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Most research on walking behavior has focused on mode choice or walk trip frequency. In
contrast, this study is one of the first to analyze and model the destination choice behaviors
of pedestrians within an entire region. Using about 4500 walk trips from a 2011 household
travel survey in the Portland, Oregon, region, we estimated multinomial logit pedestrian
destination choice models for six trip purposes. Independent variables included terms
for impedance (walk trip distance), size (employment by type, households), supportive
pedestrian environments (parks, a pedestrian index of the environment variable called
PIE), barriers to walking (terrain, industrial-type employment), and traveler characteristics.
Unique to this study was the use of small-scale destination zone alternatives. Distance was
a significant deterrent to pedestrian destination choice, and people in carless or childless
households were less sensitive to distance for some purposes. Employment (especially
retail) was a strong attractor: doubling the number of jobs nearly doubled the odds of
choosing a destination for home-based shopping walk trips. More attractive pedestrian
environments were also positively associated with pedestrian destination choice after con-
trolling for other factors. These results shed light on determinants of pedestrian destination
choice behaviors, and sensitivities in the models highlight potential policy-levers to
increase walking activity. In addition, the destination choice models can be applied in prac-
tice within existing regional travel demand models or as pedestrian planning tools to eval-
uate land use and transportation policy and investment scenarios.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

There have long been calls for research to improve our understanding of walking behaviors and to create better analytical
tools to aid in planning for non-motorized modes. Such tools have the potential to inform infrastructure investments, quan-
tify mode shifts, improve safety analyses, and create outputs relevant to emerging issues of public health, economic devel-
opment, and sustainability. Despite recent increased interest in planning for walking, current forecasting tools—namely
regional travel demand models—incompletely represent pedestrian behaviors (Singleton and Clifton, 2013). However, two
recent advances have opened the door to significant innovations in pedestrian modeling: (1) the availability of spatially dis-
aggregate travel behavior data (documenting walking trips more accurately); and (2) detailed data about the quality of the
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pedestrian environment (including pedestrian barriers and supports and fine-grained land use characteristics). Both
advances allow pedestrian travel behaviors to be modeled at an appropriate scale.

Taking advantage of these data, recent research by the authors shows how four-step travel models can be improved to
account for walking behaviors (Clifton et al., 2013, 2016). Our previous work identified factors associated with trip genera-
tion for pedestrian trips. This paper takes our work to the next stage—destination choice—and describes the development of
pedestrian destination choice models, including behavioral influences, conceptual frameworks, model estimation results,
policy implications, and planning applications.

Little research exists on the destination choice behaviors of pedestrians. Our paper contributes to this topic by including
commonly-identified influences on destination choice from the broader literature along with spatial variables that account
for the quality of the pedestrian environment. Measures developed here include elements of the environment that support
walking and those that detract from walking. That is, this study focuses on destination choices for pedestrian travel, testing
the influences on walking behavior at a scale appropriate for pedestrians, and includes relevant variables for pedestrian tra-
vel. It identifies measures, especially of the built environment, to which pedestrian behavior may be sensitive, highlighting
potential policy-levers to increase levels of walking and physical activity. These behavioral sensitivities to distance, destina-
tion attractions, and the pedestrian environment can be useful for informing land use, urban design, and transportation poli-
cies, including policies related to carless households. Combined with previous work, our effort adds to the development a
pedestrian planning tool that can be used to better estimate total walking activity in a given study area by combining data
on trip origins and destinations.

The paper first provides background and context on the framework for four-step models to better represent walking
activity. It then presents key concepts included in destination choice modeling along with methods and data. Model estima-
tion results follow. The paper concludes with a discussion of the behavioral interpretations and policy-relevance of our find-
ings, potential planning applications of the pedestrian destination choice models, study limitations, and opportunities for
future work.
2. Background

A framework to better represent walking activity in travel demand models, introduced previously by the authors (Clifton
et al., 2013, 2016), is illustrated in Fig. 1. The framework consists of four main steps, outlined below. Foremost, it increases
the ability of regional travel models to represent walking within a trip-based structure without adding significant complex-
ity or data requirements. It also has the potential to be modified to function as a standalone tool for pedestrian planning at a
variety of scales, and the destination choice step in particular may be amenable for inclusion in activity based models.

1. Change the spatial unit of analysis for trip generation (all modes) from transportation analysis zones (TAZs) to pedestrian
analysis zones (PAZs). Here, PAZs are uniform grid cells; in this application they have 264 ft (80 m) sides.

2. Apply a walk mode split model to estimate the number of walk trips produced in each PAZ. This binary logit model
includes spatially disaggregate built environment and socioeconomic variables that measure relationships between walk-
ing and the physical environment.

3. Aggregate trips by vehicular modes (auto, transit, and bicycle) to the zonal structure of the regional model (TAZs) and
then proceed with the remaining stages for these modes in the regional model.

4. In parallel procedure, apply a destination choice model to distribute the number of walk trips produced in each PAZ (step
2) to destinations.

Steps 1–3 have been described previously (Clifton et al., 2013, 2016). This paper focuses on the fourth step and describes
the development of the pedestrian destination choice model.
3. Literature review

Trip distribution is the second step of traditional four-step travel demand models (Ortúzar and Willumsen, 2011). Histor-
ically, trip distribution methods include growth factor methods and gravity model methods. More recently, practice is mov-
ing towards using destination choice models to distribute trips from origins to probable destinations. Destination choice
models can have a similar model structure to the multinomial logit (MNL) models often used for mode choice. (The tradi-
tional gravity model for trip distribution has been shown to be mathematically equivalent to an MNL model with two attri-
butes: size and impedance (Anas, 1983).) Existing literature offers guidance for estimating destination choice models,
especially with respect to choice set generation (Pagliara and Timmermans, 2009) and variable specification (Ben-Akiva
and Lerman, 1985; Bernardin et al., 2009; Borgers and Timmermans, 1988; Pozsgay and Bhat, 2001). While choice sets could
be constructed using deterministic rules or data on the perceived availability of alternatives (Ortúzar and Willumsen, 2011;
Pagliara and Timmermans, 2009), most destination choice sets contain a sample of alternatives (Ben-Akiva and Lerman,
1985; Lemp and Kockelman, 2012). Destination choice model specifications typically include, at a minimum, terms for impe-
dance (e.g., distance, generalized cost) and size (e.g., employment) (Ben-Akiva and Lerman, 1985; Bhat et al., 1998).
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Fig. 1. Framework to increase representation of walking in conventional travel demand models (from Clifton et al., 2013, 2016).
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It is important to consider the unique determinants of walking when investigating pedestrian destination choice behav-
ior. Research has identified a common set of built environment features that affect walking. Distance to destinations is often
a strong factor (Saelens and Handy, 2008). Walking has been positively associated with residential and employment density,
land use mix, and connectivity (Ewing and Cervero, 2010; Saelens and Handy, 2008; Saelens et al., 2003), and may also be
related to transit accessibility (Schneider et al., 2009) and street-level characteristics like sidewalks (Rodrı́guez and Joo,
2004). Thus far, most studies have analyzed mode choice or walk trip frequency; few have looked solely at environmental
correlates of pedestrian destination choice.

The current effort is unique since this is one of the first studies to focus on destination choice models for pedestrians dis-
tinct from other modes at a regional level. Some research lends insights to pedestrian destination choice behavior, with lim-
itations. Borgers and Timmermans’ (1986) study of pedestrian retail shopping trips found that trip distance and retail floor
area had significant impacts on destination choice. However, the study was limited to a city center and did not test impacts
of built environmental attributes. Eash (1999) found positive associations between a ‘‘pedestrian environment factor” (PEF)
and destination choices in models of non-motorized trips in Chicago. However, the PEF variable was based solely on the
number of census blocks in a sub-zone—only a rough measure of the pedestrian environment—making it difficult to draw
conclusions about behavior and policy implications. Khan et al. (2014) developed destination choice models for non-
motorized trips and explored effects of many built environment measures, but despite parcel-level data being used for
sequential trip generation and mode choice models, TAZ-level data were used in the destination choice step. The TAZ is a
less desirable unit for evaluating pedestrian trips, which tend to be short and therefore are mostly intrazonal in a TAZ
system.

Based on the unique aspects of pedestrian behaviors and contributions of previous literature, our model development is
guided by the following points:

� Distance sensitivity: Pedestrians are highly responsive to distance, so choice sets are constrained to local destinations
based upon some threshold. Distance sensitivity likely varies by trip purpose.

� Pedestrian supports: Some built environment influences are unique to pedestrian travel, particularly when measured at a
fine spatial scale around origins, destinations, and along the potential route. Existing destination choice studies test
pedestrian environment variables that are coarse in either definition (Eash, 1999) or geographic scale (Khan et al.,
2014), leaving room for improvement. For example, this study incorporates the pedestrian index of the environment
(PIE), a detailed and fine-grained measure developed previously by the authors (Singleton et al., 2014b).

� Pedestrian barriers: Barriers or deterrents to walking such as steep slopes, higher traffic speeds and volumes, parking char-
acteristics, and industrial land uses may affect the choice of destination.

� Socioeconomic characteristics: Traveler characteristics like income or age may moderate some of these effects.
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4. Methods and data

Our framework for pedestrian destination choice is shown in Fig. 2. It consists of three processes:

1. Aggregating PAZs used in the trip generation step to slightly larger geographic zones called superPAZs (0.25 mi (0.40 km)
on a side), which are grids of 5 � 5 PAZs.

2. Applying an estimated destination choice model.
3. Allocating trips from superPAZs to PAZs within them.

Here, we focus on pedestrian destination choice model estimates for step 2. We also summarize one relatively simple and
practical approach to implementing step 3. Methodological options for the third step include using a gravity-type model to
allocate trips, applying the superPAZ-based destination choice model estimated in step 2 at this finer scale, or estimating a
new PAZ-allocation model. While the most theoretically-rigorous approach may be to estimate a PAZ-allocation model or an
omnibus destination choice model with PAZs nested within superPAZs, we leave this task for future work. Instead, we
decided to re-apply the superPAZ-level model from step 2 when allocating trips to PAZs in step 3.

To examine destination choice behavior among pedestrians, we estimated multinomial logit destination choice models to
predict the probability P of a walk trip going from production zone i to attraction zone j, given a choice set of attraction zones
K , according to the following equation:
Pj;i ¼ eVj;iP
k2Ke

Vk;i
ð1Þ
Destination alternatives consisted of superPAZs. We chose to analyze pedestrian destination choice using superPAZs
instead of individual PAZs for a number of reasons. Practically, this geographic unit was chosen over PAZs to lessen compu-
tation times for data processing, model estimation, and application in a regional context. In addition, at only 0.25 mi
(0.40 km) per side, superPAZs still capture a substantial amount of variation in the pedestrian environment and reduce
the potential for completely-intrazonal walk trips. Furthermore, superPAZs are roughly the size of the smallest TAZs, even
in the densest parts of downtown Portland. Overall, superPAZs are still a substantial improvement over TAZs for pedestrian
behavior analysis. Of course, superPAZs (and PAZs) may obscure variation within them or introduce difficulties when dealing
with large land uses that span multiple zones (e.g., parks, shopping centers, campuses). SuperPAZs also reduce the accuracy
of trip distances, since trips are assumed to take place between SuperPAZ centroids rather than PAZ centroids. While this
assumption introduces some error into the destination choice modeling process, the error (as a percentage of trip length)
is smaller for longer-distance trips and is not biased in any particular direction. These tradeoffs are discussed elsewhere
(Clifton et al., 2016; Singleton et al., 2014a).

We considered several choice set generation methods, including simple random sampling, stratified importance sampling
(Ben-Akiva and Lerman, 1985), and strategic sampling (Lemp and Kockelman, 2012). For this study, we generated choice sets
consisting of a simple random sample of ten superPAZs (including the chosen zone) with centroids located within a 3.0 mi
(4.8 km) network distance of the production zone. More than 99% of observed walk trips in our estimation dataset were less
than 3.0 mi in length. Future work will examine larger choice sets and strategic sampling methods to reduce potential bias in
our parameter estimates.

To estimate the pedestrian destination choice models, we used travel behavior data from the 2011 Oregon Household
Activity Survey, or OHAS (OMSC, 2011). One-day travel diaries were collected on weekdays from April to December 2011
for 6108 households living in the four-county Portland, Oregon, metropolitan area, yielding 55,878 full trips (not including
access and egress trips). The OHAS data contained 4511 walk trips (8%, unweighted); this quantity underestimates the total
amount of walking by excluding access/egress trips such as those associated with using public transportation. Trip origins
and destinations were located using addresses and assigned to PAZs and superPAZs. Of walk trips, 44% were TAZ-
intrazonal. By comparison, only 25% were superPAZ-intrazonal and 9% PAZ-intrazonal, highlighting another advantage of
using smaller spatial units to represent walking. Walk trips and destination choice models were segmented by six trip pur-
poses: home-based work (HBW), shopping (HBS), recreation (HBR), and other (HBO); and non-home-based work (NHBW)
and non-work (NHBNW). Home-based school trips were not modeled because of the complexities of school assignment
policies.

Destination choice utility equations were specified using measures of impedance Imp, a log-sum of size terms s, pedes-
trian trip supports p and barriers b, and traveler characteristics c as shown in the following utility equation and detailed
below:
Vj;i ¼
X
c2C

bImp;cImpijTCc þ bsize ln
X
s2S

ðebs Sizes;jÞ
" #

þ
X
p2P

ðbpSupportp;jÞ þ
X
b2B

ðbbBarrierb;jÞ ð2Þ



Fig. 2. Framework for pedestrian destination choice.
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� Impedance (Impij): As a measure of impedance, we calculated the shortest path distance (in miles) between the centroid of
zones i and j along a network that included the complete street network (excluding limited-access highways) and major
off-street paths. Street and path network layers came from the 2011 version of the Regional Land Information System, or
RLIS (Metro, 2011).

� Size/attractiveness (Sizes;j): Size terms included zonal employment by type and (for some purposes) the number of house-
holds. Employment categories were retail trade, service, finance/insurance/real estate, government, agriculture/forestry/
mining, construction, manufacturing, transportation/communications/utilities, and wholesale trade. Employment data
came from the 2009 Quarterly Census of Employment and Wages (QCEW) database (BLS, 2009). Consistent with destina-
tion choice practices, size terms were summed and logged, yielding a nonlinear-in-parameters specification. Internal size
parameters were exponentiated to prevent negative values within the natural log. Size terms were scaled such that the
coefficient for service employment (the largest category) equaled 1 (bEmpService ¼ 0 ! e0 ¼ 1).

� Pedestrian supports (Supportp;j): We included pedestrian environment measures to represent supportive conditions in the
destination zone. The primary measure of a supportive pedestrian environment was the pedestrian index of the environ-
ment, or PIE. The PIE—a 20–100 score calibrated to walking behavior using binary logit regressions on walk mode choice—
captured the effects of activity density, block density, sidewalk density, transit access, neighborhood-oriented businesses,
and other factors. High scores were in the densest parts of downtown Portland, while low scores were in rural, forested, or
otherwise undeveloped parts of the region (Clifton et al., 2013; Singleton et al., 2014b). The PIE was a significant predictor
of walk mode choice (Clifton et al., 2016). Pedestrian support variables also included the presence of parks (obtained
through RLIS) for some purposes.

� Pedestrian barriers (Barrierb;j): Barriers to pedestrian travel measured for each destination zone included the mean slope,
the presence of freeways, and the proportion of industrial-type employment (agriculture/forestry/mining, construction,
manufacturing, transportation/communications/utilities, and wholesale trade) as a proxy for industrial land uses. Slope
was calculated using the 1/3 arc-second bare earth digital elevation models from the National Elevation Dataset
(USGS, 2014). Freeway data came from RLIS; land uses and employment were also from QCEW data.

� Traveler characteristics (TCc): We also examined the interaction of impedance with certain traveler characteristics from
OHAS data, including household income, auto ownership, and the presence of children. Results for models using impe-
dance interacted with household income are not shown as differences were either not significant or less significant than
with auto ownership and children.

For the size variables and the pedestrian barriers and supports, we aggregated data captured at the PAZ level to the super-
PAZ. Depending on the data type, PAZ-level values were summed (employment by type, households), averaged (PIE, slope),
or otherwise calculated (parks, freeways) across all PAZs within a superPAZs, as appropriate.

Table 1 summarizes descriptive statistics for the variables used in pedestrian destination choice modeling. Descriptive
statistics for destination-specific variables (all except for traveler characteristics) include only those zones that were chosen.

Models were estimated using Python Biogeme Version 2.3 (Bierlaire, 2003). Model estimation proceeded sequentially,
adding all of the variables in each of type and removing or grouping insignificant (p > 0.10) parameters (among impedance
and size variables only) for parsimony before considering the next variable type.

As previously mentioned, we did not estimate a new PAZ-level model for step 3 (allocating trips from superPAZs to PAZs).
Instead, we borrowed the step 2 model and used the model coefficients (with the exception of distance) when applying the
PAZ-level destination choice model, contingent on the prior choice of superPAZ. Choice sets consisted of all 25 PAZs within a
particular superPAZ; PAZ-level data were used instead of superPAZ-level data.



Table 1
Descriptive statistics for pedestrian destination choice model variables.

HBW HBS HBR HBO NHBW NHBNW

Sample size 305 405 643 1108 732 705

Impedance
Distance (miles) Mean (SD) 0.75 (0.79) 0.57 (0.49) 0.53 (0.51) 0.51 (0.49) 0.38 (0.39) 0.41 (0.46)

Size/attractiveness
Retail jobs (#) Mean (SD) 223 (537) 299 (431) 62 (202) 106 (259) 845 (1053) 419 (760)
Service jobs (#) Mean (SD) 398 (971) 216 (590) 102 (331) 136 (441) 1689 (1863) 611 (1313)
Finance jobs (#) Mean (SD) 151 (479) 83 (336) 24 (99) 43 (211) 827 (1147) 200 (536)
Government jobs (#) Mean (SD) 207 (668) 76 (227) 28 (129) 55 (241) 904 (1484) 308 (799)
All other jobs (#) Mean (SD) 66 (126) 31 (71) 30 (85) 35 (95) 165 (183) 75 (143)
Households (#) Mean (SD) 206 (208) 324 (442) 174 (160) 197 (197) 325 (324) 283 (337)

Pedestrian supports
Park (yes) # (%) 182 (60%) 257 (63%) 480 (75%) 677 (61%) 555 (76%) 458 (65%)
PIE, mean Mean (SD) 51 (27) 56 (26) 44 (22) 46 (26) 75 (25) 58 (28)

Pedestrian barriers
Slope (degrees), mean Mean (SD) 1.63 (1.45) 1.27 (0.90) 1.83 (1.75) 1.37 (0.88) 1.38 (0.84) 1.44 (1.13)
Freeway (yes) # (%) 33 (11%) 19 (5%) 33 (5%) 61 (6%) 106 (14%) 99 (14%)
Industrial jobs (prop.) Mean (SD) 0.10 (0.16) 0.06 (0.1) 0.19 (0.26) 0.14 (0.21) 0.07 (0.13) 0.09 (0.16)

Traveler characteristics
Auto ownership (yes) # (%) 237 (78%) 301 (74%) 589 (92%) 1019 (92%) 689 (94%) 592 (84%)
Children (yes) # (%) 91 (30%) 117 (29%) 279 (43%) 628 (57%) 222 (30%) 292 (41%)
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5. Results

Model estimation results for the six purpose-specific destination choice models are presented in Table 2. McFadden’s
adjusted pseudo-R2 values ranged from 0.416 for home-based recreation to 0.680 for home-based shopping purposes.
Results were consistent with intuition and previous studies of pedestrian behavior.

Distance was a significant deterrent when choosing a destination: a 1.0 mi (1.6 km) increase in network distance to a par-
ticular destination yielded about an 80% decrease (eBimp � 1) in the odds of choosing that destination. The average sensitivity
to that 1.0 mi increase in distance ranged from a 62% decrease in odds for home-based work walk trips (for zero-vehicle
households) to a 90% decrease in odds for home-based shopping walk trips (for households with children). Distance was
a stronger deterrent to walking for home-based shopping and other trips, while people were willing to walk further from
home to get to work than for other purposes. For home-based other and non-home-based walk trips, there were no signif-
icant interactions between distance and the traveler characteristics of auto ownership and children. There was a significant
distance–auto ownership interaction for home-based work walk trips: people in zero-car households were less sensitive to
distance than people from households that owned at least one car. There were also significant distance–children interactions
for home-based shopping and recreation walk trips: people in households with children were more sensitive to distance.

Measures of the size of destinations were significant positive predictors of walk trip destination choice: doubling the
number of jobs and households in a zone for several purposes (HBW, HBO, NHBW, NHBNW) yielded a 28–42% increase
(2Bsize � 1) in the odds of choosing that destination zone (elasticities were 0.36–0.51). Destination choice for home-based
recreational walk trips was not strongly influenced by the destination zone size (elasticity was 0.05). However, the destina-
tion choice odds for home-based shopping walk trips was almost unit elastic with respect to employment (0.91); doubling
the number of jobs increased the odds by 88%. The destination choice models also estimated the relative attractiveness of
different types of employment or households for different purposes. For example, the number of retail jobs were overwhelm-
ingly the dominant attractive force for home-based shopping walk trips: one additional retail job was equivalent to about
230 (eBs ) additional jobs of other types.

Supportive pedestrian environments in destination zones also attracted walk trips: a ten-point increase in the PIE score of
a particular destination for non-home-based purposes yielded about a 16–18% increase (e10�Bp � 1) in the odds of choosing
that destination. The average sensitivity to a ten-point increase in PIE was highest for home-based work (a 34% increase
in odds) and home-based other (a 28% increase in odds) walk trips. PIE was not a significant predictor of pedestrian desti-
nation choice for home-based shopping or recreation purposes. However, for home-based recreational walk trips, the pres-
ence of a park increased the odds of choosing that destination zone by 58%.

On the other hand, barriers to pedestrian travel deterred walking to some destinations. The mean slope (in degrees) in a
destination zone was associated with a decreased odds of choosing that zone for several walk trip purposes (HBS, HBO,
NHBW). In addition, the percentage of industrial-type jobs was negatively associated with pedestrian destination choice, sig-
nificantly for four walk trip purposes (HBW, HBS, HBO, NHBW). The presence of a freeway was a significant deterrent to
home-based shopping walk trip destination choice.



Table 2
Results of pedestrian destination choice models.

Home-based work
(HBW)

Home-based shopping
(HBS)

Home-based recreation
(HBR)

Home-based other
(HBO)

Non-home-based work
(NHBW)

Non-home-based non-
work (NHBNW)

Variable B SE p B SE p B SE p B SE p B SE p B SE p

Distance (miles) – – – – – – – – – �1.94 0.062 0.00 �1.42 0.067 0.00 �1.45 0.054 0.00
� Auto (yes) �1.35 0.124 0.00 – – – – – – – – – – – – – – –
� Auto (no) �0.96 0.182 0.00 – – – – – – – – – – – – – – –
� Child (yes) – – – �2.26 0.174 0.00 �1.75 0.074 0.00 – – – – – – – – –
� Child (no) – – – �1.52 0.140 0.00 �1.51 0.063 0.00 – – – – – – – – –

Size terms (ln) 0.51 0.074 0.00 0.91 0.089 0.00 0.05 0.019 0.01 0.40 0.034 0.00 0.36 0.054 0.00 0.39 0.055 0.00
Retail jobs (#) 2.0 0.85 0.02 5.5 0.71 0.00 6.5 1.36 0.00 3.8 0.57 0.00 5.5 0.66 0.00 5.5 1.05 0.00
Government jobs (#) 2.0 0.85 0.02 0.0 – – 17.1 5.65 0.00 3.8 0.57 0.00 0.0 – – 3.4 1.23 0.01
Finance jobs (#) 2.0 0.85 0.02 0.0 – – 0.0 – – 0.0 – – 2.5 1.12 0.03 0.0 – –
All other jobs (#) 0.0 – – 0.0 – – 0.0 – – 0.0 – – 0.0 – – 0.0 – –
Households (#) – – – – – – �3.2 1.34 0.02 �2.0 0.87 0.02 – – – 0.8 1.26 0.52
Park (yes) – – – – – – 0.46 0.127 0.00 0.12 0.094 0.22 – – – – – –
PIE, mean 0.030 0.010 0.00 �0.014 0.012 0.24 0.011 0.007 0.11 0.025 0.007 0.00 0.015 0.007 0.02 0.017 0.006 0.01
Slope (degrees), mean �0.12 0.079 0.15 �0.20 0.100 0.05 �0.05 0.049 0.28 �0.43 0.062 0.00 �0.16 0.056 0.01 �0.06 0.051 0.24
Freeway (yes) �0.30 0.260 0.25 �1.02 0.350 0.00 �0.17 0.213 0.43 0.10 0.191 0.60 �0.14 0.166 0.40 0.26 0.159 0.10
Industrial jobs (prop.) �0.99 0.480 0.04 �1.74 0.609 0.00 �0.09 0.205 0.66 �0.40 0.224 0.08 �1.65 0.436 0.00 �0.24 0.350 0.50

Sample size (# walk trips) 305 405 643 1108 732 705
Initial log-likelihood �694 �925 �1459 �2511 �1648 �1590
Final log-likelihood �371 �288 �841 �1181 �675 �716
McFadden’s adjusted pseudo-R2 0.453 0.680 0.416 0.526 0.585 0.544
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The model estimation results also suggested some important tradeoffs between attributes of alternatives in the pedes-
trian destination choice problem, as shown in Fig. 3. Comparing modeled sensitivities to size versus impedance, people were
willing to walk longer distances to reach destinations with more jobs/households. For example, people were willing to walk
0.26–0.41 mi (0.41–0.67 km) further to reach destinations with twice as many jobs for home-based work and shopping pur-
poses. People were also willing to walk longer distances to reach destinations with more attractive pedestrian environments:
0.11–0.31 mi (0.17–0.50 km) further to destinations ten-points higher on the PIE scale. Furthermore, improving the pedes-
trian environment of a destination was as attractive as increasing the number of jobs/households located there. Increasing a
destination’s PIE score by ten points was equivalent to increasing the number of jobs/households there by 52–85%.

As additional assessments of model goodness-of-fit, we applied the pedestrian destination choice models to the OHAS
walk trip data used for estimation. Our results indicated relatively good performance. For all trip purposes except home-
based recreation, the actually-selected destination superPAZ had the highest modeled probability in more than half the
cases. For the home-based shopping purpose, the correct destination had the highest probability for 75% of walk trips. Fur-
thermore, for most purposes, the actually-selected destination had a high probability of selection from the destination choice
models. The mean modeled probability of the correct destination superPAZ was typically in the 0.41–0.50 range, with a low
of 0.33 (home-based recreation) and a high of 0.62 (home-based shopping).
6. Discussion

This paper is one of the first to model the destination choice dimension of pedestrian travel behavior within a regional
context. Its primary unique contributions are: a focus exclusively on pedestrian travel, analysis at a pedestrian scale, and
inclusion of pedestrian-relevant variables. More specifically, our analysis relies on a uniform zonal system—264 ft-
(80 m-) square gridded PAZs nested within 0.25 mi- (400 m-) square superPAZs; sizes commensurate with the spatial extent
of walk trips—and includes traveler characteristics, pedestrian environment variables, and common destination choice vari-
ables (impedance and size).

Results suggest important behavioral influences related to walking. Distance is the major influence on pedestrian desti-
nation choice. Sensitivity to distance varied across trip purposes and was affected by traveler characteristics such as auto
ownership and children in the household. The size or attractiveness of destinations is also important for walking behavior;
people were willing to walk further to reach zones with more jobs, especially retail jobs, particularly for home-based shop-
ping trips. The built environment also matters, as more attractive pedestrian environments supported walking to those areas
while terrain and industry were deterrents. While our results cannot directly address the causal effects of pedestrian sup-
ports and barriers on walking behavior—given the cross-sectional nature of our data—these findings are consistent with
our hypotheses. Furthermore, this research provides additional evidence towards a growing literature on significant associ-
ations between the built environment and walking.

Our results also highlight the importance of a few potential land use and transportation policy-levers that may act to
encourage walking. As Fig. 3 indicates, increasing the number of activity opportunities (as measured by employment) in a
regional center or neighborhood commercial corridor could encourage people to walk from farther away to reach that area.
While such a change may also increase travel by other modes, increasing the activity density of an area would likely increase
the pedestrian mode share of trips (Clifton et al., 2013, 2016), assuming a sufficiently-large adjacent residential population.
The urban design of such areas is also important; walking to and within suburban strip developments could be made more
attractive by installing sidewalks, connecting street grids, and encouraging neighborhood-oriented businesses, all key com-
ponents of our PIE measure. Although we cannot make claims of causality in our findings, as mentioned above, these built
environment attributes are associated with walking behaviors in our models and consistent with the literature in this area.

This work has many potential applications for transportation planning. The most direct planning application for our
pedestrian destination choice models is through the modification of regional travel demand forecasting tools to better rep-
resent walking activity. These products could also function as a standalone pedestrian planning tool, separate from a parent
travel demand model. Such tools have a wide range of applications, not limited to simply identifying locations with high
pedestrian activity or prioritizing investments in pedestrian infrastructure based on their potential to increase walking
levels. For instance, improved models of walking demand can also be used to generate more accurate risk exposure estimates
for transportation safety analyses or as inputs to health impact assessment tools; although, such applications are beyond the
scope of this paper.

Our research also has many potential extensions. Since we have developed models to predict pedestrian trip generation
(Clifton et al., 2013, 2016) and now destination choices, the next logical step is to extend this effort into predicting potential
routes or paths. The PAZ spatial unit is used in both stages and may accelerate a route-level analysis. Raster paths could be
analyzed to highlight potential routes traversed between modeled origins and destinations in order to estimate an overall
view of pedestrian activity. A valuable alternative approach—given sufficient data on walking routes—would be to estimate
a pedestrian route choice model that incorporates path-based characteristics of the street-level built environment, and then
use this model to generate more realistic measures of pedestrian impedance (e.g., using route choice log-sums or most desir-
able paths, instead of shortest-path distance) and route-based pedestrian supports and barriers for use in our destination
choice model. An additional extension could then use log-sums from the destination choice model to feedback as an input
variable in the walk mode split model, tying the pedestrian modeling framework together.
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Fig. 3. Relative sensitivities of pedestrian destination choice attributes.
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In this paper, the destination choice dimension of pedestrian behavior was chosen for study because the effort is one com-
ponent of a larger pedestrian forecasting model. The model operates within a modification of the common four-step travel
demand modeling process (trip generation, trip distribution, mode choice, trip assignment). In the pedestrian forecasting
model, trips are first generated, then a mode (pedestrian, vehicle) is chosen, and finally the trips are distributed. As such,
the choice of destination for an activity is considered sequentially after the trip is generated and the walk mode is chosen.
In reality, destination choices are probably considered along with choices of mode, time of day, activity, and whether to tra-
vel at all. This larger issue affects both trip- and activity-based travel forecasting models and has been questioned by many
authors (e.g., Pas, 1985). Future work could address this concern, examining the extent to which people choose destinations
and modes sequentially (and in which order) versus simultaneously. Particularly, there is also a need for more qualitative
research on pedestrian travel behavior, including how destination- and route-level characteristics affect choices for pedes-
trians. This work could build upon the large body of research on mode choice and motivations for walking and could help
inform quantitative route-level analyses.

In the future, our work can be refined in a number of ways to yield a greater understanding of influences on pedestrian
travel behavior, particularly around destination choice. First, because of the regional scope of this application of the desti-
nation choice model, we were unable to obtain micro-level data for the entire study area on pedestrian barriers like number
of lanes, traffic speeds and volumes, and information on intersections like treatments and crossing conditions. These are all
identified as important factors for pedestrian suitability analysis (Dowling et al., 2008; Lagerwey et al., 2015). Such smaller-
scale information on the street-level built environment may be recorded by local jurisdictions, but it is rarely shared or stan-
dardized across an entire region. This limitation may be addressed in the future as this type of information becomes avail-
able. In the meantime, micro-scale data on pedestrian barriers could be included in a fined-grained pedestrian destination
choice model by focusing on, for instance, walk trips fully within the City of Portland.

Second, data limitations also prevented us from investigating the influence of attitudes and perceptions of the built envi-
ronment on pedestrian destination choice. Our travel survey data did not ask respondents about their attitudes towards the
safety of particular street crossings or perceptions of pleasant walking areas. Evidence has shown perceptions to be stronger
predictors of non-motorized travel behavior than objective measures of the built environment (e.g., Ma et al., 2014). Theory
suggests that attitudes and perceptions of the safety, security, convenience, and enjoyment of different travel options should
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have a strong impact on walking behavior (Schneider, 2013; Singleton, 2013). Future studies could consider collecting and
analyzing psychosocial data; although, such qualitative data are more difficult to predict and apply for forecasting purposes.

Third, there may also be room to incorporate agglomeration and competition effects into the modeling effort. Destina-
tions located in close proximity to other complementary types of destinations (e.g., in a shopping district) may yield trip-
chaining efficiencies that increase their attractiveness. On the other hand, a concentration of similar destinations (e.g., mul-
tiple food outlets) might provide option value or may dilute market shares (Bernardin et al., 2009).

Fourth, it would be useful to consider additional sources and forms of taste heterogeneity due to traveler characteristics.
Our only sources of heterogeneity were significant interactions of the impedance variable and auto ownership and the pres-
ence of children for some trip purposes (household income was less or not significant). Future work should examine poten-
tial variations in sensitivity to size and built environment variables, including pedestrian barriers and supports. It may also
be useful to examine random taste heterogeneity, such as through the use of mixed logit models.

Fifth, more sophisticated destination choice modeling may also yield modest improvements. Scholars have raised issues
associated with model performance due to choice set generation methods, the number of alternatives to sample, and model
structure (Bhat et al., 1998; Nerella and Bhat, 2004; Pagliara and Timmermans, 2009). In model development, we chose a
relatively basic MNL structure and used a simple random sample of ten zones for our choice set. Some authors have sug-
gested sampling a larger number or proportion of alternatives (Nerella and Bhat, 2004). However, other destination choice
work using the same dataset found that estimation results did not change substantially when using choice sets of 10 or 25
(Singleton and Wang, 2014). Furthermore, this lack of coefficient variation as a function of the choice set size has been found
in other studies (de Palma et al., 2007). Therefore, we feel confident our results may be relatively robust to increases in des-
tination choice sizes. Future estimations can incorporate more sophisticated sampling approaches, such as increasing the
number of sampled zonal alternatives and implementing a probability feedback loop into the sampling method (e.g. strategic
importance sampling (Lemp and Kockelman, 2012)). Additional work is also needed to investigate how the choice of super-
PAZ size impacts the accuracy of the model-estimated trip distance coefficient. It may be possible to improve the precision of
this distance coefficient, although this coefficient already has one of the smallest standard errors in the model. Subsequent
efforts may also consider alternative methods to allocate trips from superPAZs to PAZs.

Despite these limitations, this modeling effort has advanced the understanding of pedestrian destination choice behaviors
and tested their associations with a variety of built environment and travel characteristics. This is a reasonable first step,
given the dearth of research on this topic, and one conducted with an eye towards improving practice. The increasing avail-
ability of spatially disaggregate travel behavior and built environment data have created opportunities to improve the rep-
resentation of non-motorized modes in our predictive planning tools. More fundamental study of the travel behaviors of
pedestrians and travelers’ decision processes is needed to inform the development of these types of tools as many questions
remain about the motivations and influences of pedestrian behaviors.
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