as a quadratic objective subject to a linearization of the constraints. Then, we apply the Newton’s
method to find an extreme value point where the gradient of the objective vanishes. Sequentially apply this
approximation-maximization iterations, we may finally reach a local optimal solution.

The SQP algorithm is a deterministic local direct search algorithm and can be applied to constrained problems. However,
it is very sensitive to the initial vector and may be trapped into a local optimal solution, too.

(3) The GA algorithm (Goldberg, 1989) is a stochastic optimization algorithm directly inspired from the Darwinian theory
of evolution of species. It mimics the process of natural selection to routinely generate new vectors. It is able to find the
global optimal solution, if the running time approaches infinity. However, the performance of GA algorithm for a particular
problem still needs careful examinations, especially when we preset a limit on computation time.

(4) The SPSA algorithm (Spall, 2000, 2003) is another stochastic optimization algorithm. It requires only two measure-
ments of the objective and one random simultaneous perturbation to estimate the gradient, regardless of the dimension
of the optimization problem. Since the SPSA algorithm introduces random perturbations when estimating the gradient,
the converging speed of the SPSA algorithm often requires careful tests.

Nevertheless, the GA and SPSA algorithms have a number of configuration parameters for tuning. Selecting a set of appro-
priate configuration parameters are often tricky, tedious, and time consuming. The implementation of GA and SPSA may
need to specify a number of algorithm coefficients. It is often difficult to find the right parameters for the algorithms them-
selves. In practice, some ‘‘trial and error” experimentation will be required for an effective selection of algorithm coefficients
before implementation. Of course, they may have good results if selecting an appropriate set of coefficients. Constrained by
the paper length limit, we will not further discuss the variations of these algorithms. Instead, the performance of these four
algorithms in their standard forms will be compared in the following Section 5.

3. Global-fit model calibration

3.1. The general car-following model and calibration

Generally, a continuous-time car-following model can be described by a set of coupled delay-differential equations of the
form
_v iðtjhiÞ ¼ dv iðtjhiÞ
dt ¼ aiðtjhiÞ ¼ f Dxi�1;iðt � TrÞ;v iðt � TrÞ;Dv i�1;iðt � TrÞjhi

� �
_xiðtjhiÞ ¼ dxiðtjhiÞ

dt ¼ v iðtjhiÞ

(
ð1Þ
where v iðtjhiÞ denotes the velocity of the object vehicle i at time t; xiðtjhiÞ represents the position of the ith vehicle at time
t; Dxi�1;iðtÞ ¼ xi�1ðtÞ � xiðtÞ represents the spacing between the leading ði� 1Þth vehicle and the following ith vehicle at time
t. Similarly, Dv i�1;iðtÞ denotes the velocity difference between two consecutive vehicles. f �ð Þ is a special function that
describes the car-following behavior and hi are a set of parameters for the driver of the ith vehicle if making an assumption
of heterogeneous driving behavior. the driver’s response is directly given in terms of an acceleration function or the car-
following law f �ð Þ. aiðtjhiÞ is the acceleration rate generated by at time t given the car-following parameter set hi, the subscript
i denotes the object vehicle. Tr is the reaction time that is composed of the mental processing time, the movement or action
time, and the technical response time. If Tr ¼ 0, Eq. (1) is a set of continuous-time differential equations; otherwise, it is
delay-differential equations.

The acceleration equation in Eq. (1) cannot be integrated analytically, but it is straightforward to approximatively solve it
numerically. In traffic simulation, explicit update schemes with a fixed update time interval are practical. A discrete-time
car-following model requires less computation resources for its numerical integration.
aiðtjhÞ ¼ f Dxi�1;iðt � TrÞ; v iðt � TrÞ;Dv i�1;iðt � TrÞjh
� �

v iðt þ TjhÞ ¼ v iðtjhÞ þ aiðtjhÞ � T
xiðt þ TjhÞ ¼ xiðtjhÞ þ v iðtjhÞþv iðtþTjhÞ

2 � T ¼ xiðtjhÞ þ v iðtjhÞ � T þ 1
2 aiðtjhÞ � T2

8><
>: ð2Þ
where T is the update time interval. Assume the update rule holds for discrete time intervals T;2T; . . . ; t, here t represents a
multiple of T. Consequently, the integrated forms of the continuous-time car-following model Eq. (1) is approximated by Eq.
(2) with a ballistic update scheme. As we can see, both update time interval and reaction time are taken into account by the
general form.

The reaction time is an essential feature of human driving. It is interesting to incorporate a reaction time in the human
car-following law. Even if the reaction time Tr is not a multiple of the update time interval T, one simply linear approxima-
tion of the quantity v iðt � Tr jhÞ and xiðt � Tr jhÞ can be given by
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v iðt � Tr jhÞ ¼ m � v iðt � ðnþ 1ÞTjhÞ þ ð1�mÞ � v iðt � nTjhÞ
xiðt � TrjhÞ ¼ m � xiðt � ðnþ 1ÞTjhÞ þ ð1�mÞ � xiðt � nTjhÞ

�
n ¼ int

Tr

T

� �
; m ¼ Tr

T
� n ð3Þ
where n ¼ int �ð Þ and m denote the integer and fractional functions, respectively. If we apply the same linear approxi-
mation to the leading vehicle i� 1, the spacing and speed difference at time t � Tr can be estimated, i.e.,
Dxi�1;iðt � Tr jhÞ; Dv i�1;iðt � Tr jhÞ.

To implement Eqs. (2) and (3), it is necessary to temporarily save the past nþ 1 values of speed and position in the buffer,
i.e., v iðt � ðnþ 1ÞTjhÞ; v iðt � nTjhÞ; . . . ;v iðtjhÞ, and xiðt � ðnþ 1ÞTjhÞ; xiðt � nTjhÞ; . . . ; xiðtjhÞ.

It is clear that considering the reaction time as a variable, the calibration problem would become a mixed continuous
integer problem, which is much more difficult. It is known that most of the algorithms cannot handle this unless simplified
approaches are adopted. Treiber and Kesting (2013b) stated that the reaction time depended on many factors such as the age
and experience of the driver, nevertheless, nearly all models and simulators assumed a constant common value for all drivers
in all situations. When modeling traffic flow by discrete-time iterated coupled difference equations, the reaction time is often
identified with the update time (e.g. Treiber and Kesting, 2013b). Since we focus on the optimization algorithm, it is assumed
that drivers’ reaction time is equal to the simulation update time in this paper, too. For presentation simplicity, we set the
time horizontal so that the sampled times can be denoted as T;2T; . . . ;NT in the rest of this paper, where N denotes the
number of the sampled data for calibration.

Constrained by length limit, we will address two widely used car-following models in this paper. The first model is the
well-known Gazis–Herman–Rothery (GHR) model (Gazis et al., 1961; Ossen and Hoogendoorn, 2005) that depicts accelera-
tion with respect to the velocity of the leader vehicle, relative velocity and spacing between following and leading vehicles,
and driver reaction time as
ai ðjþ 1ÞTjhið Þ ¼ cvm
i ðjTjhiÞ

Dv i�1;iðjTjhiÞ
Dxli�1;iðjTjhiÞ

ð4Þ
where T is the update time interval, j denotes the sequence of simulation time interval, j ¼ 1;2; . . . ;N; c;m, and l are
car-following behavioral parameters. The GHR parameters are all box-bounded and can be written in a vector form as

hi ¼ ½c;m; l�T. The velocity and position update rules of Eq. (2) are applied for the GHR model.
The second model is the intelligent driver model (IDM) (Treiber et al., 2000; Treiber and Kesting, 2013a,b), given by
aiðjTjhiÞ ¼ a 1� v iðjTjhiÞ
v0

� �d

� s�ðv iðjTjhiÞ; Dv i�1;iðjTjhiÞÞ
siðjTjhiÞ

� �2
 !

ð5Þ
This expression consists of an acceleration strategy towards a desired velocity v0 with the parameter of the maximum
acceleration a and a braking strategy which is dominant when the net distance siðjTÞ ¼ Dxi�1;iðjTÞ � Li to the preceding
vehicle becomes smaller than the desired gap s� defined by
s�ðv iðjTÞ; Dv i�1;iðjTÞjhiÞ ¼ s0 þ T0v iðjTjhiÞ þ v iðjTjhiÞDv i�1;iðjTjhiÞ
2
ffiffiffiffiffiffi
ab

p ð6Þ
where s0 is the minimum net distance in congested traffic, T0 is a constant desired (safety) time gap of the leading vehicle. d
denotes the free acceleration exponent, which is set as 4 for simplicity. The last term is only active in non-stationary traffic

and implements an ”intelligent” driving behavior. All elements of the IDM parameter vector hi ¼ ½a; b;v0; T0; s0�T are positive
box-bounded. Since the IDMmodel formulation is not a delayed model, and the acceleration output is calculated at the same
time of inputs, see Eq. (5), we will apply car-following model state update rules of Eq. (2) with zero reaction for IDM.

Let us focus on the calibration of a particular vehicle i given the known trajectory of its leading vehicle ði� 1Þ. Punzo and
Simonelli (2005) compared several measures of performance (e.g. velocity, inter-vehicle spacing and headway) in the
objective function and discussed which measure led to the best calibration result. Hollander and Liu (2008) had summarized
different choices of performance index functions (including the percent error, mean error and squares error). In Section 3.2,
we mainly discuss the widely used sum of velocity difference measure
min
h2X

gðhÞ ¼
XN
j¼1

v iðjTjhÞ � v̂ iðjTÞ½ �2 ð7Þ
where X is the solution space of h;v iðjTjhÞ and v̂ iðjTÞ denote the simulated and empirical velocities of the ith following
vehicle at time t ¼ jT; j ¼ 2; . . . ;N, respectively. v̂ iðjTÞ is taken as known inputs in the optimization problem.

The decision variable h does not explicitly appear in the objective function (7), and the induced variable v iðjTjhÞ are
sequentially dependent by Eq. (2). Therefore, the derivative information of this objective function is difficult to obtain. To
conquer this difficulty, we need to further analyze the property of the objective function.

In addition to the objective function of the SSE of velocity defined in (7), we had also tested other performance index func-
tions. For example, we take the SSE of location (we will call it the SSE of gap in the follows) as the performance index. In this
paper, for notation simplicity, alternatively, we still use gðhÞ for the gap SSE given by



Till the termination 
criteria are satisfied

Fig. 1. An illustration of the partition and search process of the algorithm proposed in Jones et al. (1993) after 5 iterations, in which 21 objective function
values are evaluated. The shadowed rectangles indicate the interested subspaces in each step.
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min
h2X

gðhÞ ¼
XN
j¼1

xiðjTjhÞ � x̂iðjTÞ½ �2 ð8Þ
where X is solution space of h; xiðjTjhÞ and x̂iðjTÞ denote the simulated and empirical positions of the ith following vehicle at
time t ¼ jT; j ¼ 2; . . . ;N, respectively. x̂iðjTÞ is taken as known inputs in the optimization problem.

3.2. The Lipschitz continuous property of the objective function

In this section, we will show that the objective functions (7) and (8) are Lipschitz continuous in the solution space X#Rn

of h. Constrained by the length limit, we only give the proof for the GHR model. However, the following conclusions can be
similarly proven to hold for IDM and many car-following models with respect to other smooth and bounded objective
functions. Indeed, the parameters of any a car-following model cannot be ill-conditioned; otherwise, the corresponding
simulation results will be weird. So, we will pre-determine the appropriate parameter ranges for the car-following models.
In such situations, the Lipschitz property is transferable.

Definition 1. A function gðhÞ : X ! R is called Lipschitz continuous in X for any h 2 X if there exists a positive Lipschitz
constant ‘ > 0 satisfying
jgðhÞ � gðh0Þj 6 ‘ h� h0k k1 8h; h0 2 X ð9Þ
Proposition 1. For the GHR model (4), the objective function (7) is Lipschitz continuous in the feasible domain X of parameters
h 2 X#Rn.
Proof. First, let us eliminate variables v iððk� 1ÞTÞ and xiððk� 1ÞTÞ so that the whole optimization problem only depends on
variables aiðkTjhÞ; k ¼ 2; . . . ; j; j ¼ 1; . . . ;N.

Since v ið0Þ and xið0Þ are known initial conditions of the ith vehicle, we can apply the car-following dynamic model (2)
sequentially to get
v iððk� 1ÞTjhÞ ¼ v iððk� 2ÞTjhÞ þ aiððk� 1ÞTjhÞ � T

¼ v ið0Þ þ T
Xk�1

p¼1

aiðpTjhÞ
ð10Þ

xiððk� 1ÞTjhÞ ¼ xiððk� 2ÞTjhÞ þ v iððk� 2ÞTjhÞ � T þ 1
2
aiððk� 1ÞTjhÞ � T2

¼ xið0Þ þ T
Xk�2

p¼0

v iðpTjhÞ þ T2

2

Xk�1

p¼1

aiðpTjhÞ

¼ xið0Þ þ v ið0Þðk� 1ÞT þ T2
Xk�2

q¼1

Xq
p¼1

aiðpTjhÞ þ T2

2

Xk�1

p¼1

aiðpTjhÞ

ð11Þ
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Fig. 2. The contour plot of test function and its convergence process to global optima after domain division procedures (the warm color towards to red
indicates small objective function values, while the cool color towards to blue indicates large objective function values). (a–b) The initial iteration; (c–d) the
2nd iteration; (e–f) the 10th iteration. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Thus, the optimization problem can be rewritten as
min
h

gðhÞ ¼
XN
j¼1

v iðjTjhÞ � v̂ iðjTÞ½ �2 ¼
XN
j¼1

v ið0Þ þ T
Xj

k¼1

aiðkTjhÞ � v̂ iðjTÞ
" #2

ð12Þ
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s:t: aiðkTjhÞ ¼ cvm
i ððk� 1ÞTjhÞ½v̂ i�1ððk� 1ÞTÞ � v iððk� 1ÞTjhÞ�

½x̂i�1ððk� 1ÞTÞ � xiððk� 1ÞTjhÞ�l

¼
c v ið0Þ þ T

Pk�1
p¼1 aiðpTjhÞ

h im
v̂ i�1ððk� 1ÞTÞ � v ið0Þ � T

Pk�1
p¼1 aiðpTjhÞ

h i
x̂i�1ððk� 1ÞTÞ � xið0Þ � v ið0Þðk� 1ÞT � T2Pk�2

q¼1

Pq
p¼1 aiðpTjhÞ � T2

2

Pk�1
p¼1 aiðpTjhÞ

h il
ð13Þ
It is hard to directly prove that gðhÞ is Lipschitz-continuous in terms of c;m, and l, because the constraints (13) are
sequentially dependent. To get rid of this difficulty, we relax the constraints (13) and just assume aiðkTjhÞ are bounded

(the existence of these bounds are given in Eqs. (15)–(17)). Notice that the newly formed feasible domain X̂ satisfies

X � X̂; so, if we can prove that gðhÞ is Lipschitz continuous in X̂; gðhÞ must be Lipschitz continuous in its subdomain X.
Based on Eq. (12), gðhÞ is smooth and differentiable to each aiðkTjhÞ. According to the mean value theorem, there exists a

median parameter vector �h ¼ jhþ ð1� jÞh0 with a positive coefficient j 2 ½0;1�, such that we can write the gradient of
aiðjTj�hÞ as
rhaiðjTj�hÞ ¼ @aiðjTj�hÞ
@c

;
@aiðjTj�hÞ

@m
;
@aiðjTj�hÞ

@l

� �T

ð14Þ
whose elements can be given with respect to the GHR car-following parameters fc;m; lg as
@aiðjTj�hÞ
@c

����
���� ¼ vm

i ððj� 1ÞTj�hÞDv i�1;iððj� 1ÞTj�hÞ
Dxli�1;iððj� 1ÞTj�hÞ

�����
����� 6 vm

maxDvmax

Dxlmin

�����
����� ¼ k1 ð15Þ

@aiðjTj�hÞ
@m

����
���� ¼ cvm

i ððj� 1ÞTj�hÞ logv iððj� 1ÞTj�hÞDv i�1;iððj� 1ÞTj�hÞ
Dxli�1;iððj� 1ÞTj�hÞ

�����
�����

6 cvm
maxDvmax

Dxlmin

logvmax

�����
����� ¼ k2

ð16Þ

@aiðjTj�hÞ
@l

����
���� ¼ cvm

i ððj� 1ÞTj�hÞDv i�1;iððj� 1ÞTj�hÞ
Dxli�1;iððj� 1ÞTj�hÞ log

1
Dxi�1;iððj� 1ÞTj�hÞ

�����
�����

6 cvm
maxDvmax

Dxlmin

logDxmin

�����
����� ¼ k3

ð17Þ
for j ¼ 1; . . . ;N. Here, the positive scalar k1; k2 and k3 characterize the maximum possible values of @aiðjTj�hÞ
@c

��� ���; @aiðjTj�hÞ
@m

��� ��� and @aiðjTj�hÞ
@l

��� ���,
respectively.

Let kmax ¼ maxfk1; k2; k3g, we have
gðhÞ � gðh0Þj j ¼ rT
hgð�hÞ � ðh� h0Þ

��� ���
¼
XN
j¼1

@gð�hÞ
@v iðjTj�hÞ

@v iðjTj�hÞ
@aiðjTj�hÞ

rT
haiðjTj�hÞ � ðh� h0Þ

�����
�����

¼ 2T
XN
j¼1

v iðjTj�hÞ � v̂ iðjTÞ
	 
 rT

haiðjTj�hÞ � ðh� h0Þ
h i�����

�����
6 2T

XN
j¼1

v iðjTj�hÞ � v̂ iðjTÞ
	 
�����

����� kmax1
T � ðh� h0Þ

��� ���
6 2Tkmax

XN
j¼1

v iðjTj�hÞ � v̂ iðjTÞ
	 
�����

����� h� h0k k1

ð18Þ
where 1 ¼ 1; . . . ;1½ �T is the element vector.
Define a Lipschitz constant ‘ ¼ 2Tkmax

PN
j¼1 v iðjTj�hÞ � v̂ iðjTÞ
	 
��� ���, the conclusion is naturally reached according to

Definition 1. �
Proposition 2. For the GHR model (4), the objective function (8) is Lipschitz continuous in the feasible domain X of parameters
h 2 X#Rn.
Proof. First, similar to (10) and (11), the optimization problem can be rewritten as
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min
h

gðhÞ ¼
XN
j¼1

xiðjTjhÞ � x̂iðjTÞ½ �2

¼
XN
j¼1

xið0Þ þ jT � v ið0Þ þ T2 �
Xj

k¼1

aiðkTjhÞ � j� kþ 1
2

� �� �
� x̂iðjTÞ

" #2 ð19Þ
s.t. (13)
Based on Eq. (19), gðhÞ is smooth and differentiable to each aiðkTjhÞ, then we have
gðhÞ � gðh0Þj j ¼ rT
hgð�hÞ � ðh� h0Þ

��� ���
¼
XN
j¼1

@gð�hÞ
@xiðjTj�hÞ

@xiðjTj�hÞ
@aiðjTj�hÞ

rT
haiðjTj�hÞ � ðh� h0Þ

�����
�����

¼ T2
XN
j¼1

xiðjTj�hÞ � x̂iðjTÞ
	 
 rT

haiðjTj�hÞ � ðh� h0Þ
h i�����

�����
6 T2

XN
j¼1

xiðjTj�hÞ � x̂iðjTÞ
	 
�����

����� kmax1
T � ðh� h0Þ

��� ���
6 T2kmax

XN
j¼1

xiðjTj�hÞ � x̂iðjTÞ
	 
�����

����� h� h0k k1

ð20Þ
Define a new Lipschitz constant ‘0 ¼ T2kmax
PN

j¼1 xiðjTj�hÞ � x̂iðjTÞ
	 
��� ���, the conclusion is naturally reached according to

Definition 1. �
The above important property indicates that we could apply the Lipschitz optimization to solve microscopic car-following

model calibration problems.

4. The new optimization algorithm for model calibration

Most practical solving methods for the car-following model calibration problem belong to direct search algorithms (Kolda
et al., 2003; Conn et al., 2009; Rios and Sahinidis, 2013), which usually refer to optimization techniques that do not explicitly
use derivatives. They are often described as sequential examinations of new trial decision vectors generated by a certain
strategy with respect to existing trial decision vectors.

In Section 4.1, we will introduce the Lipschitz optimization algorithm that is also a direct search algorithm and discuss
whether it could be used for the parameter calibration. Then, we propose a new optimization algorithm in Section 4.2.

4.1. A Lipschitzian optimization algorithm without presetting the Lipschitz constant

The above four direct search algorithm do not explicitly employ the Lipschitz continuous property of the objective
function. In this subsection, we will introduce a direct search algorithm dedicated to Lipschitzian continuous objectives.

Lipschitz optimization refers to a kind of deterministic algorithms that try to find the global minimum points by
iteratively partitioning the feasible region into smaller sub-regions by using the Lipschitz continuous property of the
objective function.

In all Lipschitzian optimization algorithms, the assumed Lipschitz constant controls the preference balance between
global search and local search. If the Lipschitz constant is not known, we often assume that it is a large enough number,
because we must guarantee it is equal to or larger than the actual Lipschitz constant. As a result, the convergence speed
toward the global optimal solution is often slow.

To conquer this difficulty, a Lipschitzian optimization algorithm without pre-selecting the Lipschitz constant was pro-
posed in Jones et al. (1993). This algorithm was named according to one of its primary operations: DIviding RECTangles.
DIRECT is a sampling algorithm that requires no knowledge of the objective function gradient. It does not try to exploit
any correlation between the function value at one point and its value at nearby points, and thus can be very useful when
the objective function is implicit or based on simulation. We will abbreviate it as DIRECT algorithm in the rest of this paper.

The first step of the DIRECT algorithm is to transfer the solution space into a hyper-rectangle. Then, we pick the center-
point of this hyper-rectangle, evaluate the objective function in that point, and divide the hyper-rectangle into smaller rect-
angles. Instead of using a pre-selected Lipschitz constant to determine which hyper-rectangle(s) to explore next, a set of
potentially optimal (PO) hyper-rectangles are identified that may contain the global optimal solution. The mathematical
definition and the identification method of PO hyper-rectangles are given in Appendix A. All of these PO hyper-rectangles
will be further divided into even smaller ones whose center-points are evaluated; see an illustration in Fig. 1. This procedure
will be repeated, until the objective function values at the vertices of all of the current rectangles satisfy some pre-selected
terminating criteria, e.g. when it exceeds its budget of iterations, rectangle divisions, or objective function evaluations.
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The Lipschitzian optimization algorithm is illustrated using a widely applied two-dimensional test function for better
visualization. We aim to reveal the detailed search process of DIRECT using the following illustrative numerical example
in this paper, which is defined as
f ðx1; x2Þ ¼ log ð1:5� x1 þ x1x2Þ2 þ ð2:25� x1 þ x1x22Þ
2 þ ð2:625� x1 þ x1x32Þ

2 þ 1
h i

ð21Þ
with �4:5 6 x1 6 4:5 and �4:5 6 x2 6 4:5. The global minimum is fmin ¼ 0 at x� ¼ ðx�1; x�2Þ ¼ ð3;0:5Þ.
The function value at the middle of each rectangle and the half value of its diagonal are used to determine PO rectangles.

Each PO rectangle is divided in the next iteration. Fig. 2 shows the sequential procedures of the algorithm for the test func-
tion Eq. (21). In the 10th iteration, we can see the algorithm finds the basin of global optima and more dense division is made
to this region.

The DIRECT algorithm carries out simultaneous searches in different subspaces using all of the possible Lipschitz con-
stants, and therefore better balances global and local searches. As proven in Jones et al. (1993), the DIRECT algorithm guar-
antees to hit the global optimal solution, if it runs enough iterations. It has no configuration parameters to select. Moreover,
it explicitly takes box-bounded constraints into account and are thus suitable for car-following model calibration problems.

One major shortcoming of DIRECT algorithm is its slow convergence speed around the global optimal solution, if the
objective function is flat at the global minimum. This is because DIRECT algorithm can only discard very few subspace at
each round of iterations in such situations.

For the car-following model calibration problem, we find that the DIRECT algorithm can quickly reach the basin of the
global optimal solution after a few iterations; see Fig. 3 for example, where the objective function is the sum of square errors
(SSE) of simulated velocities. Unfortunately, the converging speed of the DIRECT algorithm then becomes really slow,
because the objective function (6) is often flat around the global optimal solution. So, we need to find other algorithms to
accelerate the convergence speed.

4.2. Combine Lipschitz optimization algorithm with local search algorithm

In this subsection, we propose a new algorithm. It first executes the Lipschitz optimization algorithm to identify a few
number of hyper-rectangles which may contain the global optimal solution(s). Then, this new algorithm switches to local
search, e.g., SQP algorithm, starting at the centers of these hyper-rectangles to find the local optimal solutions within the
selected hyper-rectangles. This strategy overcomes the weaknesses of random multi-start heuristics used in many previous
studies (Brockfeld et al., 2005; Ossen and Hoogendoorn, 2008), since the global optimal solution may still locate far away
from all of the randomly generated starting vectors.
Parameter
 Notation
d0
 Critical size of transition from global to local search

gmin
 Minimal objective function value

j
 Maximal multi-start times

m
 Division iteration

r
 The sequence of PO hyper-rectangles

Sm
 Set of PO hyper-rectangles at division iteration m

hmax
 Upper bound of decision variables h 2 Rn
hmin
 Lower bound of decision variables h 2 Rn
hmr
 Center of the PO hyper-rectangle r at division iteration m

ĥ
 Optimal solution

ĥmr
 Local optima corresponding to PO hyper-rectangle r at division iteration m

½h�
 Normalized decision variables, ½h� 2 ½0;1�n

½ĥ�mr
 Normalized local optima corresponding to PO hyper-rectangle r at division iteration m
Algorithm 1. Combined Lipschitz Global and Local Search Algorithm
Input: set configuration values for the critical size d0, maximal multi-start times j, upper bound hmax and lower
bound hmin of decision variables h 2 Rn.
Initialization: Let the division iteration m ¼ 1. Normalize the feasible domain to be the unit hyper-rectangle
½h� ¼ ðh� hminÞ=ðhmax � hminÞ � 100% 2 ½0;1�n with the normalized center ½h�11 (the first subscript number denotes
the division iteration, the second one is the order of PO hyper-rectangles), which corresponds to an original vector
h11 2 ½hmin; hmax�. Evaluate gðh11Þ and let the optimal solution ĥ ¼ h11; gmin ¼ gðh11Þ. Divide the hyper-rectangle.
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. 3. (a) The convergence process of DIRECT algorithm for an IDM calibration problem with the SSE of velocity according to a particular trajectory pa
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Identify the set Sm of all PO hyper-rectangles

for all r 2 Sm do

Evaluate the objective function value at the center ½h�mr (corresponds to an original vector hmr 2 ½hmin; hmax�) of the
PO hyper-rectangle r, i.e. gðhmrÞ. If gðhmrÞ < gmin, then gmin ¼ gðhmrÞ; ĥ ¼ hmr
if size of r is equal to or smaller than d0 do

Switch to local optimization SQP algorithm with the starting point of ½h�mr

Converge to local optima ½ĥ�mr , If gðĥmjÞ < gmin, then gmin ¼ gðĥmrÞ; ĥ ¼ ĥmr
else do

Divide the PO hyper-rectangle r into smaller hyper-rectangles

Evaluate objective function values at centers of new hyper-rectangles

Update gmin and ĥ if a smaller value is found
end if

end for

division iteration m ¼ mþ 1
end while

return ĥ and gmin
a Note: If more than j PO hyper-rectangles of an equal size are found, then arbitrary j of them will be selected as starting hyper-rectangles for local
search.
ir in
cted
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The kernel of this two-step search strategy lies in when to start the local search. Given a hyper-rectangle that may contain
the global optimal solution, we use its size to determine whether we should further divide it into smaller hyper-rectangles or
start the local search within this hyper-rectangle. If the size of this PO hyper-rectangle is larger than a pre-selected threshold,
we execute the DIRECT algorithm to further divide it; otherwise, we will switch to a local search starting from the current
midpoint of this hyper-rectangle. In this paper, we choose the size to determine the switch condition; since the smaller the
PO hyper-rectangle is, the higher probability this PO hyper-rectangle contains the global optimal solution.

So, the first configuration parameter in this new optimization algorithm is the pre-selected configuration value d0 of the
smallest PO hyper-rectangle.

In this paper, we normalize the parameter vector h into [0,1] by transforming the box-bounded solution space into
ðh� hminÞ=ðhmax � hminÞ � 100%. Moreover, we define the size of hyper-rectangle as the half of its diagonal, or equivalently,
the distance from the midpoint to an arbitrary vertex. So, the normalized hyper-rectangle becomes a n-dimensional unit
hypercube with size

ffiffiffi
n

p
=2.

As shown in Fig. 4, in each iteration, the DIRECT algorithmwill determine a number of PO hyper-rectangles. We will check
whether the size of any of these PO hyper-rectangles is smaller than a pre-selected critical size d0. If the switching condition
had been satisfied in any a PO hyper-rectangle, we will stop applying the DIRECT algorithm and begin to apply the SQP
algorithm in the smallest few PO hyper-rectangles for local searches. Otherwise, we will begin a new iteration, continue
to divide all the PO hyper-rectangles and determine a new set of PO hyper-rectangles.

So, the second configuration parameter in this new optimization algorithm is j, the number of the PO hyper-rectangles in
which we apply the SQP algorithm for local searches. If we have more than j PO hyper-rectangles whose sizes are equally
the smallest, we will choose arbitrary j of them to start local searches. Besides, we always start the local searches at the
center-points of all PO hyper-rectangles.
5. Numerical tests

5.1. Test data, algorithm settings and performance criteria

In this section, the performance of the proposed algorithm in Section 3 is tested on the open-access trajectory dataset
provided by the Next Generation SIMulation (NGSIM) program. We use the data collected on a segment of U.S. Highway
101 (Hollywood Freeway) in Los Angeles, California between 7:50 AM and 8:35 AM on June 15, 2005 (NGSIM, 2006). The
sample frequency of vehicle trajectories is 10 Hz (with a resolution of 0.1 s). This dataset includes overall 6101 vehicles mon-
itored on the 640-m freeway segment. Detailed data filtering procedures for the NGSIM Highway 101 dataset can be found in
Thiemann et al. (2008), Chen et al. (2010, 2013), and Li et al. (2013a,b).

As shown in Fig. 5, since the length of the data collection site is only less than 700 m, to keep more data samples of paired
vehicles for the calibration purpose, we randomly chose 100 leader–follower trajectory pairs whose travel times were longer
than 60 s along the study highway and used these six algorithms to solve the calibration problem, respectively. Those
trajectories were impacted by at least one shockwave, so we could use them to well describe the drivers’ acceleration
and deceleration maneuvers. Moreover, the simulation time step was set as T ¼ 0:5 s.

In this paper, we adopt the package contributed by Finkel (2003) to implement the DIRECT algorithm. The NM algorithm
is implemented according to Lagarias et al. (1998). The SQP algorithm is implemented according to Fletcher and Powell
Iteration
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(1963) and Fletcher et al. (2002). The GA algorithm is implemented according to Goldberg (1989). The SPSA algorithm is
implemented according to Spall (2000, 2003). The configuration parameters of each algorithm are set as follows:

� NM. Maximum function evaluation is 104, maximum iteration is 103, both termination tolerances on function value and
decision variables are 10�12, and uniform random start vector is within ½hmin; hmax�.

� SQP. Maximum function evaluation is 104, uniform random start vector is within ½hmin; hmax�, and gradient sup-norm
tolerance is 10�5.

� GA. Population size is 50, maximum number of generations is 200 (each generation includes 50 individuals), termination
tolerance on function value is 10�12, fraction of population created by the crossover function is 0.8, initial value of penalty
parameter is 10, migration fraction is 0.2, migration interval is 20, and fraction of individuals to keep on the first Pareto
front while the solver selects individuals from higher fronts is 0.35.

� SPSA. Maximum iteration is 104, two sided simultaneous perturbation to unknown gradient, generate random perturba-
tion vector with Bernoulli distribution, and uniform random start vector is within ½hmin; hmax�.

� DIRECT. Maximum function evaluation is 104, maximum hyper-rectangle division is 104, maximum iteration is 103.
� DIRECT + SQP. Global search: Critical size of normalized PO hyper-rectangles is d0 ¼ 10�2 for the IDM and d0 ¼ 10�4 for
the GHR model in this test (transform the original hyper-rectangle into a unit hypercube using the normalization of
ðh� hminÞ=ðhmax � hminÞ � 100%, then the size of normalized hyper-rectangles lies between 0 and

ffiffiffi
n

p
=2), maximum func-

tion evaluation is 104, maximum hyper-rectangle division is 104, and maximum iteration is 103; Local search: Maximum
function evaluation is 104, a gradient sup-norm tolerance is 10�5.

The bounds of the IDM parameters are hIDM;min 6 hIDM 6 hIDM;max, with hIDM;min ¼ 1 m=s2; 1 m=s2; 10 m=s; 0 s; 1 m
	 
T and

hIDM;max ¼ ð3 m=s2; 4 m=s2; 30 m=s; 3 s; 10 mÞ. The bound of the GHR model parameters is set as hGHR;min 6 hGHR 6 hGHR;max,

with hGHR;min ¼ ½0;0; 0�T and hGHR;max ¼ ½500; 1; 5�T. It should note that the parameters of the GHR model don’t have specific
units or physical meanings as the IDM’s.

In particular, we use abbreviation DIRECT + SQP (1) to refer the algorithm that apply the SQP algorithm in only the small-
est PO hyper-rectangle. We then use abbreviation DIRECT + SQP (3) to refer the algorithm that apply the SQP algorithm in the
smallest three PO hyper-rectangles.

To compare the performance of different algorithms, we set up two criteria:

(1) The probability of finding the global optimal solution.

Because the calibration problem is highly nonlinear and non-convex, no existing algorithm can guarantee to find the
global optimal solution within a limited time period. Thus, an algorithm is the best, if it has higher chance to find the global
optimal solution within a pre-selected time period than all its competitors.

(2) The number of function evaluations that have been conducted before an algorithm reaches the global optimal solution
(vector in the solution space) or satisfies the termination condition.

For each candidate vector of car-following parameters, a calibration problem requires to simulate the whole trajectory
before comparing it with the empirical one. Since each simulation procedure consumes a certain time cost, an algorithm
is the best, if it searches fewer vectors on average to find the global optimal solution than all of its competitors.

Here, we run the DIRECT algorithm for a very large number of iterations (107 iterations) and assume the finally obtained
vector is the global optimal solution. If the difference between the optimized objective function and the global optimal value
is no larger than 10�4 [m/s]2 for the SSE of velocity (it minimizes the sum of square errors between the observed velocities in
the dataset and the corresponding simulated velocities by a car-following model), we assume it has reached the global
optimal solution.

We do not further consider how to balance these two criteria in the following tests, since the DIRECT + SQP algorithm
simultaneously has both the fastest convergence speed and the highest probability of finding the global optimal solution.
5.2. Test results

To provide an intuitive illustration, Fig. 6 plots the convergence processes of six algorithms aforementioned when they
are applied to one randomly selected pair of trajectories. For both IDM and GHR car-following models, the objectives are
minimizing the sum of velocity difference between the observation and the simulation in (7). A convergence curve is ended,
after the corresponding algorithm reaches a local optimal solution or the termination condition is satisfied.

In the tests, we randomly generate initial vectors within the box bounds for the NM, SQP, GA and SPSA algorithms as the
starting points. We generate only one starting points for these algorithms so as to study their performances when they are
run for just once.
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Fig. 6(a) compares the convergence processes of the six algorithms for the IDM calibration with the objective function
Eq. (6). Since the original NM algorithm does not consider the constraints of the decision vector, it will soon converge to
a solution that is outside the bound ½hmin; hmax� (although the found objective value is similar to the global optimal solution).
The SQP algorithm is quickly trapped at a local minimum gSQP ¼ 496 [m/s]2, which is beyond the vertical axis limit so that we
cannot plot it in Fig. 5(a). The convergence speeds of GA and SPSA algorithms are both slow. Neither of them hit the global
optimal solution after testing 1000 candidate vectors. The best objective function values of SQP and SPSA are larger than 45
[m/s]2 (the best objective function value given by SPSA is gSPSA ¼ 726 [m/s]2), which is also beyond the vertical axis limit. So,
we cannot plot them in Fig. 6(a). The DIRECT algorithm reaches the basin of the global optimal solution after testing about
300 candidate vectors. However, the convergence speed of DIRECT algorithm slows down after that and prevents it from
hitting the global minimum even after testing 400 candidate vectors. The DIRECT + SQP (1) algorithm hits the global
minimum after testing about 120 candidate vectors, which gives the fastest convergence speed in the six algorithms. The
computation time spent by the six algorithms are 17.49 s, 0.09 s, 5.27 s, 3.26 s, 2.09 s, 0.12 s, respectively.

Similarly, Fig. 6(b) shows that the performance of the six algorithms for the GHR model calibration using the same tra-
jectory pair. The objective function is still Eq. (7). In this case, the NM algorithm again violates the box constraint of the deci-
sion vector. The SPSA algorithm is trapped into a local solution whose best objective function value is gSQP ¼ 2832 [m/s]2.
Since this value is beyond the vertical axis limit, we cannot plot it in Fig. 6(b). The GA algorithm cannot find the minimum
after even testing 1000 candidate vectors. The DIRECT algorithm hits the global minimum after testing about 350 candidate
vectors; while the DIRECT + SQP (1) algorithm hits the global minimum after testing about 260 candidate vectors. This
indicates that the DRECT + SQP algorithm outperforms other algorithms in convergence speed. The computation time spent
by the six algorithms are 11.07 s, 0.48 s, 4.76 s, 4.70 s, 2.71 s, 0.16 s, respectively.

To explore the reliability (percentage of search processes that reach the global optimal solution finally) of each algorithm,
we apply the six algorithms to the randomly selected 100 trajectories. Table 1 shows the results for all six algorithms that
minimize the SSE of velocity for the IDM, where, NM, SQP, GA, and SPSA algorithms use one randomly generated starting
point and we call it single-start.

The first column of Table 1 shows how many calibration problems have been correctly solved by each algorithm. The
DIRECT + SQP (1) algorithm hits the global optimal solution for 98 problems and obviously has the largest probability to find
the global optimal solution.

The second column of Table 1 shows how fast each algorithm reaches the basin of the global optimal solution. Here, we
assume the basin is reached if the relative error of the current objective value and the global optimal value is below 1%. As
shown in Table 1, the DIRECT algorithm has a poor convergence speed when it approaches the global optimal solution. This
shortcoming can be well fixed when we switch to the SQP algorithm for a much faster local search, after we incorporate the
transition condition when the minimal size of PO hyper-rectangles is less than the critical size, i.e. d0 ¼ 10�2 for the IDM and
d0 ¼ 10�4 for the GHR model in this test. We will further examine the sensitivity of d0 at the end of this section.

The third and fourth columns of Table 1 shows how fast each algorithm solves the calibration problem, if it correctly stops
at the global optimal solution. In this paper, tests are run with a 2.60 GHz-quad CPU and 4 GB-Ram computer. It should be
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Fig. 6. Comparison of the speeds of convergence for different calibration algorithms: (a) IDM and (b) GHR model, with the SSE of velocity.
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pointed out that SQP algorithm consumes more time when applying the Newton’s method to solve a quadratic objective
subject to a linearization of the constraints. So, the total calibration time does not grow proportionally with the tested
objective function evaluations. Consequently, the average calibration time spent on one objective evaluation of the DIRECT
step is much shorter than the SQP step (due to additional computation efforts made on the quadratic programming). Despite
the DIRECT + SQP algorithm requires more objective evaluations, its calibration time doesn’t increase dramatically. Clearly,
the DIRECT + SQP algorithm achieves the largest probability to reach the global optimal solution and consumes the least
computation cost.

Table 2 shows the comparison results for the GHR model in terms of the SSE of velocity. We can see that the above
conclusions also hold for the GHR model. So we can conclude that the proposed DIRECT + SQP algorithm performs better
than DIRECT in terms of both global search accuracy and efficiency. It outperforms SQP in global search accuracy with
marginally increased calibration time.

With respect to the SSE of gap in IDM and GHR, Tables 3 and 4 show the analogous comparison results with Tables 1
and 2. We assume, if the difference between the optimized objective function and the global optimal value is no larger than



Table 1
Comparison of different algorithms minimizing square velocity errors of the IDM with respect to 100 NGSIM trajectories.

Algorithms How many search
processes had
reached the global
optimal solution
finally (%)

How many objective function
evaluations had been tested (on
average), if the relative difference
between the current best solution and
the global optimal solution is less than
1%

How many objective function
evaluations had been tested to reach
the best solution (on average), if it
reaches the global optimal solution
finally

Total calibration time of
each trajectory (on
average), if it reaches the
global optimal solution
finally (s)

NM 6 197 837 58.9
SQP 92 68 146 1.7
GA 53 815 9330 22.0
SPSA 0 N/Aa N/A N/A
DIRECT 33 377 >10,000 13.1
DIRECT + SQP (1) 98 311 680 2.3

a N/A: not applicable.

Table 2
Comparison of different algorithms minimizing square velocity errors of the GHR model with respect to 100 NGSIM trajectories.

Algorithms How many search
processes it had
reached the global
optimal solution
finally (%)

How many objective function
evaluations had been tested (on
average), if the relative difference
between the current best solution and
the global optimal solution is less
than 1%

How many objective function
evaluations had been tested to reach
the best solution (on average), if it
reaches the global optimal solution
finally

Total calibration time of
each trajectory (on
average), if it reaches the
global optimal solution
finally (s)

NM 47 227 677 16.3
SQP 42 143 246 2.2
GA 32 275 7691 18.5
SPSA 1 85 >10,000 34.7
DIRECT 6 1246 >10,000 12.9
DIRECT + SQP (1) 92 373 1458 2.3

Table 3
Comparison of different algorithms minimizing square gap errors of the IDM with respect to 100 NGSIM trajectories.

Algorithms How many search
processes had
reached the global
optimal solution
finally (%)

How many objective function
evaluations had been tested (on
average), if the relative difference
between the current best solution and
the global optimal solution is less than
1%

How many objective function
evaluations had been tested to reach
the best solution (on average), if it
reaches the global optimal solution
finally

Total calibration time of
each trajectory (on
average), if it reaches the
global optimal solution
finally (s)

NM 6 786 1134 43.5
SQP 73 111 175 2.1
GA 1 2052 >10,000 23.2
SPSA 0 N/A N/A N/A
DIRECT 0 N/A N/A N/A
DIRECT + SQP (1) 98 151 209 2.8
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10�4 [m]2 for the SSE of gap, it has reached the global optimal solution. These results again verify the proposed new
algorithm outperforms other methods both in reliability and efficiency.

5.3. The selection of two configuration parameters

There are two configuration parameters in the proposed algorithm: d0, the critical size of the PO hyper-rectangles, and j,
the number of PO hyper-rectangles in which we apply the SQP algorithm for local search. Let us first discuss the later one.

Test results indicate that carrying out local search in more PO hyper-rectangles greatly improves the performance of the
proposed algorithm. This idea is somewhat similar to the multi-start mechanism used for NM, SQP, GA, and SPSA algorithms,
but their effects can be quite different. For existing algorithms, the randomly generated initial starting points may still locate
far away from the global optimal solution. In the new algorithm, the starting points locate in the PO hyper-rectangles which
have been carefully selected by the DIRECT algorithm. As a result, these points have a much higher probability to locate close
to the global optimal solution. So, carrying out local search in only a few PO hyper-rectangles may notably increase the
probability of finding the global optimal solution.



Table 4
Comparison of different algorithms minimizing square gap errors of the GHR model with respect to 100 NGSIM trajectories.

Algorithms How many search
processes had
reached the global
optimal solution
finally (%)

How many objective function
evaluations had been tested (on
average), if the relative difference
between the current best solution and
the global optimal solution is less than
1%

How many objective function
evaluations had been tested to reach
the best solution (on average), if it
reaches the global optimal solution
finally

Total calibration time of
each trajectory (on
average), if it reaches the
global optimal solution
finally (s)

NM 25 278 686 22.1
SQP 52 149 202 2.3
GA 19 543 8668 18.2
SPSA 0 N/A N/A N/A
DIRECT 6 2172 >10,000 12.1
DIRECT + SQP (1) 86 232 1309 2.0

Table 5
Comparison of the probability of reaching the global optimal solution and corresponding average calibration time of different algorithms.

Algorithms SSE of velocity SSE of gap

IDM GHR IDM GHR

Probability of
reaching
global
optimal
solution (%)

Average
calibration
time of each
trajectory (s)

Probability of
reaching
global
optimal
solution (%)

Average
calibration
time of each
trajectory (s)

Probability of
reaching
global
optimal
solution (%)

Average
calibration
time of each
trajectory (s)

Probability of
reaching
global
optimal
solution (%)

Average
calibration
time of each
trajectory (s)

NMb 9 188.0 50 49.3 6 136.1 36 77.4
SQPb 98 5.0 65 6.5 86 6.4 70 7.1
GA 53 22.0 32 18.5 1 23.2 19 18.2
SPSAb 0 N/Ac 1 104.1 0 N/A 0 N/A
DIRECTa 33 13.1 6 12.9 0 N/A 6 12.1
DIRECT +QP (1)a 98 2.3 92 2.3 98 2.8 86 2.0
DIRECT +QP (3)b 100 2.9 97 2.9 99 4.4 96 2.6

a Single-start mechanism (three random initial points).
b Multi-start mechanism.
c Not applicable.
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For a demonstration purpose, we randomly generate three different starting points for NM, SQP, GA, and SPSA algorithms,
and choose the best final solution from three candidates. Table 5 summarizes the corresponding calibration results where
the DIRECT + SQP (3) algorithm is applied. We can see that multi-start mechanism increases the reliability of NM, SQP,
GA, and SPSA, but also increase time costs. The DIRECT + SQP (1) algorithm still gives a higher reliability than NM, SQP,
GA, and SPSA algorithms in all of the four scenarios and consumes considerably less time. The DIRECT + SQP (3) algorithm
gives even higher reliability and consumes a bit more time than the DIRECT + SQP (1) algorithm. So, if time allowed, we
suggest to apply SQP algorithm in more than one PO hyper-rectangles for local search. The detailed value of d0 can be
determined from the calibration results of sample trajectory pairs.

The other configuration parameter, the critical size of normalized hyper-rectangle, can also be easily determined in prac-
tice. To explore the sensitivity of the critical hyper-rectangle size d0 in the proposed DIRECT + SQP algorithm with respect to
different objective functions, we let decrease from 1 to 10�4 and estimate the algorithm’s reliability using the aforemen-
tioned 100 pairs of NGSIM trajectories. Fig. 7(a) shows that the probabilities of DIRECT + SQP (1) for finding the global
optimal solution increases when d0 decreases, while the average objective function evaluations to reach global optimal solu-
tions increase quickly. We can see that the reliability of IDM is closed to 100% for both error functions (7) and (8), and the
reliability of GHR is over 80% for both error functions when d0 < 10�3. Fig. 7(b) shows the results of DIRECT + SQP (3), it can
be seen that the probabilities of reaching global solutions increase given the same d0 after the three-start mechanism is
applied, while the increase computation time is no significant.

In practice, users could adaptively balance the tradeoff between the algorithm reliability and computational costs based
on the time budget and the accuracy requirement. As indicated in Table 5, we could usually choose an as small as possible d0;
because even we set d0 ¼ 10�4, the calibration for one trajectory pair could still be finished in less than 10 s.

We have also tested several other calibration objective functions and other car-following models. All of the test results
verify that the proposed new algorithm gives better performance than existing algorithms in both models. Constrained
by the length limit, we do not present them in this paper.
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Fig. 7. Sensitivity of d0 with respect to different car-following models and the number of objective function evaluations had been tested to reach the best
solution: (a) DIRECT + SQP (1); (b) DIRECT + SQP (3).
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6. Conclusions

Car-followingmodels calibration based on trajectory data has been widely applied in traffic simulation practice. However,
there is still a need of thorough discussions on the corresponding optimization algorithms. Many existing algorithms, e.g.
Nelder–Mead algorithm, sequential quadratic programming algorithm, genetic algorithm, and simultaneous perturbation
stochastic approximation algorithm, require to start from randomly picked-up solutions for a number of times and cannot
guarantee to converge to the global optimal solution. Besides, the converging speeds of some algorithms are really slow.

In this paper, we first show that the objective function of the formulated optimization problem is usually Lipschitz con-
tinuous on the interested solution space of parameter sets. Using this feature, we can use Lipschitz optimization algorithm to



Table B.1
Comparison of the failed DIRECT + SQP (1) solutions with the global optimal solutions.

Optimization
problems

Failed
calibrated
trajectory
pairs

Best solution of DIRECT
+ SQP (1)

Global optimal solution Normalized
distance of
two
solutions

Objective
function
value of
the best
solution

Objective
function
value of the
global
optimal
solution

Relative
error of
objective
function
values (%)

IDM, 98%
(SSE of
velocity)

1 [1.68,1.58,21.19,0.55,3.79] [1.65,1.62,21.28,0.57,3.55] 3.35E�02 50.87 50.86 0.00
2 [2.59,4.00,21.55,1.27,3.01] [1.00,1.00,19.92,1.27,1.63] 1.29E+00 44.15 43.86 0.65

GHR, 92%
(SSE of
velocity)

1 [0.48,0.01,0.02] [0.45,0.01,0.00] 4.29E�03 106.39 106.36 0.03
2 [0.53,0.69,0.48] [0.14,0.55,0.00] 1.72E�01 140.93 138.39 1.83
3 [452.69,0.27,2.31] [431.05,0.27,2.30] 4.34E�02 102.07 102.07 0.00
4 [0.61,0.83,0.55] [0.58,0.82,0.54] 5.05E�03 206.70 206.70 0.00
5 [16.70,0.49,1.52] [5.71,0.22,1.04] 2.81E�01 113.40 111.99 1.26
6 [0.22,0.83,0.26] [0.23,0.91,0.33] 8.03E�02 170.75 170.30 0.26
7 [30.96,0.59,1.71] [29.24,0.58,1.69] 1.27E�02 58.85 58.84 0.00
8 [0.60,0.28,0.36] [0.58,0.27,0.34] 7.97E�03 112.63 112.62 0.01

IDM,98% (SSE
of gap)

1 [2.79,1.00,15.36,2.02,1.00] [2.79,1.00,15.36,2.02,1.00] 3.67E�05 813.72 813.72 0.00
2 [1.64,4.00,16.99,1.97,1.00] [1.06,1.00,16.56,1.99,1.00] 1.04E+00 1861.00 1844.27 0.91

GHR,86%
(SSE of
gap)

1 [157.41,0.95,1.94] [155.83,0.95,1.94] 5.44E�03 1152.97 1152.81 0.01
2 [77.66,0.94,2.20] [74.89,0.94,2.19] 6.60E�03 426.09 426.07 0.00
3 [2.57,0.00,0.61] [2.55,0.00,0.61] 4.55E�04 1922.74 1922.74 0.00
4 [0.36,1.00,0.29] [0.24,1.00,0.13] 3.07E�02 775.97 775.17 0.23
5 [35.23,0.63,1.85] [5.21,0.37,1.16] 2.99E�01 2253.19 1492.80 50.94
6 [103.25,1.00,2.42] [2.14,1.00,1.12] 3.30E�01 1776.74 1444.79 22.99
7 [3.96,0.49,1.02] [4.16,0.49,1.04] 3.63E�03 803.99 803.61 0.05
8 [181.58,0.00,2.07] [317.42,0.00,2.29] 2.75E�01 540.17 515.79 4.73
9 [0.11,0.64,0.00] [0.11,0.64,0.00] 1.13E�03 228.64 228.64 0.00

10 [1.07,0.00,0.15] [0.70,0.00,0.00] 3.04E�02 2159.51 1989.35 8.55
11 [35.86,1.00,2.01] [35.68,1.00,2.01] 4.92E�04 326.10 326.10 0.00
12 [500.00,1.00,2.86] [500.00,1.00,2.75] 2.13E�02 1769.09 1707.83 3.59
13 [57.32,0.85,2.12] [53.84,0.85,2.10] 7.89E�03 602.72 601.40 0.22
14 [9.88,0.66,1.44] [7.33,0.57,1.28] 8.71E�02 221.41 219.99 0.65
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quickly determine a few sub-spaces whose sizes are much smaller than the size of the whole solution space. Since the
objective function is often flat around the global optimal solution, the final converging speed of the Lipschitz optimization
algorithm is very slow. So, we then switch to SQP algorithm to find the global optimal solution within these sub-spaces. The
switching condition is determined by the size of PO hyper-rectangles.

Test results show that this new algorithm has both the fastest convergence speed and the highest probability to find the
global optimal solution, if being compared with the existing algorithms. Moreover, it has only two major configuration
parameters whose values can be easily chosen in practice. We believe this useful algorithm will be widely used for micro-
scopic car-following problems, and can be extensively applied to solve other optimization problems in transportation
research.

In the future research, the comparison of the proposed algorithm with other combined global–local algorithms can be
conducted.
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Appendix A. Potentially optimal hyper-rectangles of DIRECT

DIRECT begins the optimization by transforming the domain of the problem into the unit hyper-rectangle. In each rect-
angular division, the objective function is evaluated at the points ½h�11 	 ei=3; i ¼ 1; . . . ;n, where one-third the side-length of
the hyper-rectangle is used, and ei is a unit vector with a one in the ith position and zeros elsewhere. The algorithm begins its
loop of identifying PO hyper-rectangles, which meet the criteria of Definition A.1.

Definition A.1. Let e > 0 be a positive constant and let gmin be the current best function value. A hyper-rectangle j is said to
be potentially optimal if there exists some K̂ > 0 such that



Table B.2
Comparison of the DIRECT + SQP (3) solutions with the global optimal solutions for the same failed trajectory pairs in Table B.1.

Optimization
problems

Failed
calibrated
trajectory
pairs

Best solution of DIRECT
+ SQP (3)

Global optimal solution Normalized
distance of
two
solutions

Objective
function
value of
the best
solution

Objective
function
value of
the global
optimal
solution

Relative error of
objective
function values
of the DIRECT
+ SQP (3)
solutions with
the global
optimal (%)

IDM, 100%
(SSE of
velocity)

1 [1.65,1.62,21.28,0.57,3.55] [1.65,1.62,21.28,0.57,3.55] 4.17E�07 50.86 50.86 0.00
2 [1.00,1.00,19.92,1.27,1.63] [1.00,1.00,19.92,1.27,1.63] 3.88E�07 43.48 43.86 0.00

GHR, 97%
(SSE of
velocity)

1 [0.45,0.01,0.00] [0.45,0.01,0.00] 2.51E�03 106.36 106.36 0.00
2 [0.51,0.65,0.42] [0.14,0.55,0.00] 1.33E�01 140.68 138.39 1.66
3 [431.05,0.27,2.30] [431.05,0.27,2.30] 2.50E�07 102.07 102.07 0.00
4 [0.58,0.82,0.54] [0.58,0.82,0.54] 1.33E�06 206.70 206.70 0.00
5 [5.71,0.22,1.04] [5.71,0.22,1.04] 0.00E+00 111.99 111.99 0.00
6 [0.21,0.98,0.37] [0.23,0.91,0.33] 7.64E�02 170.64 170.30 0.20
7 [29.24,0.58,1.69] [29.24,0.58,1.69] 4.06E�05 58.84 58.84 0.00
8 [0.59,0.26,0.36] [0.58,0.27,0.34] 1.43E�02 112.63 112.62 0.00

IDM, 99%
(SSE of
gap)

1 [2.79,1.00,15.36,2.02,1.00] [2.79,1.00,15.36,2.02,1.00] 1.53E�05 813.72 813.72 0.00
2 [1.06,1.00,16.56,1.99,1.00] [1.06,1.00,16.56,1.99,1.00] 8.72E�07 1844.27 1844.27 0.91

GHR,96%
(SSE of
gap)

1 [157.83,0.95,1.94] [155.83,0.95,1.94] 0.00E+00 1152.81 1152.81 0.00
2 [73.23,0.94,2.18] [74.89,0.94,2.19] 3.84E�03 426.07 426.07 0.00
3 [2.55,0.00,0.61] [2.55,0.00,0.61] 9.64E�05 1922.74 1922.74 0.00
4 [0.24,1.00,0.13] [0.24,1.00,0.13] 0.00E+00 775.17 775.17 0.00
5 [5.21,0.37,1.16] [5.21,0.37,1.16] 0.00E+00 1492.80 1492.80 0.00
6 [2.14,1.00,1.12] [2.14,1.00,1.12] 0.00E+00 1444.79 1444.79 0.00
7 [3.96,0.49,1.02] [4.16,0.49,1.04] 3.63E�02 803.99 803.61 0.05
8 [2.95,0.00,2.27] [317.42,0.00,2.29] 2.92E�02 516.38 515.79 0.11
9 [0.11,0.64,0.00] [0.11,0.64,0.00] 1.13E�03 228.64 228.64 0.00

10 [0.70,0.00,0.00] [0.70,0.00,0.00] 8.01E�14 1989.35 1989.35 0.00
11 [35.66,1.00,2.01] [35.68,1.00,2.01] 4.77E�05 326.10 326.10 0.00
12 [500.00,1.00,2.75] [500.00,1.00,2.75] 1.71E�07 1707.83 1707.83 0.00
13 [57.14,0.85,2.12] [53.84,0.85,2.10] 7.48E�03 602.28 601.40 0.15
14 [8.60,0.62,1.36] [7.33,0.57,1.28] 4.74E�02 220.91 219.99 0.42
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gðhjÞ � K̂dj 6 gðhiÞ � K̂di; 8i; and ðA:1Þ

gðhjÞ � K̂dj 6 gmin � ejgminj ðA:2Þ

where hj is the center of hyper-rectangle j; dj is the distance from hj to its vertices.

If hyper-rectangle j is potentially optimal, then gðhjÞ 6 gðhiÞ for all hyper-rectangles that are of the same size as j (i.e.
dj ¼ di).

If dj P dk, for all k hyper-rectangles, and gðhjÞ 6 gðhiÞ for all hyper-rectangles such that dj ¼ di, then hyper-rectangle j is
potentially optimal.

If dj 6 dk for all k hyper-rectangles, and j is potentially optimal, then gðhjÞ ¼ gmin.
An explicit way of implementing Definition A.1 can be found in Gablonsky (2001). Let I be the set of all indices of all

hyper-rectangles existing. Let I1 ¼ fi 2 I : di < djg, I2 ¼ fi 2 I : di > djg, I3 ¼ fi 2 I : di ¼ djg. Hyper-rectangle j 2 J is poten-
tially optimal if
gðhjÞ 6 gðhiÞ; 8i 2 I3 ðA:3Þ
there exists K̂ > 0 such that
max
i2I1

gðhjÞ � gðhiÞ
dj � di

6 K̂ 6 max
i2I2

gðhiÞ � gðhjÞ
di � dj

ðA:4Þ
and
e 6 gmin � gðhjÞ
jgminj

þ dj

jgminj
min
i2I2

gðhiÞ � gðhjÞ
di � dj

; gmin – 0 ðA:5Þ
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or
gðhjÞ 6 dj min
i2I2

gðhiÞ � gðhjÞ
di � dj

; gmin ¼ 0 ðA:6Þ
Once a hyper-rectangle has been identified as potentially optimal, DIRECT divides this hyper-rectangle along its longest
dimension(s) to ensure shrinking on every dimension. If the hyper-rectangle is a hyper-cube, then the divisions will be done
along all sides; or dividing the potentially optimal hyper-rectangle along all dimensions of its maximal length, i.e. one-third
the length of the maximum side of the potentially optimal hyper-rectangle. We refer interested reader to Finkel (2003) for
more detailed explanations and some illustrative numerical examples solved by DIRECT.

Appendix B. Zoom in failed calibrated trajectories

Table B.1 lists the calibration results for those trajectory pairs that the DIRECT + SQP (1) algorithm failed to find the global
optimal solution. Here, we use the normalized Euclidean distance to measure the difference between the best solution given
by the DIRECT + SQP (1) algorithm and the global optimal solution. Results show that only 6 normalized distances out of the
26 failed calibrations are larger than 0.1; while the other 20 normalized distances are smaller than 0.1. This indicates that
even if the DIRECT + SQP (1) algorithm cannot find the best solution in a given time, it will usually stop at a solution that is
close to the global optimal solution. The failure of final convergence is mainly caused by the approximation errors of the SQP
algorithm, when it tries to approximate the original optimization objective as a quadratic one.

Table B.2 shows the DIRECT + SQP (3) solutions for the same failed trajectory pairs in Table B.1. Results show that the only
one normalized distances out of the 26 failed calibrations is larger than 0.1. Moreover, the distances between the found
solutions and the global optimal solutions are significantly reduced, too.

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.trc.
2016.04.011.
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