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The k-nearest neighbor (KNN) model is an effective statistical model applied in short-term
traffic forecasting that can provide reliable data to guide travelers. This study proposes an
improved KNN model to enhance forecasting accuracy based on spatiotemporal correlation
and to achieve multistep forecasting. The physical distances among road segments are
replaced with equivalent distances, which are defined by the static and dynamic data col-
lected from real road networks. The traffic state of a road segment is described by a spa-
tiotemporal state matrix instead of only a time series as in the original KNN model. The
nearest neighbors are selected according to the Gaussian weighted Euclidean distance,
which adjusts the influences of time and space factors on spatiotemporal state matrices.
The forecasting accuracies of the improved KNN and of four other models are compared,
and experimental results indicate that the improved KNN model is more appropriate for
short-term traffic multistep forecasting than the other models are. This study also dis-
cusses the application of the improved KNN model in a time-varying traffic state.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Real-time traffic data can be obtained with the development of intelligent traffic systems (García-Ortiz et al., 1995). How-
ever, lag time is detected when such data are applied to formulate strategies for managing and controlling traffic (Smith
et al., 2002). Therefore, short-term traffic conditions must be forecasted according to available real-time data. Short-term
traffic forecasting has become an interesting research topic in this field. Administrators can manage traffic networks and
effectively ensure normal operation with the aid of reliable forecasting data. Travelers can also decide on departure time
or travel routes easily.

Several statistical models have been applied extensively in short-term traffic forecasting, including the time series model
(Williams and Hoel, 2003; Lee and Fambro, 2007), Kalman filter model (Guo et al., 2014), nonparametric regression method
(Smith and Demetsky, 1997; Smith et al., 2002; Zheng and Su, 2014), Bayesian model (Wang et al., 2014), support vector
machine regression model (Zhang and Chen, 2010; Hu et al., 2011; Wang and Shi, 2013), and hidden Markov model (Qi
and Ishak, 2014). Many artificial intelligence algorithms have also been used effectively to this end. The most typical model
established is the neural network model (Smith and Demetsky, 1994; Xie and Zhang, 2006; Dong et al., 2010; Hou, 2011;
Science
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Abdi et al., 2012; Leng et al., 2013; Ma et al., 2015a). Besides, Huang and Sadek (2009) proposed a spinning network model
that is similar to human memory. Zhang et al. (2014a) developed a hierarchical fuzzy rule-based system that is optimized by
genetic algorithms.

Considerable research has concentrated on comparing an alternative forecasting model with other models given the
ready availability of different types of data and the unique features of various models (Vlahogianni et al., 2014). Artificial
intelligence algorithms can overcome several problems (e.g., data failure) and provide black box solutions. Model perfor-
mance constrains the quality of trained data, and these models are difficult to extend from one application to another
(Van and Van, 2012). By contrast, the traditional statistical models are simple to implement and are applicable to numerous
road segments; however, these models hardly forecast accurately when used alone. The nonparametric regression method
has more portability, higher accuracy, and a simpler structure than the parametric models do (Smith and Demetsky, 1997;
Zheng and Su, 2014); as a data-driven approach, the former is also suitable for short-term traffic forecasting in urban road
networks because this method adapts to the complexity of traffic signals through flexible restructuring (Vlahogianni et al.,
2014). An example of the characteristic nonparametric regression method is the k-nearest neighbor (KNN) model, which is
easy to implement because the process of training data and estimating parameters is simple. Nonetheless, the search algo-
rithm and method of forecasting result integration in this model should be improved.

The majority of previous studies conducted single-step forecasting depending on the limited data regarding a single road.
The duration of such forecasting is less than 15 min, which is generally relatively short to help travelers complete one trip on
the currently complex road networks. Several scholars have recently attempted to investigate multistep forecasting; how-
ever, the performance of such forecasting deteriorates rapidly with an increase in the number of steps when traditional fore-
casting methods are employed. Thus, researchers analyzed the relationship among road segments by considering much
spatiotemporal data collected from several road segments in a road network. Min and Wynter (2011) considered the dis-
tance and average speed of the links in reflecting the spatial characteristics of a road network; these indicators remained
accurate for up to 1 h in 12 time steps. Considering the influence of multiple links, Sun et al. (2012) proposed the Bayesian
classical model based on the Gaussian regression process for short-term traffic forecasting in urban road networks. Zhang
et al. (2014b) established a neural network model of radial basic function by analyzing the traffic flow relationship between
a specific road segment and other road segments. Haworth and Cheng (2012) predicted travel time in the central London
section by combining the nuclear regression model with the KNN model. Kamarianakis et al. (2012) enhanced the classic
time series model and examined a spatiotemporal correlation by analyzing traffic flow variables and nonlinear dynamics.
Zou et al. (2014) merged spatial and temporal travel time information to predict travel time within 1 h. The aforementioned
researchers considered the spatiotemporal data of nearby road segments for short-term traffic forecasting; however, these
scholars were unable to quantize the spatiotemporal correlation among road segments clearly in their forecasting models.
Thus, an improved KNN model is proposed in the present study based on the spatiotemporal correlation of road segments.

The present study applies a new criterion of equivalent distances to redefine the contact among road segments and uses
spatiotemporal state matrices to identify traffic states. Then, the proposed model enhances the computations of nearest
neighbor distance and the integration of forecasting results through the Gaussian weighted method to overcome the defect
of the original KNN model. Peak and off-peak times are set within one day given the dynamic flows in a road network. In
addition, a time-varying model is reasonably used to forecast short-term traffic states involving different traffic character-
istics in various periods. Finally, a deviation compensation method is introduced to adjust the forecasting result further. The
maximum forecasting time in the study is 1 h (12 time steps).

This paper is organized as follows: Section 2 proposes the improved KNN model based on spatiotemporal correlations.
The equivalent distance, spatiotemporal state matrix, and Gaussian weighted methods are also introduced in this section.
Section 3 determines the parameters in the model and compares the performance of the improved KNN model with that
of other models with the real data collected. Section 4 discusses the application of the improved KNN model in a time-
varying traffic state and the deviation adjustment of the forecasting results. Section 5 concludes the study and proposes
directions for future research.
2. Methodology

2.1. Original KNN model

The KNN model for short-term traffic forecasting aims to identify the current state of the traffic network and integrates
generations of similar historical states as forecasting results. The specific steps of the original KNN model are described as
follows.

First, historical data are used to build the sample database. Either traffic flow or vehicle speed is usually selected as the
critical parameter. An appropriate vector space is also defined to describe the current and historical traffic states. Then, the
Euclidean distances between all sample and current data are calculated to generate the k-sample data, the distances among
which are regarded as the KNNs. Finally, future traffic states are forecasted by averaging generations of KNNs (Smith and
Demetsky, 1997).

The original KNN model has been applied in many studies, and several analogous weaknesses should be improved upon.
The results of the original KNN model are usually hysteretic in time series and lack prediction accuracy because this model
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utilizes oversimplified methods and does not consider data from nearby road segments. The current study considers the spa-
tiotemporal correlation of road networks and adopts the Gaussian weighted method to enhance the original KNN model.

2.2. Improved KNN model considering spatiotemporal correlation

The specific steps in the improved KNN model proposed in this study are listed as follows.
First, historical speed data are used to build the sample database. Second, the equivalent distances between the forecasted

road segment and other road segments are calculated to determine the spatiotemporal correlative road segments, whose
time vectors constitute the spatiotemporal state matrices used to describe traffic states. Third, the equivalent distances
between all sample data and current data are calculated according to the Gaussian weighted Euclidean distance to select
the KNNs. Finally, the Gaussian weighted average method is applied to obtain the final forecasting results by integrating gen-
erations of KNNs.

2.2.1. Equivalent distances and the spatiotemporal state matrix
The traffic states of road segments in a road network tend to be influenced by their upstream and downstream move-

ments. For example, congestions are often initiated at one or more road segments and spread to other road segments after
a period of time, thereby resulting in regional congestion (Ma et al., 2015b). The characteristic evolution of the early peak
congestion in Liuliqiao District is shown in Fig. 1; the red1, yellow, and green lines represent the congested, slightly congested,
and smooth road segments, respectively. The majority of previous researchers considered only the data from a single road seg-
ment in short-term traffic forecasting; by contrast, this study incorporates the spatiotemporal correlation among road segments
and uses much data from nearby road segments in a road network region.

The spatiotemporal correlation is determined by analyzing the structure of a road network and the characteristics among
the time series of real data. A physical road network is divided into several road segments to collect floating car speed data.
On the basis of this division, a connective hierarchy of road segments is established, and the schematic of this hierarchy is
depicted in Fig. 2. The first grade (g = 1) represents the forecasted road segment; the second grade (g = 2) includes the road
segments directly connected to the forecasted road segment; and the third grade (g = 3) corresponds to the road segments
that are directly connected to the second grade. The remaining grades (g = 4, 5, 6, . . .) are similarly described. The other
grades may include several road segments, with the exception for the first grade.

The well-known physical distance concept represents the physical property of a road network. However, this concept
does not reflect the traffic flow property among road segments. The correlation coefficient is another common concept that
is calculated according to the time series of road segments and can reflect the traffic flow property. Connective grade is an
artificial concept that reflects the spatial correlations among road segments. This study defines equivalent distance as a cri-
terion that is used to determine correlations between the forecasted road segment and other related road segments. Thus,
this distance is a composite variable with physical and data properties; it is denoted as dist and is expressed as follows:
1 For
dist ¼ ðh � gÞ1�r g – 1
1 g ¼ 1

(
ð1Þ
where h is the physical distance among road segments in a road network. This study considers the midpoints of segments to
ensure convenient calculation; g is the connective grade of a road segment and r is the correlation coefficient between the
historical time series of two road segments that are determined using real data. If X and Y represent two road segments and
their time series are {x1, x2, . . . , xN} and {y1, y2, . . . , yN}, respectively, then the equation is written as Eq. (2), where N is the
length of the time series.
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The value of dist is the measure of the spatiotemporal correlation between the forecasted road segment and other related
road segments. For the forecasted road segment, g = 1, h = 0, and r = 1. Thus, dist = 1 is the minimum of dist. This value
increases with an increase in that of h, g, or (1 � r).

The general calculation procedure is as follows: first, a suitable maximum value of g is selected to generate a connective
road network containing a sufficient number of road segments. Second, the correlation coefficients of time series are calcu-
lated between the forecasted road segment and all the road segments in a connective road network. Third, the equivalent
distances are calculated with Eq. (1). Finally, a suitable threshold value of equivalent distance is computed to select related
road segments from the connective road network. The chosen road segments are combined into a road segment series fol-
lowing the order of equivalent distances. The number of selected road segments increases with an increase in the threshold
value, which depends on specific circumstances in the road network. This process is detailed in Section 3.2.

On the basis of the one-dimensional state vector time series established in the original KNN model, this study establishes
a two-dimensional spatiotemporal state matrix V(m, n) by using a time dimension and a spatial dimension to determine traf-
interpretation of color in Fig. 1, the reader is referred to the web version of this article.



Fig. 1. Congestion spread in a road network.

Fig. 2. Schematic of the hierarchy in a road network.
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fic state. m is the length of the time series, and n is the number of road segment series (including the forecasted road seg-
ment). The elements of the state matrix represent the speed of each road segment in certain time steps. The basic form of V
(m, n) is presented in Eq. (3). The traffic state of each road segment at a certain time step is determined by utilizing the data
of m time steps (including m � 1 previous time steps) and n-related road segments (including n � 1 nearby road segments).
Vðm;nÞ ¼

v1;1 v1;2 � � � v1;n

v2;1 v2;2 � � � v2;n

..

. ..
. . .

. ..
.

vm;1 vm;2 � � � vm;n

2
66664

3
77775 ð3Þ
2.2.2. Gaussian weighted Euclidean distance
KNN models usually use Euclidean distances to calculate the distance of traffic parameters between the current state and

all the historical states to identify historical states that are similar to those of the nearest neighbors for forecasting. However,
the changing trends of traffic state cannot be reflected by Euclidean distances alone. Zheng and Su (2014) proposed the use of
correlation coefficient distance to select the nearest correlated neighbors; this approach focuses on the changing trends of
traffic state and disregards the absolute distance between two states. Thus, this study proposes a new method, i.e., Gaussian
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weighted Euclidean distance, to determine the similarities between two spatiotemporal state matrices whose weights are set
on the basis of a Gaussian function.

The time-weighted matrix is defined as Wt, the space-weighted vector is defined as Ws, and their elements are defined as
wt and ws, respectively. Their forms are shown in Eqs. (4) and (5). Let V and Vp(m, n) represent the current state and the pth
historical state, respectively; the similarity degree (SD) between these states is determined by calculating the Gaussian
weighted Euclidian distance (Eq. (6)).
Wt ¼

wt;1

wt;2

. .
.

wt;m

0
BBBB@
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where tm is the current time step, ti represents the (m � i) time steps before tm, and distj is the equivalent distance between
the jth road segment and the forecasted road segment. The values of time-weighted parameter a1 and the space-weighted
parameter a2 are optimized according to real data.

Fig. 3 displays the performance levels of the different proposed distance algorithms. The mean absolute percentage errors
(MAPEs) of the improved KNN model applying Gaussian weighted Euclidean distance are less than those of the other two
distance algorithms in most forecasted road segments. Thus, the Gaussian weighted Euclidean distance is effectively utilized
in the proposed model.

2.2.3. Adjustment of the forecasting results
The final step in the KNN model involves selecting the KNNs of the current state and forecasting through the integration

of the KNN generations. In the traditional KNNmodels, the mean values of generations are usually calculated as the forecast-
ing results. However, the use of weighted mean values is more accurate than that of mean values because of the different SDs
of the nearest neighbors. This study applies the Gaussian function to set the weight for each of the nearest neighbors. The
weights must be normalized, and the weight of the qth nearest neighbor is defined as kq. The relevant equation is expressed
as follows:
kq ¼ 1
4pa23

exp � jSDqj2
4a23

 !
ð7Þ
where a3 is the result adjustment weighted parameter, which is determined with real data. Thus, the final forecast result in
the (tm + l)th time step is defined as Ftmþl. The relevant equation is written as follows:
Ftmþl ¼
Xk
s¼1

v̂q;tmþl
� kq

 ! Xk
s¼1

kq

,
; q 2 ½1; k� ð8Þ
where v̂q;tmþl is the forecast speed of the qth nearest neighbor in several time steps following the current time step tm.

3. Case study

3.1. Data preparation

3.1.1. Data source
The data used to evaluate the performance of the proposed model were the floating car speed data collected in Liuliqiao

District, Beijing (Fig. 4). The road network was divided into 1004 road segments, including expressways, arterials, and other
roads. The data were collected over four weeks in 2013 (i.e., two weeks in March and two weeks in September), and the time
interval was 5 min. Each recorded piece of floating car speed data included record time, vehicle speed (space mean speed),
and road segment length. This study selected a representative area in a district with 30 road segments, and the effective data
were derived over 20 weekdays from 00:00 to 23:55 (288 time steps in 1 day). Thus, 20 days’ worth of data were employed
in this study, and these data are divided into three parts. In the first part, 10 days are allocated to build the historical data-
base. The second part covers five days to determine the parameters and adjust the methods. The third part allots five days to
evaluate the models.



Fig. 3. Performance levels of the proposed model given different distance algorithms.
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3.1.2. Data processing
The performance of short-term traffic forecasting models often relies on complete data; however, data were missing and

abnormal in the original set. Thus, these data should be processed before forecasting (Haworth and Cheng, 2012; Li et al.,
2013). The present study applied two methods to address the missing data for each road segment. First, these missing data
were replaced with data from the same period as collected on other days. Second, linear interpolation calculation was per-
formed with adjacent time steps if data remained missing. The abnormal data for certain road segments, excluding those in
the 95% confidence interval range, were identified from all speeds at the same time of day.

The design speed in a road network was varied for different types of road segments. The proposed model in this study
aims to forecast short-term traffic state involving all types of road segments in a road network; thus, the data were normal-
ized with the following equation:
v̂ i;j ¼ v i;j=fsj; i 2 ½1;m0�; j 2 ½1;n0� ð9Þ
where m0 is the maximum number of time steps, n0 is the sum of the road segments, v̂ i;j is the normalized speed of the jth
road segment in the ith time step, vi,j is the actual speed, and fsj is the free-flow speed of the jth road segment, which is
constant at all times.
Fig. 4. Liuliqiao District.



Fig. 5. Normalized speeds of the road segment (ID 25744).
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The free-flow speed value is usually defined via two indicators, namely, the speed limit of the road at free-flow speed and
the 85th percentile speed value. In the latter, 85% of the speeds in a certain road are below a certain value. This method was
adopted in this study to utilize the massive amounts of real data. This study assumed that the normalized range increases
from 0 to 1; thus, the normalized speeds greater than 1 were assigned a value of 1. Finally, a median filter with seven time
steps was applied to smooth the data. Fig. 5 shows the comparison of raw and smoothened normalized speeds and indicates
that the latter fluctuates less than the former. The smoothened normalized speeds also reflect the continuous change in traf-
fic flow more accurately than raw normalized speeds do.

3.2. Parameter calibration

Model performance can be evaluated by calculating their MAPE and root mean square error (RMSE) values; the relevant
formulas are shown in Eqs. (10) and (11). MAPE, which is the most important index, reflects the relative errors of the models,
whereas RMSE reflects the fact that significant errors in certain time steps may aggravate problems that should be addressed
(Odeck, 2013). We also use the median of the mean absolute percentage error (MDAPE) in different road segments to avoid
generating several road segments with abnormal data.
MAPE ¼ 1
M � L � Num

XM
a¼1

XL
l¼1

XNum
cnt¼1

jFatmþl;cnt � v̂atmþl;cntj
v̂atmþl;cnt

ð10Þ
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��� ���2
r
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where M is the number of forecasted road segments (M = 30), L is the maximum number of forecast time steps (L = 12), l is
the forecast time step (l 2 [1, L], 5 min between two continuous time steps), cnt 2 [1, 2, . . . ,Num] denotes the number of data
in each road segment, and Fatmþl;cnt and v̂atmþl;cnt are the forecasting and real values of the ath road segment, respectively, at the
lth time step after current time step tm.

The performance of the forecasting model is evaluated with MAPE in parameter calibration. The data used in this calibra-
tion belong to the second part, including 30 road segments in 5 days. The time steps m in the spatiotemporal state (see Eq.
(1)) are set to 12 (1 h). The number of correlative road segments n is determined according to the threshold value of dist. A
time constraint must also be set to select the nearest neighbors; this constraint enhances accuracy and computing speed
(Zheng and Su, 2014). A time constraint of 3 h (36 time steps) was implemented in the current study; for example, if the
spatiotemporal state includes the time steps from 07:00 to 07:55 (12 time steps in total), then 20 probable neighbors are
obtained from 06:00 to 08:45 (36 time steps in total) in a historical day.

According to the preliminary experiment results, the maximum value of g (Eq. (1)) is set as 3. Fig. 6 indicates that the
performance of the forecasting model changes with an increase in the threshold value of dist. The MAPEs decrease rapidly
when the threshold value ranges between 1.0 and 3.5 but decrease gradually when this value exceeds 3.5. Thus, the thresh-
old value is determined to be 3.5 considering the variability of the MAPEs and computing speed. Table 1 shows the numerical
test results for the road segment (ID 25744). 10 correlative road segments are studied in this road segment. The dist values
are less than 3.5.

Fig. 7(a) depicts the relationships between forecasting accuracy and the time-weighted parameter a1 (Eq. (4)). MAPE
increases with an increase in a1, and performance is optimized when the latter is sufficiently small. Thus, a1 is determined
to be 0.01. According to Eq. (4), wt,m is larger than the other time weights if a1 is small enough; this finding indicates that the



Fig. 6. Change in MAPEs with an increase in the threshold value of dist.

Table 1
Numerical test results for dist (ID 25744).

ID of road segment g h r dist ID of road segment g h r dist

25744 1 0.00 1.00 1.00 14552 3 289.64 0.91 1.88
14091 2 205.76 0.84 2.62 14554 3 240.19 0.78 4.33
25741 2 251.64 0.98 1.14 25228 3 361.86 0.86 2.75
25742 2 216.73 0.92 1.64 25641 3 808.65 0.90 2.10
25743 2 317.43 0.98 1.15 25728 3 294.25 0.78 4.59
14399 3 490.59 0.97 1.21 25731 3 235.96 0.77 4.66
14455 3 494.40 0.98 1.18
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data regarding previous time steps in the spatiotemporal state matrix do not influence short-term traffic forecasting, i.e., the
current time step is sufficient. Fig. 7(b) exhibits the relationships between forecasting accuracy and the space-weighted
parameter a2 (Eq. (5)). When a2 increases, MAPEs decrease rapidly and then increase gradually with the fluctuations. The
a2 value is set as 1.01 in the model; moreover, the data on the road segment series in the current time step effectively reflect
the current traffic state through the parameter values. Fig. 7(c) shows the relationship between the variability of the result
adjustment parameter a3 (Eq. (7)) and the forecasting accuracy of the proposed model with real data. Model accuracy is opti-
mized when a3 = 0.49.

The number of KNNs (Eq. (8)) has been determined for most existing KNN models; this information significantly affects
forecasting accuracy. The present study integrated the generations of nearest neighbors, and effective data can be obtained
when k value increases. The actual results are shown in Fig. 7(d). MAPEs decrease rapidly when k is less than 40 and increase
gradually when k is greater than 40. Thus, the appropriate k value is determined to be 40. Table 2 presents the calibration
results of all parameters in the models.

3.3. Performance comparison

In this study, the proposed model is compared with the historical average model, Elman neural network (Elman-NN),
least squares support vector machine (LS-SVM), and original KNN model. The historical average model is the earliest model
applied to traffic forecasting in the past century; Elman-NN and LS-SVM are extensively applied in short-term traffic fore-
casting applications (Dong et al., 2010; Hou, 2011; Hu et al., 2011; Zhang and Chen, 2010); and the original KNN model
has effectively been implemented by many researchers, such as Smith et al. (2002) and Zheng and Su (2014).

Fig. 8 shows that MAPE values change with different forecasting steps in the five models. The improved KNN model per-
forms better than the other models in each step, and the MAPE of the proposed model is approximately 2.96% greater than
that of the original KNN model. This result indicates that the improved KNN model based on spatiotemporal correlation is
effective for short-term traffic multistep forecasting. Tables 3 and 4 present the comparison of the numerical results (includ-
ing MAPE, RMSE, and MDAPE) for single-step and multistep forecasting.

4. Discussion

The improved KNN model is detailed in this section, including the application of the space state vector and the enhance-
ment of model performance with time-varying parameters and with the deviation compensation method.



(a) Influence of 1a on MAPEs (b) Influence of 2a on MAPEs

(c) Influence of 3a on MAPEs (d) Influence of k on MAPEs

Fig. 7. Influence of the parameters on the improved KNN models.

Table 2
Calibration results of the model parameters.

Parameters Eq. Values Description

a1 (4) 0.01 Time-weighted parameter
a2 (5) 1.01 Space-weighted parameter
a3 (7) 0.49 Result adjustment weighted parameter
k (8) 40 Number of nearest neighbors

P. Cai et al. / Transportation Research Part C 62 (2016) 21–34 29
4.1. Space state vector

The improved KNNmodel considers the time series of the road segment to be forecasted and the influence of related road
segments. Thus, this model performs well in terms of multistep short-term traffic forecasting. The spatiotemporal correlation
in the improved KNN model is reflected in several aspects, including in the use of equivalent distances to redefine the rela-
tionship between the road segment and the spatiotemporal state matrix. In the process, the traffic state can be described
accurately. The value of the time-weighted parameter a1, which affects the time series in the state matrix, is small; therefore,
the time series spatiotemporal state matrix includes the current step and the spatiotemporal state matrix degenerates into a
one-dimensional space state vector. The traffic state in the road segment to be forecasted can be determined according to
space state vector, including the data and the nearby related road segments in the nearest time step.
4.2. Time-varying parameters

Traffic state characteristics change continuously in a real traffic network, and Fig. 9(a) depicts the mean lines of 30 road
segments in 10 days (288 time steps in 1 day). Traffic states can be categorized into three types. The normalized speeds at
night are almost higher than those observed during the day; moreover, peak and off-peak times are common in daytime



Fig. 8. Performance comparison among different models.

Table 3
Comparison of the numerical results for single-step forecasting.

Model MAPE (%) RMSE MDAPE (%)

Historical average 23.57 0.15 22.41
LS-SVM 17.25 0.11 16.73
Elman-NN 17.83 0.11 16.47
Original KNN 12.28 0.08 11.35
Improved KNN 6.99 0.05 6.38

Table 4
Comparison of the numerical results for multistep forecasting.

Model MAPE (%) RMSE MDAPE (%)

Historical average 22.39 0.15 22.39
LS-SVM 26.68 0.17 26.34
Elman-NN 25.28 0.16 25.52
Original KNN 18.93 0.12 17.53
Improved KNN 15.99 0.10 14.19

(a)Mean lines of 10 days (b)Mean values in different hours

Fig. 9. Time-varying characteristics.

30 P. Cai et al. / Transportation Research Part C 62 (2016) 21–34
because of the varying travel behavior in different periods. Congestions are unavoidable during peak hours, and the variances
in speed during these times are always greater than those during off-peak times. As a result, traffic states are difficult to
forecast.

Fig. 9(b) displays the forecasting accuracy of 30 road segments in different hours (each day has 22 h and excludes the first
and the last hours of a day). Forecast accuracy is more volatile during peak hours than during non-peak hours. Furthermore,



Table 5
Determination of parameters in different
classes.

Class a1 a2 a3 k

1 0.01 0.75 0.35 40
2 0.01 0.53 0.54 40
3 0.01 0.44 0.54 40

(a) Influences of different road segments (b) Influences of different forecasting steps

Fig. 10. Influences of various factors on MPEs.
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the forecasting deviations vary with time, and the same is true for the optimal parameters in the improved KNN model. A
significant linear negative correlation was calculated between the mean normalized speed of each hour and MAPEs as per
Pearson’s correlation analysis; the correlation coefficient is �0.747. Given the complex traffic state in the peak period, the
traffic state is difficult to forecast.

This study conducts a hierarchical cluster analysis to divide 22 h (12 time steps in 1 h) into 3 classes; thus, different traffic
state features can be distinguished in 1 day. The first class contains {8th and 9th}, which represents the early peak time that
often reports severe congestions. The second class contains {10th, 11th, 15th, 16th, and 18th}, and the third class contains
{2nd, 3rd, 4th, 5th, 6th, 7th, 12th, 13th, 14th, 17th, 19th, 20th, 21st, 22nd, and 23rd}.

The values of the model parameters (i.e., a1, a2, a3, and k in Eqs. (4)–(8)) should vary with different classes. The determi-
nation process is similar to that presented in Section 3.2, and the results are shown in Table 5. The values of a1 and k do not
vary with time, whereas a2 and a3 values differ in dissimilar classes. In the peak hours, the value of a2 is larger than those of
the other parameters. This outcome indicates that the nearby road segments influence the objective road segments strongly.
When a3 increases, the nearest neighbors contribute more to the final forecasting result than before.

4.3. Deviation compensation

Fig. 10 shows the influence of different road segments and forecasting steps on the mean percentage error (MPE). The
relevant formula is expressed as Eq. (12), and its parameters are similar to those in Eqs. (10) and (11). MPEs increase rapidly
with an increase in forecasting steps in several periods; however, this pattern is not universal across all road segments. The-
oretically, MPEs are often small because the negative and positive values are typically offset. By contrast, anomalous MPEs
indicate systematic underestimation or overestimation in the forecasting process (Odeck, 2013). To reduce these occur-
rences, the current study compensates for the forecasting results by averaging the historical MPEs of each road segment.
These MPEs are recorded chronologically along with each forecasting step; the records cover 268 forecasting time steps a
day.
MPE ¼ 1
M � L � Num

XM
a¼1

XL
l¼1

XNum
cnt¼1

Fatmþl;cnt � v̂atmþl;cnt

� �
v̂atmþl;cnt

ð12Þ
The improved KNNmodel can be enhanced further using the time-varying methods (i.e., time-varying parameters and the
deviation compensation method). The new model is called the time-varying KNN model. The performance levels of the
improved KNN model and of the time-varying KNN model are compared, as shown in Fig. 11. Fig. 11(a) indicates that both



(a) Comparison of each forecasting step (b) Comparison for each hour

Fig. 11. Performance comparison between the improved and the time-varying KNN models.

Fig. 12. RMSEs in different hours.
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models perform similarly during the first few forecasting steps; however, the time-varying KNN model becomes more accu-
rate with the progression of the forecasting steps. Fig. 11(b) also shows that the time-varying KNN model typically performs
better than the improved KNN model; however, the improvement of the time-varying KNN model on the improved KNN
model is insignificant. The MAPEs of all road segments decrease by 0.57% when the time-varying methods are used.

The forecasts made during peak time are unsatisfactory because of the complex traffic state in this period, although these
predictions improve on previous ones (Fig. 11(b)). In addition, we evaluated the forecast error with MAPE; however, this
approach may generate a misleading result when the real value is small. A low normalized speed increases MAPE during
the peak hours. Meanwhile, the error gap between the peak and non-peak hours narrows if we assess the forecast error
according to another criterion, such as RMSE (Fig. 12).

5. Conclusions

Many scholars have studied short-term traffic forecasting based on much traffic data (i.e., speed and traffic flow), and
numerous models have been proposed. The KNN model is one such common statistical model. This study aims to improve
the forecasting accuracy of KNN models in multistep forecasting and to enhance model performance in time-varying traffic
conditions.

This work improves the original KNN model based on spatiotemporal correlation and discusses the details of its applica-
tion to actual road networks. The improved KNN model follows these processes: first, the proposed model uses equivalent
distances to define contacts among road segments. These segments contain the actual distances, link relations, and coeffi-
cients among road segments. Equivalent distance is dynamic and changes with the traffic data collected. Second, the model
employs a spatiotemporal state matrix to identify the traffic state in the road network instead of the one-dimensional time
series utilized in previous research. This identification reflects the spatiotemporal correlation of the road network. Third, the
Gaussian function is applied to set the weights for the model several times for optimizing forecasting performance.

This study evaluates the effectiveness of the proposed model by using the floating car speed data collected from an actual
road network. MAPE and RMSE are introduced to compare the performance of the improved KNN with that of other models.
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The result indicates that the proposed improved methods are effective and that the improved KNN model performs better
than the other models do.

This work also discusses the use of the improved KNN model under the time-varying traffic condition. The forecasting
result shows that the time-varying KNN model established with the time-varying parameter and deviation compensation
methods is more adaptive to actual application in short-term traffic forecasting than other models are.

The main objective of this research is to present a new KNN method that considers the spatiotemporal correlation for
traffic state forecasting. However, this study has several limitations. Equivalent distance is a critical factor in the analysis
of the spatiotemporal correlation between road segments; therefore, a more appropriate form of equivalent distance than
that shown in Eq. (1) should be developed through further experimentation. The forecast accuracy during the peak time
should be improved as well.

In future works, the spatiotemporal correlative KNN model can be expanded to forecast more traffic parameters using
more types of traffic data. In contrast to existing research (Lei et al., 2014; Park and Haghani, 2015), the evolution of the fore-
casting process for road network state or travel time can be studied by considering the spatiotemporal correlation, which
may provide intuitive data for before-trip and on-trip travelers.
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