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Simulating driving behavior in high accuracy allows short-term prediction of traffic param-
eters, such as speeds and travel times, which are basic components of Advanced Traveler
Information Systems (ATIS). Models with static parameters are often unable to respond
to varying traffic conditions and simulate effectively the corresponding driving behavior.
It has therefore been widely accepted that the model parameters vary in multiple dimen-
sions, including across individual drivers, but also spatially across the network and tempo-
rally. While typically on-line, predictive models are macroscopic or mesoscopic, due to
computational and data considerations, nowadays microscopic models are becoming
increasingly practical for dynamic applications. In this research, we develop a methodology
for online calibration of microscopic traffic simulation models for dynamic multi-step
prediction of traffic measures, and apply it to car-following models, one of the key models
in microscopic traffic simulation models. The methodology is illustrated using real
trajectory data available from an experiment conducted in Naples, using a well-
established car-following model. The performance of the application with the dynamic
model parameters consistently outperforms the corresponding static calibrated model in
all cases, and leads to less than 10% error in speed prediction even for ten steps into the
future, in all considered data-sets.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Developments of Advanced Traveler Information Systems (ATIS) rely significantly on the capability to perform accurate
estimates of the current traffic state and short-term predictions of driving behavior and traffic characteristics, such as speed
(Vlahogianni et al., 2005; van Lint et al., 2005; Vlahogianni et al., 2008). Due to a number of practical, data and computational
considerations, during the past two decades, ATIS applications have been mostly supported by mesoscopic or macroscopic
traffic simulation models. Data collection and computational advances are making it possible to consider more detailed,
microscopic models for this kind of applications. Naturally, such models introduce a number of complications, and therefore
their adoption should be clearly motivated and justified.

While such systems have been around for decades, current developments, such as the increasing interest in Active Traffic
Management, make them more relevant (Kurzhanskiy and Varaiya, 2010). Indeed, ATIS can be effective in supporting active
traffic management policies by Real-Time Decision Support Systems, whose core engine is a real-time traffic simulation
model. The real-time requirements bring to the forefront the limitations of static calibration, and accelerate the need for
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procedures like the ones discussed in this research. An example of such applications is the Integrated Corridor Management
initiative in the US (Miller and Skabardonis, 2010).

Simulation models do not always adequately reflect field conditions outside of the time period for which they have been
calibrated (Balakrishna et al., 2007; Daamen et al., 2014; Henclewood et al., 2012). Microscopic models often comprise
different detailed models, including car-following, lane-changing and gap-acceptance models. In most cases, the parameters
of these models are assumed to be stable, both across space and time, and also across drivers. The online calibration of
car-following models is a promising approach to capture the heterogeneity of driver behavior and traffic conditions. By
continuously supplying a car-following model with surveillance data, an online calibration process could be applied in order
to adapt model parameters to the current traffic state. In this view, the use of richer data, such as real-time Floating Car Data
(FCD), based on traces of Global Navigation Satellite Systems (GNSS), could be leveraged as a reliable and cost-effective way
to gather accurate traffic data (De Fabritiis et al., 2008; Antoniou et al., 2011).

Calibration of car-following models (Brackstone and McDonald, 1999) has been an issue for a long time (Aycin and
Benekohal, 1999), but nowadays it has received a new boost (Hoogendoorn and Hoogendoorn, 2010; Monteil et al.,
2014), in light of new data-collection techniques, mostly related to the increasing availability of trajectory data (Kesting
and Treiber, 2008; Punzo et al., 2005; Papathanasopoulou and Antoniou, 2015), which of course introduce other challenges
(Punzo et al., 2012).

Online calibration has been used in many macroscopic and mesoscopic modeling approaches (Papageorgiou et al., 1989;
Kim, 2002; Antoniou et al., 2005; Fei et al., 2011). The use of the Kalman Filter (and its extensions) for online parameter
calibration has shown encouraging results (Antoniou et al., 2007). However, in recent years there has been an increasing
interest in online applications of microscopic traffic models. Moreover, Henclewood et al. (2012) suggest that a real-time
calibration algorithm should be included in online, data-driven microscopic traffic simulation tools.

The objective of this paper is to motivate, develop and demonstrate with real data a practical approach for the online
calibration of microscopic traffic simulation models, which considers dynamic parameters for individual drivers, in time
and space. At each time instance, the dynamically obtained model parameters are being used for short-term prediction
(up to ten steps into the future), and the performance of this prediction is compared with the reference case of static model
parameters.

This paper presents an alternative methodology for microscopic online calibration and multiple step prediction and is
organized as follows. Firstly, a literature review is presented in the following section. Then, the overall methodological
framework is presented. A case study setup to demonstrate the feasibility and superiority of the approach, over previous
techniques, is then presented, followed by the presentation of the dynamic calibration procedure and an analysis of the
results. A discussion of the results follows in the concluding section, and future prospects are proposed.
2. Literature review

Reliable representation of driving behavior is a crucial issue for traffic simulation. Appropriate simulation models are
chosen according to the requirements of each application; when considering the modeling detail, traffic simulation models
can be divided into microscopic, mesoscopic and macroscopic. Microscopic models provide the highest level of detail for
advanced transport applications (Antoniou and Koutsopoulos, 2006). However, the traditional static calibration approach
may not allow the incorporation of driving heterogeneity in the simulation.

In recent years there has been a tendency towards more flexible and dynamic methods than static car-following models.
It is widely accepted that driving behavior in general (and therefore car-following parameters) vary in multiple dimensions,
i.e. exhibit inter-personal, temporal and spatial heterogeneity. Higgs and Abbas (2014) compare car-following models at
different levels of analysis: driver, car-following period and cluster of drivers. For example, Ossen and Hoogendoorn
(2005) have identified considerable differences between the car-following behavior of individual drivers. Ma (2006) has
developed a neural fuzzy framework for modeling car-following behavior. It illustrates human knowledge of
car-following in a more understandable manner and can be rather flexible as the regime parameters and model forms
may vary according to the application context. According to Hoogendoorn et al. (2006) and Ellison et al. (2013), real driving
behavior is variable in time and space. Some researchers have attempted to capture heterogeneity across drivers spatially
(e.g. Papathanasopoulou and Antoniou (2015)) or temporally, which is one of the aspects investigated in this research.

Many car-following models predict a stable car-following behavior with a very small fluctuation around an equilibrium
value. However, in reality these fluctuations are much larger than these models predict. Wagner (2012) has attributed them
not due to driver heterogeneity, but to an internal stochasticity of the driver itself. Randomness is thus incorporated in traffic
flow and model calibration requires the flexibility to adapt to it. On the other hand, several empirical analyses performed by
Ossen and Hoogendoorn (2007) showed a high degree of driver heterogeneity in car-following. Inter-driver differences could
be described not only by different parameter values, but also different model specifications may be needed. All above
researchers conclude that different optimal parameter values, as well as different optimal car-following models, should
be applied to overcome this problem.

Static calibration requires a database with historical data. It could feed a simulation model with initial parameter values,
which allow a good representation of a general traffic state (Balakrishna, 2006). However, dynamic calibration could take
advantage of real-time data and adapt model parameters to the current traffic state. Dynamic estimation of model
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parameters and especially reaction time have been attempted by e.g. Hoogendoorn et al. (2006) and Ma and Jansson (2007).
Hoogendoorn et al. (2006) and Lorkowski and Wagner (2005) use the Unscented Kalman Filter (UKF), while Ma and Jansson
(2007) have proposed a dynamic model estimation method based on iterative usage of the Extended Kalman Filter (IEKF)
algorithm. Ma and Andréasson (2005) have suggested a dynamic car following data collection and noise cancellation based
on the Kalman smoothing. However, according to Treiber and Kesting (2013), smoothing the data had no significant
influence on the calibration quality. Naturally, calibration and sampling issues in estimation car-following parameters have
been studied extensively in the literature (Monteil et al., 2014; Schultz and Rilett, 2004).

Rahman et al. (2014) develop a calibration approach based on the Markov Chain Monte Carlo (MCMC) simulation that
uses the Bayesian estimation theory. The authors use a linear model (Helly) with a different number of vehicle trajectories
on a highway network. Ossen and Hoogendoorn (2011) investigate the level of heterogeneity in car-following behavior,
using a large number of trajectory observations collected via helicopter. The authors observe different vehicle type interac-
tions and develop eight models with different car-following assumptions.

3. Methodology

In this research, a methodological framework for the dynamic calibration of car-following models using real-time data is
proposed. The approach has two main steps, an estimation phase and a prediction phase. The estimation phase relies on a
constrained global optimization algorithm. Once an optimal set of parameters is identified for each individual time-instance
(and each individual driver), multi-step prediction is performed. In each time step, prediction is achieved using the estimated
values from the previous time step, i.e. the best available estimates of the drivers’ behavior. The evolving patterns of the
driver behavior during the past few intervals is used to forecast the expected behavior during the next few time-steps.
Naturally, this logic could be adapted to data-availability or computational concerns, e.g. it could only be invoked when there
is an indication that traffic conditions may be changing (e.g. automatically detected anomaly in the data).

The dynamic calibration problem can be mathematically stated as
min f ðxtÞ; xt ¼ ðx1t ; . . . ; xntÞ 2 Rn ð1Þ

where f ðxtÞ is the objective function (e.g. error estimating the difference between observed and simulated values of a traffic
measure), t is the current time interval, xt stands for time dependent parameters, and the feasible region F is defined by
F ¼ fxt 2 RnjgjðxtÞ 6 0 8jg ð2Þ

where gjðxtÞ; j ¼ 1; . . . ;m are inequality constraints. For instance, these constraints could ensure that a traffic measure,
such as space gaps, will not take unacceptable values. The way that the constraints are handled may vary according to
the type of optimization algorithm that is adopted, including the penalty function method, special representations and
operators, and the co-evolutionary method, the repair method or the multiobjective method (Runarsson and Yao, 2005).
The dynamic calibration problem could also be stated as a multiobjective optimization problem including various measures
of effectiveness (such as speeds, space gaps, and accelerations) and various measures of goodness-of-fit (such as normalized
root mean square error and mean prediction error, as described in Section 4.3).
minðf 1ðxtÞ; f 2ðxtÞ; . . . ; y1ðxtÞ; y2; ðxtÞ . . . z1ðxtÞ; z2; ðxtÞ; . . .Þ; xt ¼ ðx1t; . . . ; xntÞ;2 Rn ð3Þ

where f 1ðxtÞ; f 2ðxtÞ; . . . correspond to the same measure of effectiveness (e.g. comparison of observed and simulated speeds),
but different measures of goodness-of-fit, while f iðxtÞ; yiðxtÞ; ziðxtÞ . . . correspond to different measures of goodness-of-fit, but
for the same measure of effectiveness.

The estimated model parameters can then be easily propagated into the future, thus providing plausible predictions of
these values for the next intervals, as shown in Fig. 1 for a hypothetical parameter. A general way to express this evolution
could be
x̂tþ1 ¼ hðxt ;xt�1;xt�2; . . .Þ ð4Þ

where h is a function relating an estimate of the car-following model parameter values in the next time interval to the best
available estimates of the same model parameters in previous time steps. However, in this way all observations from time
t ¼ t0 up to time t are considered as equally important and included to define the objective function. This approach could
lead to errors since drivers may drive in a different way at the current moment in comparison with previous time instants.
The apparent solution could be based on weighting the data:
x̂tþ1 ¼ hðw0 � xt;w1 � xt�1;w2 � xt�2; . . .Þ ð5Þ

where wi are the weights of observations. Presumably largest weights would be applied to the most recent data and there-
fore w1 > w2 > w3 > � � �. The decaying weights thus imply that in practice only a finite number of past observations affects
the process. A more explicit example of an operationalization of this process is e.g. an autoregressive process, such as:
x̂tþ1 ¼ f 0 � xt þ f 1 � xt�1 þ f 2 � xt�2 þ � ð6Þ
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Fig. 1. A rolling horizon for prediction with improving bounds.
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where f i are the autoregressive factors, and � a random error term. A process for determining these factors is presented e.g. in
(Antoniou, 2004, p. 79).

Through repeating this process, multi-step predictions can be obtained in the following manner:
x̂tþ2 ¼ hðw0 � x̂tþ1;w1 � xt;w0 � xt�1; . . .Þ ð7Þ
x̂tþ3 ¼ hðw0 � x̂tþ2;w1 � x̂tþ1;w2 � xt ; . . .Þ ð8Þ
Naturally, as the number of time-intervals (for which the prediction is performed) increases, the accuracy of these
predictions is expected to deteriorate, as evidenced schematically by the widening bounds of the predicted values in
Fig. 1. A practical way to determine these bounds is presented in Pereira et al. (2014). As the process is repeated, though,
when new data are available, these forecasts can be improved, as shown by the lower subfigure in Fig. 1. This concept of
‘‘rolling horizon” is being used in software for real-time traffic predictions (Ben-Akiva et al., 2010). In that case, at time
t þ 1 the previously predicted values of the model parameters for time t þ 1 can now be estimated using available data.
Furthermore, the previous two-step predicted model parameters for time interval t þ 2 can now be replaced by one-step
predicted model parameters, since estimates of the model parameters are available up to time interval t þ 1. Similarly,
e.g. at time t þ 1 for time interval t þ 7, the previous seven-step prediction (using estimated values up to time interval
t and predicted parameter values for subsequent intervals) can be replaced by an –arguably more accurate– six-step predic-
tion (using estimated values up to time interval t þ 1 and predicted parameter values for subsequent intervals).

The proposed methodological framework may benefit from a system that allows a fleet of connected vehicles to exchange
information, such as (X;Y ; Z) coordinates, using a central data system. However, even a single instrumented vehicle, with the
ability to geo-locate itself, and obtain (e.g. via suitable instruments and cameras) estimates of the speed and distance of
surrounding vehicles, has access to all information required to apply this methodology. Therefore, speeds, accelerations or
gaps could be calculated per time instant and used to dynamically calibrate driver-specific, time-varying parameters for
the considered model. The overall methodology is illustrated in Fig. 2. A calibration process is demonstrated for each time
instant t, using observations available up to that time and applying a suitable optimization algorithm, solving Eqs. (1) or (3).
The estimated optimal model parameters for time intervals up to t are being used to predict dynamic parameter values for
the subsequent intervals, using Eqs. (4) or (5) and so on. These predicted parameters can then be used as time-dependent
inputs into the microscopic traffic models to provide predicted outputs for the horizon from t onwards. In the next time-
interval, this process is repeated, but this time using also measured information from time-interval t þ 1, thus obtaining
an estimated set of model parameters for time interval t þ 1, updated predicted values for the subsequent intervals, plus
a new predicted value for a new time-interval (for example, if performing n-step prediction, during time t we obtained pre-
dicted parameter values for intervals t þ 1 through t þ n, but when wemove to time interval t þ 1 then we obtain predictions
for intervals t þ 2 through t þ nþ 1, thus revising the previous estimates for intervals t þ 2 through t þ n and extending our
prediction horizon to t þ nþ 1).
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4. Case study setup

The methodology is applied to a car-followingmodel, which is arguably the most critical component of microscopic traffic
simulation models. In particular, Gipps’ model (used e.g. in the widely used Aimsun traffic simulation model) is calibrated
using available data from an experiment conducted in Naples (Punzo et al., 2005). A static calibration is also performed in
order to be used as a reference benchmark. The main difference from dynamic calibration is that the parameter values are
constant for all the time instants and all prediction steps. For both methods, the same optimization algorithm was used.
Therefore, for the static calibration Eq. (1) is simplified through the removal of subscript t, while of course the forecasting
Eq. (4) and so on are not relevant (since the parameter values are constant).
4.1. Description of Gipps’ model

The car-followingmodel, used in Aimsun, is a safety distance model based on the model developed by Gipps (Gipps, 1981;
Olstam and Tapani, 2004; Barceló et al., 2005). The model suggests that the speed of a vehicle (n) is subject to three
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constraints (Eq. (9)). First, the vehicle speed does not exceed the driver’s desired speed (Vn). Second, the vehicle accelerates
rapidly until it approaches the desired speed and then the acceleration is reduced almost to zero. If two vehicles are far apart,
they behave as in the free flow condition. These two conditions are summarized in the first part of Eq. (9). The third condition
is taken into account, when the vehicle is constrained by the vehicle in front. It is taken for granted that the following vehicle
will adjust its velocity so as to keep a safe distance from the preceding vehicle. This condition is described by the second part
of Eq. (9). Overall, according to the above restrictions, the speed of vehicle n at time (t þ s) could be calculated by the
following formula:
Table 1
Speed p

Data

B169
A358
A172
C168
C171
vn½t þ s� ¼ min
vn½t� þ 2:5 � an � s � 1� vn ½t�

Vn
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:025þ vn ½t�

Vn

� �r�

bn � sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbn � sÞ2 � bn � 2 � ðxn�1½t� � sn�1 � xn½t�Þ � vn½t� � s� v2

n�1 ½t�
b̂

h ir
8>>><
>>>:

ð9Þ
where

an: the maximum acceleration that the driver of vehicle n wishes to acquire (m=s2).
bn: the maximum braking that the driver of vehicle n wishes to apply in order to avoid a crash, bn<0 (m=s2).

b̂: the estimated maximum braking that the driver of the preceding vehicle (n � 1) wishes to apply (m=s2).
sn�1 ¼ Ln�1 + safety, namely the size of the preceding vehicle (n � 1) including its length and the safety distance at which
vehicle n is unwilling to compromise even when at rest (m).
Vn: the speed at which the driver of vehicle n wishes to travel (m/s).
xn½t�, xn�1½t�: the location of the front side of the respective vehicle (n or n � 1) at time t (m).
vn�1½t�: the speed of the preceding vehicle (n � 1) at time t (m/s).
vn½t�: the speed of the following vehicle (n) at time t (m/s).
s: the apparent reaction time (a constant for all vehicles) (s).

4.2. Data

A series of data-collection experiments were carried out on roads surrounding the city of Naples, in Italy (Punzo et al.,
2005). All data were collected under real traffic conditions in October 2002. All data were collected from the same platoon,
namely the same four drivers by the same vehicles (vehicles 1, 2, 3, 4) moving in the same sequence (first vehicle 1 as the
leader, followed by vehicle 2, which was in turn followed by vehicle 3, while the last vehicle was vehicle 4), but from
different driving sessions, outlined in Table 1. The driving routes and traffic conditions were differentiated among the data-
sets. Datasets with index A and C correspond to one-lane urban road, while datasets with index B to a two-lane extraurban
highway. However, all selected roads have one lane per direction in order to avoid effects on driving behavior by lane chang-
ing. GPS receivers located on the vehicles were recording the coordinates X, Y, Z of each vehicle per 0.1s (i.e. in 10 Hz). Thus,
the speed of each vehicle (v1ðtÞ;v2ðtÞ;v3ðtÞ;v4ðtÞ) and the travelled distances for each vehicle could be calculated at each
moment (x1ðtÞ; x2ðtÞ; x3ðtÞ; x4ðtÞ). In this research, data used are readily available observations from the field. No corrections
and no interpolation have been performed. Therefore, only segments with consecutive measurements have been considered.
A detailed description of the data could be found in Punzo et al. (2005), who kindly provided the data for this research.

4.3. Measures of goodness-of-fit

The performance of the models presented in this paper is evaluated using several goodness-of-fit measures: RMSN,
RMSPE, MPE and Theils U;Um and Us coefficients (for details and a discussion of these metrics, see e.g. Antoniou et al.
(2013)). Different measures are used so that the properties of the calibration and validation results could be quantified from
different views. For example, the normalized root mean square error (RMSN) assesses the overall error and performance of

each method estimating the difference between the observed values Yobs
n and their simulated counterparts Ysim

n . The root
mean square percentage error (RMSPE) penalizes large errors more heavily than small errors and the mean prediction error
(MPE) indicates the existence of systematic under- or over-estimation in the simulated values. The measure of Theil’s
rofile and experimental data.

series Length (s) Summary statistics of speed (m/s)

min max mean var

5 169.5 0.11 19.00 12.18 14.27
35.8 3.35 13.22 9.10 12.16
17.2 6.16 9.10 7.51 0.97
16.8 9.74 12.86 11.18 0.50
17.1 2.94 9.82 6.08 4.16
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inequality coefficient U has been applied in transport model validation and includes three error proportions: the bias (Um),
the variance (Us) and the covariance (Uc), whose sum is one. Values close to zero for Um and Us measures indicate an ideal fit,
while values close to 1 suggest the worst fit. The goodness-of-fit measures are calculated from the following equations:
Table 2
Optimiz
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a (m
b (m
V (m
s (m
b̂ (m
s (s)
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4.4. Static calibration

Firstly, a static calibration is illustrated in order to be used as a reference benchmark for comparison with the proposed
method. The longest data series (B1695, longer than 3 min) was used for model calibration. It is worth noting that –besides
being the longest– this time series includes the most extensive range of speed values. The calibration process was performed
within the R software for statistical computing (R Core Team, 2016). In particular, the Improved Stochastic Ranking Evolution
Strategy (ISRES) algorithmwas used, which is included in the package ‘‘nloptr” (Runarsson and Yao, 2005) and is appropriate
for nonlinearly constrained global optimization. This method is implemented in a simple way and supports arbitrary
nonlinear inequality and equality constraints in addition to the bound constraints. In addition, it incorporates heuristics
to escape local optima. On the other hand, although a lots of research has been performed on determining which algorithm
is best suited for a given problem, there has not been a satisfactory answer to this question. Thus, various algorithms should
be tested in future research.

The objective function that was minimized is: RMSN(vobs
3 ;v sim

3 ). The range of model parameters, shown in Table 2, has
been defined in an earlier research by Papathanasopoulou and Antoniou (2015). These constraints are defined by Eq. (17):
xit 6 xit 6 �xit ð17Þ
which is a special case of Eq. (2). In addition, as initial values for the optimization process, optimal values defined through a
sensitivity analysis for Gipps’ model and the same data by Papathanasopoulou and Antoniou (2015) were used. However, it is
noted that interactions among the parameters had not been taken into account in that sensitivity analysis. However, in this
research a global optimization is performed, considering all combinations of these model parameters concurrently. For the
whole dataset B1695 the optimization process has converged to the optimal set of parameters after approximately 10000
iterations. The optimal values are presented in Table 2, where ‘‘initial values” refers to the model parameter values obtained
by Papathanasopoulou and Antoniou (2015) and ‘‘optimal values” refers to the parameters obtained from the static
ation of model parameters using ISRES algorithm.

meters of Gipps’ model Parameters range Initial values Optimal values

=s2) [0.8, 2.6] 0.8 0.8
=s2) [�5.2, �1.6] �5.2 �3.2
/s) [10.4, 29.6] 14 14.4
) [5.6, 7.5] 5.6 5.9
=s2) [�4.5, �3.0] �3 �3.1

[0.4, 3.0] 0.4 0.4
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calibration using the ISRES algorithm within this research. The minimum value of the objective function, namely the RMSN,
that was achieved with these optimal values of parameters was 2.2%.
5. Dynamic calibration and results analysis

Gipps’ model is calibrated dynamically in order to simulate the speed of the third vehicle (v3(t + s)). Gipps’ model requires
as input data v2ðtÞ;v3ðtÞ; x2ðtÞ; x3ðtÞ and the appropriate parameter values. The superiority of this calibration over the static
calibration presented before is demonstrated both for estimation and also for multiple step prediction of traffic speeds.

5.1. Dynamic calibration

In online calibration an optimization process with the same characteristics (parameters range, initial values, objective
function) is iterated per time instant, namely per observation (v2ðtÞ;v3ðtÞ; x2ðtÞ and x3ðtÞ), and not for the whole data series
such as in static calibration. Therefore, a different optimal set of parameters is determined per time instant t in order to be
characteristic of the current traffic conditions. In order to simplify the optimization problem, the apparent reaction time is
considered equal to s = 0.4 s (for a discussion and motivation of this choice, see e.g. Papathanasopoulou and Antoniou
(2015)). Five parameters are optimized per iteration (the remaining five parameters shown in Table 2).

This implies that –with the addition of subscript t to the time-dependent parameters– in effect Eq. (9) becomes
vnt½t þ s� ¼ min
vnt½t� þ 2:5 � ant � s � 1� vnt ½t�

Vnt
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:025þ vnt ½t�

Vnt

� �r�

bnt � sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbnt � sÞ2 � bnt � 2 � ðxn�1½t� � sn�1;t � xn½t�Þ � vnt½t� � s� v2

n�1
½t�

b̂t

h ir
8>>><
>>>:

ð18Þ
where

ant: the maximum acceleration that the driver of vehicle n wishes to acquire (m=s2).
bnt: the maximum braking that the driver of vehicle n wishes to apply in order to avoid a crash, bn < 0 (m=s2).

b̂t: the estimated maximum braking that the driver of the preceding vehicle (n � 1) wishes to apply (m=s2).
sn�1;t ¼ Ln�1 + safety, namely the size of the preceding vehicle (n � 1) including its length and the safety distance at which
vehicle n is unwilling to compromise even when at rest (m).
Vnt: the speed at which the driver of vehicle n wishes to travel (m/s).
xn½t�, xn�1½t�: the location of the front side of the respective vehicle (n or n � 1) at time t (m).
vn�1½t�: the speed of the preceding vehicle (n � 1) at time t (m/s).
vn½t�: the speed of the following vehicle (n) at time t (m/s).
s: the apparent reaction time (a constant for all vehicles) (s).

In setting up the case study, a single objective optimization problem was formulated and the objective function f that was
set to be minimized is:
min f ðxtÞ ¼ minðRMSNðvobs
3 ; vsim

3 ðxtÞÞÞ ð19Þ
where
xt ¼ ðant;Vnt; bnt ; sn�1;t; b̂tÞ ð20Þ

In the optimization process for the case study, observations of only the previous time instant have been taken into consid-
eration and therefore the formulation of the weights was straightforward, i.e. the weight of the last observation was 1 and
that of all previous observations was 0. In Fig. 3, the RMSN goodness-of-fit measure assesses the overall error and perfor-
mance of the static and dynamic calibration procedures estimating the difference between the observed and the simulated
values of speed v3 per time instant.

RMSN(static) was calculated considering fixed parameters values for all observations. It becomes evident that lower
RMSN values are consistently achieved through dynamic calibration, as expected. While the difference is not so large most
of the time, there is a specific period, in which the static model seems to perform particularly poorly. In order to investigate
the conditions that led to this performance deterioration, we have looked at the prevailing traffic conditions, which indeed
provide some insight. In particular, in the bottom subfigure of Fig. 3 observed speeds are also plotted over time, in order to
clarify when the static model performance deteriorates. During the time period of interest (the sharp increase in RMSN), very
low speeds are observed, and it is therefore reasonable to assume that the static calibration does not allow the model to
adapt to these extreme traffic conditions. Therefore, it is not expected to provide a good speed prediction, when significant
changes in speed take place. On the other hand, dynamic calibration is more flexible and adaptable to the current traffic
conditions, reacting considerably better, even in such extreme situations.
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In this case study, we use a single measure of effectiveness (speed). The failure of the dynamic calibration in the low-
speed situation in Fig. 3 could be overcome by considering additional measures of effectiveness (e.g. vehicle gap).

5.2. Multiple time step prediction

Multiple steps prediction is achieved using both methods of calibration, static and dynamic. In each prediction step,
predicted values from the previous step and optimal values used in the initial step are imported to the car-following model.
However, after the first prediction step, only the speed of the third vehicle v3t is predicted and could be used to the next step.
Therefore, the speed v2 of the lead vehicle, which is also required as input to the model, is considered as constant through the
prediction steps, since there is no way to know what the evolution of that speed would be. Extensions to this model could
include predicting of other traffic parameters, such as speeds of surrounding vehicles. Values for vehicle positions x2 and x3
are calculated according to the distance that was traveled in the corresponding time (i.e. assuming the appropriate speed
values).

The proposed methodology has been applied for all data series. In the presentation of the results in the following subsec-
tions, we make a distinction between measures of effectiveness and measures of goodness-of-fit that have been used in the
objective function, versus those that have not. In particular, the objective function has been formulated in terms of RMSN
(as the goodness-of-fit measure) and following car speed (as the measure of effectiveness). Looking only at these metrics
could leave us susceptible to over-fitting. However, to demonstrate that this is not the case, we also present results for other
measures of effectiveness (in particular distance between the lead and following vehicle), as well as a number of other
goodness-of-fitness measures (as described in Section 4.3).

5.2.1. Measures of effectiveness included in the objective function
Fig. 4 presents the aggregate goodness-of-fit measures for the estimated speeds. The left subfigure of Fig. 4 presents the

calibration results based on the RMSN metric, which has been included in the objective function. Indeed, as expected,
dynamic calibration outperforms static calibration in all cases for one-step prediction. This is evident also from all other
goodness-of-fit measures (right subfigure of Fig. 4). The RMSPE measure indicates that using static calibration results in large
errors. Values of Theil’s inequality Um and Us are close to zero for all data series and indicate an ideal fit. It is noted that for
the B1695 data series, prediction with the static calibration is using additional information, as the information for the entire
data-set has been considered for the estimation of the static parameter values. Therefore, this value is ‘‘better” than it would
otherwise be. Put differently, the improvement obtained by the dynamic calibration is arguably underestimated. In Fig. 5, the
Empirical Cumulative Distribution Functions (ECDFs) of observed and simulated speeds are illustrated. The ECDF of simu-
lated speeds using dynamic calibration is almost identical with the ECDF of observed speeds in the majority of data series.
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While in many cases the static calibration also performs reasonably well, in some cases, such as in the first half of data series
A172 and C171, the poorer performance of the static calibration (compared to dynamic calibration) is clearly evident.

5.2.2. Measures of effectiveness not included in the objective function
In order to check if the methodology over-fits to speed prediction due to the objective function defined in Eq. (19), other

measures of effectiveness such as space, acceleration, etc. not included in the objective function may be checked. For
instance, space prediction is not included in the objective function (Eq. (19)) and this could make the parameter estimation
rather insensitive to space-gap related properties.

Space headways for dynamic calibration have been estimated using the assumption that the speed v2 is constant
throughout the prediction steps. Fig. 6 is similar to Fig. 4, but this time presents the same results for space headways. Indeed,
the dynamic calibration once again performs considerably better than the static calibration, in most cases. Furthermore,
Fig. 7 illustrates the Empirical Cumulative Distribution Functions (ECDFs) of the observed and simulated space gaps.
Although space gaps were not included as a traffic measure in the objective function, the estimated space gaps from the
dynamic calibration track the observed values much better than those obtained from the static calibration.

5.3. Multiple time step prediction results for the entire prediction horizon

The RMSN results for all five data series and for the entire prediction horizon (one- to ten-step prediction) are presented
in Fig. 8. The superior performance of the prediction based on the dynamic calibration is evident in all data series. While
prediction error consistently increases as the prediction horizon increases, the results obtained from the dynamic calibration
never exceed 10% error, even for ten-step prediction into the future.

Fig. 9 presents a more detailed overview of the predicted speeds by the static and dynamic calibration, compared with the
observed speed for one of the data series (C171, the one for which the biggest improvement has been achieved through the
use of dynamic vs. static calibration).

5.4. Exploration of calibrated parameter values

The overall results presented in the previous subsection eloquently illustrate the superior performance of the dynamic
calibration over the static case. In this subsection, we explore the values of the parameters obtained from each approach,
in order to gain some further insight. Fig. 10 presents the densities of the obtained parameters for the considered model
and data-set. It is noted that, since for each time instant only one of the two equations is critical, the parameter values
for that equation are considered at each time point. For example, if the top equation of Eq. (9) is active at the particular point,
then the parameters ant and Vnt are used (and therefore these values contribute to the densities in Fig. 10), while if the

bottom equation is active then the values for the parameters bnt; snt and b̂t are considered.
In each figure, the value of the static calibration is also indicated with a vertical dashed line. It becomes apparent that the

dynamic values are not distributed symmetrically around the statically obtained value. This could have several implications.
One question could be whether the static calibration is not really optimal. To check for this, we repeated the estimation and
prediction using constant parameter values; however, this time, instead of using the value obtained from the static calibra-
tion, we used the median from the densities obtained from the dynamic calibration (i.e. the distributions shown in Fig. 10). In
that case, the estimation RMSN ended up actually being inferior to that obtained from the static calibration results (with an
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RMSN of 3.4% instead of 2.2%). Therefore, it seems that there is something different going on, and that indeed the median
values from the distributions cannot be used as best values for the determination of constant/average values. The explana-
tion for this may come from the nature of the Gipps model, i.e. the fact that there are two different equations, and at each
given time the parameters of a single one are in effect considered. Therefore, while during the dynamic calibration the model
steers only these parameters towards their desired values, using the available information, in the case of a static calibration
one needs to determine single values that are relevant for all observations.
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Another concern could, of course, be that the dynamic model is actually overfitting. However, the fact that it outper-
forms the static model even in ten-step predictions (as shown in Fig. 8) provides compelling evidence that this is not the
case.
6. Conclusions and future prospects

The findings of this research suggest that dynamic calibration for microscopic traffic models could be promising and
should be further studied. In this research, the prediction of the dynamic parameters was simple, in the sense that the
dynamically calibrated parameters were assumed as the best available estimate for the short-term values of these param-
eters. Further research could consider secondary models that would actually aim at predicting the evolution of these param-
eters, as well, e.g. via autoregressive, polynomial or other statistical forecasting specifications.

Furthermore, the procedure could be applied to other car-following models. Regarding the optimization process, different
optimization algorithms could be tested, besides the ISRES optimization algorithm, which has been selected for the case
study presented in this research. In addition, the results of this research should be compared with those obtained by a
multiobjective optimization process in a future research. While in this research the optimization of the car-following model
parameters has been performed using an optimization algorithm across all parameters concurrently, further exploration of
the correlation of the model parameters (Kim and Mahmassani, 2011) could provide deeper insight into the problem. The
heterogeneity of the drivers and their behavior (Ossen and Hoogendoorn, 2011) could also be further explored, using a larger
number of characteristics trajectories from a larger sample of drivers.

While in this case study we only use a small number of vehicles, for which data are available, it is practical to apply this
methodology to all individual vehicles in a network, in real time. The computational and data requirements are such, that
allow the application of the methodology to each individual vehicle (as the required data could be obtained e.g. from a
GPS trace of the vehicle, and e.g. radars/cameras providing information about the vehicles around it). Furthermore, the
computational overhead to apply the methodology is minimal and it can be dealt by in-vehicle processing facilities, in a
decentralized way. This would allow to not only obtain different parameters estimated and predicted per each vehicle class,
but indeed for each individual vehicle, in real time.

In the realistic situation that not all vehicles have the ability to collect/receive the required data, an extrapolation could be
used to generalize the obtained results. In this case, it could be practical to identify classes of vehicles, estimate and predict
these parameters for the vehicles comprising the sample for each class, and then extrapolate this information to the entire
population of vehicles of this class in the studied area. Besides temporal variability of these parameters, by class, one can of
course foresee a spatial distribution, as traffic conditions, road characteristics, fleet mix, and other parameters could influ-
ence their value.

In the case study, presented in this research, we use a single measure of effectiveness (speed). The failure of the dynamic
calibration in the low-speed situation in Fig. 3 could be overcome by considering additional measures of effectiveness
(e.g. vehicle gap). Furthermore, the data set used in this research has intentionally considered the movement of vehicles
in a single lane, avoiding the complications offered by lane-changing opportunities. Richer data-sets, offering also
lane-changing opportunities, would allow the extension of this research to more elaborate models, such as joint
car-following/lane-changing models.
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Car-following models are also used as input to Adaptive Cruise Control systems, which also need to be adaptive and
consider the heterogeneity of the driver behavior (Bifulco et al., 2013a; Bifulco et al., 2013b). The work presented in this
research could be leveraged for the improvement of such models.
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In conclusion, as we move towards more detailed models, even for online applications, it is expected that dynamic
calibration will play an increasing role for this type of models. While a lot of experience exists in the online calibration of
macroscopic and mesoscopic models, it is likely that this expertise will not transfer directly to the more detailed microscopic
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models. Therefore, novel research is needed, to validate the existing techniques and develop new ones, specifically suited to
leverage the benefits and unique characteristics of microscopic traffic simulation models.
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