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How safe are autonomous vehicles? The answer is critical for determining how autono-
mous vehicles may shape motor vehicle safety and public health, and for developing sound
policies to govern their deployment. One proposed way to assess safety is to test drive
autonomous vehicles in real traffic, observe their performance, and make statistical com-
parisons to human driver performance. This approach is logical, but it is practical? In this
paper, we calculate the number of miles of driving that would be needed to provide clear
statistical evidence of autonomous vehicle safety. Given that current traffic fatalities and
injuries are rare events compared to vehicle miles traveled, we show that fully autonomous
vehicles would have to be driven hundreds of millions of miles and sometimes hundreds of
billions of miles to demonstrate their reliability in terms of fatalities and injuries. Under
even aggressive testing assumptions, existing fleets would take tens and sometimes hun-
dreds of years to drive these miles—an impossible proposition if the aim is to demonstrate
their performance prior to releasing them on the roads for consumer use. These findings
demonstrate that developers of this technology and third-party testers cannot simply drive
their way to safety. Instead, they will need to develop innovative methods of demonstrat-
ing safety and reliability. And yet, the possibility remains that it will not be possible to
establish with certainty the safety of autonomous vehicles. Uncertainty will remain.
Therefore, it is imperative that autonomous vehicle regulations are adaptive—designed
from the outset to evolve with the technology so that society can better harness the ben-
efits and manage the risks of these rapidly evolving and potentially transformative
technologies.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In the United States, roughly 32,000 people are killed and more than two million injured in crashes every year (Bureau of
Transportation Statistics, 2015). U.S. motor vehicle crashes as a whole can pose economic and social costs of more than $800
billion in a single year (Blincoe et al., 2015). And, more than 90 percent of crashes are caused by human errors (National
Highway Traffic Safety Administration, 2015)—such as driving too fast and misjudging other drivers’ behaviors, as well as
alcohol impairment, distraction, and fatigue.

Autonomous vehicles have the potential to significantly mitigate this public health crisis by eliminating many of the
mistakes that human drivers routinely make (Anderson et al., 2016; Fagnant and Kockelman, 2015). To begin with,
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autonomous vehicles are never drunk, distracted, or tired; these factors are involved in 41 percent, 10 percent, and 2.5 per-
cent of all fatal crashes, respectively (National Highway Traffic Safety Administration, 2011; Bureau of Transportation
Statistics, 2014b; U.S. Department of Transportation, 2015).1 Their performance may also be better than human drivers
because of better perception (e.g., no blind spots), better decisionmaking (e.g., more-accurate planning of complex driving
maneuvers like parallel parking), and better execution (e.g., faster and more-precise control of steering, brakes, and
acceleration).

However, autonomous vehicles might not eliminate all crashes. For instance, inclement weather and complex driving
environments pose challenges for autonomous vehicles, as well as for human drivers, and autonomous vehicles might per-
form worse than human drivers in some cases (Gomes, 2014). There is also the potential for autonomous vehicles to pose
new and serious crash risks, e.g., crashes resulting from cyber-attacks (Anderson et al., 2016). Clearly, autonomous vehicles
present both enormous potential benefits and enormous potential risks.

Given the high stakes, policymakers, the transportation industry, and the public are grappling with a critical concern:
How safe should autonomous vehicles be before they are allowed on the road for consumer use? For the answer to be mean-
ingful, however, one must also be able to address a second concern: How safe are autonomous vehicles?

Perhaps the most logical way to assess safety is to test-drive autonomous vehicles in real traffic and observe their per-
formance. Developers of autonomous vehicles rely upon this approach to evaluate and improve their systems,2 almost always
with trained operators behind the wheel who are ready to take control in the event of an impending failure incident.3 They can
analyze the failure incident after the fact to assess what the autonomous vehicle would have done without intervention, and
whether it would have resulted in a crash or other safety issue (Google, 2015). Developers have presented data from test driving
to Congress in hearings about autonomous vehicle regulation (Urmson, 2016).

But is it practical to assess autonomous vehicle safety through test-driving? The safety of human drivers is a critical
benchmark against which to compare the safety of autonomous vehicles. And, even though the number of crashes, injuries,
and fatalities from human drivers is high, the rate of these failures is low in comparison with the number of miles that people
drive. Americans drive nearly 3 trillion miles every year (Bureau of Transportation Statistics, 2015). The 2.3 million reported
injuries in 2013 correspond to a failure rate of 77 reported injuries per 100 million miles. The 32,719 fatalities in 2013 cor-
respond to a failure rate of 1.09 fatalities per 100 million miles.

For comparison, Google’s autonomous vehicle fleet, which currently has 55 vehicles, was test-driven approximately 1.3
million miles in autonomous mode and was involved in 11 crashes from 2009 to 2015.4 Blanco et al. (2016) recently com-
pared Google’s fleet performance with human-driven performance. They found that Google’s fleet might result in fewer crashes
with only property damage, but they could not draw conclusions about the relative performance in terms of two critical met-
rics: injuries and fatalities. Given the rate of human and autonomous vehicle failures, there were simply not enough autono-
mously driven miles to make statistically significant comparisons.

In this report, we answer the next logical question: How many miles5 would be enough? In particular, we first ask:

1. How many miles would autonomous vehicles have to be driven without failure to demonstrate that their failure rate is
below some benchmark? This provides a lower bound on the miles that are needed.

However, autonomous vehicles will not be perfect and failures will occur. Given imperfect performance, we next ask:

2. How many miles would autonomous vehicles have to be driven to demonstrate their failure rate to a particular degree of
precision?

3. How many miles would autonomous vehicles have to be driven to demonstrate that their failure rate is statistically sig-
nificantly lower than the human driver failure rate?
1 This does not mean that 53.5 percent of all fatal crashes are caused by these factors because a crash may involve, but not be strictly caused by, one of these
factors, and because more than one of these factors may be involved in a single crash.

2 Extensive testing on public roads is essential for developing and evaluating autonomous vehicles, given their great complexity and the diversity and
unpredictability of conditions in which they need to operate. In contrast, typical automobile components are significantly simpler and their operating
conditions can be well defined and recreated in controlled settings, which enables laboratory testing and verification. Curtain-style air bags, for example, are
tested with a combination of component tests to assess inflation time, fill capacity, and other responses in a range of temperature conditions and impact
configurations, as well as laboratory crash testing to evaluate their performance in collisions (Kaleto et al., 2001).

3 Some states, such as California, require trained drivers to be behind the wheel of any autonomous vehicle driving on public roads (California Vehicle Code,
2012).

4 Two of these crashes involved injury and none involved a fatality. Seven of the crashes did not reach a level of severity that would warrant a Department of
Motor Vehicles report (Blanco et al., 2016).

5 Note that not all miles of road are created equal. The miles used to demonstrate autonomous vehicle safety must represent the full range of conditions
(climate, terrain, congestion, etc.) in which humans drive, and be proportionally distributed as well. That is, if 10 percent of human-driven miles occur in snow,
so too must the autonomous vehicle test miles.
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We answer each of these questions with straightforward statistical approaches. Given that fatalities and injuries are rare
events, we will show that fully autonomous vehicles6 would have to be driven hundreds of millions of miles and sometimes
hundreds of billions of miles to demonstrate their reliability in terms of fatalities and injuries. Under even aggressive testing
assumptions, existing fleets would take tens and sometimes hundreds of years to drive these miles—an impossible proposition
if the aim is to demonstrate their performance prior to releasing them on the roads for consumer use.

These results demonstrate that developers of this technology and third-party testers cannot simply drive their way to
safety. Instead, they will need to develop innovative methods of demonstrating safety and reliability. This is a rapidly grow-
ing area of research and development. We hope the data and figures in this paper will serve as a useful reference in devel-
oping those alternative methods, and a benchmark and method for assessing their efficiency.

The next three sections provide an explanation, analysis, and results for each of these questions. We end with a summary
and discussion of results and draw conclusions about their implications for stakeholders of autonomous vehicle technology.

2. Howmanymiles would autonomous vehicles have to be driven without failure to demonstrate that their failure rate
is below some benchmark?

2.1. Statistical method

We can answer this question by reframing failure rates as reliability rates and using success run statistics based on the
binomial distribution (O’Connor and Kleyner, 2012). If the per-mile failure rate of a vehicle is F, then the reliability R is 1 � F
and can be interpreted as the probability of not having a failure in any given mile. In practice, unless the technology is truly
perfect, there likely will be failures during testing.7 However, a simple ‘‘no failures” scenario (see Eq. (1)) can be used to esti-
mate a lower bound on the number of failure-free miles, n, that would be necessary to establish the reliability of autonomous
vehicles with confidence level C: 8
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This is useful if, for example, a developer has driven autonomous vehicles for a certain number of failure-free miles
and wishes to know the reliability (or, equivalently, the failure rate) that can be claimed at a particular level of
confidence. Alternatively, for a given confidence C and reliability R we can solve for n, the number of miles required with
no failures:
n ¼ lnð1� CÞ= lnðRÞ ð2Þ
This equation is usually used to show the survival of a product based on duration of use (Kleyner, 2014).
2.2. Example calculation

To demonstrate that fully autonomous vehicles have a fatality rate of 1.09 fatalities per 100 million miles
(R = 99.9999989%) with a C = 95% confidence level, the vehicles would have to be driven 275 million failure-free miles. With
a fleet of 100 autonomous vehicles being test-driven 24 h a day, 365 days a year at an average speed of 25 miles per hour,
this would take about 12.5 years.
e that the term ‘‘autonomous vehicle” can refer to different degrees of autonomy. The Society of Automotive Engineers International (2014), for
e, defines three levels of automated driving. Vehicles with ‘‘conditional automation” can drive themselves in certain conditions but may request human
tion. Vehicles with ‘‘high automation” can drive themselves in certain conditions without requiring human intervention. Vehicles with ‘‘full
tion” can drive under all roadway and environmental conditions in which a human can drive. The numerical results in this report assess the miles
to demonstrate the reliability of this last class of fully autonomous vehicles. Therefore, we use the total fatality, injury, and crash rates of human drivers
nited States as benchmarks against which to compare autonomous vehicle performance. However, the statistical approaches described in this report
used to compare the reliability for any autonomy mode. Doing so would require changing the human performance benchmarks against which these
odes are compared.
the case of an imperfect vehicle, the probability C of a driverless car with reliability R having k failures while driving N miles is:Pk

i¼0
N!

i!ðN�iÞ!R
N�ið1� RÞi .

eliability testing, the confidence level of 100(1 � a)% is the probability that the true failure rate is within some range [0, U], where U is a random variable
upper bound; or, equivalently, the probability of the true success rate (reliability) is within [1 � U, 1] (Darby, 2010). Once data are observed and u is
ed, then u is no longer random, and the interval [1 � u, 1] either does or does not contain the true failure rate. Thus, the interval is described in terms of a
nce level rather than a probability (Martz and Waller, 1982).



Fig. 1. Failure-free miles needed to demonstrate maximum failure rates. SOURCE: Authors’ analysis. NOTE: The four diagonal lines show results for different
levels of confidence. The five dashed vertical reference lines indicate the failure rates of human drivers in terms of fatalities (1.09), reported injuries (77),
estimated total injuries (103), reported crashes (190), and estimated total crashes (382).
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2.3. Results

Fig. 1 shows how many failure-free miles fully autonomous vehicles would have to be driven to demonstrate maximum
failure rates to different levels of confidence. We chose a range of 1–400 failures per 100 million miles to include the range
of fatality, injury, and crash rates for human drivers. For reference, we show the failure rate of human drivers as dashed vertical
lines.9 Reference lines are shown for fatalities (1.09), reported injuries (77), and reported crashes (190) per 100millionmiles. It is
also known that injuries and crashes may be significantly underreported: one study suggests by 25 percent and 60 percent,
respectively (Blincoe et al., 2015). Therefore, we have also shown reference lines that could reflect a truer estimate of
human-driven injuries (103) and crashes (382) per 100 million miles. The 275-million mile data point corresponding to the
95% confidence level is annotated in Fig. 1. We assess sensitivity to different levels of confidence because different fields use dif-
ferent standards that result in large differences in the number of required miles. While 95% and 99% confidence levels are widely
used, the automotive industry sometimes uses a 50% confidence level for vehicle components (Misra, 2008). The diagonal lines
represent C = 50%, 75%, 95%, and 99%.

This analysis shows that for fatalities it is not possible to test-drive autonomous vehicles to demonstrate their safety to
any plausible standard, even if we assume perfect performance. In contrast, one could demonstrate injury and crash
reliability to acceptable standards based on driving vehicles a few million miles. However, it is important to recognize that
this is a theoretical lower bound, based on perfect performance of vehicles. In reality, autonomous vehicles will have fail-
ures—not only commonly occurring injuries and crashes in which autonomous vehicles have already been involved, but also
fatalities. Our second and third questions quantify the miles needed to demonstrate reliability through driving given this
reality.
9 These rates reflect failures from all motor vehicles, including cars and light trucks, motorcycles, large trucks, and buses. One could restrict comparisons to
only some subsets of these data, e.g., omitting motorcycle fatalities, which occur at a rate that is 20 times higher than the overall fatality rate (about 23 fatalities
per 100 million miles driven) (Bureau of Transportation Statistics, 2014a). This would not change the statistical methods shown here, but the miles needed to
demonstrate comparative levels of performance would change. For example, by omitting motorcycle fatalities, the remaining human-driven fatality rate would
decrease and so the miles needed to demonstrate comparable autonomous vehicle performance would increase. We use overall failure rates because there is
the potential for all travel to occur in autonomous vehicles and for autonomous vehicles to affect the safety of all road users. It is possible, for example, that
current motorcyclists may in the future choose to travel by autonomous passenger vehicles for safety or other reasons, or that autonomous passenger vehicles
may lead to fewer motorcycle fatalities, even if motorcycles remain human driven.
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3. How many miles would autonomous vehicles have to be driven to demonstrate their failure rate to a particular
degree of precision?

3.1. Statistical method

To estimate the true autonomous vehicle failure rate, we must count the number of events (failures) that occur for a given
distance driven. The failure rate is estimated as k̂ ¼ x=n, where x is the number of observed failures observed over n miles
driven. We can describe the precision of the failure rate estimate using the width of a 100(1 � a)% confidence interval
(CI).10 If the number of failures is expected to be greater than 30, then a normal approximation to the Poisson distribution
can be used. An approximate CI for the failure rate is:
10 In t
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where z1�a=2is 100⁄(1 � a/2)th quantile of standard normal distribution.11 The half-width of the CI is
z1�a=2
ffiffiffi
x

p
n

and it provides an estimate of the precision of the failure rate estimate, k̂ ¼ x=n. We can calculate the precision relative to the
failure estimate rate as
z1�a=2
ffiffi
x

p

n
x
n

which simplifies to
z1�a=2ffiffiffi
x

p

If d is our desired degree of precision (e.g., if we wish to estimate the failure rate to within 20%, d = 0.2) then the number of
failures one must observe to estimate the failure rate with a precision of d is:
x ¼ z1�a
2

d

� �2

ð4Þ
If the assumed failure rate (prior to data collection) is k⁄ (Mathews, 2010), then Equation (5) implies the number of miles that
must be driven is:
x ¼
z1�a2
d

� �2
k�

ð5Þ
3.2. Example calculation

We can demonstrate this as follows. Given some initial data on its safety performance, suppose we assume that a fully
autonomous vehicle fleet had a true fatality rate of 1.09 per 100 million miles. We could use this information to determine
the sample size (number of miles) required to estimate the fatality rate of the fleet to within 20% of the assumed rate using a
95% CI. We apply Eq. (4) to estimate the number of fatalities we would need to observe before having this level of precision in
the fatality rate estimate: (1.96/0.20)2 = 96. (Here, 1.96 is the z-score associated with a two-sided 95% CI for the standard
normal distribution.) We apply Eq. (5) to determine how many miles of driving this would require:
x ¼
1:96
0:2

� �2
1:09� 10�8 ¼ 8;811; 009;174
This is approximately 8.8 billion miles. With a fleet of 100 autonomous vehicles being test-driven 24 h a day, 365 days a year
at an average speed of 25 miles per hour, this would take about 400 years.
his context, a 100(1 � a)% CI is an estimate of the random interval (L, U) that contains the true failure rate k with probability (1 � a). If l and u are the
es of random variables L and U, then (l, u) is called the CI for kwith confidence coefficient (1 � a) (DeGroot, 1986). A 100(1 � a)% CI can be interpreted as
: If one were to run the experiment that generated the data and conduct the analysis repeatedly, in 100(1 � a)% of the samples the 100(1 � a)% CIs
ed in each of those experiments would contain the true mean.
e number of events is fewer than 30, an exact CI could alternatively be calculated (Ulm, 1990).
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3.3. Results

Fig. 2 shows how many miles fully autonomous vehicles would have to be driven to estimate the failure rate to different
degrees of precision with 95% confidence. The number of miles that must be driven to achieve a given level of precision in the
failure rate estimate decreases as the failure rate increases. The diagonal lines represent 5%, 10%, and 20% precision. As in
Fig. 1, we show for reference the failure rate of human drivers as dashed vertical lines for fatalities (1.09), reported injuries
(77), estimated total injuries (103), reported crashes (190), and estimated total crashes (382) per 100 million miles. The 8.8-
billion mile data point corresponding to this example is annotated in Fig. 2.

These results show that it may be impossible to demonstrate the reliability of high-performing autonomous vehicles (i.e.,
ones with failure rates comparable to or better than human failure rates) to any reasonable degree of precision. For instance,
even if the safety of autonomous vehicles is low—hundreds of failures per 100 million miles, which is akin to human-driven
injury and crash rates—demonstrating this would take tens or even hundreds of millions of miles, depending on the desired
precision. For low failure rates—1 per 100 million miles, which is akin to the human-driven fatality rate—demonstrating per-
formance to any degree of precision is impossible—requiring billions to hundreds of billions of miles. These results show that
as autonomous vehicles perform better, it becomes harder—if not impossible—to assess their performance with accuracy
because of the extreme rarity of failure events.
4. How many miles would autonomous vehicles have to be driven to demonstrate that their failure rate is statistically
significantly lower than the human driver failure rate?

4.1. Statistical method for significance testing

Setting up the statistical significance test requires that we specify the null hypothesis that we are testing, which is that
the failure rate, k, is greater than or equal to k0. Here, we set k0 = H, the human driver failure rate.12 We also must specify an
alternative hypothesis, which we specify as k < H. In the context of significance testing, a is the significance level, or Type 1 error
rate of the test, which is defined as the probability of rejecting the null hypothesis when the null hypothesis is true—in other
words, a false positive. In the context of autonomous vehicles, a false positive would occur if data suggest that autonomous
vehicles perform better than human drivers, when in fact they do not—a dangerous proposition for policymakers, technology
developers, the insurance industry, and of course consumers.

To be able to test the null hypothesis with significance level a, one can examine the upper confidence bound from Eq. (3)
for whether the estimated failure rate is lower than the human driver rate, i.e., 13
12 We
be drive
13 The
14 If w
xþ z1�a
ffiffiffi
x

p
n

< H:
If so, then the null hypothesis can be rejected at the ath significance level. To assess when the confidence bound would be
expected to be less than H requires a guess of the autonomous vehicle failure rate we expect, kalt. We set kalt = (1 � A) H.14 To
determine how many failures (and miles) would be required to show this, we can solve for x and n:
x ¼ kalt
z1�a

k0 � kalt

� �2

ð6Þ

n ¼ kalt
z1�a

k0 � kalt

� �2

ð7Þ
4.2. Example calculation for significance testing

We can demonstrate this as follows. Suppose a fully autonomous vehicle fleet had a true fatality rate that was A = 20%
lower than the human driver fatality rate of 1.09 per 100 million miles, or 0.872 per 100 million miles. We apply Eq. (7)
to determine the number of miles that must be driven to demonstrate with 95% confidence that this difference is statistically
significant:
n ¼ 0:872� 10�8 1:645

1:09� 10�8 � 0:872� 10�8

� �2

¼ 4;965;183;486
It would take approximately 5 billion miles to demonstrate this difference. With a fleet of 100 autonomous vehicles test-
driven 24 h a day, 365 days a year at an average speed of 25 miles per hour, this would take about 225 years.
assume H is a known benchmark rather than an estimate of some unknown quantity. This gives us the best-case estimate number of miles that need to
n. We discuss the implications of this choice after Fig. 4.
subscript on z is 1 � a here because this is a one-sided hypothesis test.
e were interested in testing the alternative hypothesis that k > H, then we would compare the lower confidence bound with H: x�z1�a

ffiffi
x

p
n > H:



Fig. 2. Miles needed to demonstrate failure rates to a particular degree of precision. SOURCE: Authors’ analysis. NOTE: These results use a 95% CI. The three
diagonal lines show results for different levels of precision d, defined as the size of the CI as a percent of the failure rate estimate. The five dashed vertical
reference lines indicate the failure rates of human drivers in terms of fatalities (1.09), reported injuries (77), estimated total injuries (103), reported crashes
(190), and estimated total crashes (382).
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4.3. Results for significance testing

Fig. 3 shows how many miles fully autonomous vehicles would have to be driven to demonstrate that their failure rate is
statistically significantly lower than the human driver failure rate with 95 percent confidence, given different values of A. The
different lines represent performance relative to the human driver fatality, reported injury, estimated total injury, reported
crash, and estimated total crash rates. Note that the miles needed to be driven approaches infinity as the difference between
the human rate and autonomous vehicle rate approaches 0, i.e., as A?0. The 5-billion mile data point for this example is
annotated in Fig. 3.

4.4. Statistical method for significance and power

Setting the significance level, a, accounts for one of the two types of errors we could make in significance testing: reject-
ing the null hypothesis when in fact it is true (Type I error). A limitation of determining the sample size as shown above is
that it does not take into consideration Type II error, b, which is the second type of error that might occur: not rejecting the
null hypothesis when the alternative is true. In the context of autonomous vehicles, a Type II error would mean that data
suggest that autonomous vehicles do not perform better than human drivers, when in fact they do. While perhaps less con-
cerning to stakeholders, this also would be a serious error as it could delay the introduction of potentially beneficial tech-
nology and needlessly perpetuate the risks posed by human drivers.

The power of the test, 100(1 � b)%, is the probability of correctly rejecting the null hypothesis in favor of the alternative.
The power of the test for a given number of miles, n, and hypothesized and assumed rates, k0 and kalt, respectively, is:
15 For
Power ¼ U
k0 � kaltffiffiffiffiffiffiffiffiffiffiffiffi

kalt=n
p � z1�a

 !
ð8Þ
where U(.) is the cumulative standard normal distribution.15 Building upon our running example, a study with a signifi-
cance level of a = 0.05 and a requirement to drive approximately 5 billion miles would have 50% power to reject the null
hypothesis.

One may instead want to know howmany miles autonomous vehicles need to be driven to avoid Type I errors and Type II
errors with some probability. Using the normal approximation for the distribution of fatalities, the number of miles, n,
required to achieve 100(1 � b)% power at the a significance is:
a one-sided test in the other direction, the numerator of the first component of U(.) would be kalt � k0.



Fig. 3. Miles needed to demonstrate with 95% confidence that the autonomous vehicle failure rate is lower than the human driver failure rate. SOURCE:
Authors’ analysis. NOTE: The results depend upon the estimated failure rate of autonomous vehicles. This is shown on the horizontal axis and defined as a
percent improvement over the human driver failure rate. The comparison can be made to the human driver fatality rate, reported injury rate, estimated
total injury rate, reported crash rate, and estimated total crash rate.
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n ¼ kalt
z1�a þ z1�b

k0 � kalt

� �2

ð9Þ
4.5. Example calculation for significance and power

Continuing our example, we apply Eq. (9) to determine the number of miles that autonomous vehicles must be driven to
determine with 95% confidence and 80% power (i.e., b = 0.2) that their failure rate is 20% better than the human driver fatality
rate:
n ¼ 0:872� 10�8 1:645þ 0:842
1:09� 10�8 � 0:872� 10�8

� �2

¼ 11;344;141;710
Autonomous vehicles would have to be driven more than 11 billion miles to detect this difference. With a fleet of 100 auton-
omous vehicles being test-driven 24 h a day, 365 days a year at an average speed of 25 miles per hour, this would take
518 years—about a half a millennium.
4.6. Results for significance and power

Fig. 4 shows how many miles fully autonomous vehicles would have to be driven to demonstrate with 95% confidence
and 80% power that their failure rate is A% better than the human driver failure rate. The different lines represent perfor-
mance relative to the human driver fatality, reported injury, estimated total injury, reported crash, and estimated total crash
rates. The 11-billion mile data point for this example is annotated in Fig. 4.

These results show that the closer autonomous vehicles are to human performance, the more miles are required to
demonstrate that the differences are statistically significant. This makes sense—the closer two population means are to each
other, the more samples will be needed to determine if they are significantly different. For example, if autonomous vehicles
improve fatality rates by 5% rather than 20%, the number of miles required to demonstrate a statistically significant improve-
ment with 95% confidence and 80% power is almost ludicrous: 215 billion miles. It would take a fleet of 100 vehicles nearly
10,000 years to achieve this. Indeed, for no improvement in fatality rates between 5% and 90% would it be practical to drive
the requisite number of miles with 100-vehicle fleets. For injuries and crashes, until autonomous vehicles are substantially
better than human drivers (25% or greater improvement), the miles required to demonstrate significant differences over
human drivers would be impractically large.



Fig. 4. Miles needed to demonstrate with 95% confidence and 80% power that the autonomous vehicle failure rate is lower than the human driver failure
rate. SOURCE: Authors’ analysis. NOTE: The results depend upon the estimated failure rate of autonomous vehicles. This is shown on the horizontal axis and
defined as a percent improvement over the human driver failure rate. The comparison can be made to the human driver fatality rate, reported injury rate,
estimated total injury rate, reported crash rate, and estimated total crash rate.
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It is possible that if the policy question were to differ from how we have framed it that fewer miles could be driven to
examine the reliability of autonomous vehicles. For example, suppose there was a consensus that autonomous vehicles
should be allowed on the roads, provided their performance was no more than some (small) amount worse than human-
driven cars, but that it was expected that their performance was actually better than human-driven cars. In this case, a test
of non-inferiority could be conducted and the sample size planned accordingly (Chow et al., 2008).

Yet even these results are optimistic. We have intentionally framed this analysis to calculate the fewest number of miles
that would need to be driven to demonstrate statistically significant differences between autonomous vehicles and human
drivers. First, developers are likely to improve autonomous vehicles as testing reveals shortcomings of the technology. The
performance of the vehicle will change between the start and the end of a multiyear testing time frame, hopefully for the
better. However, this may mean that still more miles are required to prove safety because the technology will have changed.

Second, recall that we treat H as a known benchmark against which we can do a one-sample test. Yet H is not a known
benchmark for three key reasons. First, the performance of human drivers in 2013 or any particular year is not the bench-
mark of concern. The concern is whether autonomous vehicle performance is better than human driver performance, and a
single year’s failure data is only an estimate of the true rate of human driver failures. Second, injuries and crashes are sig-
nificantly underreported and there is conflicting evidence about the rate of underreporting. Experiments in which injuries
and crashes are accurately recorded could yield different rates. Third, human driver performance is changing. Motor vehicle
fatality rates have fallen in the past several decades. In 1994, there were 1.73 fatalities per 100 million miles compared with
1.09 fatalities per 100 million miles in 2013 (Bureau of Transportation Statistics, 2015). Much of the decline can be attributed
to improvements in vehicle designs (Farmer and Lund, 2015), which could continue. Thus, the benchmark of human driver
performance is a moving target. So, if we compare the performance of human drivers against autonomous vehicles in some
time frame, there is uncertainty about whether the comparison would hold moving into the future. For all of these reasons, it
would be appropriate to treat H as uncertain and use a two-sample hypothesis test, which would require even more failures
to be observed and miles to be driven. This suggests it is not possible to drive our way to answers to one of the most impor-
tant policy questions about autonomous vehicles: Are they safer than human drivers?
5. Discussion and conclusions

This report frames three different questions about the number of miles that autonomous vehicles would have to be driven
as a method of statistically demonstrating their reliability. We lay out the formulas for answering these questions and pre-
sent results for fully autonomous vehicles that can serve as a reference for those interested in statistically testing their
reliability.



Table 1
Examples of miles and years needed to demonstrate autonomous vehicle reliability.

How many miles (yearsa) would autonomous
vehicles have to be driven. . .

Benchmark failure rate

(A) 1.09 fatalities
per 100 million
miles?

(B) 77 reported
injuries per 100
million miles?

(C) 190 reported
crashes per 100
million miles?

Statistical question (1) without failure to demonstrate with 95%
confidence that their failure rate is at most. . .

275 million miles
(12.5 years)

3.9 million miles
(2 months)

1.6 million
(1 month)

(2) to demonstrate with 95% confidence their failure
rate to within 20% of the true rate of. . .

8.8 billion (400 years) 125 million
(5.7 years)

51 million
(2.3 years)

(3) to demonstrate with 95% confidence and 80%
power that their failure rate is 20% better than the
human driver failure rate of. . .

11 billion (500 years) 161 million
(7.3 years)

65 million
(3 years)

a We assess the time it would take to complete the requisite miles with a fleet of 100 autonomous vehicles (larger than any known existing fleet) driving
24 h a day, 365 days a year, at an average speed of 25 miles per hour.
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Table 1 provides illustrative results from our analysis. The three numbered rows show sample results for each of our three
statistical questions about the miles needed to demonstrate safety. Sample results are shown for each of three benchmark
failures rates noted in the lettered columns. These correspond to human-driven (A) fatality rates, (B) reported injury rates,
and (C) reported crash rates. The results also show in parentheses the number of years it would take to drive those miles with
a fleet of 100 autonomous vehicles driving 24 h a day, 365 days a year, at an average speed of 25 miles per hour. For example,
one can ask, ‘‘How many miles (years) would autonomous vehicles have to be driven (row 2) to demonstrate with 95% con-
fidence their failure rate to within 20% of the true rate of (column A) 1.09 fatalities per 100 million miles?” The answer is 8.8
billion miles, which would take 400 years with such a fleet.

The results show that autonomous vehicles would have to be driven hundreds of millions of miles and sometimes hun-
dreds of billions of miles to demonstrate their reliability in terms of fatalities and injuries. Under even aggressive testing
assumptions, existing fleets would take tens and sometimes hundreds of years to drive these miles—an impossible propo-
sition if the aim is to demonstrate their performance prior to releasing them on the roads. Only crash performance seems
possible to assess through statistical comparisons of this kind, but this also may take years. Moreover, as autonomous
vehicles improve, it will require many millions of miles of driving to statistically verify changes in their performance.

Our results confirm and quantify that developers of this technology and third-party testers cannot drive their way to
safety. Our findings support the need for alternative methods to supplement real-world testing in order to assess autono-
mous vehicle safety and shape appropriate policies and regulations. These methods may include but are not limited to accel-
erated testing (Nelson, 2009), virtual testing and simulations (Chen and Chen, 2010; Khastgir et al., 2015; Olivares et al.,
2015); mathematical modeling and analysis (Hojjati-Emami et al., 2012; Kianfar et al., 2013); scenario and behavior testing
(California Department of Motor Vehicles, 2015; Sivak and Schoettle, 2015); and pilot studies (ANWB, 2015), as well as
extensive focused testing of hardware and software systems.

And yet, even with these methods, it may not be possible to establish the safety of autonomous vehicles prior to making
them available for public use. Uncertainty will remain. This poses significant liability and regulatory challenges for policy-
makers, insurers, and developers of the technology, and it would be a cause for concern among the public. It also suggests
that pilot studies may be an essential intermediate step for understanding autonomous vehicle performance prior to wide-
spread use. Such pilot studies would need to involve public-private partnerships in which liability is shared among devel-
opers, insurers, the government, and consumers.

Simultaneously, the technology will evolve rapidly, as will the social and economic context in which it is being intro-
duced. In fast-changing contexts such as these, regulations and policies cannot take a one-shot approach. Therefore, in par-
allel to creating new testing methods, it is imperative to begin developing approaches for planned adaptive regulation
(Eichler et al., 2015; Walker et al., 2010).

Such regulation is designed from the outset to generate new knowledge (e.g., through pilot studies), review that knowl-
edge (e.g., through scheduled safety review boards), and use that knowledge to evolve with the technology (e.g., by modi-
fying safety requirements). This can help society better harness the benefits and manage the risks of these potentially
transformative technologies.
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