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a b s t r a c t 

Global supply chains are more than ever under threat of major disruptions caused by dev- 

astating natural and man-made disasters as well as recurrent interruptions caused by vari- 

ations in supply and demand. This paper presents a hybrid robust-stochastic optimization 

model and a Lagrangian relaxation solution method for designing a supply chain resilient 

to (1) supply/demand interruptions and (2) facility disruptions whose risk of occurrence 

and magnitude of impact can be mitigated through fortification investments. We study a 

realistic problem where a disruption can cause either a complete facility shutdown or a re- 

duced supply capacity. The probability of disruption occurrence is expressed as a function 

of facility fortification investment for hedging against potential disruptions in the pres- 

ence of certain budgetary constraints. Computational experiments and thorough sensitiv- 

ity analyses are completed using some of the existing widely-used datasets. The perfor- 

mance of the proposed model is also examined using a Monte Carlo simulation method. 

To explore the practical application of the proposed model and methodology, a real world 

case example is discussed which addresses mitigating the risk of facility fires in an actual 

oil production company. Our analysis and investigation focuses on exploring the extent to 

which supply chain design decisions are influenced by factors such as facility fortification 

strategies, a decision maker’s conservatism degree, demand fluctuations, supply capacity 

variations, and budgetary constraints. 

© 2016 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

Supply chain network design decisions form the backbone of supply chain management with direct impact on a firm’s

return on investment and its overall performance ( Farahani et al., 2014; Zokaee et al., 2014 ). It concerns strategic deci-

sions on supply chain configuration which includes determining the number, location and capacity of facilities in order

to serve a predetermined, but possibly evolving, customer base ( Rezaee et al., 2016 ). Since these decisions are by na-

ture costly and difficult to reverse, supply chain networks are designed to last for several years and hence need to be

robust to cope with future uncertainties ( Jabbarzadeh et al., 2014; Snyder et al., 20 07 ). Tang (20 06) defines two types
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of risks facing supply chains: operational risks and disruption risks. Operational risks are caused by inherent interrup-

tions such as uncertain customer demand, uncertain supply capacity, and uncertain procurement costs. Disruption risks

are caused by major incidents such as natural and man-made disasters (e.g., earthquakes, floods, terrorist attacks, fires,

etc.). Esmaeilikia et al. (2014a, 2014b ) provide a similar definition and classifies supply chain risks into those posed by

major disruptions (rare events, but devastating impacts) and supply/demand interruptions (frequent occurrence, but less 

detrimental). 

In most cases, the impact of disruptions on business performance is much larger than that of operational risks ( Tang,

2006 ). For today’s supply chains, the primary causes of increased exposure to disruptions are the lean and relentless

cost-minimization practices, global reach of supply chains, and shorter product life cycles. Recent examples of natu-

ral disasters which have disrupted the performance of several supply chains include the tsunamis in the Indian Ocean

(2004) and Japan (2011), the earthquakes in China (2008) and Chile (2011 and 2015), and Typhoon Haiyan in the Philip-

pines (2013) ( Fahimnia et al., 2015; Klibi et al., 2010 ). We have no direct control over the probability of occurrence of

such disasters, and the only way to reduce the impact of these disasters is to consider the location of facilities or sup-

pliers; that is, avoidance of flood-prone areas, earthquake zones, and areas exposed to high sea level rise and storm

surges. 

There are however disasters whose probability of occurrence and magnitude of impact can be mitigated by greater fa-

cility fortification investments. Some examples of such disasters include bushfire where prescribed burning (backburning)

will prevent the occurrence, and creating firebreaks will minimize property damage. Fire within factory facilities can be pre-

vented by maintenance of electrical wiring and appliances, education on basic electrical safety principles, and investment

in low risk fire appliances. Also, installation of fire detection and sprinkler systems will reduce the impact of fire should it

occur. Another example could be cyber-attacks which can be prevented by advanced firewalls and cyber security systems. It

is the disruptions caused by these disasters that this paper seeks to address. Our case study analysis and discussions in this

paper will focus on an actual fire disaster. 

According to a recent survey by the insurance company Zurich Financial Services Australia Ltd, 85% of Australian-based

companies experienced at least one supply chain disruption during 2011. Supply chain disruptions can have substantial im-

pacts on the both short-term and long-term performance of firms ( Hendricks et al., 2009; Peng et al., 2011 ). Hendricks

and Singhal (2005) reported that companies suffering from even smaller-scale supply chain disruptions experienced 33–40%

lower stock returns relative to their industry benchmarks. These illustrations and statistics reinforce the need to consider

hedging against disruption risks when designing supply chain networks, a highly complex task due to the many influencing

factors including budget availability (capital investment), decision maker’s risk attitude, type of network under considera-

tion, and the probability of disruption occurrence. Given that disruptions tend to be rare events, a primary complexity in

designing resilient supply chains is the lack of historical data available from past disasters. The interaction between opera-

tional risks, more importantly demand variation risks, and disruption risks can add to this complexity. For instance, under

demand uncertainty, it may be more beneficial for a company to run fewer number of larger facilities taking advantage of

economies of scale in purchasing ( Daskin et al., 2002 ), while it may be more worthwhile to operate more number of smaller

facilities to minimize the impact of a disruption in one facility on the overall supply chain performance ( Jabbarzadeh et al.,

2015 ; Snyder et al., 2006 ). 

To address these challenges, we present a hybrid robust optimization model (applying a robust optimization approach

to a stochastic model) for designing a supply chain resilient to supply/demand variations and major disruptions whose risk

of occurrence and magnitude of impact can be mitigated through facility fortification investments. The objective of the

proposed model is to minimize the total cost of establishing the network while maximizing the supply chain resilience. Dis-

ruption occurrence probability is expressed as a function of capital investment for facility fortification. Facilities established

at lower costs receive a higher probability of failure (less reliable facilities) and those with greater capital investment are

assigned a smaller disruption probability value (more reliable facilities). Obviously, for situations when the probability of

a disruption is not a function of investment level, one can simply set equal probabilities for different fortification levels.

The ultimate goal of the proposed model is to determine the supply chain design decisions including the number, location

and type of facilities (reliable or unreliable facilities) in the presence of certain budgetary constraints. We will investigate

how the proposed model is able to capture the decision-makers’ risk attitude to develop tradeoff between the supply chain

design costs and disruption risks. 

The remainder of the paper is organized as follows. Section 2 briefly reviews the related modeling efforts in the existing

literature. Section 3 starts with a background of robust optimization followed by the formulation of the resilient supply

chain network design model. Section 4 presents a Lagrangian relaxation solution method to tackle large-scale problems (we

use GAMS to solve smaller-scale problems). Computational results are presented in Section 5 along with the practical and

managerial insights obtained from the numerical results. Conclusions and directions for further research in this area are

presented in Section 6 . 

2. Literature review 

Reviews of facility location modeling effort s have been completed by Snyder (2006) ; ReVelle et al. (2008) , and Melo

et al. (2009) . The more recent review of Snyder et al. (2016) indicates that a research focus on the design of ‘resilient supply
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chains’ has only been a recent occurrence; becoming only about 10 years old in 2015. Snyder and Daskin (2005) were

among the first to incorporate disruption risks into classical facility location problems. They present reliability models based

on a P-median problem and an uncapacitated fixed-charge location problem in which facilities are subject to disruptions.

Their model aims to minimize facility location costs while taking into account the expected transportation cost when

an unexpected disruption occurs. Aryanezhad et al. (2010) include inventory decisions to this model and present integer

programming models minimizing the sum of facility construction costs, expected inventory costs and expected customer

costs under normal and disruption situations. Chen et al. (2011) propose a Lagrangian relaxation method to solve this

model. 

The above studies assume equal disruption probabilities in all facilities, an assumption that has been relaxed in some

of the more recent works by Berman et al. (2007) ; Li and Ouyang (2010) ; Shen et al. (2011) , and Cui et al. (2010) . Berman

et al. (2007) presented a nonlinear integer programming model where facilities face independent disruptions with differ-

ent probabilities. Due to model intractability, a heuristic algorithm was developed to solve the problem. O’ Hanley et al.

(2013) proposed an efficient technique for linearizing the facility location problem with site-dependent failure probabili-

ties to tackle the intractability issue. Cui et al. (2010) presented an exact linear formulation for this problem to consider

heterogeneous facility failure probabilities utilizing the linearization method of Sherali and Alameddine (1992) . 

Lim et al. (2010) incorporate the facility fortification concept into a facility location model to hedge against the risk of

facility disruptions. They assume that if a serving facility fails, the associated demand point is immediately assigned to its

backup. The problem is formulated as a mixed integer programming model for which a Lagrangian relaxation algorithm

is proposed as a solution method. Li et al. (2013) extend this model by incorporating the rate of return for fortification

investment and compare the results with that of alternative investment opportunities. For instance, a firm may choose to

invest in network fortification only if the rate of return exceeds a minimum acceptable rate of return. The problem is further

extended and investigated by Li and Savachkin (2013) where a facility can be fortified to a certain reliability level (a partial

fortification strategy). All of these studies assume unlimited facility capacity. 

The aforementioned models assume that a disrupted facility is completely out of service and hence disregard the prob-

ability that the performance of a facility can only be partially affected. Jabbarzadeh et al. (2012) present a supply chain

design model for a situation where a facility may be partly disrupted, but may yet be able to fulfill a fraction of the initially

assigned demand. Two solution methods based on Lagrangian relaxation and genetic algorithms are developed to solve the

model. Liberatore et al. (2012) study the problem of optimally protecting a capacitated median where disasters may result

in partial or complete shutdown of facilities. The proposed model optimizes protection plans when facing large area dis-

ruptions (i.e., disruptions that affect regions rather than single elements of the system). An algorithm is designed to solve

the model optimally and is tested on a set of data from 2009 L’Aquila earthquake. Azad et al. (2013) formulate a capaci-

tated location allocation model that accounts for partial disruptions considering deterministic supply chain demand. Benders

decomposition is utilized to solve this computationally intractable model. 

All the above models assume a risk-neutral decision maker who wishes to optimize the expected value of the objective

function. Some of the most recent studies focus on risk aversion decision making through bi-level model formulation and

optimizing worst-case objectives ( Hernandez et al., 2014; Liberatore et al., 2011; Losada et al., 2012; Medal et al., 2014 ).

Medal et al. (2014) investigate the minimax facility location and hardening problem seeking to minimize the maximum dis-

tance from a demand point to its closest located facility after facility disruptions. A decision maker in this case is interested

in mitigation against a facility disruption scenario with the largest consequence. Likewise, Hernandez et al. (2014) apply a

worst-case approach to hedge against disruptions. Using a multi-objective optimization approach, their model provides a

decision maker with an option to tradeoff total weighted travelling distance before and after disruptions in a facility loca-

tion problem. It allows investigating the impact that the opening of additional facilities can have on total distance travelled.

Losada et al. (2012) present a bi-level mixed integer linear program for protecting an uncapacitated median type facility

network against worst-case losses, taking into account the role of facility recovery time on system performance and the

possibility of multiple disruptions over time. Their model differs from a typical facility protection model in that protection

is not assumed to always successfully avoid facility failure, but rather to speed up recovery time post disruptions. One limi-

tation of the worst-case approaches is that it can be highly over conservative in practical cases as the probability at which

uncertain parameters reach their worst values may be very low ( Snyder, 2006 ). 

There are also studies that consider the risk preference of decision makers using scenario-based models. Peng et al.

(2011) present a scenario-based modeling approach in which each scenario includes a set of facilities that can fail simulta-

neously. Their model aims at minimizing the total cost under normal circumstances while reducing the disruption risk using

the p -robustness criterion (bounding the cost in disruption scenarios and allowing capturing risk aversion). A genetic algo-

rithm approach is used to solve the model. Similarly, Baghalian et al. (2013) develop a scenario-based model for designing

a supply chain whose objective is to maximize profit under the risks of disruption. To address the risk-aversion attitude of

a decision maker, the variance of total profit is incorporated into the model. The model is formulated using mixed integer

nonlinear programming and approximated using multiple linear regressions. The limitation of a scenario-based approach is

that solving such models becomes more difficult as the number of scenarios increases ( Peng et al., 2011 ). 

Table 1 summarizes the characteristics of the published supply chain design models that incorporate disruption risks

(more comprehensive reviews can be found in Snyder et al. (2006) ; Snyder et al. (2007) and (2016) ). Our study contributes

to this literature in the following ways. First, unlike the published models, our model is able to tackle multiple types of risks,
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Table 1 

Characteristics of published supply chain network design models that consider facility disruption risks. 

Uncertain parameters Modeling approach Disaster severity Fortification options Key constraints 

References Demand Probability of Capacity Expected Worst- p -robustness Scenario-based Interval Complete Facility Full Partial Capacity Budget 

Disruption value case robust robust shutdown partially 

occurrence optimization optimization affected 

Aryanezhad et al. (2010) ∗ ∗ ∗

Azad et al. (2013) ∗ ∗ ∗ ∗ ∗ ∗ ∗

Baghalian et al. (2013) ∗ ∗ ∗ ∗ ∗

Berman et al. (2007) ∗ ∗

Chen et al. (2011) ∗ ∗

Cui et al. (2010) ∗ ∗

Jabbarzadeh et al. (2012) ∗ ∗ ∗ ∗

O’Hanley et al. (2013) ∗ ∗

Li and Savachkin (2013) ∗ ∗ ∗ ∗

Liberatore et al. (2012) ∗ ∗ ∗ ∗

Li et al. (2013) ∗ ∗ ∗ ∗

Lim et al. (2010) ∗ ∗ ∗

Losada et al. (2012) ∗ ∗ ∗

Li and Ouyang (2010) ∗ ∗

Hernandez et al. (2014) ∗ ∗

Medal et al. (2014) ∗ ∗ ∗

Peng et al. (2011) ∗ ∗ ∗ ∗ ∗

Shen et al. (2011) ∗ ∗

Qi et al. (2010) ∗ ∗

Shishebori et al. (2014) ∗ ∗ ∗

Snyder and Daskin (2005) ∗ ∗

This study ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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including strategic disruption risks and operational supply/demand uncertainties. This allows the effective design of supply

chain networks where historical risk data is limited or nonexistent. Second, we present a hybrid robust-stochastic method

(i.e., applying a robust optimization approach to a stochastic model) that overcomes the limitations of the scenario-based

methods (the computational overhead for managing a large number of scenarios) and the worst-case approaches (over-

conservative attitude in practical cases). The approach has the flexibility of adjusting the conservativeness level of solutions

while preserving the computational complexity of the nominal problem. In addition, the hybrid nature of the presented

formulation facilitates the modeling of a complex situation where even the probability of random disruptions is uncertain.

Third, our modeling effort takes into consideration a realistic range of assumptions (e.g., partial or complete shutdown of

facilities when disruptions occur), variables (e.g., both partial and full facility fortification options) and constraints (e.g.,

budget and capacity constraints); representing a more realistic situation than those studied in the past (see the review of

Snyder et al. (2016) for a more comprehensive review of the existing literature). 

3. Model formulation 

We first present a background of robust optimization to better inform the mathematical formulation of the resilient

supply chain network design. A stochastic model is then developed for supply chain network design considering the risk of

disruptions. This model is then extended to incorporate uncertainties in demand, probability of disruption occurrence and

capacity of facilities into the model; forming a hybrid robust-stochastic optimization formulation. The latter model aims to

design a resilient supply chain network, a supply chain that is resilient to disruptions and supply/demand interruptions. 

3.1. Background of robust optimization 

Although stochastic programming methods are powerful in modeling uncertain factors ( Birge and Louveaux, 2011 ), they

usually require the availability of probability distributions of random variables ( Klibi et al., 2010 ). Robust optimization meth-

ods have been used to tackle this drawback when there is the lack of historical data to estimate the actual distribution of

uncertain parameters. They are also capable of incorporating decision-makers’ risk attitude ( Bental et al., 2009 ). Here, we

explain the framework of the robust formulation introduced by Bertsimas and Sim (20 03, 20 04) which has been extensively

adopted in the past to address supply chain uncertainty issues ( Gabrel et al., 2014 ). 

Let us consider a linear mathematical programming model as: 

Min c ′ j x j (1)

Subject to: ∑ 

j 
a i j x j ≤ b i ∀ i = 1 , 2 , 3 , ..., m. (2)

x j ∈ { 0 , 1 } (3)

Here, a ij denotes uncertain parameters and J i is the set of uncertain parameters in i th constraint. Bertsimas and Sim (2003,

2004) assume that each uncertain parameter a ij is a random variable which takes values in interval [ ̄a i j − ˆ a i j , ̄a i j + ˆ a i j ]. Where

ā i j represents the nominal value of the uncertain parameter and ˆ a i j is the deviation of the nominal value. Using duality

theory, Bertsimas and Sim (20 03, 20 04) prove that the robust counterpart of the uncertain linear programming model ( 1 )

to ( 3 ) can be written as: 

Min c ′ j x j (4)

Subject to: ∑ 

j∈ J 
ā i j x j + Z i �i + 

∑ 

j∈ J 
p i j ≤ b i ∀ i (5)

Z i + p i j ≥ ˆ a i j x j ∀ j ∈ J (6)

Z i ≥ 0 ∀ i (7)

p i j ≥ 0 ∀ i, j (8)

x j ∈ { 0 , 1 } (9)
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Fig. 1. The assignment of customers to facilities and the shipment of products between facilities and between facilities and customers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z i and p ij are auxiliary variables and �i is a parameter called “uncertainty budget”. The parameter �i adjusts the uncertainty

level in each row varying in interval of [0,| J i |]. In other words, the robust formulation aims to protect against all cases that

up to �i of uncertain parameters a ij are allowed to change. When �i is set equal to zero, the constraints are equivalent to

that of the nominal problem. Likewise, when �i is set to| J i |, the robust model acts with the highest level of conservatism.

The role of �i is thus to adjust the conservatism level of the robust formulation. Further details about robust formulation

can be found in Bertsimas and Sim (2003, 2004) . 

3.2. Formulation of the base stochastic model 

We now formulate a stochastic network design model for a supply chain under random disruptions, assuming no demand

and supply uncertainties. We consider a generic supply chain network in which facilities fulfil market demands at customer

locations. A disruption at any facility can cause either a complete shutdown or a reduced supply capacity. Disruption prob-

abilities in different facilities are assumed to be independent and location specific. The facilities can be either partially or

fully fortified requiring capital investments corresponding to the degree of fortification. An example of such investments is

the acquisition, installation and implementation of infection control measures to contain and prevent disease from disabling

a workface. Another example is the acquisition and installation of advanced fire protection systems to mitigate the risk of

factory fires. Therefore, we assume that the probability and magnitude of a disruption in a facility can be expressed as a

function of fortification degree in that facility (as is the case in many disruptions). Compliance with a full fortification de-

gree will make a facility reliable (resilient to major disruptions). Partially fortified facilities still remain unreliable and may

be affected by disruptions with a given probability. When affected by a disruption, an unreliable facility can be supplied by

other reliable facilities to compensate for the reduced supply capacity so that the assigned demands can still be satisfied.

For a hypothetical example with two fortification levels, Fig. 1 illustrates the assignment of customers to facilities and the

shipment of products between these nodes. 

The objective is to minimize the total cost of the supply chain in a way that customer demands are satisfied even in

disruptions. In the presence of certain budgetary constraints, the proposed model aims to determine (1) the number of

facilities to open, (2) the location of facilities, (3) the allocation of facilities to customers, (4) the required fortification

degree of each facility, (5) the quantity of products shipped between reliable and unreliable facilities when a disruption

occurs. Modeling indices, parameters and decision variables are defined below. 



A. Jabbarzadeh et al. / Transportation Research Part B 94 (2016) 121–149 127 

 

 

 

 

 

 

 

 

 

 

Sets: 

K : Set of customers 

J : Set of potential locations for unreliable facilities 

M : Set of potential locations for reliable facilities 

I : Set of potential locations for facilities ( I = J ∪ M ) 

N : Set of fortification levels for unreliable facilities 

Parameters: 

D 

k 
: Demand of customer k ( ∀ k ∈ K ) 

B : Budget available for establishing facilities 

f U 
jn 

: Fixed cost of locating an unreliable facility at location j with fortification level n 

f R m 

: Fixed cost of locating a reliable facility at location m ( ∀ m ∈ M ) 

o jk : Unit transportation cost from unreliable facility at location j to customer k ( ∀ j ∈ J , ∀ k ∈ K ) 

l mk : Unit transportation cost from reliable facility at location m to customer k ( ∀ m ∈ M , ∀ k ∈ K ) 

C mj : Unit transportation cost from reliable facility at location m to unreliable facility at location j ( ∀ m ∈ M , ∀ j ∈ J ) 

CU j : Capacity of unreliable facility at location j under normal circumstances( ∀ j ∈ J ) 

CR m 

: Capacity of reliable facility at location m ( ∀ m ∈ M ) 

q 
jn 

: Disruption probability in unreliable facility at location j with fortification level n ( ∀ j ∈ J , ∀ n ∈ N ) 

a jn : Percentage of total capacity lose when a disruption occurs in unreliable facility at location j with fortification level n

Decision variables: 

T 
m j 

: Quantity of products shipped from reliable facility at location m to unreliable facility at location j ( ∀ m ∈ M , ∀ j ∈ J ) 

Y jn = 

{
1 If unreliable facility j is opened with fortification level n ( ∀ j ∈ J, ∀ n ∈ N ) 

0 Otherwise 

X m 

= 

{
1 If reliable facility m is opened (∀ m ∈ M) 

0 Otherwise 

U jk = 

{
1 If customer k is assigned to unreliable facility j (∀ j ∈ J, ∀ k ∈ K) 

0 Otherwis e 

R mk = 

{
1 If customer k is assigned to reliable facility m (∀ m ∈ M, ∀ k ∈ K) 

0 Otherwise 

The stochastic supply chain network design model can now be developed by incorporating the impact of fortification

levels of facilities on the probability of disruptions as well as the associated capacity and budget constraints into the model

of Azad et al. (2013) . The model is formulated as follows (note: uncertainties in demand, probability of disruption occurrence

and capacity of facilities will be incorporated into the model in a later stage): 

Min : 
∑ 

j∈ J 

∑ 

n ∈ N 
f U jn Y jn + 

∑ 

m ∈ M 

f R m 

X m 

+ 

∑ 

j∈ J 

∑ 

k ∈ K 
o jk D k U jk + 

∑ 

m ∈ M 

∑ 

k ∈ K 
l mk D k R mk 

+ 

∑ 

j∈ J 

∑ 

n ∈ N 
q jn Y jn 

( ∑ 

m ∈ M 

T m j C m j 

) 

(10)

Subject to: ∑ 

j∈ J 

∑ 

n ∈ N 
f U jn Y jn + 

∑ 

m ∈ M 

f R m 

X m 

≤ B (11)

∑ 

m ∈ M 

X m 

≥ 1 (12)

X i + 

∑ 

n ∈ N 
Y in ≤ 1 ∀ i ∈ I (13)

R mk ≤ X m 

∀ m ∈ M, k ∈ K (14)

∑ 

k ∈ K 
D k U jk ≤

∑ 

n ∈ N 
C U j Y jn ∀ j ∈ J (15)
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∑ 

m ∈ M 

T m j + 

( 

1 −
∑ 

n ∈ N 
a jn Y jn 

) 

C U j ≥
∑ 

k ∈ K 
D k U jk ∀ j ∈ J (16) 

∑ 

j∈ J 
T m j + 

∑ 

k ∈ K 
D k R mk ≤ C R m 

X m 

∀ m ∈ M (17) 

∑ 

j∈ J 
U jk + 

∑ 

m ∈ M 

R mk = 1 ∀ k ∈ K (18) 

X m 

∈ { 0 , 1 } ∀ m ∈ M (19) 

Y jn ∈ { 0 , 1 } ∀ j ∈ J, ∀ n ∈ N (20) 

R mk ∈ { 0 , 1 } ∀ m ∈ M, ∀ k ∈ K (21) 

U jk ∈ { 0 , 1 } ∀ j ∈ J, ∀ k ∈ K (22) 

T m j ≥ 0 ∀ m ∈ M, ∀ j ∈ J (23) 

The objective function ( 10 ) minimizes the expected total cost including the costs of locating reliable and unreliable fa-

cilities with different fortification levels, transportation costs for shipment of products from facilities to customers, and

expected transportation costs for shipment of products from reliable facilities to unreliable facilities when disruptions oc-

cur. Constraint ( 11 ) expresses the total budget limitation. Constraint ( 12 ) enforces that at least one reliable facility must be

opened to guarantee demand satisfaction when all unreliable facilities are disrupted. Constraint ( 13 ) ensures that only one

facility can be opened at each location. For this constraint, we set X 
i 

= 0 for i 	∈ M and Y 
in 

= 0 for i 	∈ J . Constraint ( 14 ) en-

sures that customers can only be assigned to open facilities. Constraint ( 15 ) expresses the capacity restriction of unreliable

facilities. Constraint ( 16 ) guaranties that demand assigned to each unreliable facility is satisfied. Constraint ( 17 ) expresses the

capacity limit of reliable facilities. Constraint ( 18 ) enforces that each customer is assigned to a facility. Constraints ( 19 –23 )

define the domains of the decisions variables. 

The model formulation ( 10 –23 ) is nonlinear by the term 

∑ 

j∈ J 
∑ 

n ∈ N q jn Y jn ( 
∑ 

m ∈ M 

T m j C m j ) in objective function ( 10 ). This

formulation can be linearized using a new auxiliary variable named H 

jnm 

and a new constraint ( 25 ) as follows. 

Min : 
∑ 

j∈ J 

∑ 

n ∈ N 
f U jn Y jn + 

∑ 

m ∈ M 

f R m 

X m 

+ 

∑ 

j∈ J 

∑ 

k ∈ K 
o jk D k U jk + 

∑ 

m ∈ M 

∑ 

k ∈ K 
l mk D k R mk + 

∑ 

j∈ J 

∑ 

m ∈ M 

∑ 

n ∈ N 
q jn C m j H jnm 

(24) 

Subject to: 

Constraints ( 11 –23 ) 

H jnm 

≥ T m j + M( Y jn − 1) ∀ j ∈ J, m ∈ M, n ∈ N (25)

H jnm 

≥ 0 ∀ j ∈ J, ∀ k ∈ K (26) 

Where M is a big number and the auxiliary H 

jnm 

is defined as follows. 

H jnm 

= Y jn T m j ∀ m ∈ M, j ∈ J, n ∈ N (27) 

Constraint ( 25 ) ensures that products cannot be transported from a reliable facility to an unreliable facility that is not

yet established. Bringing the objective function ( 24 ) into the constraints and defining a new variable λ, the above model can

be rewritten as: 

Min : λ (28) 

Subject to: 

Constraints ( 11 –23 ) and ( 25 ) and ( 26 ) ∑ 

j∈ J 

∑ 

n ∈ N 
f U jn Y jn + 

∑ 

m ∈ M 

f R m 

X m 

+ 

∑ 

j∈ J 

∑ 

k ∈ K 
o jk D k U jk + 

∑ 

m ∈ M 

∑ 

k ∈ K 
l mk D k R mk 

+ 

∑ 

j∈ J 

∑ 

m ∈ M 

∑ 

n ∈ N 
q jn C m j H jnm 

≤ λ
(29) 
λ ≥ 0 (30) 
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3.3. Formulation of the hybrid robust-stochastic model 

We now extend the stochastic model presented in Section 3.2 to include uncertainties in demand, supply capacity and

probability of disruption occurrence, forming a robust-stochastic optimization model. We first look at demand uncertainty

in Section 3.3.1 and will then incorporate uncertainty in the likelihood of disruption occurrence and uncertainty in capacity

of facilities in Section 3.3.2 . 

3.3.1. Formulating demand uncertainty 

We utilize the robust optimization approach discussed in Section 2 to formulate demand uncertainty. The uncertain

parameter D 

k 
takes the values within the range of [ D k − ˆ D k , D k + 

ˆ D k ] corresponding to all customers. Also, budget uncertainty

�D (conservatism degree) is considered for customer demands taking values between zero and the number of customers.

As discussed in Section 2 , the robust model can be written as follows. 

Min : λ (31)

Subject to: 

Constraints ( 11 –14 ), ( 18 –23 ), ( 25 ) and ( 26 ) ∑ 

j∈ J 

∑ 

n ∈ N 
f U jn Y jn + 

∑ 

m ∈ M 

f R m 

X m 

+ 

∑ 

j∈ J 

∑ 

k ∈ K 
o jk ̄D k U jk + 

∑ 

m ∈ M 

∑ 

k ∈ K 
l mk D̄ k R mk + 

∑ 

j∈ J 

∑ 

m ∈ M 

∑ 

n ∈ N 
q jn C m j H jnm 

∑ 

k ∈ K 
p 1 k + 

∑ 

k ∈ K 
p 2 k + Z 0 �D + Z 1 �D ≤ λ

(32)

Z 0 + p 1 k ≥ o jk ̂  D k U jk ∀ j ∈ J, k ∈ K (33)

Z 1 + p 2 k ≥ l mk 
ˆ D k R mk ∀ j ∈ J, k ∈ K (34)

∑ 

k ∈ K 
D̄ k U jk + 

∑ 

k ∈ K 
p 3 k + Z 2 j �

D ≤
∑ 

n ∈ N 
C U j Y jn ∀ j ∈ J (35)

Z 2 j + p 3 k ≥ ˆ D k U jk ∀ j ∈ J, k ∈ K (36)

∑ 

m ∈ M 

T m j + 

( 

1 −
∑ 

n ∈ N 
a jn Y jn 

) 

C U j ≥
∑ 

k ∈ K 
D̄ k U jk + 

∑ 

k ∈ K 
p 4 k + Z 3 j �

D ∀ j ∈ J (37)

p 4 k + Z 3 j ≥ ˆ D k U jk ∀ j ∈ J, k ∈ K (38)

∑ 

j∈ J 
T m j + 

∑ 

k ∈ K 
D̄ k R mk + 

∑ 

k ∈ K 
p 5 k + Z 4 j �

D ≤ C R m 

X m 

∀ m ∈ M (39)

p 5 k + Z 4 j ≥ ˆ D k U jk ∀ j ∈ J, k ∈ K (40)

p 1 k , p 
2 
k , p 

3 
k , p 

4 
k , p 

5 
k , Z 

0 
j , Z 

1 
j , Z 

2 
j , Z 

3 
j , Z 

4 
j ≥ 0 ∀ j ∈ J, k ∈ K. (41)

Where variables p 1 
k 
, p 2 

k 
, p 3 

k 
, p 4 

k 
, p 5 

k 
, Z 0 

j 
, Z 1 

j 
, Z 2 

j 
, Z 3 

j 
, Z 4 

j 
are auxiliary variables. 

3.3.2. Formulating supply uncertainty 

We now formulate uncertainty in supply capacity of facilities ( a jn ) and uncertainty in the probability of disruption oc-

currence ( q 
jn 

). Consider uncertain parameters q 
jn 

and a jn that can take values within intervals [ ̄q jn − ˆ q jn , q̄ jn + ˆ q jn ] and

[ ̄a jn − ˆ a jn , ā jn + ˆ a jn ] , respectively. Here, �q denotes the uncertainty budget for the probability of disruption occurrence rang-

ing between zero and the number of facilities multiplied by number of fortification levels. Also, the uncertainty budget for

capacity of facilities is denoted by �a which takes values between zero and the number of fortification levels. Therefore,

the robust optimization model including the uncertainties in demand, probability of a disruption occurrence and capacity of

facilities can be formulated as follows. 

Min : λ (42)

Subject to: 
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Constraints ( 11 –14 ), ( 18 –23 ), ( 25 ), ( 26 ), ( 33 –36 ), and ( 38 –41 ) ∑ 

j∈ J 

∑ 

n ∈ N 
f U jn Y jn + 

∑ 

m ∈ M 

f R m 

X m 

+ 

∑ 

j∈ J 

∑ 

k ∈ K 
o jk ̄D k U jk + 

∑ 

m ∈ M 

∑ 

k ∈ K 
l mk D̄ k R mk 

+ 

∑ 

j∈ J 

∑ 

m ∈ M 

∑ 

n ∈ N 
q̄ jn C m j H jnm 

+ 

∑ 

j∈ J 

∑ 

n ∈ N 
p 6 jn + 

∑ 

k ∈ K 
p 1 k + 

∑ 

k ∈ K 
p 2 k + Z 0 �D + Z 1 �D + Z 5 �q ≤ λ

(43) 

Z 5 + p 6 jn ≥ ˆ q jn H jnm 

∀ j ∈ J, n ∈ N, m ∈ M (44)

∑ 

m ∈ M 

T m j + 

( 

1 −
∑ 

n ∈ N 
ā jn Y jn 

) 

C U j ≥
∑ 

k ∈ K 
D̄ k U jk + 

∑ 

n ∈ N 
p 7 jn + 

∑ 

k ∈ K 
p 4 k + Z 3 j �

D + Z 6 j �
a ∀ j ∈ J (45) 

Z 6 j + p 7 jn ≥ ˆ a jn C U j Y jn ∀ j ∈ J, ∀ n ∈ N (46) 

Z 5 , Z 6 j , p 
6 
jn , p 

7 
jn ≥ 0 ∀ j ∈ J, ∀ n ∈ N (47)

Where variables Z 5 , Z 6 
j 
, p 6 

jn 
, p 7 

jn 
are axillary variables. 

Considering constraint ( 43 ), the above model can be rewritten as follows: 

Min : 
∑ 

j∈ J 

∑ 

n ∈ N 
f U jn Y jn + 

∑ 

m ∈ M 

f R m 

X m 

+ 

∑ 

j∈ J 

∑ 

k ∈ K 
o jk ̄D k U jk + 

∑ 

m ∈ M 

∑ 

k ∈ K 
l mk D̄ k R mk 

+ 

∑ 

j∈ J 

∑ 

m ∈ M 

∑ 

n ∈ N 
q̄ jn C m j H jnm 

+ 

∑ 

j∈ J 

∑ 

n ∈ N 
p 6 jn + 

∑ 

k ∈ K 
p 1 k + 

∑ 

k ∈ K 
p 2 k + Z 0 �D + Z 1 �D + Z 5 �q 

(48) 

Subject to: 

Constraints ( 11 –14 ), ( 18 –23 ), ( 25 ), ( 26 ), ( 33 –36 ), ( 38 –41 ), and ( 44 –47 ). 

4. A Lagrangian relaxation solution method 

The model presented in Section 3 could be solved using commercial optimization packages like GAMS and CPLEX. How-

ever, the model runtime may become excessive long as the problem size increases. A Lagrangian relaxation method is able

to find quality solutions to large problem instances within a reasonable length of time. Lagrangian relaxation is a pow-

erful solution approach with demonstrated successful application in solving a range of supply chain design problems (see

for instance, Chen et al. (2011); Daskin et al. (2002); Diabat et al. (2015); Li et al. (2013); Ozsen et al. (2008); Qi et al.

(2010); Snyder and Daskin (2005); Snyder et al. (2007) ). In essence, the method provides upper and lower bounds of an

optimal objective value allowing a decision maker to realize how far the best found feasible solution is from the optimality

( Fisher, 2004 ). The process is completed in three steps: (1) finding a lower bound for optimal solutions, (2) finding an upper

bound for optimal solutions, and (3) updating the upper and lower bounds. These steps are repeated until the lower and

upper bounds reach a certain closeness. The following subsections discuss these steps for solving the model presented in

Section 3 . 

4.1. Obtaining a lower bound 

The first step of a Lagrangian relaxation approach involves relaxing one or more constraints to form Lagrangian Dual

problems. Solving the resulting Lagrangian Dual problem can provide a lower bound for the original optimization problem

( Fisher, 2004 ). We relax assignment constraints ( 18 ) with Lagrange multipliers π k to obtain the following Lagrangian Dual

problem: 

Max 
π

Min : 
∑ 

j∈ J 

∑ 

n ∈ N 
f U jn Y jn + 

∑ 

m ∈ M 

f R m 

X m 

+ 

∑ 

j∈ J 

∑ 

k ∈ K 
o jk ̄D k U jk + 

∑ 

m ∈ M 

∑ 

k ∈ K 
l mk D̄ k R mk 

+ 

∑ 

j∈ J 

∑ 

m ∈ M 

∑ 

n ∈ N 
q̄ jn C m j H jnm 

+ 

∑ 

j∈ J 

∑ 

n ∈ N 
p 6 jn + 

∑ 

k ∈ K 
p 1 k + 

∑ 

k ∈ K 
p 2 k + Z 0 �D + Z 1 �D + Z 5 �q 

+ 

∑ 

k ∈ K 
πk 

( 

1 −
∑ 

j∈ J 
U jk + 

∑ 

m ∈ M 

R mk 

) 

(49) 

Subject to: 

Constraints ( 11 –14 ), ( 19 –23 ), ( 25 ), ( 26 ), ( 33 –36 ), ( 38 –41 ), and ( 44 –47 ) 

For fixed values of the Lagrange multipliers, π k , we aim to minimize Eq. (49) over decision variables. Optimal objective

value of the Lagrangian Dual problem ( 49 ) provides a lower bound for the model ( 48 ). 
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4.2. Obtaining an upper bound 

At each iteration of the Lagrangian process, an upper bound is obtained as follows. If the solution from solving Lagrangian

Dual problem ( 49 ) is feasible, then it provides an upper bound as well. In this case, the algorithm terminates, since the upper

and lower bounds are equal and an optimal solution is reached. If the solution from solving Lagrangian Dual problem ( 49 )

is infeasible, the infeasibility is fixed and a feasible solution is sought. The possible infeasibility of a solution is clearly due

to relaxing constraints ( 18 ). From a managerial perspective, there may exist customers unassigned to any of the facilities.

Therefore, to fix the infeasibility each customer needs to be allocated to one (or more) opened reliable facility (i.e., the

facilities for which X m 

= 1 ). A customer is assigned to the nearest possible reliable facility. While doing the assignments, one

must also ensure that the capacity of a reliable facility is sufficient for a new assignment. If there is not enough capacity

to serve a customer, a new reliable facility is opened in the decreasing order of C R m 
f R m 

. That is, a facility with higher ratio of

‘capacity to location cost’ is prioritized. The opening of new facilities continues until the sum of the capacities of the reliable

facilities is equal or greater than the sum of all demands. The resulting feasible solution provides an upper bound for the

model ( 48 ). 

4.3. Updating lower and upper bounds 

At each iteration of the Lagrangian procedure, the Lagrange multipliers π k are updated and new lower and upper bounds

are obtained. We use the subgradient optimization approach introduced by Fisher (2004) and Daskin (1995) to update the

values of the Lagrange multipliers at each iteration v : 

π v +1 
k 

← − π v 
k + δv 

( 

1 −
∑ 

j∈ J 
U jk + 

∑ 

m ∈ M 

R mk 

) 

(50)

In Eq. (50) , δv is the step size of the algorithm and is computed from: 

δv = 

βv ( UB − L B 

v ) 

∑ 

k ∈ K 

(
1 − ∑ 

j∈ J 
U 

jk 
+ 

∑ 

m ∈ M 

R 

mk 

)2 
(51)

Where UB is the best found upper bound and LB v is the lower bound obtained at iteration v . We initially set β = 2 and

if no improvement in LB is achieved for four consecutive iterations, then β is halved. This process continues until a feasible

solution within the desired optimality tolerance is obtained or the minimum value of the step-size is reached. 

5. Computational experiments 

In this section, first, we complete sensitivity analysis experiments using some well-known datasets in the literature of

supply chain network. Then, the application of the developed model is investigated utilizing real data collected from a base

oil supply chain in Iran. 

5.1. Experimental design 

The application of the proposed model is investigated for 21-node, 32-node and 49-node datasets presented in Daskin

(1995) . For the 21-node and 32-node datasets, the nodes represent the state capitals of the lower 21 and 32 United States.

The 49-node dataset consists of the 48 state capitals of the United States plus Washington, DC. The same datasets have

been used in some other studies of Snyder and Daskin (2005) ; Snyder et al. (2007) ; Aryanezhad et al. (2010) ; Qi et al.

(2010) and Jabbarzadeh et al. (2012) . The computational experiments for these data sets are completed using a branch and

bound algorithm coded in GAMS 24.1 on a laptop with Intel Core i2 CPU, 2.53 GHz and 3GB of RAM. We also need larger

datasets to evaluate the performance of the proposed Lagrangian relaxation method. For this purpose, we develop and adopt

three larger datasets: 88-node, 100-node and 150-node datasets. The 88-node dataset includes the 49-node dataset, plus the

50 largest cities in the United States, minus duplicates. The 150-node dataset includes the 150 largest cities in the United

States based on 1990 census data ( Daskin, 1995 ). The 100-node dataset is comprised of random data, adopted from Snyder

and Daskin (2005) . 

For the 100-node dataset, the values of all parameters are obtained similar to Snyder and Daskin (2005) . For the other

datasets, the nominal demand is obtained by dividing the population data given in Daskin (1995) by 10 0 0. Three levels of

fortification—full, moderate and low—are considered for facilities, denoted as FF, FM and FL, respectively. The fixed cost of

establishing a reliable (i.e., fully fortified facilities) facility is obtained by dividing the fixed facility cost by 10. The fixed costs

of locating unreliable facilities with moderate and low fortification levels are set equal to 32% and 20% of establishing a re-

liable facility. Unit transportation cost from facilities to customers is assumed to be 50% of the great-circle distance between

facilities and customers. Unit shipment cost from reliable facilities to unreliable facilities is equal to 10% of the great-circle

distance between them. The available budget for establishing all facilities is $20 0,0 0 0. The values of the other parameters
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Table 2 

Input parameters for all datasets. 

Capacity under normal circumstance Probability of disruption occurrence Percentage disrupted capacity 

FF FM FL FM FL FM FL 

21-Node 1600 1400 1400 0 .85 0 .95 0 .55 0 .75 

32-Node 20 0 0 1500 1500 0 .85 0 .90 0 .3 0 .60 

49-Node 2600 1900 1900 0 .9 0 .95 0 .4 0 .75 

88-Node 20 0 0 1500 1500 0 .9 0 .95 0 .25 0 .5 

100-Node 2600 1900 1900 0 .85 0 .95 0 .3 0 .7 

150-Node 2600 1900 1900 0 .9 0 .95 0 .3 0 .6 

Table 3 

Initial model outputs for the 21-node dataset. 

Conservatism Degrees Location of Facilities Number of Assigned Customers 

�D �q �a FF FM FL FF FM FL 

0 0 0 7 5 ,6 3 ,4,15 2 11 8 

5 10 0 7 5, 6 3, 4, 9, 10, 15 2 9 10 

10 20 1 5 3 ,6 4, 7, 9, 10, 15 5 8 8 

15 30 1 5 6 ,17 4 , 7, 9, 10,15 5 7 9 

18 36 2 5 6 ,17 4, 7, 9, 10, 12, 15 5 7 9 

21 42 2 5 4 ,6,17 4 ,7, 9, 12, 15 5 11 5 

Table 4 

Initial model outputs for the 32-node dataset. 

Conservatism Degrees Location of Facilities Number of Assigned Customers 

�D �q �a FF FM FL FF FM FL 

0 0 0 7 5 3 , 4, 9,18 ,28 ,30 ,32 3 4 25 

5 10 0 7 5 3 , 4, 9,18 ,28 ,30 ,32 3 5 24 

8 16 0 5 – 3 , 4,7, 9,18 ,28 ,30 ,32 5 – 27 

12 24 1 5 – 3 , 4,7, 9,18 ,28 ,30 ,32 5 – 27 

17 34 1 5 9 3, 4, 7, 18, 28, 30 5 5 22 

21 42 1 5 17 4 , 7,9, 18, 28, 30, 32 5 3 21 

25 50 2 5 17 4 ,7,9,10,18,28,30,32 5 3 21 

29 58 2 5 6 4 ,7,9,12,17,18,28,30 2 4 26 

32 64 2 5 9 ,17 4 ,7,12,15,18,28 2 8 22 

Table 5 

Initial model outputs for the 49-node dataset. 

Conservatism Degrees Location of Facilities Number of Assigned Customers 

�D �q �a FF FM FL FF FM FL 

0 0 0 7 5 ,46 3 ,4,15,18 ,29,30,33 7 13 22 

5 10 0 7 5 ,46 3 ,4,15,18,29,30,33 7 13 22 

10 20 0 7 5 ,46 3 ,4,15,18,29,30,33 8 13 21 

20 40 1 7 5 ,46 3 ,4,15,18,29,30,33 7 13 22 

25 50 1 7 5 ,46 3 ,4,12,15,18,29,30,33 5 11 33 

30 60 1 7 5 ,46 3 ,4,12,15,18,29,30,33 7 10 32 

40 80 2 5 46 3 ,4,7,15,28,30,33,34 6 8 35 

45 90 2 5 46 3 ,4,7,12,15,28,30,33,34 3 8 38 

49 98 2 5 46 3 ,4,7,12,15,28,30,33,34 2 8 39 

 

 

 

 

 

 

are given in Table 2 . Computational experiments are conducted considering 5% variability in uncertain parameters from the

nominal values. 

5.2. Model implementation and initial observations 

Initial numerical results are shown in Tables 3–5 providing the optimal location of facilities as well as the optimal as-

signment of customers to facilities corresponding to different conservatism degrees for the three datasets. From these initial

findings, one can see that the optimal location of facilities, especially the reliable facilities, is almost analogous at different

conservatism degrees. Reliable facilities tend to be opened at sites 5 and 7 regardless of the conservatism degree chosen.

One possible reason for this can be the more convenient proximity of these facilities to customers and other facilities re-



A. Jabbarzadeh et al. / Transportation Research Part B 94 (2016) 121–149 133 

Table 6 

Supply chain cost and model runtime at various conservatism degrees for the 

21-node dataset. 

�D �q �a Total Cost ($) Cost Difference (%) Runtime (Seconds) 

0 0 0 266 ,459 0 .0 3 .2 

5 10 0 290 ,078 8 .9 10 

10 20 1 292 ,757 0 .9 17 

15 30 1 298 ,763 2 .1 23 

18 36 2 301 ,572 0 .9 11 

21 42 2 307 ,879 2 .1 10 

Table 7 

Supply chain cost and model runtime at various conservatism degrees for the 

32-node dataset. 

�D �q �a Total Cost ($) Cost Difference (%) Runtime (Seconds) 

0 0 0 289 ,838 0 .0 2 

5 10 0 312 ,003 7 .6 50 

8 16 0 316 ,459 1 .4 56 

12 24 1 319 ,550 1 .0 62 

17 34 1 320 ,947 0 .4 67 

21 42 1 321 ,988 0 .3 78 

25 50 2 324 ,640 1 .0 69 

29 58 2 332 ,697 2 .5 62 

32 64 2 338 ,583 1 .8 78 

Table 8 

Supply chain cost and model runtime at various conservatism degrees for the 49- 

node dataset. 

�D �q �a Total Cost ($) Cost Difference (%) Runtime (Seconds) 

0 0 0 314 ,381 0 .0 7 

5 10 0 319 ,798 2 .0 33 

10 20 0 327 ,184 2 .0 38 

20 40 1 330 ,139 0 .9 42 

25 50 1 331 ,896 0 .5 67 

30 60 1 335 ,101 1 .0 72 

40 80 2 336 ,124 1 .0 78 

45 90 2 342 ,110 1 .8 265 

49 98 2 348 ,829 2 .0 394 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sulting in a lower transportation cost between nodes. Likewise, in all instances, site 4 is a preferred location to open a

facility with low fortification level. An important insight from these observations can be that small changes in supply chain

topology (changes in location of a small fraction of facilities) can help protecting the network against some of the potential

risks. 

A careful comparison between the impacts that the number of customers and demand scale can have on facility loca-

tion decisions can provide additional insights. Tables 3–5 indicates that the location of reliable facilities is less sensitive to

changes in the number of customers served (comparing the location results for the three datasets). In other words, adjust-

ment in location of unreliable facilities is used to deal with different demand sizes. The model is clearly taking advantage

of the lower cost of opening unreliable facilities to cope with variations in the number of customers served. This is a good

example of a situation where various facility fortification strategies can be used for effective demand fulfillment in different

network sizes. 

5.3. Analysis on the impact of a decision maker’s conservatism degree 

We now complete an experiment to investigate how the choice of conservatism degree can influence the overall supply

chain cost and model runtime. The results are shown in Tables 6–8 for the concerned datasets. Not surprisingly, a greater

conservatism degree results in a higher total supply chain cost to hedge the network against the potential risks and un-

certainties. What is interesting is that in no occasion does the cost increase by more than 9%, indicating that considerable

resilience improvements can be achieved with only insignificant increases in costs. 

The total cost and cost difference values in Tables 6–8 show that the supply chain cost is not linearly increased as

conservatism degree gets larger. For example, from Table 6 , a 8.9% cost increase occurs to improve the supply resilience

from the conservative level of �D = 0 and �q = 0 to �D = 5 and �q = 10 ; while only 0.9% cost difference is enough to move

from �D = 5 and �q = 10 to �D = 10 and �q = 20 . Another interesting observation is that in all datasets the greatest cost
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Table 9 

Supply chain cost at various conservatism degrees when facing demand and supply variations. 

Demand Uncertainty Supply Uncertainty 

Conservatism Degree Total Cost Conservatism Degree Total Cost 

�D 5% Demand Variability 10% Demand Variability �q �a 5% Supply Variability 10% Supply Variability 

0 309 ,270 309 ,270 0 0 309 ,270 309 ,270 

5 319 ,006 330 ,153 10 0 309 ,797 310 ,060 

10 322 ,863 352 ,176 20 0 309 ,797 310 ,060 

20 325 ,791 357 ,042 40 1 312 ,663 319 ,319 

25 330 ,941 376 ,643 50 1 312 ,663 319 ,319 

30 334 ,773 Infeasible 60 1 312 ,663 319 ,319 

40 336 ,124 Infeasible 80 2 314 ,010 332 ,212 

45 342 ,110 Infeasible 90 2 314 ,010 332 ,212 

49 348 ,829 Infeasible 98 2 314 ,010 332 ,212 

Fig. 2. The impact of initial budget on the total supply chain cost. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

increase occurs in the second row, implying that the initial effort s to build resilience into the supply chain network are

more costly. Note that the total cost at �D = 0 , �q = 0 and �a = 0 is obtained from the objective value of the stochastic

model disregarding the supply chain resilience in the face of supply and demand variations as described in Section 3 . The

last columns of Tables 6–8 provide the model runtimes. 

5.4. Analysis on the impacts of demand and supply uncertainties 

For the 49-node dataset, Table 9 shows how demand and supply variations can influence the total supply chain cost

at different conservatism degrees. What is obvious from this data is that demand variation can a have greater impact on

the strategic supply chain cost when compared to supply uncertainty. In some scenarios when �D ≥ 30 , demand variations

can even result in infeasibility implying failure to satisfy customer demand and hence product shortage and lost sales.

A practical implication from this finding would be for the risk managers to place the primary focus on developing more

accurate demand forecasts, rather than a focus on capacity adjustments, to avoid stockout and potential reputational damage.

5.5. Analysis on the impact of budgetary constraints 

For the largest dataset, Fig. 2 illustrates how the total cost is influenced by the budget availability at different conser-

vatism degrees. Interesting insights can be obtained from this graph. First, regardless of the decision maker’s conservatism

degree, initial budget availability results in significant total cost reductions. This is evidenced by the steepness of all three

curves at the left end. However, greater cost responses to the initial budget injections can be observed at the higher con-

servatism degrees (a steeper curve for a higher conservatism degree). Second, the minimum required budget for the design
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Fig. 3. Different distribution functions for uncertain parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the supply chain is set higher at a larger conservatism degree. The required supply chain design budget is $50,0 0 0 at

the conservatism level �D = 0 , �q = 0 and �a = 0 ; while at-least $75,0 0 0 of initial budget is required to design a network

at higher conservatism levels. Third, while these results confirm that budget availability can play a key role in building

resilience into a supply chain network, excessive budget injections do not necessarily result in reduced total costs. That is

to say that the total cost remains unchanged (i.e., no additional improvements) after certain budget injections. As could be

expected, this budget unresponsiveness is reached at smaller dollar values for lower conservatism degrees. 

5.6. Model performance evaluation 

We use a Monte Carlo simulation method to examine the performance of the proposed model. Monte Carlo technique

is an effective and popular computational algorithm that relies on tedious random sampling to obtain numerical results

( Baraldi and Zio, 2008; Pouillot et al., 2004 ). Typically, a number of simulations are run over in order to obtain the distri-

bution of an unknown probabilistic entity ( Kalos and Whitlock, 2008 ). Our Monte Carlo simulation includes the following

steps. First, the robust model is solved and optimal decisions for the problem are obtained for different conservatism lev-

els. To evaluate the quality of the solutions found, we generate some random values for q jn , a jn and D k within their valid

domains using different distribution functions. For each of the three datasets (i.e., 21-node, 32-node and 49-node datasets),

30 0 0 random numbers are generated: 10 0 0 random number using a uniform distribution, 10 0 0 numbers using normal dis-

tribution, and 10 0 0 numbers using a beta distribution (see Fig. 3 ). That is, a total of 90 0 0 random numbers are generated

for the three datasets. To generate random number using a uniform distribution function, the parameters of the uniform

function are set equal to the upper and lower bounds of the uncertain parameters ( q jn , a jn and D k ). Random numbers using

a normal distribution function are generated by setting the mean and variance of the normal functions equal to the nominal

values of the uncertain parameters. To use a beta function for random number generation, the shape parameters of the beta

function are set equal to 0.5. More information about these distribution functions can be found at Banks et al. (2010) and

Ross (2006) . 

The rationale for considering different distribution functions is to provide an opportunity to study different situations of

parameter uncertainty. To be more pellucid, the uniform, normal and beta distributions are used to model the situations in

which the uncertain data is unknown, normal and unusual – represented by uniform, normal and beta distribution functions,

respectively. An unknown situation occurs when we only know the range of the uncertain parameters. That is, the uncertain

parameters may take any values within this range with equal probabilities of occurrence. Under normal situations, the values

of the random parameters tend to be near the nominal values. Unusual situations occur when the uncertain parameters are

likely to take the highest and lowest possible values. Fig. 3 illustrates the shapes of these distribution functions. 

Using these generated values and the obtained optimal solutions, three following measures are calculated to evaluate

the quality of solutions: mean total cost, standard deviation and percentage of infeasibility (i.e., the proportion of situations

resulting in stockout or product shortage). Obviously, the lower the values for these measures are, the higher will be the

quality of solutions. Tables 10–12 show the results obtained from the Monte Carlo simulation experiments for the three

concerned datasets. 

As could be expected, these results show that the unusual situations display the highest solution infeasibility in com-

parison with the normal and unknown situations. Whilst the maximum percentage infeasibilities in a normal situation are

equal to 53%, 69% and 38% for the three datasets; in an unusual situation they rise substantially to 94%, 90% and 64%, in that

order. This is due to the tendency of uncertain parameters to locate towards either ends of the uncertain intervals in the

latter situation. The lowest infeasibility quantities are obtained under a normal situation because the random parameters

tend to take values near the nominal values. Regardless of the uncertainty situation occurring (i.e., unknown, normal, and

unusual), solution feasibility is highly reliant on how conservative a decision maker is. 

A low conservatism degree leads to higher percentage of infeasibilities and thus increased product shortage, deteriorated

service level and potential lost sales. At the worst case scenario, when choosing a zero value for all conservatism degrees

(i.e., when �D = 0 , �q = 0 and �a = 0 , representing the basic stochastic model presented in Section 3.2 ) in an unusual

situation, the highest percentage infeasibilities of 94%, 90% and 64% occur for the 21-node, 32-nod and 49-node datasets,

respectively. A practical insight from this observation is that failing to build resilience (in some form) into a supply chain
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Table 10 

Monte Carlo simulation results for 21-node dataset. 

Uncertainty 

Situation 

�D �q �a Mean Cost ($) Mean Cost 

Difference (%) 

Standard 

Deviation 

Standard Deviation 

Difference (%) 

Infeasibility (%) 

Unknown 0 0 0 267,099 0 .0% 5494 0 .0% 64% 

5 10 0 274,765 2 .9% 5015 −8 .7% 4% 

10 20 1 283,420 3 .1% 823 −83 .6% 0% 

15 30 1 288,058 1 .6% 857 4 .2% 0% 

18 36 2 291,687 1 .3% 857 0 .0% 0% 

21 42 2 296,852 1 .8% 869 1 .3% 0% 

Normal 0 0 0 265,369 0 .0% 3131 0 .0% 53% 

5 10 0 273,373 3 .1% 1375 −56 .1% 2% 

10 20 1 283,372 3 .2% 270 −80 .4% 0% 

15 30 1 288,124 1 .7% 284 5 .2% 0% 

18 36 2 291,613 1 .2% 271 −4 .6% 0% 

21 42 2 296,782 1 .8% 316 16 .6% 0% 

Unusual 0 0 0 265,369 0 .0% 4917 0 .0% 94% 

5 10 0 273,373 3 .0% 6653 35 .3% 2% 

10 20 1 283,372 3 .7% 1193 −82 .1% 0% 

15 30 1 288,124 1 .7% 1233 3 .4% 0% 

18 36 2 291,613 1 .2% 1212 −1 .7% 0% 

21 42 2 296,782 1 .8% 1238 2 .1% 0% 

Table 11 

Monte Carlo simulation results for 32-node dataset. 

Uncertainty 

Situation 

�D �q �a Mean Cost ($) Mean Cost 

Difference (%) 

Standard 

Deviation 

Standard Deviation 

Difference (%) 

Infeasibility (%) 

Unknown 0 0 0 290,273 0 .0% 2682 0 .0% 78% 

5 10 0 297,383 2 .4% 4305 60 .5% 2% 

8 16 0 303,545 2 .1% 864 −79 .9% 0% 

12 24 1 305,607 0 .7% 1065 23 .2% 0% 

17 34 1 304,398 0 .6% 1165 9 .4% 0% 

21 42 1 308,828 0 .5% 899 −22 .8% 0% 

25 50 2 312,241 1 .0% 901 1 .0% 0% 

29 58 2 320,102 2 .5% 851 −5 .6% 0% 

32 64 2 322,890 0 .9% 1208 41 .8% 0% 

Normal 0 0 0 289,787 0% 848 0% 69% 

5 10 0 296,934 2 .5% 1338 57 .8% 1% 

8 16 0 303,409 2 .2% 309 −76 .9% 0% 

12 24 1 305,402 0 .7% 348 12 .6% 0% 

17 34 1 304,357 −0 .3% 438 25 .9% 0% 

21 42 1 308,675 1 .4% 306 −30 .1% 0% 

25 50 2 312,082 1 .1% 291 −4 .9% 0% 

29 58 2 322,911 3 .5% 315 8 .2% 0% 

32 64 2 324,806 0 .6% 320 1 .6% 0% 

Unusual 0 0 0 289,156 0% 3737 0% 90% 

5 10 0 296,168 2 .4% 5750 53 .9% 4% 

8 16 0 303,549 2 .5% 1149 −80 .0% 0% 

12 24 1 305,497 0 .6% 1271 10 .6% 0% 

17 34 1 306,127 0 .2% 2001 57 .4% 0% 

21 42 1 308,732 0 .9% 1080 −46 .0% 0% 

25 50 2 312,139 1 .1% 1092 1 .1% 0% 

29 58 2 324,822 4 .1% 1317 20 .6% 0% 

32 64 2 326,705 0 .6% 1930 46 .5% 0% 

 

 

 

 

 

 

 

 

network can significantly increase the chance of stockout and prospective reputational damage. Interestingly, at only small

increases in the total supply chain cost (when moving from row 1 to row 2), the supply chain resilience is improved dra-

matically to only face 4%, 2% and 4% probability of stockout, respectively for the small, medium and large datasets. This cost

impact can be as small as 0.5% for the largest dataset under unusual situation with a rewarding improved resilience of 60%.

This finding has an important managerial implication for risk analysts and supply chain practitioners showing how a sup-

ply chain can be more protected against disruptions and supply/demand uncertainties at a reasonably minor cost increase.

Whilst a similar finding and insight was reached by Snyder and Daskin (2005) , our observation here reinforces that this

finding holds also in situations when a supply chain faces uncertainties in supply and demand, and a disruption can cause

either partial or complete facility shutdown. 
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Table 12 

Monte Carlo simulation results for 49-node dataset. 

Uncertainty 

Situation 

�D �q �a Mean Cost ($) Mean Cost 

Difference (%) 

Standard 

Deviation 

Standard Deviation 

Difference (%) 

Infeasibility (%) 

Unknown 0 0 0 309,655 0 .0% 1716 0 .0% 48% 

5 10 0 311,297 0 .5% 2170 26 .5% 4% 

10 20 0 311,698 0 .1% 2389 10 .1% 2% 

20 40 1 312,819 0 .4% 2380 −0 .4% 0% 

25 50 1 316,317 1 .1% 1196 −49 .7% 0% 

30 60 1 319,639 1 .1% 930 −22 .2% 0% 

40 80 2 321,291 1 .0% 942 1 .0% 0% 

45 90 2 327,476 1 .9% 934 −0 .8% 0% 

49 98 2 327,502 0 .0% 950 1 .7% 0% 

Normal 0 0 0 309,200 0 .0% 470 0% 38% 

5 10 0 310,899 0 .5% 632 34 .5% 2% 

10 20 0 311,451 0 .2% 640 1 .3% 0% 

20 40 1 312,371 0 .3% 696 8 .8% 0% 

25 50 1 317,935 1 .8% 329 −52 .7% 0% 

30 60 1 319,460 0 .5% 262 −20 .4% 0% 

40 80 2 320,796 0 .4% 263 0 .4% 0% 

45 90 2 327,231 2 .0% 261 −0 .8% 0% 

49 98 2 332,886 1 .7% 116 −55 .6% 0% 

Unusual 0 0 0 309,001 0 .0% 2092 0% 64% 

5 10 0 310,616 0 .5% 2715 29 .8% 4% 

10 20 0 311,104 0 .2% 2708 −0 .3% 0% 

20 40 1 312,024 0 .3% 2955 9 .1% 0% 

25 50 1 320,881 2 .8% 1519 −48 .6% 0% 

30 60 1 321,050 0 .1% 1130 −25 .6% 0% 

40 80 2 322,850 0 .6% 1103 −2 .4% 0% 

45 90 2 327,274 1 .4% 1107 0 .4% 0% 

49 98 2 332,927 1 .7% 133 −88 .0% 0% 

Fig. 4. Model performance at different conservatism degrees for the 21-node dataset under the unknown situation. 

 

 

 

 

From Tables 10–12 , one can realize that different values of conservatism degrees may cause one measure improve, while

other measures may be negatively affected. For example, supply chain resilience may be improved at the cost of amplified

standard deviation and increased supply chain cost. In such situations, choosing the most appropriate value for the conser-

vatism degree is not as straightforward. To address this challenge, we introduce a unified performance measure called Total
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Fig. 5. Model performance at different conservatism degrees for the 21-node dataset under the normal situation. 

Fig. 6. Model performance at different conservatism degrees for the 21-node dataset under the unusual situation. 

 

 

 

 

 

Performance Measure (TPM) that aims to aggregate the three measures into one single measure. 

T P M = ω 1 [ Normalized mean value of cost ] + ω 2 [ Normalized standard deviation of cost ] 

+ ω 3 [ Normalized percent of infeasible solutions ] (52) 

In this equation, ω 1 , ω 2 and ω 3 are the weights assigned to the measures of mean total cost, standard deviation and per-

centage of infeasibility, respectively. To normalize each of the measures, we respectively assign 0 and 1 to the worst and the

best observed values of each measure. A number between 0 and 1 is assigned to other observed values proportional to their

magnitude to the best and worst observations. The TPM formula can then be used to assist with choosing the appropriate

values of conservatism degrees. For the three datasets, Figs. 4–12 use TPM as well as its three constituting measures to illus-
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Fig. 7. Model performance at different conservatism degrees for the 32-node dataset under the unknown situation. 

Fig. 8. Model performance at different conservatism degrees for the 32-node dataset under the normal situation. 

 

 

 

 

 

 

 

trate the supply chain performance at different conservatism degrees at ω 1 , ω 2 , ω 3 =1. The most appropriate conservatism

degree can be chosen for each dataset. For example, from Fig. 4 , using TPM as the sole measure, the best performance can

be obtained at �D = 10 , �q = 20 and �a = 1 for the 21-node dataset in the unknown situation. 

Comparison of the results in Figs. 4–12 shows that the conservatism degrees do not vary significantly with changes in

the uncertainty situation. For example, considering TPM as the sole measure, the best performance for the 21-node dataset

under unknown, normal and unusual situations are obtained at �D = 10 , �q = 20 and �a = 1 (see Figs. 4–6 ). Likewise, the

most desirable conservatism degree for the 32-node dataset, obtained at �D = 17 , �q = 34 and �a = 1 , is analogous for the

three situations. The best performance for the 49-node dataset is obtained at �D = 25 , �q = 50 and �a = 1 for the unknown
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Fig. 9. Model performance at different conservatism degrees for the 32-node dataset under the unusual situation. 

Fig. 10. Model performance at different conservatism degrees for the 49-node dataset under the unknown situation. 

 

 

 

 

 

and normal situations; while for the unusual situation, the most desirable performance is achieved at �D = 40 , �q = 80 and

�a = 2 . 

5.7. Performance evaluation of the Lagrangian relaxation solution method 

For the 88-node, 100-node, and 150-node datasets, Table 13 presents the numerical results obtained from the Lagrangian

relaxation method at different conservatism degrees. The optimality tolerance was set at 0.1%. The columns named “UB” and

“LB” present respectively the upper bound and lower bound values obtained. The column labelled “Gap” is the percentage

difference between the upper bound and lower bound, calculated from 

UB −LB × 100 . For the sake of comparison, the same
UB 
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Fig. 11. Model performance at different conservatism degrees for the 49-node dataset under the normal situation. 

Fig. 12. Model performance at different conservatism degrees for the 49-node dataset under the unusual situation. 

 

 

 

 

 

problems are solved with GAMS, setting the termination condition at 15,0 0 0 seconds. Model runtime using both Lagrangian

relaxation and GAMS are given in the las two columns. 

The results show that the Lagrangian relaxation approach is capable of finding quality solutions in all instances, evi-

denced by the small gaps of less than 0.1% between the upper bound and lower bound values of the objective function. The

larger the problem size is, the more pronounced would be the superiority of the Lagrangian relaxation approach over GAMS

in terms of solution time and quality. Overall, the approach is capable of finding quality solutions to larger problems within

a reasonable length of time given the strategic nature of supply chain design problems. 
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Table 13 

Algorithm performance for the three large datasets. 

Dataset �D �q �a LB UP GAP (%) CPU Time (S) 

Lagrangian relaxation GAMS Lagrangian relaxation GAMS 

88-node 0 0 0 311,637 311,948 0 .10 0 11 47 

10 20 0 323,928 324,252 0 .10 0 59 801 

20 40 0 326,786 327,113 0 .10 0 53 966 

30 60 1 328,864 329,193 0 .10 0 74 1074 

40 80 1 331,228 334,209 0 .89 0 82 1451 

50 100 1 332,936 333,269 0 .10 0 85 1674 

60 120 1 356,843 357,200 0 .10 0 97 2105 

70 140 2 396,081 396,437 0 .09 0 83 2039 

80 160 2 397,418 397,736 0 .08 0 87 1767 

88 176 2 417,317 417,700 0 .09 0 35 1457 

100-node 0 0 0 325,586 325,910 0 .10 0 31 1075 

20 40 0 337,875 338,213 0 .10 0 75 1852 

30 60 0 342,812 343,121 0 .09 0 64 2298 

40 80 1 345,794 346,140 0 .10 0 85 3547 

50 100 1 346,845 347,192 0 .10 0 128 8351 

60 120 1 362,394 362,756 0 .10 0 133 9231 

70 140 1 401,275 401,676 0 .10 0 135 10,258 

80 160 2 401,616 402,018 0 .10 0 136 11,789 

90 180 2 403,008 403,371 0 .09 0 132 12,334 

100 200 2 423,911 424,335 0 .10 0 142 13,487 

150-node 0 0 0 354,610 354,929 0 .09 0 89 8875 

10 20 0 365,877 366,242 0 .10 0 128 12,381 

25 50 0 375,968 376,306 0 .09 18 165 > 15,0 0 0 

45 90 0 392,391 392,783 0 .10 21 171 > 15,0 0 0 

65 130 1 402,473 402,875 0 .10 22 175 > 15,0 0 0 

85 170 1 424,895 425,277 0 .09 26 188 > 15,0 0 0 

105 210 1 429,162 429,591 0 .10 31 217 > 15,0 0 0 

120 240 2 437,855 438,293 0 .10 34 289 > 15,0 0 0 

140 280 2 441,523 441,920 0 .09 35 311 > 15,0 0 0 

150 300 2 451,342 451,793 0 .10 38 364 > 15,0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. A practical case example 

Sepahan Oil Company 1 (SOC) is the largest and the most modern base oil refinery in the Middle East, which began its

activities in 1992 in Isfahan, Iran. The company was initially part of Esfahan Refinery, as the major domestic provider of

engine oil, and was further expanded and renamed to SOC in 2002. With a production capacity of 40 0,0 0 0 metric tons of

base stocks, SOC supplies approximately half of the oil requirement of the country. Fig. 13 illustrates the location of domestic

markets for SOC, and Table 14 provides the demand of each region in Iran provided by the marketing division of SOC. 

SOC has traditionally fulfilled each market’s demand from a single storage unit in Esfahan. This is where bottle oils are

filled, packed and labeled. Fig. 14 summarizes the main processes carried out in the storage unit. 

On 28th of May 2014, a huge fire disaster occurred at SOC’s storage unit 2 resulting in 16 injuries, 50 to 100 percent

disruption in the operations of various machines, and a total financial loss of approximately $115 M This was only one of

the few fire disasters at SOC, which motivated the management to contemplate the design of a more resilient supply chain

that supports a decentralized distribution network using multiple storage units scattered throughout the country. The capital

city of each province was chosen as potential locations for the establishment of storage units. 

Further, to mitigate the risk of future fire disasters, SOC budgeted the installation of more advanced fire preven-

tion/protection systems such as intelligent fire alarm, cooling systems, water storage tanks, and Hypoxic air technology

(oxygen reduction system) . 3 Such initiatives can potentially mitigate both the probability of a fire occurrence as well as the

magnitude of impact of different facilities. For instance, firewater and cooling systems can considerably reduce the impact

of a fire disaster. Unlike traditional fire systems that extinguish the fire post detection, hypoxic air technology is able to

mitigate the occurrence probability by lowering the partial oxygen pressure ( Brooks, 2004; Nilsson and van Hees, 2014 ) 

Significant capital investment is needed to locate fully fortified storage units in all capital cities, which is not a feasible

option due to the rather tight budgetary constraints of SOC. A fully fortified storage unit is one equipped with the most

advanced fire-prevention and protection systems available in the market. As a result, three fortification levels are consid-

ered for locating the storage units: full, moderate and low fortification levels, denoted as FF, FM and FL, respectively. The

storage units with full fortification level are obviously the most expensive to establish, but their probabilities of fire occur-
1 http://www.sepahanoil.com 

2 http://en.trend.az/iran/2279033.html , http://persiantahlil.com/?cid=CMSContent&content=62455 (in Persian) 
3 Existing fire prevention and protection systems at SOC: http://www.sepahanoil.com/pages//140 

http://www.sepahanoil.com
http://en.trend.az/iran/2279033.html
http://persiantahlil.com/?cid=CMSContent&content=62455
http://www.sepahanoil.com/pages//140
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Fig. 13. Geographical dispersion of domestic markets of SOC. 

Fig. 14. The processes carried on SOC’s storage unit. 

 

 

 

 

 

 

 

 

rence are close to zero, thanks to the preventive-fire systems such as hypoxic air technology. Thus, they are referred to as

reliable facilities in our investigation. The least expensive facilities with low fortification level are equipped with only tradi-

tional protection systems, hence are less reliable when it comes fire risks. Storage units with moderate fortification level lie

between the two in terms of safety and facility location costs. 

The model presented in this paper was first implemented to determine optimal locations of facilities with different

fortification levels and optimal assignment of customers to these facilities at different conservatism degrees. Table 15 shows

the extent to which the choice of conservatism degree can influence the overall supply chain cost for SOC. 

From Table 15 , a higher conservatism degree leads to a larger total supply chain cost to hedge the SOC’s network against

the potential fire risks and uncertainties. It can also be seen that the supply chain cost is not linearly increased as conser-

vatism degree gets larger. These results are consistent with our findings in Section 5.3 . What is interesting is the insignificant
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Table 14 

Demand of each domestic market for SOC (based on 2014 and 

2015 demand data). 

Market Name Range of Demand (Tons) 

Lower Bound Upper Bound 

Azarbayjan-e-sharghi 2621 2897 

Azarbayjan-e-gharbi 924 1021 

Ardebil 750 829 

Esfahan 22,497 24,865 

Alborz 3006 3322 

Ilam 97 107 

Bushehr 264 292 

Tehran 20,510 22,669 

Chaharmahal-e-Bakhtiari 1713 1893 

Khorasan-e-Razavi 5818 6430 

Khorasan-e-Shomali 553 611 

Khorasan-e-Jonoobi 329 363 

Khuzestan 2547 2815 

Zanjan 262 290 

Semnan 551 608 

Sistan o Baloochestan 569 629 

Fars 1720 1901 

Qazvin 1225 1354 

Qom 746 824 

Kordestan 660 730 

Kerman 5561 6147 

Kermanshah 328 363 

Kohkiluye o Boyer Ahmad 117 130 

Golestan 1370 1514 

Gilan 2228 2463 

Lorestan 457 505 

Mazandaran 3672 4059 

Markazi 1040 1149 

Hormozgan 1631 1803 

Hamedan 1067 1179 

Yazd 263 290 

Table 15 

Supply chain cost at various conservatism degrees for locating 

SOC, storage units. 

�D �q �a Total Cost ($) Cost Difference (%) 

0 0 0 1187,402 0 .0 

5 10 0 1238,460 4 .3 

8 16 0 1264,468 2 .1 

12 24 1 1270,790 0 .5 

17 34 1 1286,040 1 .2 

21 42 1 1296,328 0 .8 

25 50 2 1324,847 2 .2 

29 58 2 1342,070 1 .3 

31 62 2 1379,648 2 .8 

 

 

 

 

 

 

 

 

 

 

 

changes in supply chain cost (no more than 4.3% in all instances), which indicates that significant resilience enhancements

can be achieved at only small cost increases. 

The Monte Carlo simulation method presented in Section 5.6 was then utilized to examine the performance of the pro-

posed model for the data provided by SOC. The results are presented in Table 16 . Three different measures are calculated to

evaluate the quality of solutions: mean total cost, standard deviation, and percentage of infeasibility. Recall that the uniform,

normal and beta distributions were utilized to model the situations where the data is respectively unknown, normal and

unusual. 

Not surprisingly, the results show that a low conservatism degree results in higher percentage of infeasibilities, increased

product shortage, deteriorated service level, and potential lost sales for SOC. At the worst case scenario, when all conser-

vatism degrees are set equal to zero (i.e., when �D = 0 , �q = 0 and �a = 0 ), the highest percentage infeasibilities of 81%,

67% and 93% occur for the unknown, normal and unusual situations, respectively. An important insight is that at only small

increases in the total supply chain cost, when moving from row 1 to row 2 in Table 16 , the resilience of the SOC’s supply

chain is improved considerably to only face 4%, 7% and 12% probability of stockout for the unknown, normal and unusual
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Table 16 

Monte Carlo simulation results for SOC data. 

Uncertainty 

Situation 

�D �q �a Mean Cost ($) Mean Cost 

Difference (%) 

Standard 

Deviation 

Standard Deviation 

Difference (%) 

Infeasibility (%) 

Unknown 0 0 0 1,189,658 0% 10,421 0% 81% 

5 10 0 1,205,124 1 .31% 14,935 43 .31% 4% 

8 16 0 1,224,406 1 .67% 2310 −84 .53% 0% 

12 24 1 1,234,201 0 .86% 2227 −3 .60% 0% 

17 34 1 1,240,372 0 .54% 2458 10 .37% 0% 

21 42 1 1,244,093 0 .33% 1748 −28 .90% 0% 

25 50 2 1,255,290 0 .91% 1526 −12 .70% 0% 

29 58 2 1,269,098 1 .18% 1437 −5 .80% 0% 

31 62 2 1,271,636 0 .23% 1483 3 .20% 0% 

Normal 0 0 0 1,189,064 0% 2397 0% 67% 

5 10 0 1,208,089 1 .69% 3174 32 .41% 7% 

8 16 0 1,211,714 0 .34% 1544 −51 .35% 0% 

12 24 1 1,216,561 0 .47% 1345 −12 .88% 0% 

17 34 1 1,218,994 0 .24% 1442 7 .21% 0% 

21 42 1 1,228,746 0 .83% 1104 −23 .47% 0% 

25 50 2 1,244,719 1 .36% 1134 2 .78% 0% 

29 58 2 1,250,943 0 .57% 1190 4 .93% 0% 

31 62 2 1,252,194 0 .18% 1174 −1 .37% 0% 

Unusual 0 0 0 1,192,632 0% 13,100 0% 93% 

5 10 0 1,209,329 1 .44% 22,470 71 .53% 12% 

8 16 0 1,220,213 0 .93% 12,781 −43 .12% 0% 

12 24 1 1,222,653 0 .24% 8159 −36 .16% 0% 

17 34 1 1,229,989 0 .68% 7117 −12 .78% 0% 

21 42 1 1,233,679 0 .39% 6571 −7 .67% 0% 

25 50 2 1,247,250 1 .11% 6679 1 .65% 0% 

29 58 2 1,273,442 2 .12% 6185 −7 .4% 0% 

31 62 2 1,283,630 0 .83% 6276 1 .47% 0% 

Fig. 15. Model performance for SOC data at different conservatism degrees under the unknown situation. 

 

 

 

 

 

 

 

 

 

 

situations, respectively. For SOC management, this analysis helps identify the opportunities in which a supply chain can be

protected against fire risks and supply/demand uncertainties at a reasonably minor supply chain cost increase. 

Figs. 15–17 use TPM (see Eq. 52 ) as well as its three constituting measures to illustrate the SOC’s performance at different

situations (unknown, normal, and unusual) and conservatism degrees. These figures can help a decision maker find the most

appropriate conservatism degree by selecting the scenario that generates more desirable values for the preferred measures.

For example, from Fig. 15 , using TPM as the sole measure, the best performance for SOC can be obtained at �D = 12 , �q =
4 and �a = 1 in the unknown situation. At these conservatism degrees, Fig. 18 displays optimal location and allocation

decisions for SOC’s supply chain. It can be seen that an optimal solution requires opening seven storage units as follows:

two facilities with full fortification level in Tehran and Esfahan, two facilities with moderate fortification level in Alborz

and Khorasan-e Razavi and three facilities with moderate fortification level in Kerman, Fars and Khuzestan. The facility in

Esfahan can then continue operating as a storage unit by serving not only the neighboring markets but also the three storage

facilities with low fortification level. 
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Fig. 16. Model performance for SOC data at different conservatism degrees under the normal situation. 

Fig. 17. Model performance for SOC data at different conservatism degrees under the unusual situation. 

 

 

 

 

 

 

 

 

 

7. Conclusions 

Today’s supply chains are more difficult to design and manage. The increasing frequency and intensity of natural and

man-made disasters from one hand, and systemic volatilities such as demand fluctuations and supply uncertainties from

the other hand pose serious risks to global supply chains. Supply chain resilience is hence more critical to supply chain

profitability and competitiveness than ever before. This paper presented an optimization model that can be used to de-

sign a supply chain resilient to (1) supply/demand interruptions and (2) facility disruptions whose risk of occurrence and

magnitude of impact can be mitigated through fortification investments. The proposed robust-stochastic optimization model 

can also be utilized for reconfiguration of existing supply chains by assessing the affected operations and injecting more

resilience into the network. 

Our interpretation of the numerical results obtained from several experiments as well as a real-world case example

arrived at some interesting practical implications and managerial insights. For example, from multiple viewpoints we found

that supply chain resilience can be enhanced to a large extent by only slight changes in supply chain configuration and
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Fig. 18. Location and allocation of storage units with different fortification levels for SOC data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

only minor increase in supply chain costs. Whilst a similar finding was reached by some past studies, our observation

here reinforces that this finding holds also in situations when a supply chain faces uncertainties in supply and demand,

and a disruption can cause either partial or complete facility shutdown. Our analyses also showed in what ways facility

fortification strategies can help address demand fluctuations. Another interesting finding is that initial capital investment

plays a key role in developing a resilient supply chain and reducing the strategic supply chain costs, whilst excessive budget

injections may not necessarily result in conforming supply chain cost reductions. 

The investigation of the influence of disruptions and interruptions on supply chain design decisions is gaining increasing

importance. The development and availability of new decision tools and risk mitigation strategies can help address many

of these concerns facing supply chain practitioners. Despite the important contributions we made to this knowledge area,

our study is not without limitations. The proposed model can be extended to incorporate the interdependency between

supply chain disruptions/interruptions in different facilities and their impacts on supply chain decisions. Furthermore, the

incorporation of critical factors such as multi-level assignment of unreliable facilities when they can back up each other

may generate additional insights and practical implications. Another direction for future research can be the inclusion and

analysis of customer responsiveness and agility elements such as service time and delivery lead-time which are the critical

performance metrics in fast-paced business environments. The decision maker’s conservatism degree can also be expressed

as decision variable or in the form of a fuzzy parameter to enable examining the impacts on supply chain behavior when

disruptions and interruptions occur at various supply chain levels. Given the multiple contributions of this work, we set the

stage for additional and important future modeling efforts and practical investigations in this critical research area. 
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