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a b s t r a c t

The network design problem is usually formulated as a bi-level program, assuming the user

equilibrium is attained in the lower level program. Given boundedly rational route choice be-

havior, the lower-level program is replaced with the boundedly rational user equilibria (BRUE).

The network design problem with boundedly rational route choice behavior is understudied

due to non-uniqueness of the BRUE. In this study, thus, we mainly focus on boundedly ratio-

nal toll pricing (BR-TP) with affine link cost functions. The topological properties of the lower

level BRUE set are first explored. As the BRUE solution is generally non-unique, urban plan-

ners cannot predict exactly which equilibrium flow pattern the transportation network will

operate after a planning strategy is implemented. Due to the risk caused by uncertainty of

people’s reaction, two extreme scenarios are considered: the traffic flow patterns with either

the minimum system travel cost or the maximum, which is the “risk-prone” (BR-TP-RP) or the

“risk-averse” (BR-TP-RA) scenario respectively. The upper level BR-TP is to find an optimal toll

minimizing the total system travel cost, while the lower level is to find the best or the worst

scenario. Accordingly BR-TP can be formulated as either a min –min or a min –max program.

Solution existence is discussed based on the topological properties of the BRUE and algorithms

are proposed. Two examples are accompanied to illustrate the proposed methodology.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction and motivation

1.1. Network design problem

The network design problem (NDP) is to relieve road network congestion by determining how much toll pricing should be

charged on congested links, by selecting which links need to be extended, or by considering where new links should be added,

given the traffic demand for each origin-destination pair. There have been many studies on transportation network design and

interested readers can refer to Yang and Bell (1998) for detailed reviews of the NDP literature.

Among these studies, NDP is usually formulated as a bi-level program: the upper level is the decision made to either execute

toll pricing, enhance capacities of the selected links, or add new links to the existing road network, while the lower level is an

equilibrium problem, describing how drivers will distribute among the new network topology. Accordingly, the decision variables

in the upper level represent whether to charge tolls, to widen a link, or to build a new road, and can be either continuous
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or discrete. The lower level problem is the link or path flow distribution based on some traffic assignment principle. When

Wardrop’s first principle (Wardrop, 1952) is adopted, the user equilibrium (UE) is obtained in the lower level problem.

The above bi-level NDP can be also regarded as a Stackelberg game (i.e., leader-follower game Yang and Bell (1998)). The leader

is the decision-maker managing the upper level variables, while individual drivers are followers who play the non-cooperative

Nash game on the fixed topology of the road network. In other words, provided the upper level decision, each driver will response

accordingly by playing a Nash game and choose her own route in response to the upper level decision.

1.2. Non-uniqueness of the lower level program

If the lower level problem has only one equilibrium (i.e., each driver has a single action strategy in response to a network

change plan), planners can make an exact prediction of how drivers will react to a certain transportation plan. However, if there

exist multiple equilibria in the lower level problem (i.e., each driver has multiple action strategies), planners do not know exactly

how drivers will behave, then solving a standard bi-level program may not achieve the expected goal of improving efficiency of

the transportation system. Because the bi-level program “implicitly assumes that by applying the obtained toll, the resulting UE

flow pattern is exactly what is predicted by the model, and thus the desired system objective can be achieved” (Ban et al., 2009).

Ban et al. (2009) also proposed two concepts: the “predicted” and the “realized” equilibrium, to further explain consequences

resulting from implementing a toll obtained from the bi-level program when the lower level problem does not have a unique

solution. The former represents the equilibrium obtained from solving the bi-level program, while the latter means the actual

equilibrium where the system runs after a network plan is implemented. As drivers play a non-cooperative Nash game in the

lower level, there is no way to control which routes they can take. Therefore, the “realized” equilibrium usually deviates from the

“predicted” one.

Due to the gap between the “predicted” and the “realized” equilibria, planners face risk or uncertainty while making network

plans. There are three attitudes towards risk encountered in the NDP (Ban et al., 2009): risk-prone, risk-neutral and risk-averse.

“Risk prone” assumes that planners are optimistic and believe the realized equilibrium will be attained at the most efficient flow

pattern, i.e., the one with the lowest system travel time; then they try to find a toll which can improve system efficiency at this

equilibrium. In contrast, “risk averse” represents the attitude that planners try to find a toll which can improve system efficiency

by assuming the realized equilibrium is attained at the least efficient flow pattern, i.e., the one with the largest system travel

time. Planners are “risk-neutral” when they assume each flow pattern has certain probability to occur and they aim to find a toll

which can improve system efficiency at the expected equilibrium (Ban et al., 2013).

1.3. NDP with boundedly rational user equilibria in the lower level

Regarding the lower level traffic assignment problem, most NDP literature assumes drivers are perfectly rational (PR) and

its resultant equilibrium follows Wardrop’s first principle (e.g., Leblanc 1975; Magnanti and Wong 1984; Yang and Bell 1998).

However, many empirical studies using simulation experiments (Nakayama et al., 2001), stated preference surveys (Avineri and

Prashker, 2004), and GPS vehicle trajectory data (Morikawa et al., 2005; Zhu, 2011) showed that in reality, this assumption is

too restrictive and drivers do not always choose the shortest paths. Thus, many other behavioral models have been developed to

relax the PR assumption for the traffic assignment problem (see Xu et al. (2011) for the classification of these models).

One way to relax the PR assumption is to assume people are boundedly rational (BR) in the route-choice process. Under the

BR route choice paradigm, each traveller has a set of paths to choose instead of travelling only on the shortest paths. The paths

which are within a threshold from the shortest path cost can be taken, where this threshold is called “indifference band.” There

have been many empirical and experimental studies to establish validity of bounded rationality and interested readers can refer

to the associated literature (Di, 2014; Di et al., 2014a; Di and Liu, 2015; Di et al., 2015a, 2015b; Hu and Mahmassani, 1997; Jan

et al., 2000; Mahmassani and Chang, 1987; Morikawa et al., 2005; Ramming, 2001).

Within the BR framework, the equilibrium obtained from the lower level traffic assignment problem is not UE any more;

instead, it is boundedly rational user equilibria (BRUE). Usually the BRUE is not unique and the set consisting of all BRUE flow

patterns is called the ‘BRUE flow set’. This set has been proven to be non-convex (Di et al., 2013; Lou et al., 2010). Therefore it is

quite challenging to solve the NDP with boundedly rational user equilibria (BR-NDP). Within the ‘risk averse’ scheme, Lou et al.

(2010) minimized the ‘worst case’ scenario (i.e., assuming the network runs least efficiently in terms of the total system travel

time) among all BRUE solutions.

1.4. Contribution of this paper

Because the network design problem with bounded rationality behavioral assumption (BR-NDP) is a challenging problem and

there are not many established studies, we will mainly focus on the continuous version of the NDP: the second best toll pricing

with boundedly rational user equilibria (BR-TP), given the affine link cost functions. The second best toll pricing is to determine

an optimal toll vector for a subset of links so that the transportation network can run more efficiently (Ban et al., 2009).

Some existing literature proposed methodologies of solving BRUE (Di et al., 2013; Lou et al., 2010), however, there does not

exist any study on the topological properties of BRUE sets, which can facilitate applications of BR-NDP. This paper serves as the

first to explore topology of BRUE sets.
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In congestion pricing, Lou et al. (2010) formulated a mathematical program with equilibrium constraint (MPEC) to solve the

risk-averse toll within the framework of bounded rationality. Due to non-convexity and violation of the Mangasarian–Fromovitz

constraint qualification (MFCQ), the solution existence condition was not easy to establish and it was difficult to solve the risk-

averse toll. Some heuristic algorithm was employed to obtain an optimal toll.

In this study, we will take advantage of the topological structure of the BRUE set revealed in Di et al. (2013) and establish

solution existence conditions by decomposing BR-TP into multiple mathematically tractable subproblems. We will also develop

a heuristic algorithm of solving risk-averse BR-TP in a small network. Such analysis heavily relies on the topological properties of

the BRUE set and it is non-trivial to derive topological properties of a nonconvex set. This study serves as the first to characterize

these properties of the BRUE set for network design problems. Han et al. (2015) briefly discussed the topology of discrete time

boundedly rational dynamic user equilibrium (BR-DUE) solution sets and showed that these sets are compact and there always

exists a connected but possibly nonconvex subset which can be generated from a single solution. However, the purpose of that

paper was to characterize BR-DUE solution sets instead of network design.

As the lower level of BR-NDP contains non-unique equilibria, we will first propose the methodology of constructing the BRUE

set in Section 2. In Section 3, the topological properties of the tolled BRUE set are studied to facilitate the solution existence

analysis of the boundedly rational toll pricing. In Section 4, the formulation of toll pricing under bounded rationality is proposed.

The “risk-prone” and “risk-averse” toll pricing schemes are proposed. In Section 5, solution existence of the risk-prone and risk-

averse optimal tolls is discussed. Two examples are given to illustrate the properties of the optimal tolls under difference toll

schemes in Section 6. Conclusions and future work are followed in Section 7.

2. ε-BRUE solution set

The traffic network is represented by a directed graph that includes a set of consecutively numbered nodes, N ,and a set of

consecutively numbered links, L. Let Wdenote the O-D pair set connected by a set of simple paths (composed of a sequence of

distinct nodes), Pw,through the network. The traffic demand between each OD pair is dw > 0. Let f w
i

� 0denote the flow on path

i ∈ Pwfor OD pair w,then the path flow vector is f = { f w
i
}w∈W

i∈Pw . For the fixed travel demand case, the feasible path flow set is to

assign the traffic demand on the feasible paths: F � {f : f � 0,
∑

i∈Pw

f w
i

= dw,∀w ∈ W}. Denote xaas the link flow on link a, then

the link flow vector is x = {xa}a∈L. Let δw
ai

= 1if link a is on path i connecting OD pair w,and 0 if not; then � � {δw
ai
}w∈W

a∈L,i∈Pw ,denotes

the link-path incidence matrix. So x = �f.

Each link a ∈ Lis assigned a cost function which is usually monotonously increasing with respect to the link flow, writ-

ten as t(x). Denote Cw
i
(f)as the path cost on path i ∈ Pwfor OD pair w,then the path cost vector C(f) � {Cw

i
(f)}w∈W

i∈Pw . So C(f) =
�T t(x)under the additive path cost assumption.

The link set Lcan be divided into two disjoint subsets: the link set without tolls charged, A,and the link set with tolls charged,

T . Then L = A ∪ T . Denote ya≥ 0 as the toll charged on link a ∈ T and ya = {ya}a∈T as the link toll vector. Given a “value of time”

parameter θ , the tolled link cost is computed as t(ya, x) = t(x) + ya
θ

. Also, denote the toll charged along the path i ∈ Pwas yi

and yp = {yi}w∈W
i∈Pw as the toll vector along the paths. Then the path toll can be computed as the sum of link tolls along the path i:

yi = ∑
a∈T

δaiya. The feasible path toll set is thus defined as:

Y � {y : 0 � yi � npȳ, i ∈ Pw}, (2.1)

where np is the number of links along the path i and ȳis the upper bound of a path toll. The tolled path cost vector is computed

as C(yp, f) = �T t(ya, x) = �T
[
t(x) + ya

θ

]
= C(f) + yp

θ
.

In this study, we employ the affine cost function t(x) = Ax + b,where A�0 and �0 indicates that a matrix is positive definite.

Then t(x) is monotone and the existence of UE and BRUE is ensured (Di et al., 2013). The path cost function C(f) = �T A�f + �T b �
Qf + q,where Q��TA� and q��Tb. As defined, Q is symmetric because A is so. Moreover, it is positive semi-definite (i.e., Q �0)

because A�0 and � may not have a full column rank. The dimensions of Q and q are: Q ∈ R
|P|×|P|, q ∈ R

|P|,respectively, where

| · | represents the cardinality of a set and |P|denotes the total number of paths in a network. Then the tolled path cost is:

C(yp, f) = Qf + q + yp

θ
. In this paper we assume that θ = 1without loss of generality.

Definition 2.1. For a given ε ≥ 0, a feasible path flow vector f ∈ F is said to be a ε-BRUE path flow pattern, denoted by fε
BRUE

,if

f w
i > 0 ⇒ Cw

i (f) � min
j∈Pw

Cw
j (f) + εw,∀i ∈ Pw,∀w ∈ W

where ε = {εw}w∈W is a known positive vector, and each of its element εwis the ‘indifference band’ for OD pair w,representing a

path cost threshold beyond which travelers are indifferent to.

Usually an ε-BRUE path flow distribution is non-unique given the link cost function is monotonously increasing with respect

to the link flow (Di et al., 2013). Denote a set containing all path flow patterns satisfying Definition (2.1) as the ε-BRUE path flow

solution set:

Fε
BRUE � {f ∈ F : f w

i > 0 ⇒ Cw
i (f) � min

j∈Pw
Cw

j (f) + εw,∀i ∈ Pw,∀w ∈ W}. (2.2)
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2.1. A BRUE solution

Di et al. (2013) showed that one BRUE flow pattern can be solved by a nonlinear complementarity problem (BRUE-NCP) and

we will revisit it here.

Proposition 2.1 (BRUE NCP (Di et al., 2013)). Given εw(w ∈ W),and some ρ = (ρw
i
)w∈W

i∈calPw ,where 0 � ρw
i

� εw. A feasible path flow

vectorf ∈ F is a ε-BRUE path flow pattern if and only if it solves the following nonlinear complementarity problem (NCP), ∀i ∈ Pw,∀w ∈
W:

0 � f w
i ⊥ Cw

i (f) + ρw
i − πw � 0, (2.3a)

0 � πw ⊥ dw −
∑
i∈P

f w
i � 0. (2.3b)

where,

⊥: the orthogonal sign representing the inner product of two vectors is zero;

ρw
i

: the actual indifference level, representing deviation of the chosen route’s cost from the minimum cost;

πw: the highest acceptable path cost within the indifference bandεwfor OD pair wand computed as πw = min j∈Pw{Cw
j
(f) + εw}.

Denote a vector of the highest acceptable path costs asπ = {πw}w∈W .

By substituting a vector ρ into the BRUE-NCP, one BRUE path flow pattern can be obtained. The BRUE-NCP formulation pro-

vides an approach of solving a BRUE solution.

Note.

1. The BRUE NCP formulation holds for general nonlinear path cost functions. If the affine path cost functional form is em-

ployed, Eq. (2.3b) becomes 0 � f ⊥ Qf + (q + ρ) − π � 0;

2. The BRUE NCP formulation holds for both fixed and elastic traffic demands. For the fixed travel demand case, Eq. (2.3b) is

reduced to πw � 0.

Define a new variable as z = ( f
π) and F(z) = (C(f)+ρ−π

0
), then one BRUE solution associated with an indifference level 0 � ρ �

εunder fixed travel demands can be reformulated as:

Fε
BRUE(ρ) : 0 � z ⊥ F(z) � 0. (2.4)

Assume affine path costs C(f) = Qf + qand fixed travel demands. Define F(z) = [Qf+q+ρ−π
0

] = [Q −1
0 0

]( f
π
) + (q+ρ

0
) � Q̃z + q̃,

where Q̃ = [Q −1
0 0

], q̃ = (q+ρ
0

). Then one BRUE solution associated with an indifference level 0 ≤ ρ ≤ ε can be solved as follows:

Fε
BRUE(ρ) : 0 � z ⊥ Q̃z + q̃ � 0, (2.5)

which is a linear complementarity problem (LCP).

In literature on LCP, the notation LCP(q̃)is adopted by Cottle et al. (2009) to denote one solution to the linear complementarity

problem formulated in Eq. (2.5). Here the LCP solution depends on q̃which is further depends on ρ.

2.2. ε-BRUE set construction

For any ρ such that 0 � ρ � ε,∀w ∈ W, i ∈ Pw,a BRUE path flow pattern can be treated as a UE under the path cost Cρ(f) =
Qf + (q + ρ)with a constant cost vector q̃ = q + ρ. Therefore, Fε

BRUE
= ⋃

0�ρ�ε F
ρ
UE

,where Fρ
UE

= {f ∈ F : 0 � f ⊥ Cρ(f) − π �
0,π � 0}. In other words, BRUE is a collection of UEs with perturbations in path costs ranging 0≤ ρ ≤ ε.

The ε-BRUE solution set is shown to be non-convex (Di et al., 2013; Lou et al., 2010) and thus not easy to construct. By

studying its topology, Di et al. (2013) proposed that a BRUE solution set can be further decomposed into multiple subsets. Each

subset utilizes the different combinations of paths from the feasible path set. Denote the kth, k = 1, . . . , Ksubset as Fε
k

and its

associated acceptable path set as Pε
k

. An acceptable path set includes all paths whose path costs are within the minimum cost

plus the indifference band. The smallest acceptable path set is the shortest path set under UE, denoted as PUE � Pε
0

. Built upon

PUE(i.e., Pε
0

), the acceptable path set Pε
k
, k = 1, . . . , Kcan be obtained iteratively by solving a sequence of mathematical programs

with equilibrium constraints (MPEC). Interested readers can refer to Di et al. (2013) for the detailed procedure of constructing

BRUE subsets. With Pε
k
, k = 0, . . . , K,the kth subset is defined as:

Fε
0 � {f ∈ F : ∀ i ∈ PUE : fi, f j � 0, |Ci(f) − Cj(f)| � ε;

∀ i �∈ PUE : fi = 0}. (2.6)

Fε
k � {f ∈ F : ∀ i ∈ Pε

k−1 : fi � 0; ∃i ∈ Pε
k \Pε

k−1 : fi > 0;
∀ i, j ∈ Pε

k : |Ci(f) − Cj(f)| � ε;
∀ i �∈ Pε

k : fi = 0}, k = 1, . . . , K.

where,
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PUE : the shortest path set under UE;

Pk: the acceptable path set for subset k;

\: set difference operation. For example, Pε
k
\Pε

k−1
denotes all paths which are included in the kth acceptable path set Pε

k
but

not in Pε
k−1

.

The path flow subset Fε
0

corresponding to PUEcontains all feasible path flow patterns where only the UE shortest paths carry

flows and the cost difference between any two shortest paths are within the band ε. For the subset Fε
k

associated with Pε
k
, k =

1, . . . , K,the newly acceptable paths will carry flows, while those paths belonging to Pε
k−1

can carry flow or not, and the cost

difference between any two acceptable paths are within the band ε. These acceptable path subsets are disjoint, i.e.,
⋂K

k=0 Fε
k

= ∅;

and it is a subset of the BRUE path flow set Fε
BRUE

.

Then the BRUE solution set is the union of K subsets, where K is the total number of subsets:

Fε
BRUE =

K⋃
k=1

Fε
k . (2.7)

Note. K actually depends on ε and should be written as K�K(ε). But we will omit writing its dependency in the rest of the paper

for the purpose of simplicity.

2.3. A tolled BRUE flow set

When tolls are charged in a road network, the ‘tolled BRUE flow set’ is defined as Fε
BRUE

(y),where y ≥ 0 is the non-negative

toll vector. Similar to Eq. (2.7),

Fε
BRUE(y) =

K⋃
k=1

Fε
k (y), (2.8)

where the kth tolled subset Fε
k
(y)is the solution of the following inequalities:

Fε
0 (y) � {f ∈ F : ∀ i ∈ PUE(y) : fi, f j � 0, |Ci(f) + (yp)i − Cj(f) − (yp) j| � ε; (2.9)

∀ i �∈ PUE(y) : fi = 0}.
Fε

k (y) � {f ∈ F : ∀ i ∈ Pε
k−1(y) : fi � 0; ∃i ∈ Pε

k (y)\Pε
k−1(y) : fi > 0;

∀ i, j ∈ Pε
k (y) : |Ci(f) + (yp)i − Cj(f) − (yp) j| � ε;

∀ i �∈ Pε
k (y) : fi = 0}, k = 1, . . . , K.

where yp is the path toll vector. The subscript p will be omitted in the rest of the paper for the purpose of simplicity.

Note.

1. The path flow depends on the toll, i.e., f�f(y). But we will omit its argument for the purpose of simplicity.

2. The total number of tolled BRUE subsets depends on not only ε but also y, i.e., K�K(ε, y). But we will omit writing its

dependency in the rest of the paper for the purpose of simplicity.

Built upon Eq. (2.5) given affine cost functions, one tolled BRUE flow pattern associated with an indifference level 0 ≤ ρ ≤ ε

can be formulated as a LCP as well, where F(z) = [Qf+q+ρ+y−π
0

] � Q̃z + q̃, where Q̃ = [Q −1
0 0

], q̃ = (q+ρ+y
0

). The toll y can be also

treated as a perturbation in q̃.

3. Topological properties of the tolled BRUE set

Given a toll vector y ≥ 0, Fε
BRUE

(y)is generally non-unique. The tolled BRUE set can be treated as a point-to-set mapping with

respect to the toll vector.

Definition 3.1 (Luderer et al., 2002). Let Y = R
n,Z = R

m. A mapping F : Y → 2Z is called point-to-set mapping or multivalued

mapping if every point y ∈ Yis associated with a set F(y) ⊂ Z,where 2Zrepresents the power set of Z,which is the set of all

subsets of Z,including the empty set and Zitself.

Note. Though the notation Yrepresents the feasible toll set in Definition (2.1), here we abuse it a bit to indicate a generic set. We

will show in the following that the mapping from the toll set to the BRUE path flow set is actually a point-to-set mapping.

We will explore the topological properties of the point-to-set mapping in the tolled BRUE set. The topological properties

of the point-to-set mapping include compactness and upper semi-continuity. Compactness is critical for developing efficient

algorithms of solving the tolled BRUE set, while semi-continuity ensures the attainment of optimal solutions in BR-NDP.
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3.1. Compactness

Heine–Borel theorem (Mendelson, 1975) says that, if a set is closed and bounded, then it is compact. So boundedness and

closedness will be established first.

Proposition 3.1. Fε
BRUE

(y),∀y ∈ Yis bounded.

Proof. Since F is bounded, and Fε
BRUE

(y) ⊂ F . Thus Fε
BRUE

(y)is bounded. �

The definition of closedness of a point-to-set mapping is given as follows:

Definition 3.2 (Cottle et al., 2009). The solution map LCP(q) is closed if {qv}is a sequence of vectors in R
nconverging to q̄,and

{zv}is a corresponding sequence of solutions with zv ∈ LCP(qv)for all v,and if {zv}converges to z̄,then z̄is a solution of LCP(q̄).

Using the definition of closedness for the BRUE subset is not straightforward. Instead, we can take advantage of the fact that

a BRUE set can be decomposed to multiple subsets defined in Eq. (2.9).

Proposition 3.2. Fε
BRUE

(y),∀y ∈ Yis closed.

Proof. For each k ∈ {1, . . . , K},Fε
k
(y)defined by a system of linear inequalities (2.9) over Yis obviously closed. Since the union of

the closed sets are closed, so Fε
BRUE

(y)is closed. One thing worth of note is that Fε
BRUE

(y) = ∅, y /∈ Kybut this is trivial and ∅ is still

closed. �

Following the two propositions above and Heine–Borel theorem, we have:

Corollary 1. Fε
BRUE

(y),∀y ∈ Yis compact.

Actually Fε
BRUE

(y)is not only compact, it is uniformly bounded (Luderer et al., 2002) or uniformly compact (Hogan, 1973).

Definition 3.3 (Luderer et al., 2002). A multivalued mapping F is uniformly bounded at y0 ∈ Yif there exists a compact set Z0 ⊂
Zand a neighborhood Y0of y0 such that F(Y0) ⊂ Z0.

Corollary 2. Fε
BRUE

(y),∀y ∈ Yis uniformly bounded.

Proof. According to Definition (3.3) of uniformly bounded, set Z0 = Fwhere F is the feasible path flow set. As F is compact, for

any y ∈ Y,Fε
BRUE

(y) ⊂ F is uniformly bounded. �

3.2. Convexity

To show the BRUE set is a union of convex subsets is equivalent to show that it is polyhedral. According to Cottle et al. (2009),

LCP(q) defined in Eq. (2.5) is polyhedral.

Definition 3.4. The solution map LCP(q) is polyhedral if its graph{
(q, z) ∈ R

n × R
n : z ∈ LCP(q)

}
(3.1)

is a finite union of convex polyhedra.

Define z = ( f

π
) and q̃ = (q+ρ+y

0
). Then based on definition of being polyhedral, we have that Fε

BRUE
(y)is polyhedral, meaning

it is a finite union of convex polyhedra. The methodology of constructing BRUE sets shown in Eq. (2.8) reflects its polyhedral

topology. Eq. (2.9) illustrates how to characterize each convex polyhedra.

We can obtain an immediate result from Inequalities (2.6) that Fε
k

is a bounded intersection of a finite set of half-spaces and

thus a convex polytope. However, the union of convex sets are not necessarily convex; furthermore, the number of acceptable

paths each polyhedron contains is different, so if multiple subsets are included, the union of polytopes in different dimensions

is surely not convex. In summary, given a toll vector y ∈ Yand affine cost functions, Fε
k
(y)is a convex polytope (i.e., a bounded

intersection of a finite set of half-spaces); however, Fε
BRUE

(y)may be non-convex if it contains multiple subsets. Similar results

can be found in Lou et al. (2010).

The property of the untolled kth subset, i.e., Fε
k
(0),is summarized as follows:

Theorem 3.3. If the link cost function t is continuous and affine with respect to the link flow vector x, i.e., t(x) = Ax + b,where A is

positive-definite. When F is nonempty, compact and convex, then Fε
BRUE

(0)has a nonempty, compact, and generally nonconvex solution

set, while each subset Fε
k
(0)defined in Eq. (2.6) has a nonempty, compact, and convex solution set.

The above analysis of the topological properties focuses on the untolled BRUE set. We can also get a straightforward implica-

tion from Theorem (3.3) for the tolled BRUE set:

Corollary 3. If the link cost function t is continuous and affine with respect to the link flow vector x, i.e., t(x) = Ax + b,where A is

positive-definite. When F is nonempty, compact, and convex, given a toll y, Fε
BRUE

(y)has a nonempty, compact and generally nonconvex

solution set for any given and finite vector y, while each subset Fε
k
(y),∀y ∈ Ydefined in Eq. (2.9) has a nonempty, compact, and convex
solution set.
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3.3. Upper-semicontinuity

Definition 3.5 (Luderer et al., 2002). The mapping F is upper semicontinuous in the sense of Hausdorff at a point y0 ∈ Yif ∀ε > 0

there exists a neighborhood W of y0 such that

F(y) ⊂ F(y0) + εB,∀y ∈ W. (3.2)

where B is an open unit ball with center at 0.

Theorem 3.4 (Theorem 7.2.1 in Cottle et al. (2009)). Let Q ∈ R
n×nand q̄ ∈ R

nbe given. Then there exist a constant c > 0 and a

neighborhood V ⊆ R
nof q̄such that for all vectors q ∈ V,

LCP(q) ⊆ LCP(q̄) + c‖q − q̄‖B. (3.3)

In other words, LCP(q) is upper semicontinuous (Luderer et al., 2002) or upper Lipschitzian (Cottle et al., 2009). Upper-

semicontinuity states that the solutions of the perturbed LCP(q) not only are not too far away from some solutions of LCP(q0), but

their distances are bounded by a quantity proportional to the magnitude of the change in q0.

According to the above theorem, we have the following conclusion for the mapping Fε
BRUE

(y):

Proposition 3.5. Fε
BRUE

(y),∀ε � 0,∀y ∈ Yis upper semicontinuous.

Proof. Denote X = (y
ρ
), X0 = (y0

ρ0
), 0 � ρ � ε. One BRUE solution associated with the indifference function ρ is denoted as

Fε
BRUE

(y,ρ),then ∃c > 0,

Fε
BRUE(y,ρ) � Fε

BRUE(X) ⊆ Fε
BRUE(X0) + c‖X − X0‖B

= Fε
BRUE(X0) + c‖

(
y
ρ

)
−

(
y0

ρ0

)
‖B

⊆ Fε
BRUE(X0) + c‖y − y0‖B + c‖ρ − ρ0‖B

⊆ Fε
BRUE(X0) + c‖y − y0‖B + cεB

⊆ Fε
BRUE(y0,ρ0) + c(‖y − y0‖ + ε)‖B.

Let My � max ‖y − y0‖, ε = c(My + ε),then Fε
BRUE

(y) ⊆ Fε
BRUE

(y0) + εB. In other words, Fε
BRUE

(y),∀ε � 0is upper semicon-

tinuous with respect to y. �

Denote the feasible toll which ensures the existence of the kth BRUE subset as:

Kk
y =

{
y : Fε

k (y) �= ∅
}

∩ Y, (3.4)

which implies that, y ∈ Kk
y ⇒ ∃f ∈ Fε

k
(y) : fi � 0, i ∈ Pε

k
; f j = 0, j �∈ Pε

k
,where Pε

k
is the acceptable path set for the kth subset.

Then the feasible toll which ensures the existence of the BRUE set is:

Ky = {y ∈ Y : Fε
BRUE �= ∅} =

K⋃
k=1

Kk
y. (3.5)

In the following, we will show that Kyis a compact set.

Corollary 4 (Hogan, 1973). If F is upper semicontinuous on Yand uniformly compact at y ∈ Y,then the set Ky =
{

y ∈ Y : F(y) �= ∅
}

is

closed in Y .

Combining the results from Corollary (2) and Proposition (3.5) along with Corollary (4), now we can show automatically that:

Corollary 5. Kydefined in Eq. (3.5) is compact.

The compactness of the set Kywill help prove the solution existence of BR toll pricing.

4. Toll pricing under bounded rationality (BR-TP)

4.1. Risk-averse, risk-prone, and risk-neutral toll pricing

Non-uniqueness of BRUE flow patterns generates risks in planning. Urban planners may hold different attitudes towards toll

pricing:

• If urban planners assume the worst case is most likely to happen when implementing toll pricing and the best case is very

possible to occur without it, then we say that this planner has an attitude preference of ‘risk-averse’ towards toll pricing.
• If urban planners assume the best case is most likely to happen when implementing toll pricing while the worst case occurs

most likely without it, then this planner holds an attitude of ‘risk-prone’ towards toll pricing.
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• If the planner believes each BRUE has a certain probability to occur when implementing toll pricing and only expected BRUE

is considered, we call this attitude as ‘risk-neutral’.

In the following, we would like to explore the impact of different attitudes towards toll pricing on planning decisions. Denote

STT as the total system travel time given a toll vector y, then STT(y, f) �
∑

i∈Pw fiCi(yi, fi). As STT is a continuous function with

respect to path flows and the BRUE set is compact, the maximum and the minimum values of STT over the BRUE flow set can be

attained and are defined as follows:

Definition 4.1. For a given traffic demand d ≥ 0 and an indifference band ε ≥ 0, the worst, the best and the expected system

travel time (denoted as ‘w-STT’, ‘b-STT’ and ‘ESTT’respectively) are defined as the maximum, the minimum and the mean of STT

among the whole ε-BRUE solution set, i.e.,

w-STT(y, f) = max
f∈Fε

BRUE
(y)

∑
i∈Pw

fiCp(yi, fi), (4.1a)

b-STT(y, f) = min
f∈Fε

BRUE
(y)

∑
i∈Pw

fiCp(yi, fi). (4.1b)

ESTT =
∫ w-STT

b-STT

g(STT)dSTT. (4.1c)

where g(STT) is the probability distribution function over the STT interval and
∫ w-STT

b-STT
STTdSTT = 1.

Based on different attitudes towards risks caused by non-uniqueness of BRUE, the following scenarios for toll pricing under

bounded rationality (BR-TP) can be defined:

Definition 4.2.

(a) Risk-averse BR-TP (denoted as ‘BR-TP-RA’) is to find an optimal toll vector such that the worst STT is minimized;

(b) Risk-prone BR-TP (denoted as ‘BR-TP-RP’) is to find an optimal toll vector such that the best STT is minimized;

(c) Risk-neutral BR-TP (denoted as ‘BR-TP-RN’) is to find an optimal toll vector such that the expected STT is minimized given

a probability distribution over the BRUE set;

(d) BR-TP under UE (denoted as ‘BR-TP-UE’) is to find an optimal toll vector such that the STT under UE is minimized.

In this study, we mainly focus on BR-TP-RA and BR-TP-RP.

4.2. Risk-averse and risk-prone BR-TP formulation

BR-TP-RP and BR-TP-RA are to minimize the total system cost in the best and the worst case under the BR behavioral assump-

tion, by deciding optimal tolls charged on the candidate link set. So they can be formulated as:

min
y∈Y

min
x∈X

/ max
x∈X

∑
a∈A

xata(xa) +
∑
a∈T

xata(ya, xa) (4.2)

s.t. 0 � ya � ȳ, a ∈ T
x = �f,∀f ∈ Fε

BRUE
(y).

where, ya: the toll charged on link a, between zero and an upper bound ȳ;

xa: the link flow for link a;

A: the link set without tolls charged;

T : the link set with tolls charged;

x = {xa}a∈L: the link flow vector;

ta(ya, xa): the cost of traversing link a, which depends on total traffic using link a and the toll charged on link a;

Fε
BRUE

(y): the tolled BRUE solution set defined by Eq. (2.9).

The link-based BR-TP can be rewritten as the path-based formulation:

min
y∈Ky

min
f∈Fε

BRUE
(y)

/ max
f∈Fε

BRUE
(y)

∑
i∈Pw

fiCi(yi, fi) (4.3)

s.t. 0 � yi � npȳ, i ∈ Pw

f ∈ Fε
BRUE

(y).

where np is the number of links along the path p.

Recall that we define STT(y, f) = ∑
i∈Pw fiCi(yi, fi). Then BR-TP can be rewritten compactly as:

min
y∈Ky

min
f∈Fε

BRUE
(y)

/ max
f∈Fε

BRUE
(y)

STT(y, f). (4.4)
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5. Solution existence conditions

5.1. Risk-prone BR-TP

Solution existence of BR-TP-RP can be proven by decomposing BR-TP-RP into multiple subproblems defined over BRUE sub-

sets.

Let

	k(y) �

{
min

f∈Fε
k
(y)

STT(y, f), y ∈ Ky,

M, o.w.
, (5.1)

where M is a very big number to ensure that 	(y) �= 	k(y) if Fε
k
(y) = ∅(in other words, y /∈ Ky).

Then BR-TP-RP can be rewritten as: 	(y) = mink={0,...,K} 	k(y),∀y ∈ Y . Note that 	(y) is also defined over the interval where

the kthsubset does not exist, so it is defined over the feasible toll set y ∈ Y .

Solving BR-TP-RP is then transformed to obtaining the minima for K + 1subproblems 	k(y), and then find the minima among

these K + 1optima. 	k(y) can be reformulated as:

	k(y) : min
y,f(y)

STT(y, f(y)) (5.2a)

s.t.(y, f(y)) ∈ G. (5.2b)

where,

G =
{
(y, f(y))|f(y) ∈ Fε

k (y), y ∈ Kk
y

}
. (5.3)

Before showing its solution existence, we need to first introduce a theorem.

Theorem 5.1 (Theorem 1 in Ban et al. (2009)). If the link cost function t is continuous and monotone with respect to the link flow

vector x, STT(y, f) is continuous with respect to (y, f), and F is nonempty, compact, and convex, then the following two statements hold:

• G is compact;
• 	k(y) has at least one solution.

Based on Theorem (5.1), we know that there exists optimal solutions for 	k(y) in BR-TP-RP. Then there must also exist optimal

solutions for the minimum over K finite solutions, i.e., there exists at least one solution for 	(y) =
K

min
k=1

	k(y). In other words,

BR-TP-RP has optimal solutions and the solution existence condition is established. Note that this solution may be non-unique.

5.2. Risk-averse BR-TP

Theorem 5.2 (Ban et al., 2009). If the link cost function t is continuous and monotone with respect to the link flow vector x, STT(y, f)

is continuous with respect to y and f(y), and F is nonempty, compact, and convex. then,

max
f∈Fε

k
(y)

STT(y, f) > −∞, (5.4)

Define


k(y) �

{
max

f∈Fε
k
(y)

STT(y, f), y ∈ Kk
y,

0, o.w.
(5.5)

Then we have


(y) � max
f∈Fε

k
(y)

STT(y, f),∀y ∈ Y. (5.6)

Note again that Eq. (5.5) is also defined over the interval where the kth subset does not exist, so it is defined over the feasible toll

set y ∈ Y .

The above theorem indicates that 
k(y) has a greatest lower bound as y varies within Y . Since Yis a bounded set, there must

also exist optimal solutions for 
k(y) and therefore 
(y).

Ban et al. (2009) then gave a theorem of the solution existence condition for BR-TP-RA:

Theorem 5.3. Suppose that the set Kk
yis compact, and the function 
k(y) defined in Eq. (5.5) is lower semicontinuous at each point y

in Kk
y,then the BR-TP-RA has at least one solution.

To guarantee the attainment of an optimal solution of BR-TP-RA, 
(y) needs to be lower semicontinuous. In the following, we

will investigate the semi-continuity of 
(y).
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Fig. 1. A network with two links.
In multi-valued mapping, 
(y) is called the supreme ‘marginal function’ (Luderer et al., 2002). Its continuity property is

guaranteed by the following theorem:

Theorem 5.4 (Hogan, 1973; Luderer et al., 2002).


(y) = sup
z∈F(y0)

f (y, z). (5.7)

If F is upper semicontinuous at y0 and uniformly compact near y0, and if f is upper semicontinuous on y0 × F(y0), then 
(y) is upper

semicontinuous at x0.

Consequently, the above theorem can be applied to show the upper-semicontinuity of 
(y):

Proposition 5.5. 
(y), y ∈ Ydefined in Eq. (5.6) is upper semicontinuous at y.

Proof. By Proposition (3.5), FBRUE(y)is upper-semicontinuous. The system travel time function STT is continuous on y ×
FBRUE(y). Therefore 
(y) is upper semicontinuous at y. �


(y) is upper semicontinuous at each point y in Y,but its lower-continuity cannot be proven, thus BR-TP-RA may not attain

an optimal solution.

Now we will give a simple example to show that 
(y) is upper semicontinuous.

Example 5.1. The OD demand is connected by two paths between nodes O and D illustrated in Fig. 1. Two paths have the same

travel cost of 3. Assume tolls y1 and y2 are charged on link #1, #2respectively. The demand level is d and the indifference band is

ε.

There are three cases of constructing the BRUE set:

1. y1 − y2 < −ε ⇒ C2 − C1 > ε: fBRUE = [d 0]
T
,
(y1, y2) = (y1 + 3)d.

2. −ε � y1 − y2 � ε ⇒ −ε � C1 − C2 � ε: Fε
BRUE

= {f : f1 + f2 = d, f1, f2 � 0},STT(f, y) = f1C1 + f2C2 = (y1 − y2) f1 +

d(y2 + 3). Thus 
(y1, y2) =
{

y2 + 3)d if y1 − y2 � 0,

(3 + y1)d if y1 − y2 > 0.
.

3. y1 − y2 > ε ⇒ C1 − C2 > ε: fBRUE = [0 d]
T
,
(y1, y2) = (y2 + 3)d.

In summary, 
(y1, y2) =

⎧⎪⎨
⎪⎩

(y1 + 3)d, if y1 − y2 < −ε,

(y2 + 3)d, if − ε � y1 − y2 � 0,

(y1 + 3)d, if 0 < y1 − y2 � ε,

(y2 + 3)d, if y1 − y2 > ε.

and its plot is shown in Fig. 2.

In Fig. 2, 
(y1, y2) takes a higher value at discontinuity y1 − y2 = −εor y1 − y2 = ε,therefore it is upper semicontinuous.

Remark. Both BR-TP-RP and BR-TP-RA are mathematical programs with equilibrium constraints (MPEC). They are NP-hard.

Section 5.1 shows that an optimal BR-TP-RP exists theoretically. However, it does not guarantee in practice that the optimal

toll can be actually attained using any algorithm. Moreover, Section 5.2 shows that BR-TP-RP may not exist. However, in real-

world applications, we should always be able to find a suboptimal toll for the purpose of implementation. Because algorithm

is not the main focus of this paper, we will direct readers to Luo et al. (1996) for detailed algorithm implementation of solving

MPEC problems.

6. Numerical examples

6.1. An illustrative example of a network with three paths

In the following, we will illustrate how to obtain the optimal toll analytically in the typical Braess network. The topology of

the network, the OD demand between nodes 1 − 4and link cost functions are illustrated in Fig. 3. There are three paths: 1-3-4

(path 1),1-2-4 (path 2) and 1-3-2-4 (path 3). The total demand d = 6and the indifference band ε = 10. The toll yis charged on

link #5.

For the fixed demand level, due to flow conservation, the feasible flow set can be characterized by two path flows, i.e., f3 =
6 − f − f . Therefore, three path costs can be computed as functions of flows on the first two paths:
1 2



84 X. Di et al. / Transportation Research Part B 83 (2016) 74–90

2

4

6

8

0

4
6

8
10
20

30

40

50

60

70

80

90

100

Fig. 2. 
(y1, y2) given d = 7, ε = 5.

Fig. 3. The network illustration with three paths.
C1 = 11 f1 + 10 f3 + 50 = f1 − 10 f2 + 110,

C2 = 11 f2 + 10 f3 + 50 = −10 f1 + f2 + 110,

C3 = 10( f1 + f2) + 21 f3 + 10 + y = −11( f1 + f2) + 136 + y.

UE is a special BRUE. It can be computed by letting three path costs equal, i.e., C1 = C2 = C3,and the flow pattern needs to be

feasible, i.e., f1 + f2 + f3 = 6, f1, f2, f3 � 0. Then we have

fUE(y) =
{[

y+26
13

y+26
13

−2y+26
13

]T
, if 0 � y < 13,[

3 3 0
]T

, if y � 13.

(6.1)

When 0 ≤ y < 13, all three paths are utilized under UE. Therefore under BRUE these three paths are all acceptable. According

to Eq. (2.6):

Fε=10
BRUE = {f ∈ F : f1 + f2 + f3 = 6, f1, f2, f3 � 0,

| f1 − f2| � 10
11

;
|12 f1 + f2 − 26 − y| � 10;
| f1 + 12 f2 − 26 − y| � 10}.

When y ≥ 13, only the first two paths are utilized and the third path is too costly to use under UE. Let ε∗
1
(y)be the critical indiffer-

ence band when more paths are included (and detailed definition is referred to Di et al. (2013)). If ε∗
1(y) > 10,the BRUE set is com-

posed of only one subset: Fε=10
BRUE

= Fε=10
0

. If ε∗
1
(y) < 10,the BRUE set is the union of two subsets: Fε=10

BRUE
= Fε=10

0

⋃
Fε=10

1
,where

each subset is defined as follows:
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Fig. 4. BRUE set.
Fε=10
0 = {f ∈ F : f1 + f2 = 6, f1, f2 � 0, f3 = 0,

| f1 − f2| � 10
11

}.
Fε=10

1 = {f ∈ F : f1 + f2 + f3 = 6, f1, f2, f3 � 0,

| f1 − f2| � 10
11

;
|12 f1 + f2 − 26 − y| � 10;
| f1 + 12 f2 − 26 − y| � 10}.

In summary, when 13 ≤ y < 23, the BRUE is the union of two subsets: Fε=10
0

with first two paths utilized and Fε=10
1

with all three

paths utilized (See in Fig. 4c). When y > 23, only first two paths can be utilized and the BRUE set is Fε=10
0

.

In Fig. 4a–d, the triangle area encompassed by two axes and the line f1 + f2 = 6is the feasible region. UE is plotted as a red

cross in Fig. 4. The BRUE set is indicated by a green region. To consider the feasibility of the BRUE set and whether the system

optimal (SO) (i.e., the feasible flow pattern with the lowest STT values) is included in the BRUE set, we further divide the toll into

four intervals, and the BRUE set given each toll range is plotted in Fig. 4a–d.

To find b-STT and w-STT, we need to inspect the STT function. STT is formulated as:

STT(f, y) =
3∑

i=1

Ci fi = 12( f 2
1 + f 2

2 ) + 2 f1 f2 + (18 − y)( f1 + f2) + (6y + 816). (6.2)

Eq. (6.2) shows that given a certain demand level, STT is a general conic equation with respect to the path flow pattern f. SO is

the feasible flow pattern with the lowest STT and can be calculated as: fSO = [ 3 3 0 ]
T
, STTSO = 498.

In Fig. 4, SO is denoted as a red star, which is the center of STT contour lines (i.e., grey elliptical lines). Each point on a contour

line represents the value of STT for a certain flow pattern. The contour line which is farther from SO has higher STT. Accordingly,

the BRUE flow pattern which is located on the farthest STT contour is the worst case; while that on the closest contour is the best

case.

To solve risk-averse toll pricing, we need to first identify the worst scenario given y. When 0 ≤ y < 13 (shown in Fig. 4a–b),

the worst flow pattern is denoted as ‘W’, which is the leftmost corner point. When 13 ≤ y < 23 (shown in Fig. 4c), there are

two possible worst flow patterns, denoted as ‘W’. When y ≥ 23 (shown in Fig. 4d), the BRUE set is a line segment along the line

f + f = 6,and the worst cases are on both ends.
1 2
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Fig. 5. 
(y).

(y) =

⎧⎪⎨
⎪⎩

−34y+6576
13

, if 0 � y < 13,

max{−74y+8176
13

, 5528
11

}, if 13 � y < 23,

5528
11

, if y � 23.

(6.3)

To solve risk-prone toll pricing, we need to identify the best scenario given y. When 0 ≤ y < 3 (shown in Fig. 4a), the best flow

pattern is denoted as ‘B’, which is the rightmost corner point. When y ≥ 3, SO is included in the BRUE set and thus the best flow

pattern is SO (shown in Fig. 4b–d).

	(y) =
{−74y+8176

13
, if 0 � y < 13,

498, if y � 3.
(6.4)

Plotting 
(y) and 	(y) with respect to the toll y (Fig. 5):

The optimal tolls for BR-TP-RP, BR-TP-UE, and BR-TP-RA are ones minimizing respective STT values as y varies. We need to

notice that, optimal tolls are not unique: y∗
RP � 3,y∗

UE � 13,and y∗
RA

� 22. We have the following conclusions:

• The gap between b-STT and w-STT given a specific toll represents variation of the system operational efficiency due to

bounded rationality;
• The lower bound of y∗

UE = 13is the marginal cost;
• The lower bound of y∗

RP
= 3is smaller than y∗

RA
= 22. This indicates that, existence of the indifference band ε can improve

the operational efficiency of a transportation network at some flow patterns. When the network operates under these flow

patterns, the optimal toll can be charged much less to improve system efficiency;
• With y∗

RP
and y∗

UE
,the system operates at SO with the total system travel time of 498; while with y∗

RA
,the system can run at

best with the total system travel time of 503;
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Fig. 6. The network illustration with four paths.
• When the optimal toll y∗
RPor y∗

UE is charged, under the best BRUE flow pattern or the UE, the middle link is not used. In other

words, the addition of the middle link causes the Braess paradox to occur and charging the toll will force people not to use it.

The effect of the paradox can be removed using toll pricing.

6.2. A numerical example of solving BR-TP-RA

In the second example, we will add one link from node 2 to node 3. The topology of the test network, the OD demand between

nodes 1 − 4and link cost functions are illustrated in Fig. 6. There are four paths: 1-3-4 (path 1), 1-2-4 (path 4), 1-3-2-4 (path 3),

1-2-3-4 (path 4). The toll y is charged on link 5.

6.2.1. BRUE subsets

In this example, we will decompose the BRUE set into multiple subsets and illustrate the worst scenario 
k(y), k =
1, . . . , K,where K is the number of subsets given y. Thus,


(y) = maxK
k=1


k(y).

First, we compute UE with respect to the demand level and the toll:

fUE(y) =

⎧⎪⎪⎨
⎪⎪⎩

[
11d−40+y

13
11d−40+y

13
−9d+80−2y

13
0
]T

, if 0 � d < − 2
9

y + 80
9

,[
d
2

d
2

0 0
]T

, if − 2
9

y + 80
9

� d < 100
9

,[
2d+50

13
2d+50

13
0 9d−100

13

]T
, if d � 100

9
.

Assume d < 100
9 ,− 9

2 d + 50 � ε < −9d + 90. According to the methodology introduced in Di et al. (2013), we can calculate

acceptable path sets for the network shown in Fig. 6 as follows:

Pε =

⎧⎨
⎩

{{1, 2, 3}, {1, 2, 3, 4}}, if 0 � y < − 9
2

d + 40,

{{1, 2}, {1, 2, 3}, {1, 2, 3, 4}}, if − 9
2

d + 40 � y < −9d + 90,

{{1, 2}, {1, 2, 3, 4}}, if y � −9d + 90.

When 0 � y < − 9
2 d + 40,under UE, paths {1, 2, 3} are utilized; path 4 can also be utilized due to the existence of bounded

rationality, and therefore {1, 2, 3, 4} is another subset. Given these two acceptable path sets, the BRUE subset is formulated as

shown in Eq. (2.6). Then the BRUE set is the union of two subsets with {1, 2, 3} and {1, 2, 3, 4} as acceptable paths respectively.

Based on each BRUE subset, we can plot 
k(y), k = 1, . . . , K,where K is the number of subsets given y and may vary as y and ε
vary. 
(y) is the upper envelop of 
k(y), k = 1, . . . , K.

Given different ε, when the toll varies, the possible subsets vary as well. When ε = 0,i.e., under UE, path 3 will not be used

when y > 13. When ε = 5,the indifference band is not large enough to allow path 4 to be used. Path 3 is used along with paths

1, 2 when y ≤ 13 and unused when the toll is large. When ε = 10,paths 3 and 4 are used when the toll is smaller and are not

acceptable when the toll is larger. When ε = 15,the path usage shares the similar pattern as when ε = 10.

Take ε = 10for example, we will show how each 
k(y), k = 0, 1, 2is calculated. When 0 ≤ y ≤ 8, the BRUE set is composed of

two subsets: either paths 1, 2, 3 are used or either paths 1, 2, 3, 4 are used. When 8 ≤ y < 13, the BRUE set is composed of only

one set with acceptable paths 1, 2, 3. When 13 ≤ y ≤ 23, two subsets {1, 2, 3} and {1, 2} exist. When y > 23, path 3 will not be

used due to high toll charge and only paths 1 and 2 are acceptable. Each subset contains a set of BRUE solutions and the worst

flow distribution can be found by solving Eq. (5.5).

As the toll varies, the existence of each subset varies and thus the maximum of each subset also varies. As ε gradually in-

creases, the values of the STT for each subset varies and the shape of 
(y) changes accordingly.

Note. One thing we want to point out is that 
(y) should always be upper-semicontinuous, meaning that when there is a jump

at y, 
(y) carries the higher value at jump. In this network, due to its simple topology, 
(y) is not only upper-semicontinuous

but also lower-semicontinuous, thus continuous. Therefore there exists an optimal toll for this example.
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Fig. 7. 
(y) given d = 6.
In conclusion, the point-to-set mapping 
(y) is complicated and the only property we know is upper-semicontinuity, which

cannot ensure the attainment of an optimal toll. However, in practice, we can always find a suboptimal toll for BR-TP-RA.

6.2.2. Algorithm of solving an optimal BR-TP-RA

Given 
(y) defined in Eq. (5.6), BR-TP-RA can be written as: miny∈Y 
(y). Solving BR-TP-RA includes two main steps: given

a toll y, solving 
(y); and employing some algorithm to find an optimal toll minimizing the total system travel time over all

feasible tolls. These two steps will iterate till an optimal solution or a suboptimal solution satisfying a per-defined tolerance

range is found. The steps of solving an optimal BR-TP-RA in small networks are listed as follows:

1. Set the nth iteration n = 0. The procedure starts with an initial toll y(0). Given y(0), evaluating 
(y(0)) can be converted

to solving multiple subproblems over BRUE subsets. First, UE can be solved and thus the shortest path set PUE(y(0))is

obtained. After knowing PUE(y(0)),repeat the procedure of solving the acceptable path sets proposed by Di et al. (2013)

and we will obtain K + 1BRUE subsets Fε
k
(y(0)). Given the toll vector y(0)and Fε

k
(y(0)),evaluating 
k(y(0)) is to solve a

nonlinear complementarity program defined in Eq. (5.5). When affine link cost functions are employed, STT function is



X. Di et al. / Transportation Research Part B 83 (2016) 74–90 89

Fig. 8. Numerical results.
quadratic with respect to f and Fε
k
(y)is characterized by a system of linear inequalities, evaluating 
k(y(0)) is equivalent

to solving K + 1quadratic programs. Then we can obtain K + 1optimal values. The maximum function value will be 
(y(0)).

2. If the value of 
(y(0)) can be further reduced, set n = n + 1and find an improvement direction to obtain y(1). Because 
(y)

may be a non-smooth function with respect to y, it is not easy to obtain its derivative with respect to the toll. To update

the toll vector, some direct algorithm can be adopted. The feasible toll set defined by Eq. (2.1) is characterized by a system

of linear inequalities, there exist numerous algorithms to reduce the feasible regions and find an improved solution, such

as fortified-descent simplex algorithm adopted by Ban et al. (2009) or active-set algorithm by Murty (1988).

3. This process will continue iteratively until |
(y(n)) − 
(y(n−1))| < δ,where δ is a per-defined positive tolerance parame-

ter. Then y∗ = y(n).

In the numerical example, the toll constraint is: 0 ≤ y ≤ 40. We fix ε = 10. Start with y(0) = 0,follow the procedure afore-

mentioned and the active-set algorithm is employed. 
(y) is solved by the MPEC solver in GAMS (Rosenthal and Brooke, 2007).

Please note that it can also be solved using a quadratic programming solver such as “quadprog” in MATLAB due to affine link cost

functions. The optimal toll is y∗ = 28.5. With this toll, the minimum of the worst-case system travel time 
∗ = 498. When y≥
y∗, only path 1 and 4 carry flows, and actually SO is the only BRUE flow pattern. Fig. 8a–b shows the change of the toll and the

minimum of the worst-case system travel time. Convergence is reached after five iterations.

The worst total system travel time function versus the toll is illustrated as the thick black envelope in Fig. 7c. We can see that

the optimal toll is not unique. For the worst case, the optimal toll is y∗ ≥ 26. The solved optimal toll belongs to this set.

Remark. The proposed algorithm used to solve this example may not be directly applicable for large-scale second-best toll

implementations. More efficient algorithms are needed. For example, Lou et al. (2010) proposed a heuristic algorithm using

penalization and a cutting-plane scheme to solve the worst-case BRUE tolls and implemented it in a median-size nine-node

network. Again, as the algorithm is not the main focus of this paper, we will leave it for future research.

7. Conclusion

This study focuses on developing methodologies of transportation network design problem within the framework of bounded

rationality (BR-NDP). Boundedly rational user equilibria (BRUE) is shown to be non-unique and its solution set is not convex. Non-

uniqueness of the BRUE flow set poses risk or uncertainty for urban planners while making transportation planning, because

they do not know at which equilibrium the network will operate after a plan is implemented. In the established literature, two

attitudes towards risk caused by non-uniqueness of the user equilibrium set have been proposed: risk-prone and risk-averse.

Each attitude represents one belief that a particular flow pattern within the equilibrium set is most likely to happen. In this

study, we also assume urban planners hold the above two attitudes towards risks caused by non-uniqueness of the BRUE set.

Due to the complexity of BR-NDP, congestion pricing problem (the continuous NDP) is studied. Accordingly, we can define

three types of toll congestion under the assumption of BR (BR-TP): risk-prone BR-TP (BR-TP-RP), risk-averse BR-TP (BR-TP-RA),

and risk-neutral BR-TP (BR-TP-RN). Only two methodologies of BR-TP-RP and BR-TP-RA are discussed. They can be formulated as

either a min -min or a min -max program.

Given affine link cost functions, the BRUE set can be decomposed into multiple disjoint convex subsets. Then the lower-level

BR-TP-RP can be optimized over each convex subset and its solution existence conditions are established. However, the solution

of BR-TP-RA cannot be ensured due to upper semi-continuity of the lower-level problem. Since the lower-level objective function

is non-smooth with respect to the toll, it is difficult to evaluate its derivatives. Some direct algorithm is adopted to search for

optimal tolls.
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Two examples are used to illustrate the proposed methodologies. A small network with three paths is studied. The opti-

mal tolls for BR-TP-RP and BR-TP-RA can be solved analytically. The properties of BR-TP are revealed from analytical solutions.

Comparing the three optimal tolls under BR-TP-RP, BR-TP-RA, and BR-TP-UE (only UE is considered in the lower-level), we find

out higher tolls are needed when the attitudes change from optimistic to pessimistic. The other network with four paths is solved

numerically by adopting the proposed procedure.

Though the solution existence condition of the BR-TP-RP is mathematically validated in this paper, the attainment of the

optimal toll for BR-TP-RA cannot be guaranteed and needs to be further explored. In addition, solving the second best congestion

pricing under BR with risk-neutral attitude (BR-TP-RN) is another direction and the existing work of risk-neutral congestion

under UE (Ban et al., 2013) can be extended to the BR context. The last but not the least, a more practical methodology of the

BR-TP in large-scale networks given nonlinear link cost functions should be developed and convergence of the algorithm needs

to be further discussed.
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