
Transportation Research Part B 84 (2016) 103–123

Contents lists available at ScienceDirect

Transportation Research Part B

journal homepage: www.elsevier.com/locate/trb

Optimization of incentive polices for plug-in electric vehicles

Yu (Marco) Nie a,c,∗, Mehrnaz Ghamami b, Ali Zockaie b, Feng Xiao d

a Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
b Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48825, USA
c School of Transportation and Logistics, Southwest Jiaotong University, Chengdu, China
d School of Business Administration, Southwestern University of Finance and Economics, Chengdu, PR China

a r t i c l e i n f o

Article history:

Received 3 February 2015

Revised 24 November 2015

Accepted 16 December 2015

Available online 9 January 2016

Keywords:

Plug-in electric vehicles

Charging stations

Incentive policies

Vehicle choice

KKT conditions

a b s t r a c t

High purchase prices and the lack of supporting infrastructure are major hurdles to the

adoption of plug-in electric vehicles (PEVs). It is widely recognized that the government

could help break these barriers through incentive policies, such as offering rebates to PEV

buyers or funding charging stations. The objective of this paper is to propose a modeling

framework that can optimize the design of such incentive policies. The proposed model

characterizes the impact of the incentives on the dynamic evolution of PEV market pene-

tration over a discrete set of time intervals, by integrating a simplified consumer vehicle

choice model and a macroscopic travel and charging model. The optimization problem is

formulated as a nonlinear and non-convex mathematical program and solved by a special-

ized steepest descent direction algorithm. We show that, under mild regularity conditions,

the KKT conditions of the proposed model are necessary for local optimum. Results of

numerical experiments indicate that the proposed algorithm is able to obtain satisfactory

local optimal policies quickly. These optimal policies consistently outperform the alterna-

tive policies that mimic the state-of-the-practice by a large margin, in terms of both the

total savings in social costs and the market share of PEVs. Importantly, the optimal policy

always sets the investment priority on building charging stations. In contrast, providing

purchase rebates, which is widely used in current practice, is found to be less effective.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The growing concerns about energy security and global climate change have stimulated the transition to alternative fuel

vehicles (AFV), widely considered an important ingredient in sustainable transportation (NRS, 2010). Of the many competing

technologies, plug-in electric vehicles (PEV) have received much attention thanks to their high energy efficiency (Eberhard

and Tarpenning, 2006), the ability to substitute electricity for petroleum and the potential to reduce carbon footprint (Crist,

2012). However, the adoption of PEVs is hurdled by several barriers: high retail prices, the limited range of batteries, and

the lack of supporting infrastructure, especially charging stations (Hidrue et al., 2011). In the US, policy makers have created

various incentive programs aiming to overcome these barriers. The American Recovery and Reinvestment Act of 2009 (ARRA)

signed into law a provision that will offer up to $7500 of tax credit for each new PEV purchase starting from 2010. The

state governments in the US have also implemented various policies to encourage the ownership of PEVs and installation of
∗ Corresponding author at: Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA. Tel.: +1 847 467 0502;

fax: +1 847 491 4011.

E-mail address: y-nie@northwestern.edu, nieyu04@gmail.com (Y. Nie).

http://dx.doi.org/10.1016/j.trb.2015.12.011

0191-2615/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.trb.2015.12.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/trb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trb.2015.12.011&domain=pdf
mailto:y-nie@northwestern.edu
mailto:nieyu04@gmail.com
http://dx.doi.org/10.1016/j.trb.2015.12.011


104 Y. (Marco) Nie et al. / Transportation Research Part B 84 (2016) 103–123
charging stations. In Illinois, for example, Electric Vehicle Initiatives provide a rebate up to $49,000 toward the installation

of Level II charging stations and a rebate up to $4000 for the purchase of a new alternative fuel vehicle.1 It is clear that the

public investment on these incentive programs is a scarce resource that should be carefully allocated to maximize its impact.

The objective of this paper is to propose an optimization model that supports these macroscopic decisions about resource

allocation. When fully implemented, the proposed model may help the policy makers decide when and how much money

should be invested on what incentive programs in order to achieve a desired goal, e.g. reduced greenhouse gas emissions or

reduced dependence on petroleum.

Understanding how incentive programs might affect the adoption of PEVs calls for a behavioral model that can predict

consumers’ vehicle choice. There is a vast literature devoted to building such models with various discrete and discrete-

continuous choice modeling approaches, see Bhat et al. (2009) for a review. Vehicle choice may be characterized using the

number of vehicles owned by the household (Bhat and Pulugurta, 1998; Dargay and Vythoulkas, 1999; Golob and Burns,

1978), type of each vehicle owned (body type, fuel type, vintage and powertrain technology) (Ahn et al., 2008; Brownstone

et al., 2000; Bunch et al., 1993; Dagsvik et al., 2002; Hensher and Greene, 2001; Lave and Train, 1979; Mabit et al., 2015;

Mannering and Mahmassani, 1985; Mannering et al., 2002; Mohammadian and Miller, 2003; Yavuz et al., 2015), and the

number of miles driven by each vehicle (Ahn et al., 2008; Bhat and Sen, 2006; Bhat et al., 2009; Fang, 2008; Train and

Lohrer, 1982). Previous studies (Bhat et al., 2009; Lave and Train, 1979; Mohammadian and Miller, 2003) have also identified

many factors that influence the choice of conventional vehicles, ranging from demographic characteristics (such as income,

household size, number of children), vehicle attributes (price, operating cost, fuel efficiency), fuel price, driver personality

and built environment characteristics. For alternative fuel vehicles, empirical evidence (Bunch et al., 1993; Dagsvik et al.,

2002) identified the purchase price and the range between refueling as important attributes, in addition to those associated

with conventional vehicles. A number of recent studies attempt to predict the evolution of market penetration of AFV by

simulation. Many of these studies simulate the vehicle choice behavior of agents using classical multinomial logit (Shafiei

et al., 2012) or nested logit model (Lin and Greene, 2010; NRC, 2013). A different decision process is proposed in Eppstein

et al. (2011) to account for spatial and social effects, as well as media influences. Simulation studies are often employed

to evaluate the impact of energy policy (Lin and Greene, 2010), fuel prices (Eppstein et al., 2011; Shafiei et al., 2012), and

availability of infrastructure (Lin and Greene, 2011; Lin et al., 2014) on the future market share. While they are useful for the

evaluation purpose, the simulation studies are not designed for optimizing interventions. The vehicle choice model employed

in this paper is developed along the line of those used in the simulation studies by Lin and Greene (2010) and NRC (2013),

with a few additional simplifying assumptions.

Numerous recent studies have examined the planning of charging infrastructure for PEVs (see e.g. Dashora et al., 2010;

Frade et al., 2011; Chen et al., 2013; Sathaye and Kelley, 2013; Nie and Ghamami, 2013; He et al., 2013; Mak et al., 2013;

Ghamami et al., 2014; Lim and Rong, 2014; Bhatti et al., 2015; Gnann and Plotz, 2015). These studies consider the optimal

configuration of charging stations (e.g., location, charging power) either within city (intracity) or between cities (intercity),

but typically assume the demand for such facilities as given. In other words, the interactions between planning decisions for

charging stations and the long-term adoption of PEVs are not modeled. Another line of recent work in this field is concerned

with more detailed routing and recharging decisions of potential PEV users (see e.g., Adler et al., 2014; De Weerdt et al.,

2013; Fontana, 2013; He et al., 2014; Chen and Nie, 2015). Such problems address the range anxiety issue by balancing the

need for minimizing travel cost and fulfilling relay requirements. Because the focus of this paper is on “sketchy decisions”

at a highly aggregated level, we postulate that the outcomes are relatively insensitive to specific details of infrastructure

planning and/or individual travel behaviors.2 Consequently, the representation of charging infrastructure and travel behaviors

is simplified in this study in order to highlight the tradeoff in the bigger picture. Specifically, the densities of public charging

stations within and beyond a city limit are employed as the main surrogate for charging availability, which determines the

probability of finding charging facilities.

The rest of this paper is organized as follows. The next section presents the problem and main assumptions. Section 3

first describes the travel and vehicle choice models, and then introduces the main optimization model that is formulated as

a nonlinear program. Section 4 proposes a solution algorithm and Section 5 reports the results of numerical experiments.

Conclusions and directions for future research are given in Section 6.

2. Problem statement and main assumptions

We consider the PEV adoption over a fixed analysis period. Each year, a certain number of consumers need to purchase

a new vehicle from a discrete set of vehicles, of which a subset is PEVs. The choice of vehicles is affected by, among other

things, the purchase price and charging availability, which affects the operating cost of PEVs. The government offers two

incentives over the entire analysis period: purchase rebates and publicly funded charging stations, with the objective of

promoting PEVs and/or minimizing social cost of travel (potentially including the environmental impacts). The question
1 https://www2.illinois.gov/gov/green/Pages/ElectricVehicleInitiatives.aspx.
2 This is not to dispute the value of detailed planning of charging infrastructure. Rather, the point is that a sketchy model can help the decision makers

better understand the fundamental tradeoff and hence come up with simple guiding principles. The detailed design can always be performed on the basis

of the blueprints obtained from the sketchy model.

https://www2.illinois.gov/gov/green/Pages/ElectricVehicleInitiatives.aspx
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addressed in this paper is how these resources should be allocated to each of the incentives over the analysis period to

optimize the intended objective.

Several simplifying assumptions about vehicle choice are made here in order to reduce unnecessary complexities involved

in developing an optimization model and the corresponding solution techniques.

Assumption 1. Individual consumers, instead of households, are modeled.3

Assumption 2. Each vehicle must be replaced and retired after it reaches certain age, which endogenizes the evolution of

vehicle stock.4

Assumption 3. Consumers with average demographic and personal attributes (e.g. income, education) are considered and

are only distinguished by the average travel pattern (i.e. distribution of daily travel distances).5

Assumption 4. Average consumers narrow their choice to one of the three categories: conventional gasoline engine vehicles

(CGV), plug-in hybrid electric vehicles (PHEV), or battery electric vehicles (BEV). These vehicles are otherwise similar in all

attributes except fuel type, fuel efficiency, range and purchase price.6

3. Modeling framework

The market evolution of vehicle sales and stock is modeled in a fixed period of y = {0, 1, 2, . . .,Y} years for a discrete

set of consumers {1, . . . , I}, who would choose a vehicle from a discrete set {1, . . . , J}. Each consumer class i has a known

base population in year 0, denoted as Q0
i
, and a newly added population in each year y, denoted as q

y
i
. Consumer class i is

identified by its travel pattern, which is characterized by the distribution of the daily trip distance. Our definition of travel

patterns follows the driver type definition proposed in MA3T (Lin and Greene, 2010) and LAVE-Trans (NRC, 2013), which

classifies drivers into modest drivers, average drivers, and frequent drivers based on 2001 National Household Travel Survey

(NHTS) data. Each of the driver types corresponds to a unique set of calibrated parameters that define the shape of the trip

distance distribution.

As per Assumption 4, we focus on three types of vehicles for simplicity: conventional gasoline vehicles (CGV, j = 1), plug-

in hybrid electric vehicles (PHEV j = 2), and battery electric vehicle (BEV, j = 3). The difference between PHEV and BEV is

that PHEV has both electrical and gasoline engines, so it can drive on either electricity or gasoline. Each vehicle is identified

by the retail price p
y
j
, home-based electric range r

y
j
, life expectance (l

y
j
), purchase subsidy s

y
j
, and terminal (resale) value

(ξ y
j
). Note that all of the above properties may change over time. Note that the home-based electric range r

y
j

may depend

on both the type of consumers’ residency and the type of vehicles (PHEV or BEV). In this paper, however, we assume all

consumers have access to home-based charging for simplicity.

Denote the number of vehicle j bought by consumer i in year y as V
y
i j

. Accordingly, the total number of consumers i who

are driving vehicle j in year y can be computed as follows.

Qy
i j

= Qy−1
i j

− V
y−l j

i j
+ V y

i j
, y = 1, . . .,Y (1)

We assume that Q0
i j

and V
y
i j
,∀y = −l j, . . . are given, and note that the latter may be simply estimated as Q0

i j
/l j . V

y
i j

is estimated

based on

V y
i j

=
(

qy
i
+

∑
j

V
y−l j+1

i j

)
Py

i j
, y = 1, . . . ,Y, (2)

where q
y
i

is the number of newly added customers i and
∑

j V
y−l j+1

i j
is the total number of customs i whose vehicles j have

reached their life limit and hence they must acquire a new vehicle. P
y
i j

is the probability that consumers class i chooses

vehicle j in year y, which will be determined by a vehicle choice model, as discussed later.

3.1. Travel and charging model

Travel is represented using a simple model as illustrated in Fig. 1. The radius of the inner circles represents the electric

range of a given vehicle (denoted as rj) and the outer circle describes the boundary of an imaginary city, with a diameter of
3 This assumption is commonly used in the literature, see e.g. Lin and Greene (2010), Eppstein et al. (2011), and NRC (2013).
4 We note that vehicle stock data may be directly available from other sources, such as American Energy Outlook (AEO) published by the US Department

of Energy (DOE, 2014). The proposed model can be revised to take these data as inputs.
5 The simulation model developed by Oak Ridge National Laboratory, known as the Market Acceptance of Advanced Automotive Technologies (MA3T, Lin

and Greene, 2010), divides the US consumers into 1458 segments based on region, residency, charging availability, attitude toward AFVs and travel pattern.

We only consider travel pattern in this paper because the daily travel distance has a significant impact on the choice of ranged-limited AFVs and their

operating costs. However, the optimization framework proposed herein applies to any number of consumer segments provided that their vehicle choice

probabilities are available in a closed form.
6 See Eppstein et al. (2011) for example. Again, extending to more refined vehicle types, such as those considered by Lin and Greene (2010), is straight-

forward within the proposed optimization framework.
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Fig. 1. Illustration of the proposed travel model.
L. Because our focus is to examine the policy tradeoff at a macroscopic level, the following assumptions are introduced to

simplify the travel and charging behaviors.

Assumption 5. All consumers reside uniformly in one of the imaginary cities, each portrayed as a circle with a diameter of

L (see Fig. 1). The number of cities required to hold a population of N is thus

nc =
⌈

4N

πL2ξ

⌉
, (3)

where ξ is the average population density, and �a� denotes the minimum integer larger than or equal to a. As N changes in

the analysis period, ξ , instead of nc, is changed accordingly.

Assumption 6. Each consumer’s daily total trip distance is modeled as a random variable ω, independent of time (i.e. model

year y). If a realization of ω is shorter than L, the consumer is assumed to travel within city (intracity trips); otherwise it

corresponds to an intercity trip. No travel details other than daily trip distance are considered in this study.

Assumption 7. All EV users will start their daily travel with a fully charged battery.7 For intracity travel, all EV users are

assumed to charge the battery after it is fully depleted, and the charging time will not be considered as a penalty.8 For

intercity travel, charging would only be considered by BEV users, as the inconvenience of charging is assumed to outweigh

its benefits for PHEV users.

Assumption 8. The probability that an EV user can find public charging facilities depends on the density of such facilities,

which is represented as the ratio between the number of existing charging stations to the number of charging stations

required to achieve a full coverage. Charging stations within cities are assumed to distribute uniformly in the circle that

represents each city. Charging stations outside cities are assumed to uniformly distribute along imaginary linear highway

corridors that support intercity trips.

Assumption 9. All charging stations have enough capacity to accommodate all EV users at any given time. In other words,

EV users incur no queuing delay when seeking to charge their vehicles.

As per Assumption 6, we use fi and Fi to denote the probability density function (PDF) and cumulative probability func-

tion (CDF) of ωi, the random daily travel distance of consumer i. Note that fi and Fi are assumed to be time-independent for

simplicity. For any given consumer i and vehicle j, we need to distinguish the trips within the inner circle (ωi ≤ rj), longer

than rj but shorter than the diameter of the city (rj < ωi ≤ L) and beyond L (ωi > L, or intercity trips). The average daily
7 This assumption, which implies the universal availability of home charging, can be easily relaxed.
8 It is widely held that intracity charging facilities should be placed where the PEV users are likely to stay for an extensive period of time (e.g., workplace,

shopping malls or recreational facilities, Pound, 2012; Ghamami et al., 2014).
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distance of consumer i is

Ri =
∫ ∞

0

fi(ω)ωdω

=
∫ r j

0

fi(ω)ωdω +
∫ L

r j

fi(ω)ωdω +
∫ ∞

L

fi(ω)ωdω

≡ R0
i j + R1

i j + R2
i . (4)

R0
i j

is the portion of the average distance contributed by trips shorter than rj—for PEVs, this distance is traveled on electricity

initially charged at home. For users who drive CGV, R0
i j

= 0 since r j = 0. R1
i j

is the portion of the average distance contributed

by trips longer than rj and shorter than L. The portion of average distance traveled using energy other than electricity

charged at home (either gasoline or public charging) for intracity trips, denoted as S1
i j
, is

S1
i j =

∫ L

r j

fi(ω)(ω − r j)dω = R1
i j − r j(Fi(L) − Fi(r j)). (5)

Similarly, the portion of average distance traveled using energy other than electricity charged at home for intercity trips

S2
i j =

∫ ∞

L

fi(ω)(ω − r j)dω = R2
i − r j(1 − Fi(r j)). (6)

For all EV users, the total daily distance traveled on electricity depends on the charging facility. Let λy

l
∈ [0, 1], l = 1, 2 be

the probability of finding charging for intracity (l = 1) and intercity trips (l = 2) in year y, and u
y

l
be the number of chargers

newly placed in year y. The cumulative number of chargers at location l in year y is

xy

l
= xy−1

l
+ uy

l
. (7)

According to Assumption 8, the probability of successfully finding public charging is

λy

l
= xy

l

κl

, (8)

where κ l is the maximum number of charging stations at location l = 1, 2 that provides full charging accessibility, which is

defined as being similar to the level of refueling accessibility experienced by conventional gasoline vehicles. Moreover, for

EV users, the portions of the average distance that cannot use electricity are

Aly
i j

= Sl
i j(1 − λy

l
), l = 1, 2 (9)

Based on Assumption 7, PHEV users will only seek charging for intracity trips. Thus, A
ly
i j

= Sl
i j

for l = 2 and j = 2. BEV users,

on the other hand, may not be able to complete their trip when the following two events occur simultaneously: (1) the trip

distance is larger than rj, and (2) extending the range through public charging is impossible. The joint probability of these

two events is μ1
i j
(1 − λy

1
) + μ2

i
(1 − λy

2
), where9

μ1
i j =

∫ L

r j

fi(ω)dω; μ2
i j =

∫ ∞

L

fi(ω)dω; j = 2, 3. (10)

When it happens, we assume that alternative transportation (e.g. alternative vehicles, transit) will be used to fulfill the travel

need on that day.

We proceed to estimate the parameters κl , l = 1, 2. Let us define the total population in the base year as N = ∑
i Q0

i
.

Assumption 5 dictates that the population is uniformly distributed in imaginary cities of circular shape with an identical

radius of L/2. For a given number of charging station n uniformly located in the city, the expected travel distance from

home to a station is roughly (see Module 5, Daganzo, 2010)

d = 0.5

√
πL2

4n
.

Denoting the expected home-station distance that gives full accessibility as dm (which is treated as an exogenous parameter),

we can estimate

κ1 = nc
πL2

16d2
m

. (11)
9 The formula assumes rj < L. If rj > L, μ1
i j

= 0 and μ2
i j

= ∫ ∞
r j

fi(ω)dω.
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For trips outside of city, we estimate the number of needed charging station based on per-capital length of state highway,

denoted as σ (e.g. US currently has about 160,000 miles highway for a population of about 300 million). Let sm be the

average spacing between stations that achieves full accessibility. We can then estimate

κ2 = σN

sm
.

Clearly, it is reasonable to require

xy

l
≤ κl, l = 1, 2. (12)

3.2. Vehicle choice model

We assume that consumer i’s utility of choosing vehicle j can be estimated as

Uy
i, j

= β0
j + β p

i

(
py

j
− sy

j
− ξ y

j

wy
i

)
+ βg

i

ĝy
i j

wy
i

+ βt
i

t̂y
i j

wy
i

+ βc
i

ĉy
i j

wy
i

+
∑

l

βd
jlλ

y

l
, (13)

where p
y
j

is the purchase price of vehicle j (with a subsidy s
y
j

and a terminal value ξ y
j
), w

y
i

= 40 × 52 × w̄
y
i

is the annual

average income for consumer i (with w̄
y
i

being hourly wage rate), ĝ
y
i j

is the income-weighted aggregate fuel cost of using

vehicle j by consumer i in model year y, t̂
y
i j

is the income-weighted estimated refueling time cost of using vehicle j by

consumer i, and ĉ
y
i, j

is the income-weighted carbon footprint cost of using vehicle j by consumer i, and finally βd
j
λy

l
measures

the utility of charging density. We note that β p
i
, βg

i
, βt

i
and βc

i
should all have a negative sign, and βd

jl
should have a positive

sign. β0
j

is a vehicle-specific constant that encapsulate all “hidden” attributes. This constant will be calibrated against the

observed market share, as detailed in Section 5.1.

Accordingly, the probability of choosing vehicle j using the logit formula (assuming Independence of Irrelevant Alterna-

tives, or IIA, see e.g. Ben-Akiva and Lerman, 1985) is estimated by

Py
i j

= eUy
i j∑

j′ e
Uy

i j′
. (14)

Now we proceed to define ĝ
y
i j
, t̂

y
i j

and ĉ
y
i j

in (13). Note that

ĝy
i j

=
y+l j∑
y′=y

ĝyy′
i j

; t̂y
i j

=
y+l j∑
y′=y

t̂yy′
i j

; ĉy
i j

=
y+l j∑
y′=y

ĉyy′
i j

,

where ĝ
yy′
i j

is the estimated fuel cost in year y′ for the vehicle purchased in year y. Note that we assume consumers have

knowledge of future price of vehicles, but have to rely on the currently available charging facility to estimate the vehicle’s

total electricity mileage.

ĝyy′
i j

=

⎧⎨
⎩

Rih
y′
o j = 1

(A1y
i j

+ S2
i j
)hy′

o + (Ri − A1y
i j

− S2
i j
)hy′

e j = 2

hb(μ
1
i j
(1 − λy

1
) + μ2

i
(1 − λy

2
)) + (Ri − A1

i j
− A2

i j
)hy′

e j = 3

(15)

In contrast, the true fuel cost of vehicle j in year y is

gy
i j

=

⎧⎨
⎩

Rih
y
o j = 1

(A1y
i j

+ S2
i j
)hy

o + (Ri − A1y
i j

− S2
i j
)hy

e j = 2

hb(μ
1
i j
(1 − λy

1
) + μ2

i
(1 − λy

2
)) + (Ri − A1y

i j
− A2y

i j
)hy

e j = 3

(16)

where h
y
e is the electricity price in year y, h

y
o is price of gasoline in year y, and hb is the cost of finding a backup vehicle to

complete the trip (estimated for each day). Similarly

t̂yy′
i j

=
{

0, j = 1, 2

S2
i j
λy

2
αy′

i
w̄y′

i
j = 3

; ty
i j

=
{

0, j = 1, 2

S2
i j
λy

2
αy

i
w̄y

i
j = 3

; (17)

where αy
i

is the charging time per unit distance and w̄
y
i
is the average wage rate of consumer i in year y. Note that

per Assumption 7, the charging time only applies to the distance traveled beyond L by BEV drivers. Finally, the carbon

footprint is

ĉyy′
i j

=

⎧⎨
⎩

Rih
y′
c j = 1

(A1y
i j

+ S2
i j
)hy′

c j = 2

(A1y
i j

+ A2y
i j

)hy′
c j = 3

, cy
i j

=

⎧⎨
⎩

Rih
y
c j = 1

(A1y
i j

+ S2
i j
)hy

c j = 2

(A1y
i j

+ A2y
i j

)hy
c j = 3

(18)

where h
y
c is the CO2 emission cost corresponding to each mile driven (measured by dollar per mile) in year y. Note that we

assume the alternative mileage by BEV consumes gasoline.
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3.3. Optimization model

Let us now define the main components of the system costs used in the optimization model. The total purchase subsidy

required is

M =
∑
y=1

∑
i

∑
j

V y
i j

sy
j
. (19)

The total fuel cost is

G =
Y∑

y=1

∑
i

∑
j

Qy
i j

gy
i j
. (20)

The total investment on charging stations is

I =
∑

y

2∑
l=1

uy

l
hy

pl
, (21)

where h
y

pl
is the unit cost of building one charging station corresponding to location l in year y.

The total consumer time spent on charging can be represented as

T =
∑

y

∑
i

∑
j

Qy
i j

ty
i j
, (22)

and finally the total cost of carbon emission is

C =
∑

y

∑
i

∑
j

Qy
i j

cy
i j
. (23)

The optimization model can be formulated as follows:

min z = γgG + γt T + γcC =
∑

y

∑
i

∑
j

(
Qy

i j
× (γggy

i j
+ γtt

y
i j

+ γccy
i j
)
)

(24a)

subject to: xy

l
= xy−1

l
+ uy

l
, ∀l = 1, 2; y = 1, 2, . . . (24b)

Qy
i j

=
y∑

y′=y−l j+1

V y′
i j

, ∀i, j, y = 1, 2, . . . (24c)

V y
i j

=
(

qy
i
+

∑
j

V
y−l j+1

i j

)
Py

i j
, ∀i, j, y = 1, 2, . . . (24d)

xY
l ≤ κl, l = 1, 2, . . . (24e)

M + I =
∑

y

∑
i

∑
j

V y
i j

sy
j
+

∑
y

∑
l

uy

l
hy

pl
≤ B (24f)

sy
j
≥ 0,∀ j, y; xy

l
≥ 0 ∀l, y (24g)

The objective function is a weighted cost inclusive of fuel, charging time and CO2 costs.10 The decision maker has the

flexibility of adjusting the coefficients γ g, γ t and γ c to reflect how it values each of the cost components. For instance, set-

ting γc = 0, γt = 0, γc = 1 leads to an aggressive emission reduction policy, whereas setting γc = 1, γt = 1, γc = 1 represents

a more balanced approach. It is not the purpose of this paper to promote any particular objective function, however.

Constraints (24b) and (24c)–(24d) describe the dynamic evolution of charging stations and vehicles, respectively. Con-

straints (24e) and (24f) provide the limits on the number of charging stations built and total budget available for incentives,

respectively. We note that Constraint (24e) only applies the limit on the last year of the analysis period Y, because meeting

the limit in year Y implies the limit must also be met in all y < Y.

In the above model, s
y
j

and u
y

l
are decision variables, and x

j

l
,V

y
i j

and Q
y
i j

are state variables. Note that x0
l
, V

y
i j
, y ≤ 0 and

q
y
i
, y ≤ 1 are given inputs.

4. Solution method

Due to the nature of the market evolution dynamics and logit-based choice model, the optimization problem (24) is

not only highly nonlinear, but also very likely non-convex. Consequently, it is difficult to establish the uniqueness of a

global optimal solution. However, to support policy-making, a satisfactory improvement over existing decisions is probably
10 The vehicle price is not included here because we assume that AFV-related polices target “social costs”, such as emission, gasoline consumption and

user time. Yet, the cost of acquiring vehicles can be easily incorporated into the formulation.
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sufficient in most cases. Therefore, a steepest descent direction algorithm is proposed here for finding a local optimum. We

note that, to avoid being trapped in a miserable local optimum, a modeler can always try different starting points until a

satisfactory solution is obtained.

4.1. Derivatives

We first derive the derivative of the objective function z with respect to ue
l
, l = 1, 2, e = 1, . . . ,Y, and st

k
, k = 1, . . . J, e =

1, . . . ,Y . Note that

∂z

∂ue
l

=
∑

y

∑
i

∑
j

(
∂Qy

i j

∂ue
l

(γggy
i j

+ γtt
y
i j

+ γccy
i j
) + Qy

i j

(
∂(γggy

i j
+ γtt

y
i j

+ γccy
i j
)

∂ue
l

))
(25)

∂Qy
i j

∂ue
l

=
∑y

y′=y−l j+1
∂V y′

i j

∂ue
l

(26)

We first examine the derivative of V
y
i j

with respect to ue
l
. Note that the derivative is zero whenever y < e. From Constraint

(24d) we know that

V y
i j

=
(

qy
i
+

∑
j

V
y−l j+1

i j

)
Py

i j

Thus,

∂V y
i j

∂ue
l

=
∂

∑
j V

y−l j+1

i j

∂ue
l

Py
i j

+
(

qy
i
+

∑
j

V
y−l j+1

i j

)
∂Py

i j

∂ue
l

The reader is referred to Appendix B for details about how to compute
∂V

y
i j

∂ue
l

,
∂g

y
i j

∂ue
l

,
∂c

y
i j

∂ue
l

, and
∂t

y
i j

∂ue
l

in closed forms. To compute

the derivative with respect to se
k
, note

∂z

∂se
k

=
∑

y

∑
i

∑
j

(
∂Qy

i j

∂se
k

(γggy
i j

+ γtt
y
i j

+ γccy
i j
) + Qy

i j

(
∂(γggy

i j
+ γtt

y
i j

+ γccy
i j
)

∂se
k

))
, (27)

∂Qy
i j

∂se
k

=
∑y

y′=y−l j+1
∂V y′

i j

∂se
k

;
∂(γggy

i j
+ γtt

y
i j

+ γccy
i j
)

∂se
k

= 0, (28)

where

∂V y
i j

∂se
k

=
∂

∑
j V

y−l j+1

i j

∂se
k

Py
i j

+
(

qy
i
+

∑
j

V
y−l j+1

i j

)
∂Py

i j

∂se
k

.

First, note that
∂V

y
i j

∂se
j′

= 0 whenever e �= y; that is, the subsidy provided to a vehicle type j in year y can only affect the vehicle

choice in that year. Second,

∂Py
i j

∂se
k

=
J∑

j′=1

∂Py
i j

∂Uy
i j′

∂Uy
i j′

∂se
k

,

where
∂P

y
i j

∂U
y

i j′
is given in Eq. (41) and

∂Uy
i j′

∂se
k

= −β p
i

wy
i

.

Finally the derivative of M and I with respect to the decision variables can be evaluated as follows:

∂M

∂ue
l

=
y∑

y′=e

∑
i

∑
j

∂V y′
i j

∂ue
l

sy′
k
; ∂M

∂se
k

=
∑

y

∑
i

∑
j

∂V y
i j

sy
j

∂se
k

=
∑

i

(
V e

ik +
∑

j

∂V e
i j

∂se
k

se
j

)
(29a)

∂ I

∂se
k

= 0; ∂ I

∂ue
l

= he
pl (29b)

We close this section by noting that the derivatives defined in (25) and (27) can be evaluated in a single ascending pass

of time, along with all the state variables.



Y. (Marco) Nie et al. / Transportation Research Part B 84 (2016) 103–123 111
4.2. A steepest descent direction algorithm

To solve (24) we first construct its Lagrangian by dualizing the two capacity constraints (24e) and (24f). Associating

Constraint (24f) with multiplier γ and (24e) with multiplier ρ l, the Lagrangian is written as (note that the dynamic evolution

conditions are incorporated implicitly in the objective function):

L = z + γ (M + I − B) +
∑

l

ρl

(
xY

l − κl

)
. (30)

The Karush–Kuhn–Tucker (KKT) conditions are

∂L
∂se

k

≡ ∂z

∂se
k

+ γ
∂M

∂se
k

≥ 0 se
k

∂L
∂se

k

= 0; ∀k, e (31a)

∂L
∂ue

l

≡ ∂z

∂ue
l

+ ρl + γ

(
he

pl + ∂M

∂ue
l

)
≥ 0 ue

l

∂L
∂ue

l

= 0; ∀l, e (31b)

γ (M + I − B) = 0; γ ≥ 0; M + I − B ≤ 0 (31c)

ρl

(
xY

l − κl

)
= 0; ρl ≥ 0; xY

l − κl ≤ 0; ∀l (31d)

The following result gives regularity conditions under which KKT conditions guarantee at least a local minimum.

Proposition 1 (Necessity). If [s∗, u∗] is a local minimum to Problem (24) that satisfies one of the following conditions: (i)

Constraint (24f) is not binding; (ii) there exists at least one s
y∗
j

> 0; or (iii) Constraint (24e) is not binding for l = 1 and l = 2;

then [s∗, u∗] must also satisfy the KKT conditions (31).

Proof. See Appendix A. �

We now propose a specialized algorithm that makes use of the gradient of L and the KKT conditions to guide the

descending course from an initial solution to a local optimum. The basic algorithmic idea can be described as follows.

In each iteration, we first find the decision variable that, when deviated from its current value but kept within the

feasible set, promises the maximum possible reduction in the objective function (24a). Let +
s and −

s be defined as

+
s =

{
( j, y), s.t.

∂L
∂sy

j

> 0

}
; −

s =
{

( j, y), s.t.
∂L
∂sy

j

< 0

}
, (32)

Similarly, we can define

+
u =

{
(l, y), s.t.

∂L
∂uy

l

> 0

}
; −

u =
{

(l, y), s.t.
∂L
∂uy

l

< 0

}
(33)

The KKT conditions dictate that −
s = ∅, −

u = ∅, s
y
j
= 0 for all ( j, y) ∈ +

s and u
y

l
= 0 for all (l, y) ∈ +

u . For each of the above

four sets, the deviation and the maximum possible reduction in the objective can be defined respectively as follows:

�sy
j
= − min

(
sy

j
, τ

∂L
∂sy

j

)
; dz+

s =
{

min

(
− ∂z

∂sy
j

× �sy
j

)
,∀( j, y) ∈ +

s

}
(34)

where τ is a predetermined step size, and min(s
y
j
, τ ∂L

∂s
y
j

) defines the maximum possible reduction in s
y
j

at the given step

size and the gradient.

�sy
j
= −τ

∂L
∂sy

j

; dz−
s =

{
min

(
∂z

∂sy
j

× �sy
j

)
,∀( j, y) ∈ −

s

}
(35)

�uy

l
= − min

(
uy

l
, τ

∂L
∂uy

l

)
; dz+

u =
{

min

(
− ∂z

∂uy

l

× �uy

l

)
,∀(l, y) ∈ +

u

}
(36)

�uy

l
= min

(
κl − xY

l ,−τ
∂L
∂uy

l

)
; dz−

u =
{

min

(
∂z

∂uy

l

× �uy

l

)
,∀(l, y) ∈ −

u

}
(37)

where again τ is the step size and κl − xY
l

represents the maximum additional number of chargers allowed at location l.

In the next, we find min(dz−
s , dz−

u , dz+
s , dz+

u ) and adjust the corresponding decision variables to get a new solution. The

algorithm is terminated when the solution is sufficiently close to a KKT point or the maximum number of iterations is

reached. The details of the solution algorithm, in the form of pseudo code, are given in Algorithm 1. The step size τ is

pre-determined in this study based on the iteration index n as follows:

τ = 1

nη
(38)

where η ∈ (0, 1] is a parameter.
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Algorithm 1 Steepest decent direction algorithm.

1: Input: Convergence criterion ε, maximum number of inner iterations M and main iterations N.

2: Output: Optimal subsidy s
y∗
l

and optimal number of new charging stations u
y∗
l

.

3: initialize:

4: Set main iteration index n = 0, the convergence measure gr = ∞, γ = 0, and ρl = 0, l = 1, 2. Initialize s
y

l
(0), u

y

l
(0).

5: while gr > ε and n ≤ N do

6: Compute V
y
i j
, Q

y
i j
, x

y

l
, as well as all derivatives ∂z/∂u

y

l
, ∂z/∂s

y
j
, ∂(M + I)/∂u

y

l
and ∂(M + I)/∂s

y

l
.

7: Compute the relative gap gr as follows:

gr =
∑

l

∑
y

∣∣∣∣ ∂L
∂uy

l

uy

l

∣∣∣∣/κl +
∑

j

∑
y

∣∣∣∣ ∂L
∂sy

j

sy
j

∣∣∣∣/(M + I) + γ |M + I − B|/B +
∑

l

ρl|xY
l − κl|/κl (48)

8: Compute dz−
s , dz−

u , dz+
s , dz+

u and the corresponding deviations �u
y

l
and �s

y

l
.

9: if dz−
s or dz+

s = min(dz−
s , dz−

u , dz+
s , dz+

u ) then

10: Set the corresponding s
y
j
(n + 1) = s

y
j
(n) + �s

y
j
, where �s

y
j

is defined in (34) or (35).

11: Estimate the change in the budget by �(M + I) = ∂M+I

∂s
y
j

�s
y
j

12: if M + I + �(M + I) ≤ B then set γ = 0;

13: else

14: set (as per KKT conditions (31)) γ = − ∂z

∂s
y
j

/ ∂M

∂s
y
j

, ρl = − ∂z
∂ue

l

− γ
(

he
pl

+ ∂M
∂ue

l

)
, l = 1, 2

15: end if

16: else

17: Set the corresponding u
y

l
(n + 1) = u

y

l
(n) + �u

y

l
, where �u

y

l
is defined in (36) or (37).

18: Estimate the change in the budget by �(M + I) = ∂M+I

∂u
y
l

�u
y

l

19: if M + I + �(M + I) ≤ B then set ρ = 0

20: else

21: set γ = − ∂z

∂s
y
j

/ ∂M

∂s
y
j

22: end if

23: if xY
l

+ �u
y

l
< κl then set ρl = 0

24: else

25: set ρl = − ∂z
∂ue

l

− γ
(

he
pl

+ ∂M
∂ue

l

)
26: end if

27: end if

28: Set n = n + 1, update step size according to Eq. (38).

29: end while

30: Set s
y∗
j

= s
y
j
(n − 1), u

y∗
l

= u
y

l
(n − 1).
5. Numerical experiments

In this section a hypothetical case study is constructed to test the proposed optimization model. Our focus here is not to

produce a realistic model ready for decision making support, but rather to prove the concept and demonstrate its potential.

In the following, we first introduce the setting of the case study and how the necessary input parameters are obtained.

Then, the optimization model is tested under different scenarios. For each scenario, the (locally) optimal incentive policies

produced by the optimization model are compared against the state-of-the-practice policies. Finally, a sensitivity analysis is

conducted to examine the sensitivity of the optimal solution to energy price and environmental cost.

5.1. Case study

The case study models the choice of three types of vehicles, namely CGV ( j = 1), PHEV ( j = 2) and EV ( j = 3), in a period

of Y = 30 years. The main characteristics of the vehicles in the base year are reported in Table 1.

Consumers are differentiated exclusively by their travel pattern. Specifically, we divide consumers into three classes:

modest drivers (i = 1), average drivers (i = 2), and frequent drivers (i = 3). Fig. 2 shows the probability density functions

(PDF) of each consumer class’ daily trip distance, directly adopted from the MA3T model (Lin and Greene, 2010). Based on

the MA3T model, we estimate the average ratio between the populations of the three classes of consumers is 0.35:0.33:0.32.

Without loss of generality, the total population of all drivers at the base year is set at 1,000,000. Table 2 summarizes
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Table 1

Vehicle characteristics in base year.

Vehicle type CGV j = 1 PHEV j = 2 BEV j = 3

Price (p0
j
) in $a 21,000 35,000 31,000

Terminal value (ξ 0
j

) in $ 2000 3000 2500

Electric range (r0
j
) in mile 0 20 75

Gas efficiency in gallon/milea 0.03 0.03 0

Electricity efficiency in kWh/milea 0 0.23 0.23

CO2 emission in kg/mileb 0.5 0.5 0

Life (l0
j
) 10 10 10

a MA3T model inputs, see http://cta.ornl.gov/ma3t/, last visited: 11-21-2014.
b US Environmental Protection Agency, http://www.epa.gov/cleanenergy/

energy-resources/refs.html, last visited: 07-31-2014. We note that these are

tailpipe emission rate (tank-to-wheels), not full fuel cycle (well to wheels) rate.

However, upstream emission may be taken into account by changing these

parameters.
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Fig. 2. Probability density functions of daily trip length for different consumer classes. All distributions are fit to a gamma distribution with the following

parameters. User 1: Modest traveler (mean = 23.47 miles, variance = 334.5 mile2), User 2: Average traveler (mean = 40 miles, variance = 900 mile2, User

3: Frequent traveler (mean = 75 miles, variance = 3200 mile2).
the values of all other input parameters adopted in the case study, along with sources used to estimate them, whenever

applicable.

The coefficients in the vehicle choice model have critical influences on the outcomes of the model. Usually, they should

be calibrated from empirical behavioral data. In this study, these coefficients are synthesized from the literature as follows.

We start by setting the coefficient for vehicle price β p
i

= −1. Then, the other coefficients are determined based on their

relative magnitude against β p
i
, as revealed in the literature. Tables 3 and 4 report the consumer- and vehicles-specific coef-

ficients used in this case study, respectively. Details regarding how these values are determined can be found in Appendix C.

Once all the parameters are set, the constants β0
j

are calibrated so as to replicate the current aggregated market share

of the three types of vehicles in the base year. In this study, the initial market share is assumed to be Q0
i1

: Q0
i2

: Q0
i3

= 0.92 :

0.07 : 0.01,∀i. In reality, the market share for different classes of consumers may vary. However, no data is readily available

that differentiates the aggregate market share for the consumers types defined in this paper. The least squares method

(see Section 5.5, Ben-Akiva and Lerman, 1985) is used to perform the calibration and the results are reported in the last row

in Table 4.

Finally, unless otherwise specified, γg = γt = γc = 1.0. In this case, the objective function may be considered a surrogate

of “social cost” associated with vehicle use.

5.2. Optimal policy vs. alternative policies

In this section we compare the optimal policies provided by the proposed model with the following incentive

policies.

http://cta.ornl.gov/ma3t/
http://www.epa.gov/cleanenergy/energy-resources/refs.html
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Table 2

Other input parameters.

Definition Value Unit

Energy price

Gasolinea 3.2 ($/gallon)

Electricityb 0.08 ($/kWh)

CO2
c 200 ($/ton)

Wage rate (w̄0
i
)d 15 ($/h)

Cost of acquiring alternative transporta 30 ($/time)

Charging-related

Charger installation coste 500 ($/kW)

Charge powere 50 kW

Fixed charge station construction coste 150,000 ($)

Number of chargers per station 4 –

Miscellaneous

Diameter of the imaginary city (L) 50 (miles)

Full-accessibility home-station distance for intracity (dm) 2 (mile)

Full-accessibility station space for intercity(sm) 10 (mile)

Average population density(ζ ) 500 (person/mile
2
)

Per-capita highway millagef 0.0005 (mile/person)

a Administration (2014).
b MA3T model inputs, see http://cta.ornl.gov/ma3t/, last visited: 11-21-2014.
c See Appendix B for the estimation of CO2 price.
d The base year wage rate is estimated from per capita income in US, which is close

$30,000 in 2013, see e.g. http://www.deptofnumbers.com/income/us/, last visited: 12-15-

2014.
e See Nie and Ghamami (2013). A charging station with a power of 50 kW belongs to

Type III (or fast) charging facility.
f Estimated based on the total US population and the total length of the national highway

system (approximately 160,000 mile, see http://www.fhwa.dot.gov/ohim/hs01/hm41.htm,

last visited: 12-15-2014).

Table 3

Consumer-specific coefficients in the vehicle choice model.

β p
i

(capital) βg
i

(fuel) βc
i

(CO2) βt
i

(time)

Default −1 −0.7 −1 −0.5

Modest (i = 1) −1 −0.5 −1 −0.7

Average (i = 2 ) −1 −0.7 −1 −0.5

Frequent (i = 3) −1 −0.9 −1 −0.3

Table 4

Vehicle-specific coefficients in the vehicle choice model.

CGV ( j = 1) PHEV ( j = 1) BEV ( j = 1)

βd
j1

(charging density (intracity) 0 0.3 0.6

βd
j2

(charging density (intercity) 0 0.2 0.4

β0
j

2.34 −0.37 −1.97
• Current policy (CURRENT): we set $4000 purchase subsidy for BEVs (s
y
3
) and $2500 subsidy for PHEVs (s

y
2
) in y =

1, . . . , 10.11 The scaled number of charging stations at the base year is set to 4 for intracity (x0
1
, full accessorily require

κ1 ∼ 250) and 1 for intercity (x0
1
, full accessibility requires κ2 ∼ 50). The additional number of charging stations built in

year y = 1, . . . , 30 is 2.6 for intracity (u1
1
) and 0.5 for intercity (u1

2
), with an annual growth rate of 0.1%.12

• Zero investment policy (ZERO): this policy is a do-nothing policy, introduced to benchmark the efficacy of investment.
• Higher subsidy policy (HISUB): this policy deviates from CURRENT in that the subsidies to BEV are increased to $10,000.13
11 Existing subsides for new EV buyers range between $2500 and $7500, see http://www.irs.gov/Businesses/Plug-In-Electric-Vehicle-Credit-28IRC-30-and-

IRC-30D29, last visited: 12-03-2014. On average the states are providing $2500 to $4000 subsidy to PEV owners, see http://www.afdc.energy.gov/laws/state,

last visited: 12-03-2014.
12 The charging station data provided by US Department of Energy was used to derive the initial number of charging stations, annual increase and

growth rate, see http://www.afdc.energy.gov/data/10332, last visited: 12-03-2014. Since the available data is for the entire US, they were scaled based on

the ratio between the study area (estimated from the total population and population density) and the land area of the US. Then, the charging stations are

distributed among intercity and intracity based on κ1/κ2.
13 It has been proposed that the maximum subsidy to plug-in EVs be increased from $7500 to $10,000, see http://content.usatoday.com/communities/

driveon/post/2012/02/president/-obama-budget-/electric-car-/subsidies-chevrolet-volt/1#.VICyEb64lcw, last visited: 12-03-2014.

http://cta.ornl.gov/ma3t/
http://www.deptofnumbers.com/income/us/
http://www.fhwa.dot.gov/ohim/hs01/hm41.htm
http://www.irs.gov/Businesses/Plug-In-Electric-Vehicle-Credit-28IRC-30-and-IRC-30D29
http://www.afdc.energy.gov/laws/state
http://www.afdc.energy.gov/data/10332
http://content.usatoday.com/communities/driveon/post/2012/02/president/-obama-budget-/electric-car-/subsidies-chevrolet-volt/1#.VICyEb64lcw


Y. (Marco) Nie et al. / Transportation Research Part B 84 (2016) 103–123 115

CGV
PHEV
BEV

0 5 10 15 20 25 30
-1000

0

1000

2000

3000

4000

5000

6000

Time (Year)

S
u

bs
id

y 
($

)

(a) Purchase subsidy

Intracity
Intercity

Maximum intercity charging stations

Maximum innercity charging stations

0 5 10 15 20 25 30
0

50

100

150

200

250

300

Time (Year)

N
um

b
e

r 
of

 a
ll 

ch
a

rg
er

s

(b) Cumulative charge stations

Fig. 3. Optimal policy in the BASE scenario (OPTIMAL, or minimizing total cost).
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Fig. 4. Comparison of four incentive policies.
In all cases, the following time-varying changes to the input parameters are introduced (note that inflation effect has

been excluded):

• Population (N): an annual growth rate of 0.85% is assumed (as per the population growth data published by The World

Bank, 2013).
• Hourly wage rate (w̄

y
i
): an annual growth rate of 1.2% is assumed (as per National Average Wage Index published by

Social Security Administration, 2013).
• Energy prices: an annual increase rate of 3.8% is assumed for the gasoline price, according to MA3T (http://cta.ornl.gov/

ma3t/).
• Vehicle price: based on MA3T, the prices of PHEV and BEV are assumed to decrease by an annual rate of 0.9% and 0.6%

respectively from the base year price. The price of CGV is assumed to increase by 0.1% each year.

In what follows, the above input setting will be referred to as BASE scenario. In the scenario, all the other parameters

are assumed to remain constant throughout the analysis period.

To ensure the comparison is meaningful, the market evolution is first simulated based on the CURRENT policy for the

BASE scenario to obtain the cumulative investment. The simulation results suggest the CURRENT policy spent in total $320

per capita, with $296.5 on subsidy, and $23.5 on charging stations. Accordingly, we set the maximum budget for the opti-

mization model as $350 per capita, just slightly higher than the CURRENT policy.

Fig. 3 depicts the optimal policy found by the proposed model. Clearly, building charging stations as many as possible

and as early as possible is crucial. In fact, the policy suggests increasing the number of charging stations to the maximum

value in the first year. This makes sense intuitively, because a charging station, once built, is there to stay. Therefore, it

benefits more if it is built earlier. Fig. 3 also suggests spending the rest of the budget exclusively on subsidizing BEV sales.

The optimal solution suggests that the subsidy ought to start around y = 11, and linearly increase to slightly more than

$5000 (interestingly, this is comparable to the current level of subsidy) before it is discontinued after y = 22.

Fig. 4 compares various cost components and investment for the four different policies, with more details presented in

Table 5. Compared to the OPTIMAL policy, the “no-nothing” policy (ZERO) increases the total cost by more than 20%, whereas

http://cta.ornl.gov/ma3t/
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Table 5

Relative changes in social cost, investment and market shares of

alternative policies compared to the OPTIMAL policy.

Policies ZERO (%) CURRENT (%) HISUB (%)

Social cost

Total 20.42 12.01 11.99

Fuel 22.91 13.94 13.97

Time −99.72 −95.41 −95.32

CO2 19.94 12.13 12.03

Investment

Total −100 −8.57 26.60

Subsidy −100 6.85 51.21

Charging station −100 −67.59 −67.59

Final market share

CGV 16.22 14.86 14.86

PHEV −25.00 −25.00 −25.00

BEV −80.00 −70.00 −70.00

BEV-OPTIMAL
PHEV-OPTIMAL
CGV-OPTIMAL
CGV-CURRENT
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Fig. 5. Total market share evolution under OPTIMAL and CURRENT policies.
for a comparable budget, the CURRENT policy still results in a total cost that is 12% higher. Importantly, with a much larger

budget (25% more), the HISUB policy virtually makes no difference in the total cost. Similarly, the three alternative policies

also lead to higher market share for CGV and lower market share for PHEV and BEV at the end of the analysis period (see

Table 5). For the market share of BEV, in particular, the ZERO and CURRENT policies would lead to a 80% and 70% loss

compared to the OPTIMAL policy, respectively.

The above observation highlights the promise of an optimization approach and the potential pitfalls of a well-intended but

poorly informed policy such as arbitrarily increasing the purchase subsidy. Note that the cost reduction brought by the incentive

programs mostly come from fuel and CO2 savings, thanks to the market shift to PHEVs and BEVs. As expected, the time cost

actually increases since the adoption of PHEVs and BEVs introduces charging time.

Also worth noting here is the fact that the OPTIMAL policy spends more money on charging stations and less on the

subsidy, compared to the CURRENT and HISUB policies. Giving priority to building more charging stations seems to play an

essential role in helping the adoption of the alternative fuel vehicles while reducing the total cost.

Fig. 5 visualizes the evolution of the overall market share under the CURRENT and OPTIMAL policies. The comparison not

only confirms that the OPTIMAL policy outperforms the CURRENT policy in shifting the market share to PHEV and BEV, but

also shows that it does so mostly in the first ten years. Notably, the distinct slopes of the OPTIMAL curves before and after

y = 10 can be attributed to the dramatic increase of charging stations in year y = 1 whose effect went away after ten years,

when the vehicles bought in y ≥ 1 began to retire from the fleet. Fig. 6 plots the evolution of the choice probabilities of the

three consumers under the OPTIMAL policy. The plot shows that consumers are increasingly in favor of PEVs, as they drive

more on average and make long trips with higher frequency. For frequent drivers, the probability of choosing PEVs rises to

almost 50% at the end of analysis period. This is expected because the frequent drivers benefit more from the savings in

fuel and CO2 costs brought by electric vehicles.

5.3. Impact of “social cost”

The default setting of our experiments is to minimize a weighted social cost that values fuel, CO2 and time equally (γg =
γt = γc = 1.0). In this section, we will compare the optimal policy from the default model to one that more aggressively
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Fig. 6. Evolution of consumer-specific vehicle choice probability under the OPTIMAL policy.
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Fig. 7. Optimal policy in the BASE scenario (CO2OPT, or minimizing CO2 cost).
target environment protection, namely minimizing CO2 cost only (called CO2OPT, i.e. γg = γt = 0, γc = 1). We emphasize

that the purpose here is not to discuss whether a particular objective is appropriate, but rather to demonstrate the model is

capable of producing policies based on specified objectives, which gives the decision makers an opportunity to understand

the consequences of pursuing certain objectives.

Fig. 7 visualizes the CO2OPT policy. A comparison with Fig. 3 indicates that the optimal investment policy for charging

stations remains unchanged. Yet, the subsidies to BEV have a quite different temporal pattern. Instead of linearly increasing

between 11 < y < 22, the subsidy is now given in the first 12 years and is linearly decreasing from a maximum value of

about $5500. As expected, the new policy does lower the CO2 cost by 0.05% compared to the OPTIMAL policy. However,

it also increases the total cost by about 0.05%. In any case, the differences in the costs associated with two objectives are

rather small, possibly because fuel and CO2 are strongly related to each other.

5.4. Computational performance

In this section we examine the computational performance of the proposed algorithm for finding OPTIMAL and CO2OPT

policies. The algorithm was coded in C++ and tested on a Workstation with an Intel Xeon CPU @2.8 GHz and 24 GB RAM. In

both cases, the ZERO policy is used as the initial solution. However, it is worth noting that other initial solutions were also

tested but differences found in the final solution were practically negligible.

Fig. 8(a) and (b) plots, respectively, objective function values and relative gap in each iteration when Algorithm 1 is used

to find OPTIMAL and CO2OPT polices for the BASE scenario. In both cases, the algorithm was terminated when the relative

gap reaches 10−6 (the target convergence criterion), which took about 850 iterations for CO2OPT2 and about 1050 iterations

for OPTIMAL. The computation time was less than 30 s in both tests. Whereas the objective function decreases monotonically

as the algorithm proceeds, the relative gaps are subject to much greater fluctuations. This is expected since by design the

algorithm aims at reducing the objective function value in each iteration following the steepest descent direction. Fig. 8(c)

shows how the step size decreases with the number of iterations, which corresponds to η = 0.3 in Eq. (38). Fig. 8(d) reveals
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Fig. 8. Computational performance of the proposed algorithm for BASE scenario.

Table 6

Scenarios tested for the sensitivity analysis.

Scenarios Description

1 BASE scenario

2 Same as BASE except the gasoline prices increases by 7.6% annually (DOUBLEGAS)

3 Same as BASE except the CO2 price increases by 3.8% annually (CO2GROWTH)

4 Same as BASE except PHEV sale price decreases by −1.5% annually (PHEVFAST)

5 Same as BASE except BEV sale price decreases by −1% (BEVFAST)
how the total used budget increases from zero to the maximum value ($350 per capita) as the algorithm drives the incentive

policy from ZERO to the respective optimums.

5.5. Sensitivity analysis

In this section, we test how sensitive the optimal solution is to the growth rate of the gasoline price, CO2 price, and the

price of electric vehicles. Table 6 shows the details of the five tested scenarios: Scenario 2 doubles the growth rate of the

gasoline price in the BASE scenario; Scenario 3 assumes the CO2 price increases at a rate comparable to that of the gasoline

in the BASE scenario; in Scenarios 3 and 4, the prices of PHEV and BEV are assumed to decline at a higher rate than that in

the BASE scenario.
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Fig. 9. Social costs of the five scenarios under CURRENT and OPTIMAL policies.

Table 7

Costs and final market shares in the five scenarios under OPTIMAL policy.

Costs (million dollar) Final market share

Fuel Time Emission Total CGV PHEV EV

BASE 86,417.1 1607.65 46,642.3 134,667 0.74 0.16 0.1

DOUBLEGAS 131,600 4015.83 39,220 174,836 0.46 0.23 0.31

CO2GROWTH 78,862.4 2619.04 79,482.8 160,964 0.6 0.22 0.18

PHEVFAST 86,158.5 1565.59 46,572.6 134,297 0.73 0.18 0.09

BEVFAST 86,104.4 1666.2 46,488.6 134,259 0.74 0.16 0.1
Fig. 9(a)–(d) compares various cost components in the five scenarios under CURRENT and OPTIMAL policies. First, note

that the costs from PHEVFAST and BEVFAST are almost identical to those from BASE, which seems to indicate that a mod-

estly accelerated decline (compared to the current predictions) in electric vehicle prices is unlikely to make any meaningful

difference. On the contrary, when the gasoline growth rate is doubled, the total cost increases almost 30% under the OPTI-

MAL policy, and about 50% under the CURRENT policy. The rise of CO2 price also has a significant impact, leading to about

20% and 27% increases in the total cost for the OPTIMAL and CURRENT policies, respectively. Fig. 9 also reveals that the

OPTIMAL policy seems to create more savings for higher total costs, such as in DOUBLEGAS and CO2GROWTH scenarios.

Table 7 reports the costs and final market shares in the five scenarios under OPTIMAL policy. For PHEVFAST, PHEV gains

about 2% in the market share at the expense of BEV and CGV (each loses 1%). For BEVFAST, the gain by BEV is so small that

it is hardly noticeable. On the other hand, DOUBLEGAS creates the largest market shift in favor of BEV: its market share

would triple from 10% to 31%, and exceed the share of PHEV. The adoption of BEV also benefits more from the rising price

of CO2. In CO2GROWTH, BEV gains 8% in the market share while PHEV only gains 6%.
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6. Conclusions

In this paper we propose a modeling framework for optimizing publicly funded incentive policies that aim to accelerate

the adoption of plug-in electric vehicles (PEVs). The impact of the incentives on the evolution of consumer vehicle market

is captured by integrating a simplified vehicle choice model and a macroscopic travel and charging model. The resulting

optimization model is formulated as a nonlinear and non-convex program. While finding the global optimum is not guar-

anteed, we prove that the KKT conditions are necessary for a local optimum under mild regularity conditions. A specialized

algorithm is then developed to search for a local optimum. Main findings from a case study that involves three vehicle types

and three consumer classes are summarized as follows.

• The proposed algorithm provides satisfactory convergence performance and is reasonably efficient in all tested scenarios.

In theory, the algorithm could converge to a different local optimum when starting at different initial solutions. However,

we have not observed such a case in the experiments.
• The optimal solution from the proposed model consistently outperforms the alternative policies that mimic the state-of-

the-practice by a large margin, in terms of both the total savings in social costs and the market share of electric vehicles.

Thus, implementing optimal incentive policies could make meaningful differences in practice.
• In all tested scenarios, the optimal policy always sets the investment priority to building charging stations. In fact, the

charging stations should be built up to the level that allows full accessibility as soon as possible. In contrast, provid-

ing purchase subsidy, which is a widely used policy, does not seem to be cost efficient. A striking example from the

case study shows that increasing subsidy to BEV from $4000 to $10,000 achieves virtually nothing at a cost of about

$123,000,000 (or more than 35% increase in the total budget).
• The adoption rate of EV, especially that of BEV, is more sensitive to the fuel price than to the vehicle sale prices. The

cost of EV charging time is rather small and does not seem to play an important role in our model.
• The consumers who drive more and make long trips with higher frequency tend to prefer EVs more than others.

This research can be extended in many directions. First of all, the proposed model may have multiple local optimums in

theory. It is unclear to what extent the existence of such local optimums would impact the application of the model, e.g.

how likely an algorithm such as proposed in this paper would be trapped at a “bad” solution? A future investigation can

attempt to better understand the analytical properties of the model, or seek a different modeling approach. As a reviewer

of an earlier draft pointed out, dynamic programming may be a good fit since our problems involve “sequential decision

making along the temporal dimension”. Second, more vehicle types and consumer classes, as well as more sophisticated

modeling structures, can be considered in the vehicle choice model. For example, a nested multinomial logit model may be

used to capture the commonality between vehicles of similar features. While increasing the number of consumer classes

and vehicle options is relatively straightforward, it can bring about significant computational challenges (note that MA3T

has over 1000 consumer classes and 39 vehicle types) that may require more efficient and robust solution algorithms. Last

but not least, a future study can directly calibrate all coefficients in the vehicle choice model with the same set of empirical

data so that it better captures real consumer preferences.
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Appendix A. Proof of Proposition 1

We will show that when one of the conditions (i–iii) is met, Problem (24) satisfies the so-called linear independence

constraint quality (LICP), which states that the gradients of the active inequality constraints and the gradients of the equality

constraints are linearly independent at the KKT point (Peterson, 1973). First note constraints (24b)–(24d) can be merged into

the objective function. Thus, we will focus on the inequality constraints (24e)–(24g). Let us denote

• ai = [a1
i
, a2

i
, a3

i
]T , i = 1, . . . ,�1 as the gradient corresponding to the ith active nonnegative constraint for vector u1; where

a1
i

= [0, . . . , 1, . . . 0] and a2
i

= [, . . . , 0, . . .] are both vectors of length Y, and a3
i

= [, . . . , 0, . . .] is a vector of length J × Y.

• bi = [b1
i
, b2

i
, b3

i
]T , i = 1, . . . ,�2 as the gradient corresponding to the ith active nonnegative constraint for vector u2; where

b1
i

= [, . . . , 0, . . .] and b2
i

= [, . . . , 1, . . .] are both vectors of length Y, and a3
i

= [, . . . , 0, . . .] is a vector of length J × Y.

• ci = [c1
i
, c2

i
, c3

i
]T , i = 1, . . . ,�3 as the gradient corresponding to the ith active nonnegative constraint for vector s; where

c1
i

= [, . . . , 0, . . .] and c2
i

= [, . . . , 0, . . .] are both vectors of length Y, and c3
i

= [, . . . , 1, . . .] is a vector of length J × Y.

• d = [d1, d2, d3]T as the gradient corresponding to Constraint (24e) of location 1; where d1 = [1 . . . , 1, . . . 1] and d2 =
[, . . . , 0, . . .] are both vectors of length Y, and d3 = [, . . . , 0, . . .] is a vector of length J × Y.
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• e = [e1, e2, e3]T as the gradient corresponding to Constraint (24e) of location 2; where e1 = [0 . . . , 0, . . . 0] and e2 =
[1, . . . , 1, . . . 1] are both vectors of length Y, and e3 = [, . . . , 0, . . .] is a vector of length J × Y.

• f = [ f 1, f 2, f 3]T as the gradient corresponding to Constraint (24f); where f 1 = [ ∂M+I

∂u1
1

, . . . , ∂M+I

∂uY
1

] and f 2 = [ ∂M+I

∂u1
2

, . . . , ∂M+I

∂uY
2

]

are both vectors of length Y, and f 3 = [, . . . , ∂M+I

∂s
y
j

, . . .] is a vector of length J × Y.

Clearly, vectors a1, . . . a|�1|, b1, . . . b|�2|, c1, . . . c|�3| are linearly independent per the above definition.

• For condition (i), i.e. Constraint (24f) is not binding, vector f is not considered. Suppose Constraint (24e) of location 1

is binding, we need to show that d cannot be expressed as linear combination of a1, . . . a|�1|, b1, . . . b|�2|, c1, . . . c|�3|.
Note that d are only related to a1, . . . a|�1|. However since �1 < Y (otherwise it contradicts with the assumption that

Constraint (24e) is active), d cannot be expressed by a1, . . . a|�1|. The case when (24e) of location 2 is binding can be

proven similarly.
• For condition (ii), i.e., there exist at least one s

y∗
j

> 0. Without loss of generality, suppose Constraint (24f) is binding, as

well as Constraints (24e) for both l = 1 and 2. This means that we need to check

a1, . . . a|�1|, b1, . . . b|�2|, c1, . . . c|�3|, d, e, f

First we note that all components of vector f are positive, as per (29). Since there is one s
y∗
j

> 0, |�3| < Y × J. It follows

that f cannot be expressed as linear combination of other vectors.
• For condition (iii), i.e., Constraint (24e) is not binding for l = 1 and l = 2. Suppose Constraint (24f) is binding. Thus we

need to check

a1, . . . a|�1|, b1, . . . b|�2|, c1, . . . c|�3|, f

If any u
y
1

> 0 (or u
y
1

> 0), it would imply �1 (or �2) < Y, which in turn suggests linear independence of the above

vectors. If all u
y

l
= 0, then the binding budget constraint implies that at least one s

y
j
> 0. Invoking condition (ii) above

leads to linear independence.

Therefore, we have proven that if any of the three conditions (i–iii) is satisfied, LICQ is met and the KKT conditions are

necessary for local optimum. �

Appendix B. Derivation of derivatives

The first part in the above can be evaluated recursively, if the derivatives are computed following the increasing order of

time. To compute the second part, note that
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ĉyy′

i j

∂λy
1

=
y+l j∑
y′=y

{
0 j = 1

−S1
i j

hy′
c j = 2, 3

,
∂ ĉy
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Similarly, the derivative in the second term in (25) can be computed as follows:
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Appendix C. Coefficients for the vehicle choice model

First note that by construction all β p
j

= −1.

• βg
i

: Ziegler (2012) shows that the ratio of the coefficient for the purchase price to that for the fuel cost is 0.77 (see

Table 3b, flexible multinomial probit model). Converted to the scale of the corresponding costs in our model (which uses

life-time costs), the ratio is estimated at about 0.7, which is used for average drivers. The magnitude of βg
i

is slightly

increased for frequent drivers and reduced for modest drivers (each by 0.2).
• βd

jl
: Table 3b in Ziegler (2012) shows that a charging network with a density similar to that of gas stations would be

valued at roughly € 28,500; or $34,200 (at an exchange rate of 1.2), which is comparable to an annual income for a wage

rate of $15/h. We thus conclude that βd
31

+ βd
32

should be about 1.0 for EVs in our model (recall the cost terms are scaled

by the average annual income). Due to the lack of data, we split the total effect between intracity and inter-city locations

somewhat arbitrarily, at 0.6 and 0.4, respectively. The coefficients for PHEV is assumed to be half of those for EV, based

on the conjecture that the charging density is less important to PHEV drivers than to EV drivers.
• βc

i
: Table 3b in Ziegler (2012) also shows that consumers would value 1 kg of CO2 roughly at € 0.57, or $ 0.69, of fuel

cost. This gives the price of CO2 at $690 × 0.7 = $480/ton (where 0.7 converts the fuel cost to the purchase cost). This

value is rather high compared to those from other studies, such as Interagency Working Group on Social Cost of Carbon

(2013), which prices the social cost of CO2 at roughly $50/ton. In light of this, a middle value, $200/ton is selected for

CO2 price, and accordingly βc
i

is set to β p
i

.
• βt

i
: the literature on the impact of charging time on vehicle choice is quite limited. In this study, we estimate it based

on the value of travel time. Small and Verhoef (2007) suggest that the value of travel time may be represented as a

fraction of the wage rate, usually between 20% and 90% and averaging around 50%. Since the travel cost is defined based

on the wage rate, the default value for βt
i

is set to 0.5. The magnitude of βt
i

is slightly decreased for frequent drivers

and increased for modest drivers (each by 0.2).
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