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With the continuous expansion of urban rapid transit networks, disruptive incidents—such
as station closures, train delays, and mechanical problems—have become more common,
causing such problems as threats to passenger safety, delays in service, and so on. More
importantly, these disruptions often have ripple effects that spread to other stations and
lines. In order to provide better management and plan for emergencies, it has become
important to identify such disruptions and evaluate their influence on travel times and
delays. This paper proposes a novel approach to achieve these goals. It employs the tap-
in and tap-out data on the distribution of passengers from smart cards collected by auto-
mated fare collection (AFC) facilities as well as past disruptions within networks. Three
characteristic types of abnormal passenger flow are divided and analyzed, comprising (1)
‘‘missed” passengers who have left the system, (2) passengers who took detours, and (3)
passengers who were delayed but continued their journeys. In addition, the suggested
computing method, serving to estimate total delay times, was used to manage these dis-
ruptions. Finally, a real-world case study based on the Beijing metro network with the real
tap-in and tap-out passenger data is presented.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

As the most reliable and energy-efficient transportation system, urban rapid transit has come to be regarded as the best
solution for alleviating road congestion; thus it plays an increasingly important role in many large cities around the world
(Kang et al., 2015). With the continuous expansion and overload operation of urban rail transit networks, disruptions often
arise, leading to difficulties for both passengers and managers. For example, in the first quarter of 2015, disruptive incidents
were up 146% over the previous year in Beijing, China. Therefore it is an important part of transportation management to be
able to identify such problems (e.g., abnormal passenger flows, train delays, etc.) quickly and effectively and to estimate their
impact.

Once an abnormal incident has occurred, train service will be affected, including network disruption, increased travel
time, and changes in travel behavior. From the point of view of the network’s structure, an abnormal incident will lead to
the disruption of lines or stations. Researchers have attempted to simulate different scenarios of network disruption and
to measure their impact on network resilience. However, most of them focus on large-scale emergencies or catastrophes,
where all passengers have to evacuate. For example, Derrible and Kennedy (2010a,b) analyzed the robustness of subway
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systems, which is useful in studying the choice of travel path under disruption. Rodriguez-Nunez and Garcia-Palomares
(2014) emphasized the importance of circular lines in the network structure for the management and resolution of disrup-
tions. Jenelius and Cats (2015) presented a methodology for assessing the value of new links to support the robustness of
public transport networks. They considered disruptions of all lines and links, including the new links themselves. However,
the results obtained by these researchers do not reflect the ways in which disruption affects passenger behavior. Therefore
other investigators have tried to develop new simulation methods (Galea and Galparsoro, 1994; Almodóvar and
García-Ródenas, 2013; Lo et al., 2014; Wales and Marinov, 2015).

Although these studies can help us to understand passenger behavior when an emergency occurs, they do not yield
enough detail with regard to the flow of passengers. Therefore there may be different responses to disruptive incidents,
and these may have different implications. Nikos and Nicolas (2004) searched for effective emergency rescue plans by the
simulation method and completed a case study involving a fire in a metro station. Jiang et al. (2009) developed a numerical
simulation of an emergency evacuation in an urban metro station, taking the Beijing transit network as an example. Also Li
et al. (2016) modeled and analyzed the fire emergency response in urban rail transit. Guo et al. (2012) studied passenger flow
assignment in an urban rail network under emergency response conditions. In addition, the behavior of passengers boarding
trains will change during emergencies and must also be considered. Pnevmatikou and Karlaftis (2011) presented an analysis
of changes in passenger demand that arise when a metro network is disrupted. Duan et al. (2012) established the effect of
passenger density on each type of station: originating stations, intermediate stations, and transfer stations. In addition,
dell’Olio et al. (2013) studied the possible behavior of both passengers and crew while facing emergencies. Cadarso et al.
(2013) studied the disruption recovery problem of urban rail transit networks. Jin et al. (2014) studied a practical problem
involving the integration of a local bus service with a metro network in an effort to enhance the network’s resilience and
avoid disruptions in service. However, the previous work fails to offer a clear estimate the effects of disruption on a network
because it does not include an analysis of passenger choice. In addition, not all common disruption situations will trigger a
response which would depend on the basis of degree of seriousness as shown in Table 1. In this paper, we give the catego-
rization amongst the common disruptions on the basis of degree of incident delay time. Generally, the common disruption is
defined as the delay time less than 30 min caused by the incident. Moreover, the response of passenger behavior to the dis-
ruption will be triggered when the delay time between 10 and 30 min in the real application.

Besides, without the support of real passenger travel data, many passengers behavior in the face of disruption are not
discovered. Therefore the proposed methods are difficult to apply directly in actual management. Recently a new issue
related to passenger tap-in and tap-out data is receiving much attention because it offers a more accurate description of pas-
senger behavior. The analysis of smart-card data in transportation systems has pointed to the importance of traffic data in
management and the prediction of transit passenger flow (Pelletier et al., 2011). In the urban rail transit network, Park et al.
(2008) studied the demand characteristics of various public transport modes in Seoul, South Korea. In particular, they con-
sidered the rapid transit system based on smart-card data. A more detailed review of smart-card data in public transit can be
found in Pelletier et al. (2011). Also Sun et al. (2012) presented a methodology to analyze the dynamic demand distribution
based on smart-card data collected in Singapore. The result is significant for responding to failure in a timely and effective
manner. Supported by the AFC data, we can model passenger volume according to changes in passenger behavior in the sta-
tion where a disruption has occurred.

This paper comprises a quantitative method for estimating the effects of common disruptions (not catastrophes or large-
scale emergencies) on passengers and stations from the spatial and temporal points of view, including a review of the behav-
ior of 3 types of passengers: (1) missed passengers who leave the system, (2) passengers who take detours, and (3) passen-
gers who are delayed but remain on course to their destinations. The behaviors of these passengers are modeled and
analyzed. In the model, Automated Fare Collection (AFC) data are used to identify the disruption and calibrate its parameters
using the Bayesian method. In addition, the paths affected by the disruption are determined; thus the number of affected
passengers can be calculated. The proposed measurements can be applied to the evaluation of the influence of common dis-
ruptions on an urban transit network.
2. Using the Bayesian model to identify an incident

Generally, the operator knows the whole operating situation by the historical data analysis. However, in the day train
scheduling, the operator need to know the real time situation with the on-line tap-in and tap-out data. Therefore, an incident
identification model should be developed to monitor the operation of metro system by the trends of passenger flow at sta-
tions. In many cities, smart-card data can be collected by AFC machines at entrances and exits which contains precise infor-
mation as to the time and place of both boarding and alighting (Ma et al., 2013). For example, Beijing’s smart card data
include card ID, date, boarding station and time, and alighting station and time.

Fig. 1 shows the number of passengers at a particular station over 4 working days in March 2014, indicating that the
demand had a stable trend; this helps us to identify the disruption and estimate its effects. We can see 2 peaks: the morning
peak and the evening peak. In fact, during a typical working day, most of trips represent commuters traveling to and from
work. This makes for a stable pattern of flow. However, when a disruption occurs, this pattern is disturbed, and we can iden-
tify the incident by this change in flow. In Fig. 1, the tap-in passenger volume between 7:45 a.m. and 9:00 p.m. drops, indi-
cating that the abnormal incident occurred on that day, March 15, 2014.



Table 1
The effects of delay time and seriousness degree on the passenger behavior.

Delay time

5 min 10–15 min 20–30 min

Seriousness degree Small Medium Large
Passenger behavior Left Almost all Majority Most

Detoured Almost no Minority Part
Missed Almost no Minority Part

4:00 8:00 12:00 16:00 20:00 24:00
0

200

400

600

800

1000

1200

1400

1600

Time

B
oa

rd
in

g 
pa

ss
en

ge
rs

March, 5
March, 12
March, 19
March, 26
Abnormal day

Abnormal incident

Fig. 1. Temporal boarding patterns of passengers on different days at a station of the Beijing metro network.
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2.1. Description of the model

In assembling our statistical results, the arrival rate during the same time period, such as 15 min or one schedule day fol-
lows a normal distribution. Let the arrival passengers y be a random variable with y � Nðl;r2Þ on a certain day, where l and
r2 represent the mean value and variance. However, the passenger distributions will be different over days in one week.
Therefore, the parameter l would also be a random variable with a mean value of h for a given several weeks data.

2.2. Estimation of parameters

Let pðhÞ be the prior probability of the parameter h. Then the posterior probability distribution of parameter h is obtained
with pðhjDÞ / pðhÞLðDjhÞ according to the sample data. Let T be the data sample size; then the estimated parameter h is sub-
ject to a normal distribution with the following formulation (Ma, 2013):
varðDtþ1jDtÞ ¼ EðvarðDtþ1jh;DtÞjDtÞÞ þ varðEðDtþ1 hj Þ Dtj Þ ¼ r2 þ s2t ð1Þ

EðDtþ1jDtÞ ¼ EðEðDtþ1jh;Dt jDtÞÞ ¼ EðhjDtÞ ¼ lt ð2Þ

Next, we estimate passenger volume y at time t þ 1 with Nðlt ;r2 þ s2t Þ. Besides, the experienced prior probability distri-

bution h � Nðl0; s20Þ can be determined using the following formula:
pðhÞ / exp � 1
2s20

ðh� l0Þ2
� �

ð3Þ
For the passenger volume xx over x days, we collected the sample set D ¼ fx1; . . . ; xxg. Based on the Bayesian model, the
posterior probability can be calculated by
pðhjDÞ ¼ pðDjhÞpðhÞ
pðDÞ ð4Þ
where pðDÞ ¼ R pðDjhÞpðhÞdh.
Let
a ¼ 1
pðDÞ ð5Þ
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In addition, D ¼ fx1; . . . ; xxg is an independent and identically distributed sample; therefore the formula is written as:
pðhjDÞ ¼ apðDjhÞpðhÞ ¼ a
Yx
i¼1
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Clearly pðh Dj Þ follows the normal distribution and is represented by
pðhjDÞ � N lx; s
2
x

� � ð7Þ

Therefore the formula is derived as follows:
pðhjDÞ ¼ 1ffiffiffiffiffiffiffi
2p

p
sx

exp �1
2

h� lx
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� �2
" #

ð8Þ
Comparing formulas (6) and (8), we can get
s2x ¼ r2s20
xs20 þ r2

ð9Þ

lx ¼ s20
xs20 þ r2

Xx
i¼1

xi þ r2l0

xs20 þ r2
ð10Þ
2.3. Detection of anomalies

Generally the normal data will be in the range of l� 3� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ s2x

p
;lþ 3� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ s2x
p� �

, which is called the ‘‘thrice-
standard-error principle.” For a random variable y following the normal distribution, the 99.47% probability of y will be in
this range. Once a disruption occurs, the passenger volume will be affected even if it differs from the normal shape. That
is to say, an abnormal passenger flow can be identified according to this principle. In the urban rail transit network, the pas-
senger flows follow a normal distribution at each given time of day. If the real number of passengers is outside of the thrice-
standard-error principle, we consider the data to be abnormal.

3. Model estimating the effects of disruption

The effects of a disruption are modeled from the viewpoint of the affected passengers and the length of delay in the net-
work. This section summarizes the results of this model.

3.1. The response of passengers for the delay and the trip distance

In the urban rail transit network, the choice behavior of the affected passengers will have close relationship with the
delay situation caused by the disruption, especially for the different O-D pairs. We have performed a survey for different
delay time at different stations (urban area and suburbs) and different time (peak hours and non-peak hours) as shown
in Fig. 2(a). Obviously, we can see that passengers will have different behavior for the additional waiting and travel time.
In addition, the choice behavior of 200 commuters in different O-D is analyzed according to the historical data for two inci-
dent days as shown in Fig. 2(b). In the figure, the distance is represented by the numbers of stations in the route approxi-
mately. It is found that the O-D distance will have a great influence on the passenger behavior, e.g., waiting in the
station, detouring in another station and giving up the urban rail transit network.

The behavior will be diverse with the disruption degree, the line (downtown line or suburbs line) and the station char-
acteristics (ordinary stations or transfer stations), etc. Therefore, it is difficult to get a uniform result for this. However, by the
history data, we can obtain that 75% passengers will give up the metro system when the number of stations in their trip is
less than 7.

3.2. Different types of affected passengers

Depending on the nature and extent of the disruptive incident, passengers will behave differently. In general, passengers
will manifest 1 of 5 behaviors. They may (1) continue to take urban rail transit to reach their destination by the original
route, (2) continue to take unban rail transit but change their destination; (3) continue to take urban rail transit but make



Fig. 2. The response of passengers. (a) The tolerance of passengers for the delay time and (b) the choice behavior of the affected passengers for different
distances.

66 H. Sun et al. / Transportation Research Part A 94 (2016) 62–75
a detour to reach their destination; (4) select an adjacent normally functioning station from which to continue their trip, or
(5) leave the urban rail transit system.

Therefore the 3 types of passengers are classified as (a) passengers who have left the system, (b) passengers who have
taken detours, and (c) passengers who were delayed. Delayed passengers who had already been in the urban rail transit net-
work are likely to fit into cases (1) to (3); passengers who took detours are likely to fit into cases (2) and (3). However, pas-
sengers who were not originally in the urban rail transit network are likely to be delayed passengers for cases (1) to (4); cases
(2) to (4) are likely to be passengers who took detours; and passengers who left the system would fit into case (5).

Let Mðt;hÞ be the number of passengers on path h at time t. The starting and ending times of an incident are represented
by ts and te, respectively. Because AFC data contain only information on passengers who have been in the urban rail transit
system, passengers’ behavior regarding choice of route is difficult to identify or predict. For simplicity we use the shortest
path.

In order to estimate the number of affected passengers, it is necessary to determine how many passengers were in urban
rail transit network when the disruption occurred. Let Dbðt;hÞ be the demandmatrix on path h at time t before the disruption
happened. For any passenger who has not completed his or her trip at time t, we let Dbðt;hÞ ¼ Mðt; hÞ. Otherwise, Dbðt;hÞ ¼ 0.
We give the detailed descriptions of the 3 types of passengers below.

3.2.1. Passengers who have left the system
Once an incident occurs, some passengers, on having to wait a longer time, will give up using the urban rail transit sys-

tem. These passengers can be defined as
QMiss ¼
X
s2sd

X
t2½ts ;te �

Insn
t �

X
s2sd

X
t2½ts ;te �

Inse
t ð11Þ
where Insn
t and Inse

t represent the arrival passengers at time t in station s under normal and abnormal conditions respectively.
sd is a set of affected stations which can be determined by the Bayesian identification model mentioned previously. Then the
proportion of missed passengers is defined by:
a ¼ QMissP
s2sd
P

t2½ts ;te �In
sn
t

ð12Þ
3.2.2. Detoured passengers
There are 3 cases in the analysis of detoured passengers, as follows:

Case 1: Disruption Occurs at the Start Station of One’s Travel Path.

If the starting station of one’s travel path is affected by an incident, passengers may go to another starting station, reenter
the system from there, and then finish their trips. Let b be the proportion of detoured passengers and Zo

e be a set of affected
starting stations. If the starting station s in the passenger path h is affected, Zo

eðhÞ ¼ 1. Otherwise, Zo
eðhÞ ¼ 0. Therefore the

following equation can be derived:
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QOðtÞ ¼
X
h

b�Mðt;hÞ � Zo
eðhÞ; t 2 ½ts; te� ð13Þ
Case 2: Disruption Occurs at the End Station of One’s Travel Path.

Let Zd
e be the matrix for the ending stations. If the terminal station in the passenger path is affected, Zd

eðhÞ ¼ 1. Otherwise,

Zd
eðhÞ ¼ 0.
The estimation of affected passengers can be calculated by the following equation:
QDðtÞ ¼
P

hð1� a� bÞ �Mðt; hÞ � Zd
eðhÞ; t 2 ½ts; te�P

hDbðt; hÞ � Zd
eðhÞ; t < ts

(
ð14Þ
Case 3: Disruption Occurs at the Crossing Station of One’s Travel Path
Let Zm

e be the matrix for the crossing stations. If the affected station is the crossing station in the passengers’ path,
Zm
e ðhÞ ¼ 1. Otherwise, Zm

e ðhÞ ¼ 0.
The estimation of affected passengers can be calculated by
QMðtÞ ¼
P

hð1� a� bÞ � DðtÞ � Zm
e ðhÞ; t 2 ½ts; te�P

hDbðtÞ � Zm
e ðhÞ; t < ts

(
ð15Þ
3.2.3. Delayed passengers
An incident will affect the departure and the arrival of trains and lead to the delay. The number of delayed passenger can

be calculated by
QDelay ¼
XN
i¼1

ni ð16Þ
where QDelay represents the total quantity of delayed passenger flow, as travel time increases after the emergency occurs and
ni ¼ 1 when the travel time of passenger i increases compared with the normal case. Otherwise, ni ¼ 0. In addition, N is the
total number of passengers. In fact, it need a lot of time to determine ni for each passenger i due to the great volume of pas-
sengers and O-D pair. For simplicity, in this paper, we first calibrate the distribution of travel time between arbitrary two
affected stations according to the historical AFC data. Then, for the passengers who have a trip in the incident day, we
can obtain their travel time with boarding time and alighting time in the recorded abnormal day data. Compared with
the travel time between normal day and abnormal day, we can calculate the total number of delay passengers.

3.3. Estimation of delay

Here, 3 indicators are proposed to estimate the effects of a disruption on time delay in an urban rail transit system: the
average delay time, the maximum delay time, and the rate of punctual arrival. For passenger i, the delay time can be repre-
sented by the difference between the real travel time ttraveli , on the abnormal day, and the normal travel time, th, of path h.
That is:
tdelayi ¼ ttraveli � th ð17Þ
3.3.1. Average delay time
The average delay time of passengers QDelay caused by the disruption, defined as tdelay is
tdelay ¼
PQDelay

i¼1 tdelayi

QDelay
ð18Þ
3.3.2. Maximum delay time
The maximum delay time of the passenger tdelaymax caused by the disruption is defined by
tdelaymax ¼ maxftdelayi g ð19Þ
3.3.3. Punctuality rate
Let P be the punctuality rate of passenger in urban rail transit system in an abnormal situation, it is formulated as follows
P ¼ N � QDelay

N
ð20Þ
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3.4. Estimation of financial losses

For the operator, once the incident occurs, it will have the financial losses due to the passengers who have left the urban
rail transit system. Let CLosses be the total financial losses and PAverage be the average price for the left passengers. We can for-
mulate the estimated financial losses as follows:
Fig. 3.
TianTan
CLosses ¼ QMiss � PAverage ð21Þ
4. Case study: the Beijing rail transit network

4.1. Data description and incident identification

The following case study considers the Beijing rail transit network, which included 17 two-directional lines and 334 sta-
tions in 2014, as shown in Fig. 3. Based on the analysis of the AFC data on a working day, as shown in Fig. 1, the distribution
of passenger flow in the Beijing rail transit system shows a clear periodicity and stable characteristics. In this paper a case
study of an incident that occurred at Xi’erqi Station on line 13 of the Beijing metro at 7:55 p.m. is presented.
4.1.1. Data preparation
Datasets that represent the tap-in passengers at Xi’erqi Station on a working day between 7:45 and 8:00 p.m., within

8 weeks, were collected, as shown in Table 2. Groups 1–6 and sample group 7 represent the number of passengers on a nor-
mal day; the test group represents the number of passengers on an abnormal day. The a priori information by using groups
1–6 is first obtained. Then the sample data are used to obtain the a posteriori information using the Bayesian model.
A map of the Beijing rail transit network. The stations marked with red boxes are Xi’erqi (XEQ), BaJiaoYouLeYuan (BJYLY), LiuJiaYao (LJY), and
DongMen (TTDM). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



Table 2
The Number of Tap-in Passengers from 7:45 a.m. to 8:00 p.m. at Xi’erqi Station.

Group Monday Tuesday Wednesday Thursday Friday

1 1630 1593 1580 1691 1619
2 1678 1685 1752 1675 1737
3 1783 1786 1671 1646 1655
4 1709 1709 1667 1737 1553
5 1697 1716 1647 1716 1602
6 1573 1673 1694 1730 1738

Sample 1591 1697 1724 1534 1732
Test 1716 1601 1648 1405 1707
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4.1.2. Identification of the incident
The a priori probability for the first 6 weeks from the historical data is first calculated. To identify the 2 arrival data sets

with a common distribution, Fig. 4 shows the quantile-quantile graph of tap-in passengers on working days during the
4 weeks from 1, March 1 to March 31, when the passenger flow followed a normal distribution. By using the Bayesian fore-
casting method, the general model is calibrated from the sample data (the first cycle of the 5 days) and the estimated value is
obtained using the ‘‘thrice-standard-error principle,” as shown in Fig. 5. Through the recursion of the sample data, the safety
threshold changes over time, which indicates that the model can reflect the data characteristics of historical and real time.
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Fig. 4. Quantile–quantile graph of tap-in passengers.
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Therefore it can be used to describe the normal threshold range of tap-in passenger flow accurately. The dataset on the ninth
day clearly indicates the abnormal point, because it is beyond the safety threshold.
4.2. Effects of a disruption

In this paper, the mean of tap-in passengers for 4 consecutive weeks as the normal passenger flow and origin-destination
matrix (OD) are studied. The local network of the Beijing rail transit was adopted, as shown in Fig. 6. First, the total travel
time between each origin and destination OD should be calculated, including the walking time from the AFC machine to the
platform, the waiting time on the platform, the in-train time, and the transfer time from one line to another.
4.2.1. Model of total travel time
Passengers will choose the travel path between each OD pair according to the total travel time T TOTAL, which includes

the walking time at the station, T WALKING; the waiting time, T WAITING; the in-train time, T INTRAIN; and the transfer
time, T TRANSFER. Generally, the in-train time can be determined by checking the published train schedule. The waiting
time can be estimated as half the headway, and the walking time is the time that one walks from the ticket machine at
the entrance to the platform and vice versa at the exit. The transfer time is determined by the walking speed in the transfer
passageway between 2 lines. Therefore the total travel time could be calculated as follows:
T TOTAL ¼ T WALKINGþ T WAITINGþ T INTRAINþ T TRANSFER ð22Þ

According to the total travel time model, the reasonable path between any arbitrary OD pair could be calculated using the

k-shortest path algorithm. Table 3 gives the average travel time in different path of the local network.
4.2.2. The detour probability b
Let b be the probability that passengers will choose to go to the neighboring station. This is generally difficult to deter-

mine in a real operation. However, it could be calibrated by using the historical AFC data for abnormal days. Here, two inci-
dents that occurred at the BaJiaoYouLeYuan Station on February 19, 2014, are selected, and at LiuJiaYao Station caused by an
incident at TianTanDongMen Station on February 24, 2014. The response of passengers to these 2 incidents is analyzed
according to the recorded passengers ID. The detour probability for passengers who chose the neighboring station was about
13.5% and 11.5% respectively. For simplicity the average value of b ¼ 12:5% was selected. Therefore, for this case study, the
estimated passenger who detour to the neighbor of disruption station and finish their trip will be about 212.
ZXZ
SMKXY

XEQ

LZ
HLG

SD

Transfer stations

JST
XZM

Fig. 6. A local network of the Beijing rail transit (the various paths are marked in different colors).

Table 3
Average travel time in different path.

Path number Path Travel time(s)

1 ZXZ-SMKXY 290
2 ZXZ-SMKXY-XEQ 696
3 1018
4 993
5 1128
6 5308
. . . . . . . . .

Note: means the transfer station.
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Fig. 8. The stations affected by the disruption and the lengths of the disruptions.
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4.2.3. Estimation of the impact of a disruption
4.2.3.1. Influence scope of the network. By using the Bayesian detection method, the affected arriving passengers at Xi’erqi Sta-
tion are as shown in Fig. 7, which gives the temporal boarding patterns of passengers at the Xi’erqi station. The red1 line in
Fig. 7 represents the number of arriving passengers at the Xi’erqi Station on the day of the disruption, and the blue line repre-
sents the number of arriving passengers at the station on a typical working day within a month. The green dotted lines are the
upper and lower boundaries within the ‘‘thrice-standard-error principle” of arriving passengers on normal days. The passenger
distribution from 7:45 a.m. to 9:00 p.m. is comparable to the normal situation.

Once the incident occurred, it quickly spread throughout the network. We can identify the affected stations by using
Bayesian detection method. The affected period and scope are shown in Figs. 8 and 9.
4.2.3.2. Estimation of affected passenger flow. Table 4 lists a part of the demand matrix Mðt;hÞ on path h at time t, which rep-
resents the number of passengers on different paths over time. By applying the model proposed in Section 3, the matrices Zo

e ,

Zm
e , and Zd

e could be calculated, as shown in Table 5.
The missed passengers in different stations and in the rail network generally over time are shown in Figs. 10 and 11. It

could be observed that the number of arriving passengers is in accordance with the trend, in which decreased at first and
then increased within the duration of the disruption compared with the normal level. The minimum value of cumulative
arriving passenger flow appeared at 9:00 p.m., which means that the disruption was coming to a close. The total number
of missed passengers in the network was about QMiss ¼ 8920. The ratio of missed passengers is about a ¼ 15:7%, as calcu-
lated by Eq. (12).
1 For interpretation of color in Figs. 7 and 8, the reader is referred to the web version of this article.
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Fig. 9. Other stations affected by an incident at XEQ Station.

Table 4
Part of the matrix Mðt;hÞ.

Time Path index

1 2 3 4 5 6 7 . . .

6:45–7:00 6 25 10 0 1 2 0 . . .

7:00–7:15 8 69 7 0 0 3 1 . . .

7:15–7:30 5 118 16 0 0 6 1 . . .

7:30–7:45 6 106 16 1 0 4 1 . . .

7:45–8:00 12 211 23 0 0 6 2 . . .

8:00–8:15 11 223 33 2 1 2 2 . . .

8:15–8:30 10 169 14 1 1 1 1 . . .

8:30–8:45 2 99 12 0 1 0 1 . . .

8:45–9:00 8 95 10 3 1 1 1 . . .

Table 5
Some of the affected paths.

Path index

1 2 3 4 5 6 7 8 . . .

Zo
e 0 0 1 1 1 0 0 0 . . .

Zm
e 0 1 1 1 1 1 1 0 . . .

Zd
e 0 0 0 0 0 0 0 0 . . .

Fig. 10. Missed passengers at affected stations.
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Fig. 11. Total number of missed passengers.
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Table 6 presents the number of affected passengers in the network. It was found that the total number of passengers
affected by the incident was about 45,823. The number of passengers whose starting station was affected was 3801; the
number whose terminal station was affected was 20,526, and the number whose middle station was affected was 21,496.

4.2.3.3. Estimation of the delay time. Because the travel time is affected mainly during the period of the incident, the delay
time is estimated between 7:00 and 8:30 p.m. The delay time for each affected passenger is plotted in Fig. 12. Table 7 gives
the total average delay time, maximum delay time, and punctuality rate. As we can see, about 25,533 passengers were
delayed during the period of the incident. The average delay time was 630 s. The maximum delay time was 254 s, and
the punctuality rate was only 26.25%.
Table 6
Affected passengers during different time periods.

5:45–6:00 6:00–6:15 6:15–6:30 6:30–6:45 6:45–7:00 7:00–7:15

QO 0 0 0 0 0 314
QD 0 3 39 514 1603 1897
QM 9 41 168 853 2026 2226

Total 9 44 207 1367 3629 4437

7:15–7:30 7:30–7:45 7:45–8:00 8:00–8:15 8:15–8:30 Total

QO 485 663 825 808 706 3801
QD 2447 3163 3813 3822 3225 20,526
QM 2714 3121 3586 3632 3120 21,496

Total 5646 6947 8224 8262 7051 45,823
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Fig. 12. Distribution of delay time per passenger.



Table 7
The delay time caused by disruption.

Qdelay (people) tdelay(s) tdelaymax (s) P

25,533 630 2548 26.25%
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4.2.4. Estimation of the financial losses
Before 2015, the Beijing adopted a flat-rate subway fare with unlimited transfers. A single-ride ticket costs only two RMB.

Therefore, we can estimate the financial losses easily for single-ride ticket. However, fares were adjusted based on distance
in 2015. In this situation, we should estimate the average price according to the affected O-D pair and the total number of
passengers. Because the incident used in this paper occurred in 2014, the estimated financial losses of operator will be about
17,840 RMB with Eq. (21).

4.3. Response to the disruption

In general, once an incident occurs, operators will adjust the timetable to meet the change of passenger volume and net-
work structure. At the same time, the limitation measure of passengers will be implemented at the affected stations as
shown in Fig. 8 (stations with red color).
5. Conclusions

This paper describes the development of a model that estimates the effects of a disruption in an urban rail transit network
taking into account the spatiotemporal factors involved. Based on the AFC data, an efficient Bayesian method was introduced
to identify the disruption according to the number of tap-in passengers collected by AFC system. To estimate the effects of a
disruption, passenger behaviors were divided into 3 groups: missed passengers, detoured passengers, and delayed passen-
gers. Then a model was developed to analyze the delay caused by the disruption, including average delay time, maximum
delay time, and rate of punctual arrivals. By using that model, the affected stations could be determined. Finally, the validity
of the model and method was verified by a case study involving the Beijing rail transit network. The results show that the
model can be used to estimate the effects of a disruption on the urban rail transit network mathematically and
quantitatively.
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