
Transportation Research Part B 89 (2016) 82–106 

Contents lists available at ScienceDirect 

Transportation Research Part B 

journal homepage: www.elsevier.com/locate/trb 

Vehicle identification sensor models for origin–destination 

estimation 

Majid Hadavi a , ∗, Yousef Shafahi b , 1 

a Sharif University of Technology, Azadi St, Tehran, Iran 
b Department of Civil Engineering, Sharif University of Technology, Azadi Ave., 11155-9313 Tehran, Iran 

a r t i c l e i n f o 

Article history: 

Received 22 April 2015 

Revised 27 February 2016 

Accepted 30 March 2016 

Available online 19 April 2016 

Keywords: 

OD estimation 

Location model 

Vehicle identification sensors 

a b s t r a c t 

The traditional approach to origin–destination (OD) estimation based on data surveys is 

highly expensive. Therefore, researchers have attempted to develop reasonable low-cost 

approaches to estimating the OD vector, such as OD estimation based on traffic sensor 

data. In this estimation approach, the location problem for the sensors is critical. One type 

of sensor that can be used for this purpose, on which this paper focuses, is vehicle iden- 

tification sensors. The information collected by these sensors that can be employed for 

OD estimation is discussed in this paper. We use data gathered by vehicle identification 

sensors that include an ID for each vehicle and the time at which the sensor detected it. 

Based on these data, the subset of sensors that detected a given vehicle and the order in 

which they detected it are available. In this paper, four location models are proposed, all of 

which consider the order of the sensors. The first model always yields the minimum num- 

ber of sensors to ensure the uniqueness of path flows. The second model yields the max- 

imum number of uniquely observed paths given a budget constraint on the sensors. The 

third model always yields the minimum number of sensors to ensure the uniqueness of 

OD flows. Finally, the fourth model yields the maximum number of uniquely observed OD 

flows given a budget constraint on the sensors. For several numerical examples, these four 

models were solved using the GAMS software. These numerical examples include several 

medium-sized examples, including an example of a real-world large-scale transportation 

network in Mashhad. 

© 2016 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

Origin–destination (OD) estimation based on exhaustive data surveys can be replaced with reasonable low-cost ap-

proaches such as OD estimation based on the data collected by traffic sensors ( Doblas and Benitez, 2005 ). In OD estimation

based on traffic flow observations, the problem of the locations of the sensors is critical. This location problem involves the

selection of certain arcs or nodes for the sensors. These models minimize the number of sensors and maximize the precision

and reliability of the final estimated target flows. Here, the term target flows refers to the flows that need to be estimated.

Instead of the OD vector, these target flows may also be path flows or link flows ( Castillo et al., 2008, 2013 ; Gentili and

Mirchandani, 2012; Ng, 2012 ). Gentili and Mirchandani (2012) reviewed the literature and presented a “unifying picture” of

sensor location models. They divided these location models into two major categories: 
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• Sensor location flow-observability models: These models establish certain conditions for the locations of the sensors such

that the target flows are unique. 
• Sensor location flow-estimation models: These models establish the conditions for the locations of the sensors that yield

the best estimation of the target flows. 

Gentili and Mirchandani (2012) also identified four categories of sensor types: counting sensors, path-ID sensors, image

sensors and vehicle identification sensors. Such sensors have also been used in various studies for purposes other than flow

estimation, such as travel time measurement. Some of these studies have used counting sensors ( Viti et al., 2008; Li and

Ouyang, 2011 ), and others have used vehicle identification sensors ( Sherali et al., 2006; Mirchandani et al., 2009 ). However,

the present paper is focused on the estimation of target flows. 

The literature on flow estimation based on sensor observations can be divided into twelve categories based on the type

of sensors used (four types) and the target flows considered (three types). Certain of these twelve categories have received

more attention than others: 

• Estimating OD flows based on counting sensor observations ( Yang et al., 1991; Yang and Zhou, 1998; Doblas and Benitez,

2005; Gan et al., 2005; Ehlert et al., 2006; Eisenman et al., 2006; Viti et al., 2014 ) 
• Estimating arc flows based on counting sensor observations ( Hu et al., 2009; Ng 2012, 2013 ; Castillo et al., 2013 ) 
• Estimating arc flows based on image sensor observations ( Bianco et al., 2006 ) 
• Estimating path flows based on path-ID sensor observations ( Gentili and Mirchandani, 2005 ) 
• Estimating OD flows based on vehicle identification sensor observations ( Castillo et al., 2008; Mínguez et al., 2010; Zhou

and List, 2010 ) 
• Estimating path flows based on vehicle identification sensor observations ( Castillo et al., 2008, 2010 ; Mínguez et al.,

2010 ). 

Several papers have also discussed the simultaneous use of both counting sensors and vehicle identification sensors

to estimate target flows and the corresponding location problem ( Zhou and List, 2010 ). The current paper focuses on the

locations of vehicle identification sensors considering two types of target flows: OD flows and path flows. 

Viti et al. (2014) have presented an “extensive review” of location models for traffic sensors. Their review is more re-

cent than that of Gentili and Mirchandani (2012) and covers several additional newer papers. In what follows, some of the

literature on flow estimation based on counting sensors and vehicle identification sensors will be reviewed. 

1.1. Counting sensors 

For the case in which counting sensors are used and the target flow is the OD vector, Yang et al. (1991) proposed the use

of the maximum possible relative error, or MPRE. The MPRE is an index of the precision or reliability of an OD estimation,

with a reasonable theoretical background. This index can be employed either for determining sensor locations or for OD

estimation. Yang and Zhou (1998) formulated four rules with regard to the MPRE index. According to these rules, the place-

ment of traffic counting sensors should ensure the following conditions: 1- For each OD pair, a sensor should be located

on at least one significant arc (an arc that contains more than a certain portion of an OD pair flow). 2- For each OD pair,

the portion of the demand that is covered should be maximized. 3- The observed net flow (the sum of the flows on paths

with at least one sensor) should be maximized. 4- The traffic counts on the observed links should be linearly independent

of each other. 

Gan et al. (2005) proposed the use of the expected relative error, or ERE, based on the MPRE. Whereas the MPRE mea-

sures the quality of an OD estimation in terms of the maximum possible relative error, an alternative means of quantifying

the quality of an OD estimation is to measure the expected value of its relative error. In other words, the MPRE is the dis-

tance between the estimated OD vector and the most distant feasible OD vector, whereas the ERE is the expected distance

between the estimated OD vector and a random feasible OD vector. Several other measures of the quality of an OD estima-

tion also exist, such as the total demand scale, or TDS ( Bierlaire, 2002 ), and the relative total demand scale, or RTDS ( Gan

et al., 2005 ). 

Ehlert et al. (2006) proposed a linear integer model for determining the locations of counting sensors. Their model

considers an index of importance for each OD pair and maximizes the sum of the importance indices of the covered OD

pairs in the objective function. In their study, an OD pair was considered to be covered if a sensor was located on at least

one significant arc for that OD pair. According to Ehlert et al. (2006) , this model can be solved for medium and large

networks because of the reasonable upper bounds provided by the LP sub-problem. Ehlert et al. (2006) solved their model

for networks with more than 10 0 0 links within a short period of time. 

Hu et al. (2009) addressed the full observability problem for link flows based on link counting sensors from a “budgetary

planning perspective”. They divided the set of links into “base links” and “non-base links”. The base links, according to their

definition, constitute the smallest set of links for which counting their flows results in unique flows through all links. These

authors proposed a Gaussian elimination algorithm to identify the base links. 

Ng (2012) reformulated the link observability problem proposed by Hu et al. (2009) . In his reformulation, path enumer-

ation and the construction of the complete arc-route incidence matrix are no longer needed. This makes his approach more

appropriate for and applicable to large networks. He presented an upper bound on the number of sensors required for full
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observability of the link flows. In another paper ( Ng, 2013 ), Ng proposed an algorithm for solving a more general problem

to answer the following question: “Suppose that one is only interested in a subset of link flows and that the link flows are

known a priori. At a minimum, what link flows are needed to be able to uniquely determine the desired link flows?”

Castillo et al. (2013) showed that when path information is used, Ng’s upper bound can be reduced. They also showed

that this reduction can be as large as 16% and claimed that it can be greater for larger networks. They suggested the use

of a set of linearly independent paths instead of the entire set of paths. They also presented a computationally efficient

algorithm for obtaining a minimum set of linearly independent paths. 

Viti et al. (2014) presented an “intuitive metric” to evaluate a given set of sensor locations. In that paper, the focus was

placed on counting sensors. The presented metric is useful in real networks in which it is not economically feasible to

achieve full observability of the target flows. Based on this metric, Viti et al. (2014) proposed a greedy heuristic algorithm

to find the links that contain the most information. They defined information acquisition as “the process by which the size

of the solution space is reduced, either by measuring some of the variables or exploiting existing relations between them”. 

1.2. Vehicle identification sensors 

As mentioned previously, this paper focuses on path flow and OD vector estimation based on vehicle identification sen-

sors. Castillo et al. (2008) proposed a method for estimating path flows based on the data provided by vehicle identification

sensors. They also described the format in which these sensors provide observations of path flows. This format does not

include the order in which the vehicles were detected by different sensors. More precisely, Castillo et al. (2008) assigned a

subset of the sensors to each detected vehicle. Based on this information format, they proposed a location model that yields

the minimum number of sensors required for full observability of all considered path flows. 

The data provided by vehicle identification sensors have also been discussed by Gentili and Mirchandani (2012) . In the

current paper, the format in which the data are presented is the same as that of Gentili and Mirchandani and differs from

that of Castillo et al. (2008, 2010) . Castillo et al. (2008) considered only unordered subsets of sensors to constitute the com-

binations of sensors for analysis; however, because the vehicle ID detection data have time stamps, the order of detection

of these sensors is also available. The order of the sensors is included in the format presented by Gentili and Mirchandani

(2012) . Considering the order of the sensors can reduce the minimum number of sensors required to ensure full observabil-

ity of the path flows. This is demonstrated in the current paper by means of an example. 

For the remainder of this paper, we assume that the orders of the sensors by which vehicles are detected are available in

the data provided by vehicle identification sensors. Based on this assumption, a new location model for the uniqueness of

path flows is proposed. In Theorem 2 , we claim and prove that in this case, 2 our location model always yields the minimum

number of sensors to ensure the uniqueness of path flows. To our knowledge, no other location models exist that consider

the order of the sensors. 

Mínguez et al. (2010) considered the location problem for vehicle identification sensors. They proposed a new location

model based on the model proposed by Castillo et al. (2008) . In their model, a budget constraint is included. The incor-

poration of this constraint renders the model more applicable. At the time it was proposed, the model of Mínguez et al.

(2010) was the only model available for determining the locations of vehicle identification sensors while considering a bud-

get constraint. Because no other such models were available, they compared their model with models for counting sensors.

By running simulations, they compared their location model with a number of existing models for the selection of the

locations of counting sensors. Thus, they demonstrated that their model yields superior results. 

In addition to discussing the location model proposed by Castillo et al. (2008) and proposing a more complete model, we

also propose several alternative location models. In the model of Castillo et al. (2008) and our first model, L 1 , the objective

is to uniquely observe all path flows. In large networks, observing all path flows is extremely expensive. However, many

reasonable methods are available for assigning an OD vector to the network and thus obtaining the path flows of interest.

We therefore modify the location model of Castillo et al. (2008) and our first model (the modified version is called L 3 ) for

the unique observation of the OD vector; this approach can significantly reduce the number of sensors required. We claim

and prove that our modified model, L 3 , always yields the minimum number of sensors required to uniquely observe the OD

vector. Moreover, two other models are presented in this paper. The first, L 2 , maximizes the number of fully observable path

flows subject to a budget constraint. The second, L 4 , maximizes the number of fully observable OD flows subject to a budget

constraint. These four models have been solved for four examples using the topologies of the Nguyen–Dupuis network, the

Sioux–Falls network and the Mashhad network. The results are reported in Section 4 . 

This paper is organized as follows: Section 2 introduces vehicle identification sensors in terms of the observations they

provide. In Section 3 , some of the existing models are discussed and several new models are proposed. Section 3 consists

of two subsections. Section 3.1 addresses the location models in which the objective is to uniquely observe all path flows.

Section 3.2 addresses the location models in which the objective is to uniquely observe the OD vector. In Section 4 , four

examples are solved for the models proposed in Sections 3.1 and 3.2 . Section 5 presents the conclusions. 
2 In the case that the sensor order is considered. 
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2. Vehicle identification sensors 

A traditional counting sensor provides only the volume that corresponds to the arc on which it is located. However ve-

hicle identification sensors provide not only the volume of the arc on which they are located but also the volumes that

correspond to different combinations of sensors. For example, if the three arcs A, B and C in a network each have an ALPR

camera (Automatic License Plate Recognition camera), then the volumes of these arcs can be observed. The number of ve-

hicles that pass arc A and then pass arc B but do not pass arc C can be observed. Similarly, the number of vehicles that

pass arc B and then pass arc A but do not pass arc C can also be observed. Generally, the volumes corresponding to all

non-empty combinations of sensors can be observed: A, B, C, AB, BA, AC, CA, BC, CB, ABC, ACB, BAC, BCA, CAB, and CBA.

Although the majority of these combinations are useless in practice and their corresponding volumes are zero, the num-

ber of combinations exceeds the number of sensors. Therefore, vehicle identification sensor observations can be extremely

informative compared with those of traditional counting sensors, especially in large networks. 

In the data provided by vehicle identification sensors, or simply sensors, 3 three attributes are available for each vehicle

detection event ( Castillo et al., 2008; Gentili and Mirchandani, 2012 ): 

• An identification code for the vehicle 
• The time at which the sensor observed the vehicle 
• The arc on which that sensor is installed 

The vehicle identification code may be the license plate number, as in the case of ALPR cameras. Among all such records

over a given study period, each detected identification code (in other words, each detected vehicle) will have been recorded

by one or more sensors. Consider, for example, a vehicle that has been recorded once by each of the vehicle identification

sensors on arcs 5, 12, 32, 93 and 102, where the corresponding times for each detection event are 7:52 AM, 7:00 AM, 6:23

AM, 6:43 AM, and 7:12 AM, respectively (assume, for example, that the given study period is from 5:00 AM to 9:00 AM on

a specific day). Taken together, these records show that the corresponding vehicle passed arcs 5, 12, 32, 93 and 102 in the

following order: 32–93–12–102–5. Thus, we say that this vehicle corresponds to the combination (32, 93, 12, 102, 5), where

the term combination means an ordered subset of sensors. The total number of detected vehicles in the entire database that

correspond to the combination (32, 93, 12, 102, 5) is called the corresponding volume of this combination. Each non-empty

combination has a corresponding volume that is known from the sensor observations. 

The corresponding volume of each combination is the sum of the flows on the subset of paths that matches that com-

bination. These are called the corresponding paths of that combination. This subset comprises the set of paths that contain

the arcs corresponding to the sensors in this combination in the same order in which they appear in the combination. For

example, the corresponding paths of the combination (32, 93, 12, 102, 5) are the paths that contain arcs 32, 93, 12, 102

and 5, in that order. Thus, each combination of sensors, 4 or combination, has a corresponding volume and corresponds to a

subset of network paths. 

A distinct but important feature of different combinations of sensors is that each path corresponds to one combination.

The set of paths that correspond to a given combination has no common element with the corresponding paths of another

combination. When the locations of the sensors are fixed, the set of sensored arcs that belong to each path and the order

of those arcs are uniquely defined; thus, one path cannot correspond to more than one combination. Therefore, 

R 

′ 
j ∩ R 

′ 
j ′ = ∅ ∀ j � = j ′ ∈ C (1)

where C and R ′ 
j 

are the set of all possible combinations of sensors and the set of paths that correspond to sensor combi-

nation j ∈ C , respectively. As mentioned earlier in this section, each non-empty combination has a corresponding volume,

which can be zero. This volume is equal to the sum of the flows on its corresponding paths. Thus, the equations obtained

from the sensor observations are as follows: ∑ 

r∈ R ′ 
j 

f r = b j ∀ j ∈ C | j � = ∅ (2a)

where f r and b j are the flow on path “r ” and the corresponding volume of sensor combination j ∈ C , respectively. The

feasibility of flow or conservation of flow condition is as follows: ∑ 

r∈ R i 
f r = Q i ∀ i ∈ I, f r ≥ 0 ∀ r ∈ R (2b)

where R i , Q i and I are the set of paths that correspond to OD pair “i ”, the volume of OD pair “i ” and the set of all OD

pairs, respectively. Once the observations from the sensors over a defined period of study have been gathered, the vector of

the path flows and the OD vector must satisfy these two constraints. We will henceforth refer to these two constraints as

condition (2). 
3 For brevity, we will use the term sensors to refer to vehicle identification sensors throughout the remainder of the paper. 
4 By a combination of sensors, we refer to an ordered subset of sensors. 
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3. The location problem for vehicle identification sensors 

3.1. Sensor location problem for the uniqueness of path flows 

This section primarily discusses the establishment of conditions for the locations of the sensors such that the path flows

are unique. For example, if a sensor is located on every arc in a network, then condition (2) will have only one unique

solution in terms of f and Q . 

The flows observed by the sensors are attributed to an unknown but fixed demand vector. The purpose of placing these

sensors is to estimate this vector. Let us assume that the observations of the sensors are free of error. In this case, the set

of demand vectors that satisfy the observation constraint (2a) and the feasibility constraint (2b) contains that true demand

vector and thus is always non-empty. Therefore, in this study, the set of path flows and OD vectors that satisfy condition (2)

is assumed to always be non-empty; this result is independent of the sensor locations and the number of sensors, which

are defined by vector J . 

3.1.1. The existing model 

Castillo et al. (2008) proposed a location model for vehicle identification sensors to determine the minimum number of

sensors required for unique observation of the path flows. This model is formulated as follows: 

C : Minimize n s = �a ∈ A J a 

J a ∈ { 0 , 1 } ∀ a ∈ A (3) 

∑ 

a ∈ A 
J a d ( r 1 , r 2 , a ) ≥ 1 ∀ r 1 , r 2 ∈ R | r 1 � = r 2 (4) 

∑ 

a ∈ A 
J a δra ≥ 1 ∀ r ∈ R (5) 

where J a is a binary variable whose value is one when arc “a ” has a sensor and zero otherwise. A is the set of all arcs in

the network. δra is a binary parameter whose value is one when path “r ” contains arc “a ” and zero otherwise. d ( r 1 , r 2 , a ) is

a binary parameter whose value is one if one of the paths r 1 and r 2 contains arc a and the other path does not contain arc

a and whose value is zero otherwise. 

Castillo et al. (2008) claimed that the optimal solution to model C contains the least number of sensors required to

uniquely observe all path flows. In this model, the order in which each vehicle is detected by the sensors is not considered.

However, as mentioned previously, because the vehicle ID detection data have time stamps, the order of these detections is

also available from the sensor observations. Model C was proposed based on the assumption that the sensor order is not

available. Under this assumption, model C always yields the minimum number of sensors required for full observability of

the selected path flows. By contrast, in this study, we adopt the assumption that the order of the sensors is available. Here,

we explore the performance of model C in this new setting. As mentioned before, we assume that the observations of the

sensors are error-free and conclude that the set of path flows that satisfy condition (2) is always non-empty. A theorem

regarding this model is presented here: 

Theorem 1. Assume that J is the sensor location vector and that the order in which the vehicles are detected by the sensors

is available. The constraints of model C are sufficient but not necessary to ensure the uniqueness of the path flows that satisfy

condition (2) . 

The proof of sufficiency is similar to the proof of Theorem 3 that is presented in Section 3.2 . The following example

shows that these constraints are no longer necessary. In this example, we identify a sensor location vector that does not

satisfy constraint (4) but ensures the uniqueness of the path flows. 

Example 1. Consider the network illustrated in Fig. 1. 

Consider two OD pairs for this network: from 1 to 3 and from 2 to 4. The first OD pair corresponds to two possible

paths: {1–2} and {6–3–2}. The second OD pair also corresponds to two paths: {5–6} and {2–4–6}. Assume a location vector

for the sensors in which only arcs 2 and 6 are equipped with a sensor. We claim that this location vector will result in

unique path flows but does not satisfy constraint (4) of model C . 

For this sensor location vector, the combinations corresponding to each of the paths identified above are (2), ( (6 –2),

(6) and (2–6 ), respectively. Thus, each path corresponds to a different non-em pty combination, and the path flows can be

uniquely defined based on the sensor observations. The reason for this uniqueness can be seen when checking constraint

(2a) for this scenario: ∑ 

r∈ R ′ 
( 2 ) 

f r = f 1 = b ( 2 ) 
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Fig. 1. Network considered in Example 1. 

Table 1 

Numbers of combinations and subsets of sensors that can be generated 

for different numbers of sensors. 

Number of sensors 10 50 100 150 

Number of subsets 1.0e3 1.1e15 1.3e30 1.4e45 

Number of combinations 3.9e9 3.5e79 1.2e188 8.2e307 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∑ 

r∈ R ′ 
( 6 −2 ) 

f r = f 2 = b ( 6 −2 ) 

∑ 

r∈ R ′ 
( 6 ) 

f r = f 3 = b ( 6 ) 

∑ 

r∈ R ′ 
( 2 −6 ) 

f r = f 4 = b ( 2 −6 ) 

However, this location vector does not satisfy constraint (4) . We check this constraint below for the second and fourth

paths: ∑ 

a ∈ A 
J a d ( 2 , 4 , a ) = 0 < 1 

In this equation, the product of J a and d (2, 4, a ) is summed over all six arcs of the network. The sum is found to be zero,

which is not greater than or equal to one. 

When the order of the sensors is considered, the location vectors need not satisfy constraints (4) and (5) for the path

flows to be unique. Therefore, in this case, these two constraints are not necessary for the uniqueness of the path flows.

Another important implication of Example 1 is that when the sensor order is considered, model C does not always yield the

minimum number of sensors required for unique observation of the path flows. In Example 1 , the solution to model C is {2,

3, 6}; however, we know that {2, 6} will result in unique path flows and that placing a sensor on arc 3 is unnecessary. 

The underlying assumption of model C is that two paths correspond to the same combination if and only if their sets

of sensored arcs are the same; however, two paths may have the same set of sensored arcs but correspond to different

combinations because the orders of these arcs differ. This is the case for the pair consisting of the second and fourth paths

in Example 1 . In Example 1 , the set of sensored arcs is {2, 6} for both the second and fourth paths. However, the order

of these two arcs is ( 6 –2) for the second path and (2–6 ) for the fourth path. Thus, the two paths correspond to different

combinations and can be uniquely observed. 

3.1.1.1. The importance of considering the sensor order. A promising feature of vehicle identification sensors is their ability to

provide numerous equations of flow observations based on different sensor combinations. These combinations can produce

many equations via two approaches. The first approach involves generating different combinations by considering different

subsets of sensored arcs. The second approach is to generate different combinations by considering different orders for

each subset of sensors; however, this possibility has not been employed in any of the existing location models for vehicle

identification sensors, including model C . 

Table 1 presents the numbers of possible combinations for different numbers of sensors when the order of the sensored

arcs is and is not considered. As shown in Table 1 , considering the order of the sensored arcs can increase the number

of different combinations that can be generated. As noted by Castillo et al. (2008) , the majority of these combinations

do not correspond to any real path. However, increasing the total number of combinations also increases the number of

combinations that correspond to at least one path. 

Considering the order of the sensored arcs is a difficult task in models such as model C , in which the sensor location

vector is a decision variable rather than a given parameter. The development of a model for which the solution always
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contains the least possible number of sensors can be challenging. In Section 3.1.2 , such a model is proposed. More precisely,

by considering the order of the sensors, a location model is proposed that always yields the minimum number of sensors

required to uniquely observe the path flows. 

3.1.2. Necessary and sufficient conditions for the uniqueness of path flows 

In this section, a model named L 1 is proposed. L 1 is a location model for vehicle identification sensors that considers

the order of the sensors and yields the minimum number of sensors required for the uniqueness of the path flows. Before

model L 1 is presented, several of its main parameters are explained. As mentioned previously, δ is the path-arc incidence

matrix, in which δi j = 1 if arc j belongs to path i and δi j = 0 otherwise. Matrix E is a three-dimensional matrix in which E rab 

is equal to one if arc b follows arc a in path r and is zero otherwise. Based on these two matrices, model L 1 is formulated

as follows: 

L 1 : Minimize 
∑ 

a ∈ A 
J a 

y ′ r r ′ ≤
∑ 

a ∈ A 
J a d 

(
r, r ′ , a 

) ∀ r, r ′ ∈ R | r � = r ′ (6) 

y 
′′ 
r r ′ ≤

∑ 

a ∈ A 

∑ 

a ′ ∈ A 
a ′ � = a 

J ′ aa ′ ( E raa ′ E r ′ a ′ a + E ra ′ a E r ′ aa ′ ) ∀ r, r ′ ∈ R | r � = r ′ (7) 

y r r ′ ≤ y ′ r r ′ + y 
′′ 
r r ′ ∀ r, r ′ ∈ R | r � = r ′ (8)

x r ≤ y r r ′ ∀ r, r ′ ∈ R | r � = r ′ (9) 

x r ≤
∑ 

a ∈ A 
δar J a ∀ r ∈ R (10) 

x r = 1 ∀ r ∈ R (11) 

J ′ aa ′ ≤ J a ∀ a, a ′ ∈ A | a � = a ′ (12) 

J ′ aa ′ ≤ J a ′ ∀ a, a ′ ∈ A | a � = a ′ (13) 

J ′ aa ′ ≥ J a + J a ′ − 1 ∀ a, a ′ ∈ A | a � = a ′ (14)

0 ≤ x r , J ′ aa ′ , y 
′ 
r r ′ , y 

′′ 
r r ′ , y r r ′ ≤ 1 ∀ r, r ′ ∈ R 

∣∣ r � = r ′ , ∀ a, a ′ ∈ A 

∣∣ a � = a ′ (15)

J a = 0 , 1 ∀ a ∈ A (16) 

where J a is a binary variable and the model is designed such that the values of x r , J ′ 
aa ′ , y ′ 

r r ′ , y ′′ 
r r ′ and y r r ′ are all either one

or zero. J a is equal to one if arc a has a sensor and is zero otherwise. J ′ 
aa ′ is equal to one if J a and J a ′ are both equal to one

and is zero otherwise. x r is equal to one if the flow of path r can be obtained uniquely and is zero otherwise. y r r ′ is equal

to one if paths r and r ′ correspond to different combinations of sensors and is zero if both of them correspond to the same

combination (the empty set is also a combination). y ′ 
r r ′ is equal to one if there exists a sensored arc a that belongs to either

path r or path r ′ and does not belong to the other and is equal to zero otherwise. y ′′ 
r r ′ is equal to one if there is a pair of arcs

a and a ′ such that both of them belong to both paths r and r ′ but their order of appearance differs between these paths;

for example, in path r , arc a ′ follows arc a ( E raa ′ = 1 ), whereas in path r ′ , arc a follows arc a ′ ( E r ′ aa ′ ). Note that variables y ′′ 
r r ′ ,

y ′ 
r r ′ and y r r ′ are defined for all r, r ′ ∈ R such that r � = r ′ . d ( r, r ′ , a ) was defined earlier in the paper. 

From constraints (9) , (11) and (15) , we find that y r r ′ = 1 for all r � = r ′ ∈ R . Thus, from constraint (8) , we obtain 1 ≤
y ′ 

r r ′ + y ′′ 
r r ′ for all r � = r ′ ∈ R . In other words, the right-hand side of constraint (8) must equal one or more. Consider the

network introduced in Example 1 and the case in which arcs 2 and 6 each have a sensor. In this case, constraints (6) ,

(7) and (8) are as follows: 

The right-hand side of constraint (6) is the number of sensored arcs that belong either to path r or to path r ′ and do

not belong to the other. For example, paths 1 and 3 each contain two sensored arcs (i.e., arcs 2 and 6). Arc 2 belongs to

path 1 and does not belong to path 3, whereas arc 6 belongs to path 3 and does not belong to path 1, and both arcs have

a sensor. The right-hand side of constraint (7) is the number of pairs of sensored arcs that belong to both paths r and r ′ 
but appear in different orders in these two paths. For example, the sensored arcs 2 and 6 both belong to paths 2 and 4,

and the orders in which they appear in paths 2 and 4 are different. Thus, there is one pair of sensored arcs that belongs

to both paths 2 and 4 and appears in a different order in each of these paths. In this example, there is only one pair of

paths that have at least two arcs in common. Therefore, there can be only one path pair for which the right-hand side of

constraint (7) is greater than zero. For r, r ′ ∈ R , the right-hand side of constraint (8) is equal to at least one if and only if
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Table 2 

Constraints (6) - (8) for the network considered in Example 1 when arcs 

2 and 6 each have a sensor. 

Path pair { r , r ′ } Constraint (6) Constraint (7) Constraint (8) 

{1,2} y ′ 1 , 2 ≤ 1 y 
′′ 
1 , 2 ≤ 0 y 1 , 2 ≤ 1 + 0 

{1,3} y ′ 1 , 3 ≤ 2 y 
′′ 
1 , 3 ≤ 0 y 1 , 3 ≤ 1 + 0 

{1,4} y ′ 1 , 4 ≤ 1 y 
′′ 
1 , 4 ≤ 0 y 1 , 4 ≤ 1 + 0 

{2,3} y ′ 2 , 3 ≤ 1 y 
′′ 
2 , 3 ≤ 0 y 2 , 3 ≤ 1 + 0 

{2,4} y ′ 2 , 4 ≤ 0 y 
′′ 
2 , 4 ≤ 1 y 2 , 4 ≤ 0 + 1 

{3,4} y ′ 3 , 4 ≤ 1 y 
′′ 
3 , 4 ≤ 0 y 3 , 4 ≤ 1 + 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the right-hand side of at least one of the constraints (6) and (7) is also equal to at least one. 5 As seen in the last column

of Table 2 , for all pairs of paths, the right-hand side of constraint (8) is equal to at least one. Constraint (7) considers the

order of the sensored arcs. The role of this constraint and the sensor order can be seen from constraint (8) for the path pair

{2, 4}. In this case, the right-hand side of constraint (6) is equal to zero, but because the right-hand side of constraint (7) is

equal to one, the right-hand side of constraint (8) is also equal to one. The constraints of model L 1 are discussed further in

the proof of Theorem 2. 

Model L 1 is a location model that attempts to find a vector of sensor locations. As mentioned before, we have concluded

that for every sensor location vector J , the set of path flows that satisfy condition (2) is non-empty; thus, the constraints of

model L 1 are designed to ensure that this non-empty set is single-membered. In the following theorem, the necessity and

sufficiency of the constraints of model L 1 will be claimed and proven correct. 

Theorem 2. Assume that J is the sensor location vector and that the order in which the vehicles are detected by the sensors is

available. The constraints of model L 1 are sufficient and necessary conditions for the uniqueness of the path flows that satisfy

condition (2) . 

Proof of sufficiency. Suppose that the constraints of model L 1 are true; we wish to show that the path flows can then be

uniquely defined. 

For each pair of paths r and r ′ , the right-hand side of constraint (6) is equal to one or more if there is at least one

sensored arc for which d( r, r ′ , a ) = 1 . As mentioned before, d ( r, r ′ , a ) is equal to one when arc a belongs either to path r or

to path r ′ and does not belong to the other and is equal to zero otherwise. Thus, from constraint (6) , we find that y ′ 
r r ′ can be

greater than zero only when there exists a sensored arc a for which d( r, r ′ , a ) = 1 . Considering the requirement 0 ≤ y ′ 
r r ′ ≤ 1

from constraint (15) , if such an arc does not exist, we have y ′ 
r r ′ = 0 , and if such an arc exists, we have y ′ 

r r ′ ≤ 1 . Moreover, in

the entire model, only constraints (6) and (15) impose an upper bound on y ′ 
r r ′ . 

Now, a property of constraints (12) –(15) will be claimed and proven so that it can be used in the remainder of the proof;

according to these constraints, J ′ 
aa ′ has the following property: 

J ′ aa ′ = 

{
0 if J a = 0 or J a ′ = 0 

1 if J a = J a ′ = 1 

All four possible cases are evaluated here: If J a = 1 and J a ′ = 1 , then from constraints (12) and (13) , we have J ′ 
aa ′ ≤ 1 ,

and from constraint (14) , we have J ′ 
aa ′ ≥ 1 ; thus, we have J ′ 

aa ′ = 1 . If J a = 1 and J a ′ = 0 or if J a = 0 and J a ′ = 1 , then from

constraints (12) and (13) , we have J ′ 
aa ′ ≤ 0 , and from constraint (14) , we have J ′ 

aa ′ ≥ 0 ; thus, we have J ′ 
aa ′ = 0 . If J a = 0 and

J a ′ = 0 , then from constraints (12) and (13) , we have J ′ 
aa ′ ≤ 0 , and from constraint (14) , we have J ′ 

aa ′ ≥ −1 ; thus, because we

know from constraint (15) that J ′ 
aa ′ ≥ 0 , we have J ′ 

aa ′ = 0 . 

The right-hand side of constraint (7) is a sum over all distinct arc pairs. For each arc pair a and a ′ , the sum

( E raa ′ E r ′ a ′ a + E ra ′ a E r ′ aa ′ ) is equal to one if the following three constraints hold simultaneously: 

• Both arcs a and a ′ have a sensor 
• Both arcs a and a ′ belong to both paths r and r ′ 
• These two arcs appear in these two paths in different orders 

This happens in one of the following two cases: 

• Both arcs a and a ′ have a sensor, arc a ′ follows arc a in path r ( E raa ′ = 1 ), and arc a follows arc a ′ in path r ′ ( E r ′ a ′ a = 1 ) 
• Both arcs a and a ′ have a sensor, arc a follows arc a ′ in path r ( E ra ′ a = 1 ), and arc a ′ follows arc a in path r ′ ( E r ′ aa ′ = 1 ) 

In the first case, the first term in the parentheses will be equal to one and the second will be zero. In the second case,

the first term will be zero and the second will be equal to one. In either case, the value of the quantity in the parentheses

will be one. Now, if J ′ 
aa ′ = 1 (which means that J a = 1 and J a ′ = 1 ), there will be two sensored arcs that appear in both paths
5 This constraint will be discussed more formally in the proof of Theorem 2. 
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r and r ′ but in different orders. In this case, the entire sum over all distinct arc pairs will be greater than or equal to one;

therefore, constraint (7) together with constraint (15) , from which we have y ′′ 
r r ′ ≤ 1 , will result in y ′′ 

r r ′ ≤ 1 . By contrast, if no

such pair of arcs exists for paths r and r ′ , then the right-hand side will be equal to zero. In this case, we will have y ′′ 
r r ′ ≤ 0 ,

which, considering the requirement of y ′′ 
r r ′ ≥ 0 from constraint (15) , will result in y ′′ 

r r ′ = 0 . 

From constraints (9) , (11) and (15) , we find that y r r ′ = 1 for all r � = r ′ ∈ R . Thus, from constraint (8) , we obtain 1 ≤
y ′ 

r r ′ + y ′′ 
r r ′ for all r � = r ′ ∈ R . As mentioned earlier, the upper bound on y ′′ 

r r ′ is equal to one if there exists a pair of sensored

arcs that appear in different orders in paths r and r ′ and is zero otherwise. Additionally, we note that the upper bound on

y ′ 
r r ′ is equal to one if there exists a sensored arc a for which d( r, r ′ , a ) = 1 and is equal to zero otherwise. Thus, for each

pair of paths r � = r ′ ∈ R , the upper bound on at least one of y ′ 
r r ′ and y ′′ 

r r ′ must be one. This is the case because if both upper

bounds on y ′ 
r r ′ and y ′′ 

r r ′ are zero, then both y ′ 
r r ′ and y ′′ 

r r ′ must be zero, which contradicts the constraint 1 ≤ y ′ 
r r ′ + y ′′ 

r r ′ . Thus,

for each pair of paths, one of the following clauses will be true: 

• First clause : A sensored arc exists that belongs either to path r or to path r ′ and does not belong to the other. 
• Second clause : A pair of sensored arcs exists in which both arcs belong to both paths r and r ′ and appear in different

orders in these paths. 

Paths r and r ′ are assigned to different combinations of sensors only when at least one of the above clauses is true.

When the first clause is true, the sets of sensored arcs for paths r and r ′ are different and thus they correspond to different

combinations. When the first clause is not true, the sets of sensored arcs for paths r and r ′ are the same; therefore, they

correspond to different combinations only when the order of appearance of these sensored arcs differs between paths r and

r ′ . This, in turn, is true only when there exists a pair of sensored arcs that belong to both paths and appear in different

orders. Thus, in any arbitrary feasible solution for model L 1 , any two paths r and r ′ correspond to different combinations of

sensors. 

From constraints (11) and (10) , we find that 1 ≤ ∑ n 
a =1 δar J a , which means that each path has at least one sensored arc.

Thus, if the constraints of model L 1 are satisfied, then all paths have at least one sensor and any two paths correspond to

different combinations of sensors; therefore, the path flows can be uniquely determined. 

Proof of necessity. The sensor location vector J is given. Suppose that the combination of sensors corresponding to each

path is different from that corresponding to each other path and that each path has at least one sensor; now, we wish to

prove that there exists some profile of x r , J 
′ 
aa ′ , y 

′ 
r r ′ , y 

′′ 
r r ′ and y r r ′ for this J such that the constraints of model L 1 are true. 

Consider two arbitrary paths r and r ′ that correspond to combinations c ∈ C and c ′ ∈ C , respectively. We know that c � =
c ′ ; thus, at least one of the first and second clauses stated above is true. 

We claim that the following values for variables x r , J ′ 
aa ′ , y ′ 

r r ′ , y ′′ 
r r ′ and y r r ′ for the given J satisfy all constraints of model

L 1 : 

y 
′′ 
r r ′ = 

{
1 if the first clause is true for paths r and r ′ 
0 otherwise 

∀ r, r ′ ∈ R | r � = r ′ 

y ′ r r ′ = 

{
1 if the second clause is true for paths r and r ′ 
0 otherwise 

∀ r, r ′ ∈ R | r � = r ′ 

y r r ′ = 

{
1 if at least one of y ′ r r ′ and y 

′′ 
r r ′ is equal to one 

0 otherwise 
∀ r, r ′ ∈ R | r � = r ′ 

x r = 1 ∀ r ∈ R 

J ′ aa ′ = 

{
1 if J a = J a ′ = 1 

0 otherwise 
∀ a, a ′ ∈ R | a � = a ′ 

The proof of this claim is trivial and is omitted here. 

Lemma 1. A solution to model L 1 always exists . 

Proof. Here, we claim and prove that the solution ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

J a = 1 ∀ a ∈ A 

J ′ aa ′ = 1 ∀ a � = a ′ ∈ A 

y r r ′ = y ′ r r ′ = 1 ∀ r � = r ′ ∈ R 

y 
′′ 
r r ′ = 0 ∀ r � = r ′ ∈ R 

x r = 1 ∀ r ∈ R 

is always a feasible solution for model L 1 , independent of the topological characteristics of the network and the set of routes

considered. 
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If J a = 1 for all a ∈ A , then for all r � = r ′ ∈ R , the right-hand side of constraint (6) is equal to the number of arcs that

belong to only one of these two paths. For every pair of paths, there exists at least one arc that belongs to only one of

them. Thus, for all r � = r ′ ∈ R , the right-hand side of constraint (6) is equal to at least one. Constraint (8) is obviously true.

Therefore, in the proposed solution, constraints (6) and (8) are true for all r � = r ′ ∈ R . For all path pairs, the right-hand

side of constraint (7) is always nonnegative and the value of y r r ′ is zero. Therefore, constraint (7) is true for all r � = r ′ ∈
R . Constraints (9) and (11) are obviously true. Because each path contains at least one arc, constraint (10) is also always

true. Finally, in the proposed solution, constraints (12) –(16) will always be true. Thus, a solution for model L 1 always exists,

independent of the topological characteristics of the network and the set of routes considered. 

Lemma 1 is true because when vehicle identification sensors are used and every arc has a sensor, each set of paths can

be uniquely observed. This is one of the primary advantages of these sensors compared with counting sensors. 

3.1.3. Sensor location problem for optimal path flow observability considering a budget constraint 

Usually, in practical examples, full observability of all path flows is not feasible because of limited resources. Thus, it

is necessary to consider a budget constraint in the location model and attempt to maximize the coverage provided by the

sensors. In this section, model L 2 is presented; this is a modified version of model L 1 that includes a budget constraint and

maximizes the number of path flows that can be uniquely observed. 

L 2 : Maximize 
∑ 

r∈ R 
x r 

y ′ r r ′ ≤
∑ 

a ∈ A 
J a d 

(
r, r ′ , a 

) ∀ r, r ′ ∈ R | r � = r ′ (17)

y 
′′ 
r r ′ ≤

∑ 

a ∈ A 

∑ 

a ′ ∈ A 
a ′ � = a 

J ′ aa ′ ( E raa ′ E r ′ a ′ a + E ra ′ a E r ′ aa ′ ) ∀ r, r ′ ∈ R | r � = r ′ (18)

y r r ′ ≤ y ′ r r ′ + y 
′′ 
r r ′ ∀ r, r ′ ∈ R | r � = r ′ (19)

x r ≤ y r r ′ ∀ r, r ′ ∈ R | r � = r ′ (20)

x r ≤
∑ 

a ∈ A 
δar J a ∀ r ∈ R (21)

J ′ aa ′ ≤ J a ∀ a, a ′ ∈ A | a � = a ′ (22)

J ′ aa ′ ≤ J a ′ ∀ a, a ′ ∈ A | a � = a ′ (23)

J ′ aa ′ ≥ J a + J a ′ − 1 ∀ a, a ′ ∈ A | a � = a ′ (24)

∑ 

a ∈ A 
J a ≤ B (25)

0 ≤ x r , J ′ aa ′ , y 
′ 
r r ′ , y 

′′ 
r r ′ , y r r ′ ≤ 1 ∀ r, r ′ ∈ R, ∀ a, a ′ ∈ A (26)

J a = 0 , 1 ∀ a ∈ A (27)

B is the available sensor budget (i.e., the number of available sensors). The remaining variables and parameters are similar

to those of model L 1 . There are three differences between models L 1 and L 2 : The first difference is that constraint (11) ,

which guarantees the full observability of all paths, is omitted. The second difference is the target function, which serves to

maximize the number of fully observable paths. The third difference is that constraint (25) , which is the budget constraint,

has been added. With the exception of constraint (25) , all constraints in model L 2 are also included in model L 1 and were

explained in the previous section. Below, two lemmas regarding model L 2 are presented. 

Lemma 2. In model L 2 , x r is equal to one if the flow on path r can be uniquely defined and is zero otherwise . 

Lemma 3. A solution to model L always exists . 
2 
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Based on the facts established in the proof of Theorem 2 , the proof of Lemma 2 is trivial and is omitted here. For the

proof of Lemma 3 , we simply present the following solution, which is always a feasible solution for model L 2 : ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

J a = 0 ∀ a ∈ A 

J ′ aa ′ = 0 ∀ a � = a ′ ∈ A 

y r r ′ = y ′ r r ′ = 0 ∀ r � = r ′ ∈ R 

y ′′ r r ′ = 0 ∀ r � = r ′ ∈ R 

x r = 0 ∀ r ∈ R 

It is obvious that in the target function, we can choose to maximize the net flow instead of the number of uniquely

observed paths; this can easily be done by multiplying x r by f 0 r , an out-of-date flow for path r , for all r ∈ R . 

3.2. Sensor location problem for the uniqueness of the OD vector 

For OD vector estimation, observing all path flows is sufficient but not always necessary. Based on model C , model D is

proposed below for determining the locations of vehicle identification sensors. In model D , the constraints are sufficient but

not necessary to ensure the uniqueness of the OD vector. 

D : Minimize n s = 

∑ 

a ∈ A 
J a 

J a ∈ { 0 , 1 } ∀ a ∈ A (28) 

∑ 

a ∈ A 
J a d ( r 1 , r 2 , a ) ≥ 1 ∀ i, i ′ ∈ I| i � = i ′ , ∀ r 1 ∈ R i , ∀ r 2 ∈ R i ′ (29)

∑ 

a ∈ A 
J a δar ≥ 1 ∀ r ∈ R (30) 

The only difference between model D and model C is the pairs of paths for which constraint (29) must be true. In

model C , constraint (4) must hold for all possible pairs of paths, whereas in model D , constraint (29) must hold only for

those pairs of paths that belong to different OD pairs. Model D is a location model, and for its solution, which is a sensor

location vector, the set of path flows and OD vectors that satisfy condition (2) is non-empty. A theorem regarding model D

is presented below. 

Theorem 3. Assume that J is the sensor location vector and that the order in which the vehicles are detected by the sensors is

available. The constraints of model D are sufficient but not necessary conditions for the uniqueness of the OD vector that satisfies

condition (2) . 

Proof of sufficiency. It has previously been concluded that the set of path flows and OD vectors that satisfy condition (2) is

always non-empty. To prove this theorem, we must show that exactly one OD vector satisfies condition (2) when constraints

(29) and (30) are true. We define 

C i := the set of all combinations that correspond to at least one of t he pat hs 

belonging to OD pair i 

From (1) , we know that each path corresponds to at most one combination. From constraint (29) , we know that for every

two paths with different OD pairs, there exists at least one sensored arc that belongs to one of them and does not belong

to the other. Thus, these two paths correspond to different combinations. Constraint (29) allows only paths with the same

OD pair to correspond to the same combination. Thus, we have 

C i ∩ C i ′ = ∅ ∀ i, i ′ ∈ I | i � = i ′ (31)

To understand the reason for relation (31) , suppose that C i and C i ′ have an element in common. 

Relation (31) holds because if C i and C i ′ have an element in common, then a combination must simultaneously corre-

spond to a path belonging to OD pair i and a path belonging to OD pair i ′ . This contradicts constraint (29) . 

According to constraint (30) , all paths in the network have at least one sensor and correspond to a non-empty combi-

nation. Thus, an empty combination does not belong to ∪ i ∈ I C i Each of the paths belonging to OD pair i corresponds to

one of the elements of C i , and R i ⊆ (∪ j∈ C i R 
′ 
j 
) . From (31) , we know that none of the paths that belong to any OD pair other

than i corresponds to any of the elements of C i . Thus, all paths that correspond to the elements of C i belong to OD pair i .

Therefore, ∪ j∈ C i R 
′ 
j 
⊆ R i . Consequently, (

∪ 

j∈ C i 
R 

′ 
j 

)
= R i (32) 
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Here, let us recall condition (2): ∑ 

r∈ R ′ 
j 

f r = b j ∀ j ∈ C| j � = ∅ (2a)

∑ 

r∈ R i 
f r = Q i ∀ i ∈ I, ∀ r ∈ R (2b)

In constraint (2b) , if we replace R i with its equivalent expression from (32) , we obtain 

Q i = 

∑ 

r∈ R i 
f r = 

∑ 

r∈ ( ∪ 
j∈ C i 

R ′ 
j 
) 

f r = 

∑ 

j∈ C i 

∑ 

r∈ R ′ 
j 

f r = 

∑ 

j∈ C i 
b j (33)

The first equation is obtained from (2b) . The second equation is obtained from (32) . The third equation is obtained from

(1) . The fourth equation is obtained from (2a) and the fact that none of the combinations j ∈ C i is an empty set, which was

established earlier in the proof. Thus, the only OD vector that satisfies condition (2) is the OD vector obtained in (33) . 

To show that the constraints of model D are not necessary, we can use Example 1 . In this example, the solution to model

D is {2, 3, 6}, but we know that {2, 6} will also result in unique path flows and a unique OD vector. Notably, the solution

for which J a = 1 for all a ∈ A is always a feasible solution for model D . Thus, model D always has a solution. 

3.2.1. Necessary and sufficient conditions for the uniqueness of the OD vector 

According to Theorem 3 , the constraints of model D are sufficient but not necessary conditions for the uniqueness of the

OD vector. Based on the underlying concepts of model L 1 , model L 3 is proposed below to ensure the necessary and sufficient

conditions for the uniqueness of the OD vector. This property will be claimed formally in Theorem 4. 

L 3 : Minimize n s = 

∑ 

a ∈ A 
J a 

y ′ r r ′ ≤
∑ 

a ∈ A 
J a d 

(
r, r ′ , a 

) ∀ i, i ′ ∈ I, ∀ r ∈ R i , ∀ r ′ ∈ R i ′ | i � = i ′ (34)

y 
′′ 
r r ′ ≤

∑ 

a ∈ A 

∑ 

a ′ ∈ A 
a ′ � = a 

J ′ aa ′ ( E raa ′ E r ′ a ′ a + E ra ′ a E r ′ aa ′ ) ∀ i, i ′ ∈ I, ∀ r ∈ R i , ∀ r ′ ∈ R i ′ | i � = i ′ (35)

y r r ′ ≤ y ′ r r ′ + y 
′′ 
r r ′ ∀ i, i ′ ∈ I, ∀ r ∈ R i , ∀ r ′ ∈ R i ′ | i � = i ′ (36)

x r ≤ y r r ′ ∀ i, i ′ ∈ I, ∀ r ∈ R i , ∀ r ′ ∈ R i ′ | i � = i ′ (37)

x r ≤
∑ 

a ∈ A 
δar J a ∀ r ∈ R (38)

x r = 1 ∀ r ∈ R (39)

J ′ aa ′ ≤ J a ∀ a, a ′ ∈ A | a � = a ′ (40)

J ′ aa ′ ≤ J a ′ ∀ a, a ′ ∈ A | a � = a ′ (41)

J ′ aa ′ ≥ J a + J a ′ − 1 ∀ a, a ′ ∈ A | a � = a ′ (42)

0 ≤ x r , J ′ aa ′ , y 
′ 
r r ′ , y 

′′ 
r r ′ , y r r ′ ≤ 1 ∀ i, i ′ ∈ I, ∀ r ∈ R i , ∀ r ′ ∈ R i ′ | i � = i ′ , ∀ a, a ′ ∈ A (43)

J a = 0 , 1 ∀ a ∈ A (44)

The only difference between models L 1 and L 3 is the pairs of paths for which constraints (34) –(37) must be true. In

model L 1 , these constraints must hold for every possible pair of paths. However, in model L 3 , these constraints must hold

only for pairs of paths that do not belong to the same OD pair. Constraints (34) –(37) guarantee that any two paths with

different OD pairs will correspond to different combinations of sensors. Consequently, variables y ′′ 
r r ′ , y 

′ 
r r ′ and y r r ′ are defined

for all r ∈ R i and r ′ ∈ R i ′ such that i � = i ′ ∈ I . Thus, in model L 3 , the following statements hold for all r ∈ R i and r ′ ∈ R i ′ such

that i � = i ′ ∈ I : 

• y r r ′ is equal to one if paths r and r ′ correspond to different combinations and is zero otherwise 
• y ′ 

r r ′ is equal to one if there exists a sensored arc that belongs either to path r or to path r ′ and does not belong to the

other 
• ′′ ′ 
y 

r r ′ is equal to one if there exist two sensored arcs that appear in both paths r and r in different orders 
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Consider Example 1 , in which there are two OD pairs and two paths exists for each OD pair. Paths 1 and 2 belong to

the OD pair 1–3, and paths 3 and 4 belong to the OD pair 2–4. In this case, variables y ′′ 
r r ′ , y 

′ 
r r ′ and y r r ′ are defined for the

following path pairs: {1,3}, {1,4}, {2,3} and {2,4}. These are all possible pairs of paths whose elements belong to different OD

pairs. Constraints (34) –(37) must hold only for these four path pairs. 

A theorem regarding this model is presented below: 

Theorem 4. Assume that J is the sensor location vector and that the order in which the vehicles are detected by the sensors is

available. The constraints of model L 3 are necessary and sufficient conditions for the uniqueness of the OD vector that satisfies

condition (2) . 

The proof of this theorem is similar to that of Theorem 2 and is omitted here. A lemma similar to Lemma 1 is also

presented here. 

Lemma 4. A solution to model L 3 always exists . 

The proof of this lemma is similar to that of Lemma 1 and is omitted here. 

3.2.2. Sensor location problem for optimal OD flow observability considering a budget constraint 

In this section, model L 4 is presented; this is a modified version of model L 3 that includes a budget constraint and

maximizes the number of OD pair flows that can be uniquely observed. 

L 4 : Maximize 
∑ 

i ∈ I 
z i 

y ′ r r ′ ≤
∑ 

a ∈ A 
J a d 

(
r, r ′ , a 

) ∀ i, i ′ ∈ I, ∀ r ∈ R i , ∀ r ′ ∈ R i ′ | i � = i ′ (45)

y 
′′ 
r r ′ ≤

∑ 

a ∈ A 

∑ 

a ′ ∈ A 
a ′ � = a 

J ′ aa ′ ( E raa ′ E r ′ a ′ a + E ra ′ a E r ′ aa ′ ) ∀ i, i ′ ∈ I, ∀ r ∈ R i , ∀ r ′ ∈ R i ′ | i � = i ′ (46)

y r r ′ ≤ y ′ r r ′ + y 
′′ 
r r ′ ∀ i, i ′ ∈ I, ∀ r ∈ R i , ∀ r ′ ∈ R i ′ | i � = i ′ (47)

x r ≤ y r r ′ ∀ i, i ′ ∈ I, ∀ r ∈ R i , ∀ r ′ ∈ R i ′ | i � = i ′ (48)

x r ≤
∑ 

a ∈ A 
δar J a ∀ r ∈ R (49) 

z i ≤ x r ∀ i ∈ I , ∀ r ∈ R i (50) 

J ′ aa ′ ≤ J a ∀ a, a ′ ∈ A | a � = a ′ (51) 

J ′ aa ′ ≤ J a ′ ∀ a, a ′ ∈ A | a � = a ′ (52) 

J ′ aa ′ ≥ J a + J a ′ − 1 ∀ a, a ′ ∈ A | a � = a ′ (53)

∑ 

a ∈ A 
J a ≤ B (54) 

0 ≤ x r , J ′ aa ′ , y 
′ 
r r ′ , y 

′′ 
r r ′ , y r r ′ , z i ≤ 1 ∀ r, r ′ ∈ R, ∀ a, a ′ ∈ A (55)

J a = 0 , 1 ∀ a ∈ A (56) 

Suppose that path r corresponds to combination j ∈ C and that its OD pair is i . In the above model, x r is equal to one if

there is at least one sensor on path r and R ′ 
j 
⊆ R i . Model L 4 is designed such that z i is equal to one if each path in R i has

a sensor and is not associated with the same combination as any path not in R i and is zero otherwise. Thus, z i is equal to

one if and only if the flow for OD pair i can be uniquely defined. Therefore, the target function of model L 4 maximizes the

number of OD flows that can be uniquely defined. It is possible to multiply each z i by the importance of the corresponding

OD pair i in the target function. A lemma regarding this model is presented here: 

Lemma 5. A solution to model L 4 always exists . 

The proof of this lemma is similar to that of Lemma 3 and is omitted here. 
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Fig. 2. Nguyen–Dupuis network ( Mínguez et al., 2010 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Numerical results 

This section presents several examples of the application and solution of models L 1 , L 2 , L 3 and L 4 to address various

numerical aspects of these models. Specifically, the solutions to four examples, examples 2–5, are reported in this section.

Example 2 uses the topology of the Nguyen–Dupuis network, with 38 arcs; examples 3 and 4 use the topology of the Sioux–

Falls network, with 76 arcs; and example 5 uses the topology of the Mashhad network, with 2526 arcs. Examples 2 and 3

were solved for models L 1 , L 2 , L 3 and L 4 . However, because of the high CPU time required, example 4 was solved only for

models L 1 and L 3 and example 5 was solved only for model L 1 . All solutions reported in this section were obtained using

GAMS on a computer with a Core i5 CPU clocking at 2.53 GHz. The solver used by GAMS was CPLEX. 

4.1. Example 2: Nguyen–Dupuis network 

In this example, the Nguyen–Dupuis test network is considered. This network, which contains 38 arcs, is depicted in

Fig. 2 . We consider the same set of OD pairs and routes considered by Mínguez et al. (2010) . Their example includes 18 OD

pairs and 50 routes. 

4.1.1. Model L 1 
Model L 1 yields the minimum number of sensors required for full observability of the path flows. For this example, this

model was solved for the Nguyen–Dupuis network, which contains 18 OD pairs and 50 routes. The CPU time required to

solve this problem was less than 1 s, and the solution consists of 18 sensors: 

{ 1 , 2 , 3 , 5 , 8 , 9 , 11 , 13 , 18 , 20 , 21 , 22 , 23 , 29 , 31 , 33 , 34 , 36 } 
Thus, the 50 considered path flows in this network can be fully observed by 18 vehicle identification sensors. 

4.1.2. Model L 2 
Model L 2 answers the following question: how many of the considered paths can be fully observed with a given sensor

budget? Model L 2 was solved for sensor budgets of 1–18. As we know from the results of model L 1 , a budget of 18 sensors is

sufficient for full observability of all paths. Fig. 3 shows the percentage of the considered paths that can be fully observed as

a function of the budget. Fig. 4 shows the CPU times required to solve the model for different budget levels. The maximum

CPU time, 40 s, was consumed for a budget of 11. 

4.1.3. Model L 3 
Model L 3 yields the minimum number of sensors required for full observability of the OD flows; an OD flow is fully ob-

servable when it can be uniquely defined based on the observations provided by the sensors. This example, which includes
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Fig. 3. Percentage of paths covered in example 2 as a function of the sensor budget. 

Fig. 4. CPU times required to solve model L 2 for example 2 given different budget levels. 

 

 

 

 

 

 

 

18 OD pairs, was solved in less than 1 s of CPU time; the solution is as follows: 

{ 1 , 2 , 3 , 4 , 8 , 9 , 16 , 19 , 20 , 21 , 22 , 23 , 30 , 34 , 35 , 36 } 
This solution consists of 16 sensors; thus, for full observability of the OD pairs in this example, 16 sensors are necessary

and sufficient. 

4.1.4. Model L 4 
There are 18 OD pairs in this example; from the solution of model L 3 , we know that for full observability of these OD

flows, 16 sensors are necessary and sufficient. Model L 4 yields the maximum number of OD flows that are fully observable

with a given sensor budget. Fig. 5 shows the number of OD pairs that can be fully observed as a function of the budget.

Fig. 6 shows the CPU times required to solve model L 4 for example 2 for different budget levels. 

4.2. Example 3: Upper half of the Sioux–Falls network 

In this example, the topology of the Sioux–Falls test network is considered. This network, which contains 76 arcs, is de-

picted in Fig. 7 . Six OD pairs are considered: 1–17, 17–1, 3–18, 18–3, 12–2 and 2–12; these OD pairs and their corresponding

paths are represented in Table 3 . Ninety-two paths are considered for this network; in Table 4 , the arc set for each path is
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Fig. 5. Number of fully observable OD flows in example 2 as a function of the sensor budget. 

Fig. 6. CPU times required to solve model L 4 for example 2 given different budget levels. 

Table 3 

Set of paths considered for each OD pair in example 3. 

OD pair 1–17 17–1 3–18 18–3 12–2 2–12 

Paths 1, 2, …, 20 21, 22, …, 40 41, 42, …, 55 56, 57, …, 70 71, 72, …, 81 82, 83, …, 92 

 

 

 

 

 

presented. For each OD pair, all reasonable simple paths are considered; by reasonable paths, we mean paths that are not

considerably longer than the shortest path between the origin and the destination. In this example, because the OD pairs

are all located in the upper half of the network, there are only 52 arcs that are included in at least one path. Thus, although

the Sioux–Falls network contains 76 arcs in total, the maximum practical number of sensor locations in this example is 52. 

4.2.1. Model L 1 
Model L 1 yields the minimum number of sensors required for full observability of the path flows. For this example, this

model was solved considering all 92 paths represented in Table 4 . The CPU time required to solve this problem was 15 min,

and the solution consists of 18 sensors: 

{ 2 , 4 , 5 , 6 , 8 , 13 , 14 , 22 , 23 , 27 , 29 , 30 , 32 , 33 , 36 , 47 , 48 , 51 } 
Thus, the 92 path flows considered in this network can be fully observed by 18 vehicle identification sensors. 
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Fig. 7. Sioux–Falls network. 

 

 

 

 

 

 

 

4.2.2. Model L 2 
Model L 2 answers the following question: how many of the considered paths can be fully observed with a given sensor

budget? Model L 2 was solved for sensor budgets of 1–18. As we know from the results of model L 1 , a budget of 18 sensors is

sufficient for full observability of all paths. Fig. 8 shows the percentage of the considered paths that can be fully observed as

a function of the budget. Fig. 9 shows the CPU times required to solve the model for different budget levels. The maximum

CPU time, 192 min, was consumed for a budget of 17. 

4.2.3. Model L 3 
Model L 3 yields the minimum number of sensors required for full observability of the OD flows. This example, which

includes 6 OD pairs, was solved within 5 s of CPU time; the solution is as follows: 

{ 2 , 4 , 5 , 6 , 8 , 14 , 33 , 36 } 
This solution consists of eight sensors; thus, for full observability of the OD pairs in this example, eight sensors are

necessary and sufficient. The CPU time required to solve this model is less than that for model L ; the reason is that model
1 
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Table 4 

Paths in the Sioux–Falls network considered in example 3. 

Path Links Path Links Path Links 

1 2 7 36 32 30 32 51 26 24 19 14 3 63 55 49 53 57 44 40 33 35 

2 2 7 36 31 9 13 25 30 33 51 29 47 19 14 3 64 55 47 21 23 11 8 

3 2 7 36 34 41 43 30 34 51 29 50 54 17 19 14 3 65 54 17 21 23 11 8 

4 2 6 9 13 25 30 35 51 27 31 9 12 14 3 66 55 47 19 15 11 8 

5 2 6 10 32 30 36 51 29 47 21 23 12 14 3 67 54 17 19 15 11 8 

6 2 6 9 12 16 21 25 30 37 52 47 21 23 12 14 3 68 55 47 19 14 3 2 

7 2 6 9 12 16 22 48 30 38 52 50 54 17 19 14 3 69 54 17 19 14 3 2 

8 2 6 9 12 16 22 49 39 53 57 44 40 33 35 5 70 55 48 26 24 19 14 3 2 

9 2 6 9 13 24 22 48 30 40 53 57 44 40 31 8 5 71 35 5 1 

10 2 6 9 13 24 20 18 55 48 30 41 7 36 32 29 50 72 35 6 9 12 14 

11 1 4 15 13 25 30 42 6 10 32 29 50 73 35 6 9 13 24 19 14 

12 1 4 16 21 25 30 43 6 9 13 25 29 50 74 36 31 9 12 14 

13 1 4 16 22 48 30 44 7 36 34 41 43 29 50 75 36 31 9 13 24 19 14 

14 1 4 16 20 18 55 48 30 45 7 36 32 30 52 50 76 36 32 26 23 12 14 

15 1 4 15 11 10 32 30 46 6 10 32 30 52 50 77 36 32 26 24 19 14 

16 1 4 15 13 24 22 48 30 47 6 9 13 25 30 52 50 78 36 32 29 47 19 14 

17 1 4 15 13 24 22 49 48 7 36 34 41 45 58 52 50 79 36 32 30 52 47 19 14 

18 1 4 16 20 18 55 49 49 6 9 13 24 22 50 80 36 32 29 50 54 17 19 14 

19 2 7 36 34 41 45 58 50 6 9 13 24 20 18 81 36 32 29 47 21 23 12 14 

20 2 6 10 34 41 45 58 51 6 9 12 16 22 50 82 3 2 7 

21 51 27 33 35 5 52 6 9 12 16 20 18 83 4 5 11 8 7 

22 51 26 23 11 10 33 35 5 53 5 1 4 16 22 50 84 4 16 21 23 11 8 7 

23 51 28 44 40 33 35 5 54 5 1 4 16 20 18 85 4 15 11 10 33 

24 51 26 23 11 8 5 55 5 1 4 16 21 25 86 4 16 21 23 11 10 33 

25 51 27 31 8 5 56 55 48 27 33 35 87 4 15 13 25 27 33 

26 51 26 24 19 15 11 8 5 57 55 48 27 31 8 88 4 16 21 25 27 33 

27 51 29 47 19 15 11 8 5 58 55 48 26 23 11 8 89 4 16 22 48 27 33 

28 52 47 19 15 11 8 5 59 55 48 28 44 40 33 35 90 4 16 22 49 51 27 33 

29 51 29 47 21 23 11 8 5 60 55 49 51 27 33 35 91 4 16 20 18 55 48 27 33 

30 51 29 50 54 17 21 23 11 8 5 61 55 49 51 27 31 8 92 4 15 13 24 22 48 27 33 

31 51 26 23 12 14 3 62 1 26 23 11 8 

Fig. 8. Percentage of paths covered in example 3 as a function of the sensor budget. 

 

 

 

 

L 3 has fewer constraints than does model L 1 . In this example, model L 1 has 25,478 constraints, whereas model L 3 has 11,534

constraints. 

4.2.4. Model L 4 
There are six OD pairs in this example; from the solution of model L 3 , we know that for full observability of these OD

flows, 8 sensors are necessary and sufficient. Model L 4 yields the maximum number of OD flows that are fully observable

with a given sensor budget. Fig. 10 shows the number of OD pairs that can be fully observed as a function of the budget.

Fig. 11 shows the CPU times required to solve model L for example 3 for different budget levels. 
4 
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Fig. 9. CPU times used to solve model L 2 for example 3 given different budget levels. 

Fig. 10. Number of fully observable OD flows in example 3 as a function of the sensor budget. 

 

 

 

 

 

 

 

4.3. Example 4: Complete Sioux–Falls network 

In this example, the topology of the Sioux–Falls test network is again considered. This example consists of four cases. In

these cases, the number of OD pairs remains fixed at 12, but the numbers of considered paths are 112, 156, 424 and 778

for cases 1–4, respectively. The 12 OD pairs are 1–20, 20–1, 3–18, 18–3, 12–7, 7–12, 13–8, 8–13, 24–6, 6–24, 21–2 and 2–21.

In each case, all possible paths for each OD pair that are no longer than some predefined proportion of the length of the

shortest path between that OD pair are considered. This predefined proportion takes values of 0.05, 0.1, 0.3 and 0.4 in cases

1–4, respectively. The results of solving models L 1 and L 3 for these four cases are reported in this section. 

4.3.1. Model L 1 
Model L 1 yields the minimum number of sensors required for full observability of the path flows. This model was solved

for cases 1–3 of example 4. The fourth case could not be solved within 1 week, and therefore, no result for this case is

reported here. The three obtained solutions are as follows: 

{ 7 , 8 , 9 , 10 , 13 , 17 , 20 , 22 , 23 , 27 , 29 , 32 , 35 , 39 , 46 , 47 , 48 , 66 , 67 , 73 , 74 , 75 , 76 } 

{ 7 , 10 , 12 , 15 , 16 , 17 , 19 , 20 , 22 , 27 , 28 , 29 , 31 , 32 , 35 , 43 , 46 , 47 , 48 , 59 , 61 , 62 , 64 , 66 , 71 , 73 , 75 , 76 } 
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Fig. 11. CPU times required to solve model L 4 for example 3 given different budget levels. 

Fig. 12. Optimal solutions of model L 1 for cases 1–3 of example 4. 

 

 

 

 

 

 

 

 

{ 2 , 4 , 5 , 7 , 10 , 13 , 14 , 16 , 19 , 21 , 22 , 23 , 24 , 27 , 29 , 31 , 32 , 35 , 37 , 38 , 42 , 46 , 47 , 48 , 53 , 58 , 62 , 64 , 65 , 67 , 69 , 71 } 
Fig. 12 shows the numbers of required sensors for these three cases. Fig. 13 shows the CPU times required to solve model

L 1 for these cases. In Fig. 13 , the CPU time required to solve the model for 112 paths is 5 min, whereas the time required

for 154 paths is 104 min and that required for 424 paths is 3367 min, or 2.3 days. Thus, the time required to solve model L 1
grows extremely rapidly as the number of considered paths increases. Fig. 12 shows that the accompanying rate of increase

in the required number of sensors is considerably milder. 

In medium- and large-scale problems, the amounts of memory required to solve these models can be problematic. Specif-

ically, the two three-dimensional matrices d ( r , r ′ , a ) and E ( r, a, a ′ ) can consume large amounts of memory in the case of large

networks. These two matrices appear in all of our location models. The first matrix, d ( r, r ′ , a ), can be calculated in closed

form based on the arc-route matrix δ: d( r, r ′ , a ) = ( δar + δar ′ ) ∗ ( 1 − δar δar ′ ) ; This relation has previously been presented by

Mínguez et al. (2010) . Thus, there is no need to pass matrix d as an input. 

Matrix E is the other three-dimensional matrix. This matrix appears in the following constraint: 

y 
′′ 
r r ′ ≤

∑ 

a ∈ A 

∑ 

a ′ ∈ A 
a ′ � = a 

J ′ aa ′ ( E raa ′ E r ′ a ′ a + E ra ′ a E r ′ aa ′ ) 
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Fig. 13. CPU times required to solve model L 1 for cases 1–3 of example 4. 

Fig. 14. Optimal solutions of model L 3 for cases 1–4 of example 4. 

 

 

 

 

 

 

 

 

 

 

 

In this constraint, the value inside the parentheses has four indices: a, a ′ , r and r ′ . In real examples, this value is equal to

one for only a very small percentage of all possible quadruples and is zero for the rest. For example, in the third case of the

current example, the total number of quadruples is 76 2 × 424 2 = 1 . 04 × 10 9 . There are only 216 quadruples, or 2 × 10 −5 %,

for which the value in parentheses is non-zero. Thus, in real problems and for large networks, it is preferable to build this

constraint based on only these few sets of indices and not the entire matrix. 

4.3.2. Model L 3 
Model L 3 yields the minimum number of sensors required for full observability of the OD flows; the results of solving

this model for the four cases of example 4 are reported in this section. Fig. 14 shows the number of sensors required to

guarantee the uniqueness of the OD vector. Fig. 15 shows the CPU time required to solve the model for each case as a

function of the number of routes. 

Fig. 14 illustrates an interesting aspect of model L 3 . Lemma 4 states that a solution to model L 3 always exists. An obvious

solution to this model is that in which every arc of the network has a sensor. However, there is another feasible solution to

this model that contains far fewer sensors, and its target function is much less. 

Lemma 6. Consider the sensor location vector in which all outgoing arcs from all origins and all incoming arcs to all destinations

are equipped with a vehicle identification sensor. For this location vector, the set of OD vectors that satisfy condition (2) is single-

membered . 
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Fig. 15. CPU times required to solve model L 3 for cases 1–4 of example 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proof of Lemma 6 is trivial and is omitted here. Lemma 6 presents a new solution that is feasible for model L 3 inde-

pendent of the set of routes considered. Because model L 3 minimizes its target function, this new solution yields an upper

bound. Moreover, as the number of routes considered for each OD pair is increased, the solution of model L 3 converges to

this solution. Obviously, when the solution reaches this point, further increasing the number of considered routes for each

OD pair, will no longer increase the number of required sensors. This new feasible solution can be very helpful in solving

model L 3 for large networks. 

For the four cases of example 4, this new solution for model L 3 contains 40 sensors. However, the number of required

sensors remains constant at 20 after the second case, in which 154 routes are considered. Unlike Lemma 6 , this behavior is

not a global aspect of model L 3 ; instead, it is related to the set of considered OD pairs. In what follows, the reason for this

saturation will be discussed. In this network, nodes 1, 2, 3, 6, 7, 8, 12, 13, 18, 20, 21 and 24 constitute 12 OD pairs. Each of

these nodes is the origin in exactly one OD pair and is the destination in exactly one other OD pair. Consider the following

set of arcs: 

{ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 14 , 33 , 35 , 36 , 37 , 38 , 39 , 66 , 73 , 74 , 75 , 76 } 
This set contains all outgoing and incoming arcs of nodes 1, 2, 3, 12, 13 and 24. These nodes are the origin nodes in 6 of

the considered OD pairs and are the destination nodes in the other six OD pairs. When all incoming and outgoing arcs of a

node A are equipped with a vehicle identification sensor, one can distinguish between the following four sets of routes: 

1. Routes that start from node A 

2. Routes that end at node A 

3. Routes that pass through node A , but this node is not their origin or destination 

4. Routes that do not contain node A 

For example, consider node 1. There are two ingoing arcs, {3, 5}, and two outgoing arcs, {1, 2}. The routes in the first set

correspond to combinations that contain either arc 1 or arc 2 and do not contain arc 3 and arc 5. The routes in the second

set correspond to combinations that contain either arc 3 or arc 5 and do not contain arc 1 and arc 2. The routes in the

third set correspond to combinations that contain one of the following combinations: (3, 1), (3, 2), (5, 1) and (5, 2). Finally,

the routes in the fourth set correspond to combinations that do not contain any of arcs 1, 2, 3 and 5. Moreover, in this

example and for this solution, every route has at least one sensor. Thus, each route corresponds to a non-empty combination.

Therefore, based on each node, the set of all routes can be partitioned into four subsets. Based on this partitioning, the

routes belonging to each OD pair can be distinguished from the routes belonging to other OD pairs. This is the necessary

and sufficient condition for the uniqueness of the OD pairs. Thus, in example 4, as the number of routes between each OD

pair arbitrarily grows, the size of the solution to model L 3 will remain fixed at 20 sensors. 

4.4. Example 5, a real case study: Mashhad network 

In this example, the topology of the Mashhad network is considered. This network was divided into 141 traffic zones

and contains 2526 arcs, 917 nodes and 7157 OD pairs with non-zero demands ( Poorzahedi et al., 1997 ). In this study “an

origin–destination survey was conducted from 4% of the population by house interviewing method and was validated by

observations from several screen lines in the study area. Validation of the OD flows is achieved by the actual traffic counts
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Fig. 16. Mashhad city network ( Poorzahedi et al., 1997 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

done simultaneously on 112 links of the network during peak hour. Fig. 16 shows the Mashhad city network and the ob-

served links” ( Poorzahedi et al., 1997 ). At the time of the cited study, Mashhad had a population of approximately 2 million.

In that study, Poorzahedi and coauthors assigned the surveyed OD vector to the network based on the user equilibrium

assumption using the complementary algorithm ( Aashtiani, 1979 ). In their results, there were 7503 paths with non-zero

flows; thus, there were 1.05 paths on average per OD pair. 

In this example, these OD pairs have been sorted based on their demand, from highest to lowest. Model L 1 was solved

for three sets of routes: the routes belonging to the first 40 OD pairs, the routes belonging to the first 50 OD pairs and

the routes belonging to the first 60 OD pairs. 6 The percentages of the demand covered in cases 1–3 are 5.3, 6.2 and 7.1%,

respectively. The total numbers of routes are 48, 59 and 69 for cases–3, respectively. The total numbers of arcs used in

at least one of the considered routes are 362, 402 and 430 for cases 1–3, respectively. The main aspect of this example

that makes it a medium sized real case study is its high number of used arcs. The three obtained solutions contain 37, 46

and 52 sensors for cases 1–3, respectively. The required CPU times for these three examples are 37.7, 180.5 and 282.6 min

respectively. 

The results of our numerical study, particularly those for this example and example 4, illustrate the amounts of time

required to solve our location models using a general solver such as CPLEX. It is apparent from these examples that solving

these models for even medium-sized networks is a time-consuming task. This demonstrates the need to develop model-

specific algorithms for solving these models for large networks. This will be an interesting topic for future research. As an

alternative to developing model-specific algorithms, another way to solve these models for larger examples is to control the

size of the problem. There are two important factors that define the complexity of solving models L 1 , L 2 , L 3 and L 4 for a

given network. The first of these factors is the set of considered paths, and the second is the set of possible arcs on which

sensors can be located. The set of OD pairs also is a major contributor to the complexity of models L 3 and L 4 . For a large

network, the size of the problem can be reduced by modifying these three values. The mathematical relations between these

values and the complexity of these four models will be another interesting topic for future research. In the following, the

particular case of modifying the set of routes to reduce the size of the problem will be discussed. 

4.4.1. Set of routes 

In each location model presented in this paper, as in model C , the set of paths is a key parameter in defining the com-

plexity of the model and its solution. For example, model L 1 contains 2 r 2 + 4 r + 

3 
2 ( n 

2 + n ) constraints in addition to the

integrality condition, where r is the number of paths and n is the number of arcs. There is also a more compact version

of this model that contains 1 
2 r 

2 + 

3 
2 r + 

3 
2 ( n 

2 + n ) constraints. Model C contains 1 
2 ( r 

2 + r ) constraints. Considering only the

important paths has always been a common approach adopted by researchers; for example, one might consider only the

paths that had positive flows in past studies. In the current example, example 5, this approach was applied to the Mash-

had network. In this example, the set of paths to be considered was defined based on the paths that had non-zero flows
6 Here, the first 40 OD pairs are the 40 OD pairs with the highest demand. 
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after a user-equilibrium-based assignment of the OD vector. Another approach would be to also consider paths with similar

qualities to those with non-zero flows. 

The dependence of the time required to solve model L 1 on the number of considered paths is shown in the results of

examples 4 and 5. In both cases, the CPU time grows very rapidly as the number of paths increases. However, the numbers

of required sensors in models L 1 and L 3 exhibit a milder rate of growth with an increasing number of considered paths. 

When the target flow is the OD vector, the results of example 4 for model L 3 and Lemma 6 together reveal an interesting

fact: as the number of considered paths increases, the size of the solution to model L 3 will eventually reach saturation. In

other words, the optimal solution will not always continue to grow with an increase in the number of considered paths.

Another observation that is promising for reducing the number of considered paths is that in the Mashhad network example,

there were found to be 1.05 paths on average per OD pair. If one accepts equilibrium as a reasonable assumption, especially

considering the growing market penetration of GPS devices and smart phones, this fact can be used to reduce the number

of considered paths. 

5. Conclusions 

In this paper, several of the existing location models were discussed. To our knowledge, none of the existing location

models for vehicle identification sensors considers the order in which a vehicle is detected by the sensors, although this

order is available in the data. When the sensor order is taken into account, the existing models no longer yield the minimum

number of sensors required for full observability of the target flows. Therefore, in this paper, four location models that

consider the order of the sensors were presented and proven correct. The definitions of these four models are as follows: 

• Model L 1 : This model minimizes the number of sensors required to ensure the uniqueness of the path flows when the

sensor order is available in the data. 
• Model L 2 : This model maximizes the number of fully observable path flows subject to a budget constraint when the

sensor order is available in the data. 
• Model L 3 : This model minimizes the number of sensors required to ensure the uniqueness of the OD flows when the

sensor order is available in the data. 
• Model L 4 : This model maximizes the number of fully observable OD flows subject to a budget constraint when the sensor

order is available in the data. 

For several numerical examples, these four models were solved using the GAMS software. These numerical examples in-

clude several medium-sized examples, including an example of a real-world large-scale transportation network in Mashhad.

As the results show, solving model L 1 for some of our examples required several days of CPU time. Although the examples

solved in this paper include several medium-scale cases of large networks, solving these models for larger networks remains

an interesting area for future research. 
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