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Abstract—Mobile-edge cloud computing is a new paradigm
to provide cloud computing capabilities at the edge of pervasive
radio access networks in close proximity to mobile users. In
this paper, we first study the multi-user computation offloading
problem for mobile-edge cloud computing in a multi-channel
wireless interference environment. We show that it is NP-hard to
compute a centralized optimal solution, and hence adopt a game
theoretic approach for achieving efficient computation offloading
in a distributed manner. We formulate the distributed compu-
tation offloading decision making problem among mobile device
users as a multi-user computation offloading game. We analyze
the structural property of the game and show that the game
admits a Nash equilibrium and possesses the finite improvement
property. We then design a distributed computation offloading
algorithm that can achieve a Nash equilibrium, derive the upper
bound of the convergence time, and quantify its efficiency ratio
over the centralized optimal solutions in terms of two important
performance metrics. We further extend our study to the scenario
of multi-user computation offloading in the multi-channel wireless
contention environment. Numerical results corroborate that the
proposed algorithm can achieve superior computation offloading
performance and scale well as the user size increases.

Index Terms—Computation offloading, game theory, mo-
bile-edge cloud computing, Nash equilibrium.

I. INTRODUCTION

S SMARTPHONES are gaining enormous popularity,

more and more new mobile applications such as face
recognition, natural language processing, interactive gaming,
and augmented reality are emerging and attract great atten-
tion [1]-[3]. This kind of mobile applications are typically
resource-hungry, demanding intensive computation and high
energy consumption. Due to the physical size constraint,
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however, mobile devices are in general resource-constrained,
having limited computation resources and battery life. The ten-
sion between resource-hungry applications and resource-con-
strained mobile devices hence poses a significant challenge for
the future mobile platform development [4].

Mobile cloud computing is envisioned as a promising ap-
proach to address such a challenge. By offloading the computa-
tion via wireless access to the resource-rich cloud infrastructure,
mobile cloud computing can augment the capabilities of mo-
bile devices for resource-hungry applications. One possible ap-
proach is to offload the computation to the remote public clouds
such as Amazon EC2 and Windows Azure. However, an evi-
dent weakness of public cloud based mobile cloud computing
is that mobile users may experience long latency for data ex-
change with the public cloud through the wide area network.
Long latency would hurt the interactive response, since humans
are acutely sensitive to delay and jitter. Moreover, it is very diffi-
cult to reduce the latency in the wide area network. To overcome
this limitation, the cloudlet based mobile cloud computing was
proposed as a promising solution [5]. Rather than relying on a
remote cloud, the cloudlet based mobile cloud computing lever-
ages the physical proximity to reduce delay by offloading the
computation to the nearby computing sever/cluster via one-hop
WiFi wireless access. However, there are two major disadvan-
tages for the cloudlet based mobile cloud computing: 1) due to
limited coverage of WiFi networks (typically available for in-
door environments), cloudlet based mobile cloud computing can
not guarantee ubiquitous service provision everywhere; 2) due
to space constraint, cloudlet based mobile cloud computing usu-
ally utilizes a computing sever/cluster with small/medium com-
putation resources, which may not satisfy QoS of a large number
of users.

To address these challenges and complement cloudlet based
mobile cloud computing, a novel mobile cloud computing
paradigm, called mobile-edge cloud computing, has been
proposed [6]-[9]. As illustrated in Fig. 1, mobile-edge cloud
computing can provide cloud-computing capabilities at the
edge of pervasive radio access networks in close proximity to
mobile users. In this case, the need for fast interactive response
can be met by fast and low-latency connection (e.g., via fiber
transmission) to large-scale resource-rich cloud computing
infrastructures (called telecom cloud) deployed by telecom op-
erators (e.g., AT&T and T-Mobile) within the network edge and
backhaul/core networks. By endowing ubiquitous radio access
networks (e.g., 3G/4G macro-cell and small-cell base-stations)
with powerful computing capabilities, mobile-edge cloud com-
puting is envisioned to provide pervasive and agile computation
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Fig. 1. An illustration of mobile-edge cloud computing.

augmenting services for mobile device users at anytime and
anywhere [6]-[9].

In this paper, we study the issue of designing efficient compu-
tation offloading mechanism for mobile-edge cloud computing.
One critical factor of affecting the computation offloading per-
formance is the wireless access efficiency [10]. Given the fact
that base-stations in most wireless networks are operating in
multi-channel setting, a key challenge is how to achieve effi-
cient wireless access coordination among multiple mobile de-
vice users for computation offloading. If too many mobile de-
vice users choose the same wireless channel to offload the com-
putation to the cloud simultaneously, they may cause severe in-
terference to each other, which would reduce the data rates for
computation offloading. This hence can lead to low energy ef-
ficiency and long data transmission time. In this case, it would
not be beneficial for the mobile device users to offload compu-
tation to the cloud. To achieve efficient computation offloading
for mobile-edge cloud computing, we hence need to carefully
tackle two key challenges: 1) how should a mobile user choose
between the local computing (on its own device) and the cloud
computing (via computation offloading)? 2) if a user chooses
the cloud computing, how can the user choose a proper channel
in order to achieve high wireless access efficiency for computa-
tion offloading?

We adopt a game theoretic approach to address these chal-
lenges. Game theory is a powerful tool for designing distributed
mechanisms, such that the mobile device users in the system
can locally make decisions based on strategic interactions
and achieve a mutually satisfactory computation offloading
solution. This can help to ease the heavy burden of complex
centralized management (e.g., massive information collection
from mobile device users) by the telecom cloud operator.
Moreover, as different mobile devices are usually owned by
different individuals and they may pursue different interests,
game theory provides a useful framework to analyze the inter-
actions among multiple mobile device users who act in their
own interests and devise incentive compatible computation of-
floading mechanisms such that no mobile user has the incentive
to deviate unilaterally.

Specifically, we model the computation offloading decision
making problem among multiple mobile device users for mo-
bile-edge cloud computing in a multi-channel wireless envi-
ronment as a multi-user computation offloading game. We then
propose a distributed computation offloading algorithm that can
achieve the Nash equilibrium of the game. The main results and
contributions of this paper are as follows:

*  Multi-User Computation Offloading Game Formulation:

We first show that it is NP-hard to find the centralized
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optimal multi-user computation offloading solutions in
a multi-channel wireless interference environment. We
hence consider the distributed alternative and formulate
the distributed computation offloading decision making
problem among the mobile device users as a multi-user
computation offloading game, which takes into account
both communication and computation aspects of mo-
bile-edge cloud computing. We also extend our study to
the scenario of multi-user computation offloading in the
multi-channel wireless contention environment.

*  Analysis of Computation Offloading Game Properties: We
then study the structural property of the multi-user com-
putation offloading game and show that the game is a po-
tential game by carefully constructing a potential function.
According to the property of potential game, we show that
the multi-user computation offloading game admits the fi-
nite improvement property and always possesses a Nash
equilibrium.

* Distributed Computation Offloading Algorithm Design:
We next devise a distributed computation offloading algo-
rithm that achieves a Nash equilibrium of the multi-user
computation offloading game and derive the upper bound
of the convergence time under mild conditions. We fur-
ther quantify the efficiency ratio of the Nash equilibrium
solution by the algorithm over the centralized optimal
solutions in terms of two important metrics of the number
of beneficial cloud computing users and the system-wide
computation overhead. Numerical results demonstrate that
the proposed algorithm can achieve efficient computation
offloading performance and scale well as the user size
increases.

The rest of the paper is organized as follows. We first present
the system model in Section II. We then propose the multi-user
computation offloading game and develop the distributed com-
putation offloading algorithm in Sections III and IV, respec-
tively. We next analyze the performance of the algorithm and
present the numerical results in Sections V and VII, respec-
tively. We further extend our study to the case under the wire-
less contention model in Section VI, discuss the related work in
Section VIII, and finally conclude in Section IX.

II. SYSTEM MODEL

We first introduce the system model. We consider a set of
N ={1,2,..., N} collocated mobile device users, where each
user has a computationally intensive task to be completed. There
exists a wireless base-station s and through which the mobile de-
vice users can offload the computation to the cloud in proximity
deployed by the telecom operator. Similar to many previous
studies in mobile cloud computing (e.g., [9]-[17]) and mobile
networking (e.g., [18] and [19]), to enable tractable analysis and
get useful insights, we consider a quasi-static scenario where
the set of mobile device users A remains unchanged during a
computation offloading period (e.g., several hundred millisec-
onds), while may change across different periods.! Since both
the communication and computation aspects play a key role in

IThe general case that mobile users may depart and leave dynamically within
a computation offloading period will be considered in a future work.
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mobile-edge cloud computing, we next introduce the communi-
cation and computation models in details.

A. Communication Model

We first introduce the communication model for wireless
access in mobile-edge cloud computing. Here the wireless
base-station s can be a 3G/4G macro-cell or small-cell base-sta-
tion [20] that manages the uplink/downlink communications of
mobile device users. There are M wireless channels and the set
of channels is denoted as M = {1,2,..., M}. Furthermore,
we denote a, € {0} U M as the computation offloading
decision of mobile device user n. Specifically, we have a,, > 0
if user n chooses to offload the computation to the cloud via
a wireless channel a,,; we have a,, = 0 if user n decides to
compute its task locally on its own mobile device. Given the
decision profile @ = (a1, as,...,an) of all the mobile device
users, we can compute the uplink data rate of a mobile device
user 7 that chooses to offload the computation to the cloud via
a wireless channel a,, > 0 as [21]

dnfn,s

wo—i— E

iEN\{n}ai=an

14

rp(a) = wlog,

(1)
qi%i.s

Here w is the channel bandwidth and g¢,, is user n's transmis-
sion power which is determined by the wireless base-station
according to some power control algorithms such as [22] and
[23].2 Further, g;, s denotes the channel gain between the mo-
bile device user n and the base-station s, and zwy denotes the
background noise power. Note that here we focus on exploring
the computation offloading problem under the wireless interfer-
ence model, which can well capture user's time average aggre-
gate throughput in the cellular communication scenario in which
some physical layer channel access scheme (e.g., CDMA) is
adopted to allow multiple users to share the same spectrum re-
source simultaneously and efficiently. In Section VI, we will
also extend our study to the wireless contention model in which
some media access control protocol such as CSMA is adopted
in WiFi-alike networks.

From the communication model in (1), we see that if too
many mobile device users choose to offload the computation via
the same wireless access channel simultaneously during a com-
putation offloading period, they may incur severe interference,
leading to low data rates. As we discuss latter, this would nega-
tively affect the performance of mobile-edge cloud computing.

B. Computation Model

We then introduce the computation model. We consider that
each mobile device user n has a computation task 7, £ (b, dn)

that can be computed either locally on the mobile device or re-
motely on the telecom cloud via computation offloading. Here
b,, denotes the size of computation input data (e.g., the program

2To be compatible with existing wireless systems, in this paper we consider
that the power is determined to satisfy the requirements of wireless transmission
(e.g., the specified SINR threshold). For the future work, we will study the joint
power control and offloading decision making problem to optimize the perfor-
mance of computation offloading. This joint problem would be very challenging
to solve since the offloading decision making problem alone is NP-hard as we
show later.
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codes and input parameters) involved in the computation task
J» and d,, denotes the total number of CPU cycles required to
accomplish the computation task 7,. A mobile device user n
can apply the methods (e.g., call graph analysis) in [4], [24] to
obtain the information of b,, and d,,. We next discuss the com-
putation overhead in terms of both energy consumption and pro-
cessing time for both local and cloud computing approaches.

1) Local Computing: For the local computing approach, a
mobile device user n executes its computation task 7, locally
on the mobile device. Let f;7* be the computation capability (i.e.,
CPU cycles per second) of mobile device user n. Here we allow
that different mobile devices may have different computation
capabilities. The computation execution time of the task 7,, by
local computing is then given as

dn
For the computational energy, we have that
en = Tndn, (3)

where ,, is the coefficient denoting the consumed energy per
CPU cycle, which can be obtained by the measurement method
in [15].

According to (2) and (3), we can then compute the overhead
of the local computing approach in terms of computational time
and energy as

K™ = X\ 4 \ee™

n-n?

“

where AL, A¢ € {0, 1} denote the weighting parameters of com-
putational time and energy for mobile device user n's decision
making, respectively. When a user is at a low battery state and
cares about the energy consumption, the user can set A, = 1 and
AL = 0 in the decision making. When a user is running some
application that is sensitive to the delay (e.g., video streaming)
and hence concerns about the processing time, then the user can
set A¢ = 0 and MY, = 1 in the decision making. To provide rich
modeling flexibility, our model can also apply to the general-
ized case where AL, \¢ € [0,1] such that a user can take both
computational time and energy into the decision making at the
same time. In practice the proper weights that capture a user's
valuations on computational energy and time can be determined
by applying the multi-attribute utility approach in the multiple
criteria decision making theory [25].

2) Cloud Computing: For the cloud computing approach, a
mobile device user n will offload its computation task 7, to the
cloud in proximity deployed by telecom operator via wireless
access and the cloud will execute the computation task on behalf
of the mobile device user.

For the computation offloading, a mobile device user n
would incur the extra overhead in terms of time and energy
for transmitting the computation input data to the cloud via
wireless access. According to the communication model in
Section II-A, we can compute the transmission time and energy
of mobile device user n for offloading the input data of size b,
as, respectively,

N (5)
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and

q'n,bn
(@)

e (a) = + L, (6)
where L,, is the tail energy due to that the mobile device will
continue to hold the channel for a while even after the data
transmission. Such a tail phenomenon is commonly observed
in 3G/4G networks [26]. After the offloading, the cloud will
execute the computation task J,. We denote fS as the com-
putation capability (i.e., CPU cycles per second) assigned to
user n by the cloud. Similar to the mobile data usage service,
the cloud computing capability f¢ is determined according to
the cloud computing service contract subscribed by the mobile
user n from the telecom operator. Due to the fact many telecom
operators (e.g., AT&T and T-Mobile) are capable for large-scale
cloud computing infrastructure investment, we consider that the
cloud computing resource requirements of all users can be satis-
fied. The case that a small/medium telecom operator has limited
cloud computing resource provision will be considered in a fu-
ture work. Then the execution time of the task .7, of mobile
device user n on the cloud can be then given as

d
tz exe — l‘ (7)
’ f5

According to (5), (6), and (7), we can compute the overhead
of the cloud computing approach in terms of processing time
and energy as

KTCL(G') = Aﬁz (tfz,off(a’) + t:z,ere) + )‘:,6;(0')' (8)

Similar to many studies such as [11]-[14], we neglect the time
overhead for the cloud to send the computation outcome back to
the mobile device user, due to the fact that for many applications
(e.g., face recognition), the size of the computation outcome in
general is much smaller than the size of computation input data,
which includes the mobile system settings, program codes and
input parameters. Also, due to the fact that wireless spectrum
is the most constrained resource, and higher-layer network re-
sources are much richer and the higher-layer management can
be done quickly and efficiently via high-speed wired connec-
tion and high-performance computing using powerful servers
at the base-station, the wireless access efficiency at the physical
layer is the bottleneck for computation offloading via wireless
transmission [10]. Similar to existing studies for mobile cloud
computing [9], [17], [24], we hence account for the most critical
factor (i.e., wireless access at the physical layer) only.3

Based on the system model above, in the following sections
we will develop a game theoretic approach for devising efficient
multi-user computation offloading policy for the mobile-edge
cloud computing.

III. MULTI-USER COMPUTATION OFFLOADING GAME

In this section, we consider the issue of achieving efficient
multi-user computation offloading for the mobile-edge cloud
computing.

3We can account for the high-layer factors by simply adding a processing
latency term (which is typically much smaller than the wireless access) into
user's time overhead function and this will not affect the analysis of the problem.
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According to the communication and computation models in
Section II, we see that the computation offloading decisions a
among the mobile device users are coupled. If too many mobile
device users simultaneously choose to offload the computation
tasks to the cloud via the same wireless channel, they may incur
severe interference and this would lead to a low data rate. When
the data rate of a mobile device user n is low, it would con-
sume high energy in the wireless access for offloading the com-
putation input data to cloud and incur long transmission time
as well. In this case, it would be more beneficial for the user
to compute the task locally on the mobile device to avoid the
long processing time and high energy consumption by the cloud
computing approach. Based on this insight, we first define the
concept of beneficial cloud computing.

Definition 1: Given a computation offloading decision profile
a, the decision a,, of user n that chooses the cloud computing
approach (i.e., a,, > 0) is beneficial if the cloud computing ap-
proach does not incur higher overhead than the local computing
approach (i.e., K:(a) < K7).

The concept of beneficial cloud computing plays an impor-
tant role in the mobile-edge cloud computing. On the one hand,
from the user's perspective, beneficial cloud computing ensures
the individual rationality, i.e., a mobile device user would not
suffer performance loss by adopting the cloud computing ap-
proach. On the other hand, from the telecom operator's point of
view, the larger number of users achieving beneficial cloud com-
puting implies a higher utilization ratio of the cloud resources
and a higher revenue of providing mobile-edge cloud computing
service. Thus, different from traditional multi-user traffic sched-
uling problem, when determining the wireless access schedule
for computation offloading, we need to ensure that for a user
choosing cloud computing, that user must be a beneficial cloud
computing user. Otherwise, the user will not follow the compu-
tation offloading schedule, since it can switch to the local com-
puting approach to reduce the computation overhead.

A. Finding Centralized Optimum is NP-Hard

We first consider the centralized optimization problem in term
of the performance metric of the total number of beneficial cloud
computing users. We will further consider another important
metric of the system-wide computation overhead later. Math-
ematically, we can model the problem as follows:

n’lci‘i.X Z I{an>0}

neN
subject to  KS(a) < K, Va, >0,n e N,
an, € {0,1,...,M}, ¥neN. )

Here Iy 4, is an indicator function with Iy 4y = 1 if the event A
is true and Iy 4y = 0 otherwise.

Unfortunately, it turns out that the problem of finding the
maximum number of beneficial cloud computing users can be
extremely challenging.

Theorem 1: The problem in (9) that computes the maximum
number of beneficial cloud computing users is NP-hard.

Proof: To proceed, we first introduce the maximum car-
dinality bin packing problem [27]: we are given N items with
sizes p; fori € A" and M bins of identical capacity C, and the
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objective is to assign a maximum number of items to the fixed
number of bins without violating the capacity constraint. Math-
ematically, we can formulate the problem as

N M
maXZ Z Tij
i=1 j=1
N
subject toZpil‘ij <C,VjeM,

i=1

M
Z:L’,ij <1, VieN,

j=1

zi; € {0,1}, Vie N,j e M. (10)
It is known from [27] that the maximum cardinality bin packing
problem above is NP-hard.

For our problem, according to Theorem 1, we know that a
user n that can achieve beneficial cloud computing if and only
if its received interference E'ie./\/'\{n}:ai:an 4i9i,s < T},. Based
on this, we can transform the maximum cardinality bin packing
problem to a special case of our problem of finding the max-
imum number of beneficial cloud computing users as follows.
We can regard the items and the bins in the maximum cardinality
bin packing problem as the mobile device users and channels in
our problem, respectively. Then the size of an item n and the
capacity constraint of each bin can be given as p, = gngn s and
C =T, + qng»,s, respectively. By this, we can ensure that as
long as a user n on its assigned channel a,, achieves the benefi-
cial cloud computing, for an item n, the total sizes of the items
on its assigned bin a, will not violate the capacity constraint
C. This is due to the fact that Eie}\/\{n}:ai:an 4i9is < T,

which implies that Zfil Di%ia, = Zz‘e.f\/\{n}:ai:an 4iGis +
Ingn,s < C.

Therefore, if we have an algorithm that can find the max-
imum number of beneficial cloud computing users, then we can
also obtain the optimal solution to the maximum cardinality bin
packing problem. Since the maximum cardinality bin packing
problem is NP-hard, our problem is hence also NP-hard. O

The key idea of proof'is to show that the maximum cardinality
bin packing problem (which is known to be NP-hard [27]) can
be reduced to a special case of our problem. Theorem 1 pro-
vides the major motivation for our game theoretic study, be-
cause it suggests that the centralized optimization problem is
fundamentally difficult. By leveraging the intelligence of each
individual mobile device user, game theory is a powerful tool
for devising distributed mechanisms with low complexity, such
that the users can self-organize into a mutually satisfactory so-
lution. This can also help to ease the heavy burden of complex
centralized computing and management by the cloud operator.
Moreover, another key rationale of adopting the game theoretic
approach is that the mobile devices are owned by different indi-
viduals and they may pursue different interests. Game theory is
a useful framework to analyze the interactions among multiple
mobile device users who act in their own interests and devise
incentive compatible computation offloading mechanisms such
that no user has the incentive to deviate unilaterally.
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Besides the performance metric of the number of beneficial
cloud computing users, in this paper we also consider another
important metric of the system-wide computation overhead, i.e.,

1l Z Zn(a)

min
neN

subject toa, € {0,1,..., M}, ¥n e N. (11)

Note that the centralized optimization problem for minimizing
the system-wide computation overhead is also NP-hard, since
it involves a combinatorial optimization over the multi-di-
mensional discrete space (i.e., {0,1,..., M}¥). As shown in
Sections V and VII, the proposed game theoretic solution can
also achieve superior performance in terms of the performance
metric of the system-wide computation overhead.

B. Game Formulation

We then consider the distributed computation offloading
decision making problem among the mobile device users. Let
a_n, = (a1,-..,8n-1,8p+1,...,an) be the computation
offloading decisions by all other users except user n. Given
other users' decisions a _,,, user n would like to select a proper
decision a,,, by using either the local computing (a, = 0)
or the cloud computing via a wireless channel (a,, > 0) to
minimize its computation overhead, i.e.,

min

n Zp(an,a_n),Vn e N.
an€ALR{01,... M)}

According to (4) and (8), we can obtain the overhead function
of mobile device user n as

K,
Zn(a'na a’*?l) - { Kﬁ"(a’),

We then formulate the problem above as a strategic game
' = (N, {An}nens {Zn tnen), where the set of mobile device
users A is the set of players, .A,, is the set of strategies for player
n, and the overhead function 7, (a,,a_,) of each user n is the
cost function to be minimized by player n. In the sequel, we call
the game I" as the multi-user computation offloading game. We
now introduce the important concept of Nash equilibrium.

Definition 2: A strategy profile a* = (a3, ..., a% ) is a Nash
equilibrium of the multi-user computation offloading game if
at the equilibrium a*, no user can further reduce its overhead
by unilaterally changing its strategy, i.e.,

ifa, =0,

ifa, > 0. (12)

Zy(ay,a",) < Zplan,a*,),Va, € A,,neN.  (13)

According to the concept of Nash equilibrium, we first have
the following observation.

Corollary 1: For the multi-user computation offloading
game, if a user n at Nash equilibrium a* chooses cloud com-
puting approach (i.e., a, > 0), then the user n must be a
beneficial cloud computing user.

This is because if a user choosing the cloud computing ap-
proach is not a beneficial cloud computing user at the equilib-
rium, then the user can improve its benefit by just switching
to the local computing approach, which contradicts with the
fact that no user can improve unilaterally at the Nash equi-
librium. Furthermore, the Nash equilibrium also ensures the



2800

nice self-stability property such that the users at the equilib-
rium can achieve a mutually satisfactory solution and no user
has the incentive to deviate. This property is very important to
the multi-user computation offloading problem, since the mo-
bile devices are owned by different individuals and they may
act in their own interests.

C. Structural Properties

We next study the existence of Nash equilibrium of the multi-
user computation offloading game. To proceed, we shall resort
to a powerful tool of potential game [28].

Definition 3: A game is called a potential game if it admits
potential function ®(a) such that for every n € N, a_,, €
H#n A;, and al,,a, € Ay, if

Zn(tp,a-n) < Zn(an,a n), (14)

we have

d(al,,a ) < Plan,a_n). (15)

An appealing property of the potential game is that it always
admits a Nash equilibrium and possesses the finite improve-
ment property, such that any asynchronous better response up-
date process (i.e., no more than one player updates the strategy
to reduce the overhead at any given time) must be finite and
leads to a Nash equilibrium [28].

To show the multi-user computation offloading game is a po-
tential game, we first show the following result.

Lemma 1: Given a computation offloading decision profile
a, a user n achieves beneficial cloud computing if its received
interference u,(a) = Zie/\f\{n}:ai:an gigi,s on the chosen
wireless channel a,, > 0 satisfies that p,(a) < T,, with the
threshold

qndn,s

(Oh+Afan)en
gu(ALeltagel G Ln ALeE o)
Proof: According to (4), (8), and Definition 1, we know

that the condition K2 (a) < K" is equivalent to

AL+ A2dn) bn
{2 o Xon) b F AL + Aot epe < ALET A+ Aol

Tn = — Q-

rn(a) n'n,exe =
That is,
A4 X8q,0) by,
'rn(a.) > ( n T And )
)\Ltzn + )‘%62" - A%Ln - )‘flt?z,e;re

According to (1), we then have that

E 4i9i,s
iEN\{n}a;=an
Indn,s
< ; — o
= Ok fan)on o
guw(MheltAG e AGLn ME ) g
O

According to Lemma 1, we see that when the received inter-
ference pt,, (@) of user n on a wireless channel is lower enough,
it is beneficial for the user to adopt cloud computing approach
and offload the computation to the cloud. Otherwise, the user n
should compute the task on the mobile device locally. Based on
Lemma 1, we show that the multi-user computation offloading
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game is indeed a potential game by constructing the potential
function as

N
1
®(a) = 3 E E 919,593 %5,5 {a;=a;1 L {a:>0}
i=1 j2i

N
+3 4i9i T (a—0}-  (16)
i=1
Theorem 2: The multi-user computation offloading game is a
potential game with the potential function as given in (16), and
hence always has a Nash equilibrium and the finite improvement
property.

Proof: Suppose that a user k € N updates its current deci-
sion ay, to the decision a}, and this leads to a decrease in its over-
head function, i.e., Zx(ay, a_x) > Zi(a}, a_x). According to
the definition of potential game, we will show that this also
leads to a decrease in the potential function, i.e., ®(ag, a_;) >
®(aj},, a_k). We will consider the following three cases: 1) ax >
0 and aj, > 0;2) ar, = 0and aj, > 0;3) ar, > 0and a}, = 0.

For case 1), since the function of w log, () is monotonously
increasing in terms of x, according to (1), we know that the
condition Zy(ay, a_x) > Zy(al,,a_x) implies that

D D

i€EN\{k}a;=ay, i€N\{k}:a,=aj,

4igi,s > 4igi.s- (17)

Since ax > 0 and a}, > 0, according to (16) and (17), we then
know that
CI)(G‘M a‘—k) - (I)(a;w a—k)

1
= SqkGk.s Z 4i9i.sd{a;=ar)

2 ,
ik
1
+ 5 Z qigi.sl{ak:ai}ngk,s
ki
1
- iquk,s Z q'igLsI{ai:a,;e}
i£k
1
3 > digisT (0, —aiy Gk Gk,
ki
= QhGks Y diisl{aimary — GhTks Y Giisl{a=ary > 0.
ik i#k

(18)

For case 2), since a, = 0, a}, > 0, and Zg(ag,a_x) >
Zi(a),, a_i), we know that Zie./v’\{k}:ai:a;c 4igi,s < Ty. This
implies that

d(ar,a_r) — P(ay,a_y)

= qrgr,s 1k
1 1
— 5 TkGk.s > tigi s T (ai=ary — 3 > @i a1 —a;} 9k Tk s
ik ki
= gigr,sTk — Qeghs Y €8s (aimar) > 0- (19)

ik

For case 3), by the similar argument in case 2), when aj, > 0
and aj, = 0, we can also show that Zj(ag,a ) > Zi(a},a k)
implies ®(ak,a ) > P(aj, a k).
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Algorithm 1 Distributed Computation Offloading Algorithm

—_—

: initialization:
2: each mobile device user n chooses the computation
decision a,,(0) = 0.

: end initialization

repeat for each user n and each decision slot ¢ in parallel:

5:  transmit the pilot signal on the chosen channel a,, (%)
to the wireless base-station s.

6:  receive the information of the received powers on all
the channels from the wireless base-station s.

7:  compute the best response set A, (2).

W

8. if A, () # < then
9: send RTU message to the cloud for contending for
the decision update opportunity.
10: if receive the UP message from the cloud then
11: choose the decision a,, (¢ + 1) € A,,(¢) for next
slot.
12: else choose the original decision a,,(t + 1) = a,(¢)
for next slot.
13: end if

14:  else choose the original decision a,,(t + 1) = a,,(¢)
for next slot.

15:  endif

16: until END message is received from the cloud

Combining results in the three cases above, we can hence
conclude that the multi-user computation offloading game is a
potential game. ]

The key idea of the proof'is to show that when a user k € N
updates its current decision aj to a better decision aj, the
decrease in its overhead function will lead to the decrease in
the potential function of the multi-user computation offloading
game. Theorem 2 implies that any asynchronous better response
update process is guaranteed to reach a Nash equilibrium within
a finite number of iterations. We shall exploit such finite im-
provement property for the distributed computation offloading
algorithm design in following Section IV.

IV. DISTRIBUTED COMPUTATION OFFLOADING ALGORITHM

In this section we develop a distributed computation of-
floading algorithm in Algorithm 1 for achieving the Nash
equilibrium of the multi-user computation offloading game.

A. Algorithm Design

The motivation of using the distributed computation of-
floading algorithm is to enable mobile device users to achieve
a mutually satisfactory decision making, prior to the compu-
tation task execution. The key idea of the algorithm design
is to utilize the finite improvement property of the multi-user
computation offloading game and let one mobile device user
improve its computation offloading decision at a time. Specif-
ically, by using the clock signal from the wireless base-station
for synchronization, we consider a slotted time structure for the
computation offloading decision update. Each decision slot ¢
consists the following two stages:
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1) Wireless Interference Measurement: at this stage, we
measure the interference on different channels for wireless
access. Specifically, each mobile device user n who selects
decision a,(t) > 0 (i.e., cloud computing approach) at the
current decision slot will transmit some pilot signal on its
chosen channel a,(t) to the wireless base-station s. The
wireless base-station then measures the total received power
pmla(t)) = D i€ ai(t)=m 9igi,s on each channel m € M and
feedbacks the information of the received powers on all the
channels (i.e., { o (a(t)), m € M}) to the mobile device users.
Accordingly, each user n can obtain its received interference
tn{m,a_,(t)) from other users on each channel m € M as

o = {3

That is, for its current chosen channel a,, (¢), user n determines
the received interference by subtracting its own power from the
total measured power; for other channels over which user n does
not transmit the pilot signal, the received interference is equal
to the total measured power.

2) Offloading Decision Update: at this stage, we exploit the
finite improvement property of the multi-user computation of-
floading game by having one mobile device user carry out a de-
cision update. Based on the information of the measured inter-
ferences { i, (M, a_n(£)), m € M} on different channels, each
mobile device user n first computes its set of best response up-
date as

An(t)

(1>

{ad:a=arg arg& Zn(a,a_,(t)) and
Zp(a,a-n(t)) < Zn(an(t),a_n(t))}.

Then, if A, (t) # & (i.e., user n can improve its decision),
user n will send a request-to-update (RTU) message to the cloud
to indicate that it wants to contend for the decision update op-
portunity. Otherwise, user n will not contend and adhere to the
current decision at next decision slot, i.e., a,(t + 1) = a,(t).
Next, the cloud will randomly select one user & out of the set of
users who have sent the RTU messages and send the update-per-
mission (UP) message to the user & for updating its decision for
the next slot as a,,(t + 1) € A, (¢). For other users who do not
receive the UP message from the cloud, they will not update
their decisions and choose the same decisions at next slot, i.e.,
an(t + 1) = a,(t).

B. Convergence Analysis

According to the finite improvement property in Theorem 2,
the algorithm will converge to a Nash equilibrium of the multi-
user computation offloading game within finite number of deci-
sion slots. In practice, we can implement that the computation
offloading decision update process terminates when no RTU
messages are received by the cloud. In this case, the cloud will
broadcast the END message to all the mobile device users and
each user will execute the computation task according to the de-
cision obtained at the last decision slot by the algorithm. Due to
the property of Nash equilibrium, no user has the incentive to
deviate from the achieved decisions.

We then analyze the computational complexity of the dis-
tributed computation offloading algorithm. In each decision
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slot, each mobile device user will in parallel execute the op-
erations in Lines 5-15 of Algorithm 1. Since most operations
only involve some basic arithmetical calculations, the dom-
inating part is the computing of the best response update in
Line 11, which involves the sorting operation over A channel
measurement data and typically has a complexity of O(M
log M). The computational complexity in each decision slot
is hence O(M log M ). Suppose that it takes C' decision slots
for the algorithm to terminate. Then the total computational
complexity of the distributed computation offloading algorithm
is O(CMlog M). Let Thayx = max,en{Tn}, Qn = ¢ugn s
Qmax = maXneA {Qn}s and len = m1n7z€N{Qn}~ For
the number of decision slots C' for convergence, we have the
following result.

Theorem 3: When T,, and Q,, are non-negative integers for
any n € N, the distributed computatlon offloading algorithm
TinoxQumax N docision

min

will terminate within at most ma" VQ

slots, ie., C < Qmm N2 ¢ Qmav maxN

min

Proof: Flrst of all, accordlng to (16) we know that

Z Z Qe + Z QuaxTonax

1131 i=1

QmaXNQ + QuaxTmax N.

During a decision slot, suppose that a user k € A updates its
current decision ay, to the decision aj, and this leads to a decrease
in its overhead function, i.e., Zy(ax, a k) > Z(a},, a—k). Ac-
cording to the definition of potential game, we will show that
this also leads to a decrease in the potential function by at least

Qmin’ i.e.,

0< ®(a

(20)

@(ak,a,k) > @(a;“a*k)-l-Qm‘m. (21)
We will consider the following three cases: 1) ax > 0 and aj, >
0; 2)ay = 0 and a}, > 0; 3) a, > 0 and a}, = 0.
For case 1), according to (18) in the proof of Theorem 2, we
know that

(I)(a’kH [l,k) - ‘I’(a;i,a—k)
=@ ZQ’iI{ai:ak} - ZQiI{ai:a;} > 0. (22)
i#k ik

Since Q; are integers for any i € A, we know that
> Qila—any 2 Y Qila—ayy + 1.
itk ik

Thus, according to (22), we have

Plak,a—p) > ®(ay,a—k) + Qr > ®(ay, a—1) + Qmin-

For case 2), according to (19) in the proof of Theorem 2, we
know that

D(ak,a_r) — Play,a—k) = >0.

Qi [ Th—Y_ Qilta—aly
ik

By the similar augment as in case 1), we have

Blag,a_g) > P(ay,a—r) + Qr > ®(al,, a—r) + Quin-
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For case 3), by the similar argument in case 2), we can also
show that ®(ay,a_r) > ®(a),a—k) + Qmin.

Thus, according to (20) and (21), we know that the algorithm
will terminate by driving t}ée potential function ®(a) to a min-

imal point within at most 2%":’; N2t Qm[gi:“" N decision slots.
O

Theorem 3 shows that under mild conditions the distributed
computation offloading algorithm can converge in a fast manner
with at most a quadratic convergence time (i.e., upper bound).
Note that in practice the transmission power and channel gain
are non-negative (i.e., gn,gn.s = 0), we hence have Q),, =
{gngn s} > 0. The non-negative condition of T, > 0 ensures
that a user could have the chances to achieve beneficial cloud
computing (otherwise, the user should always choose the local
computing). For ease of exposition, we consider that ¢},, and T},
are integers, which can also provide a good approximation for
the general case that @,, and T, could be real number. For the
general case, numerical results in Section VII demonstrate that
the distributed computation offloading algorithm can also con-
verge in a fast manner with the number of decision slots for con-
vergence increasing (almost) linearly with the number of users
N. Since the time length of a slot in wireless systems is typi-
cally at time scale of microseconds (e.g., the length of a slot is
around 70 microseconds in LTE system [29]), this implies that
the time for the computation offloading decision update process
is very short and can be neglectable, compared with the com-
putation execution process, which is typically at the time scale
of millisecond/seconds (e.g., for mobile gaming application, the
execution time is typically several hundred milliseconds [30]).

V. PERFORMANCE ANALYSIS

We then analyze the performance of the distributed compu-
tation offloading algorithm. Following the definition of price
of anarchy (PoA) in game theory [31], we will quantify the
efficiency ratio of the worst-case Nash equilibrium over the
centralized optimal solutions in terms of two important met-
rics: the number of beneficial cloud computing users and the
system-wide computation overhead.

A. Metric I: Number of Beneficial Cloud Computing Users

We first study the PoA in terms of the metric of the number
of beneficial cloud computing users in the system. Let T be the
set of Nash equilibria of the multi-user computation offloading
game and a* = (aj, ..., a}y) denote the the centralized optimal
solution that maximizes the number of beneficial cloud com-
puting users. Then the PoA is defined as

mlnae'r Z I{an>0}

PoA = neN
> Tiarsoy
neN

For the metric of the number of beneficial cloud com-
puting users, a larger PoA implies a better performance of
the multi-user computation offloading game solution. Re-
call that Tpax = maxXpen{Tn}, Tmin = min,ca {7, 1},
Qmax 2 maXnEN{Qngn,s}, and Qmin £ minnEN{Qngn.s}-
We can show the following result.

Theorem 4: Consider the multi-user computation offloading
game, where Ty, > 0 for each user n € N. The PoA for the
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metric of the number of beneficial cloud computing users satis-

fies that
£
1> PoA > Lo
|G| 41

Proof: Leta € T be an arbitrary Nash equilibrium of
the game. Since the centralized optimum a* maximizes the
number of beneficial cloud computing users, we hence have that
Yonen L, >00 £ D nen L{az >0y and PoA < 1. Moreover,
if Y cn Lia,>0y = N, wehave > - Iror50y = N and
PoA = 1. In following proof, we will focus on the case that
Zné/\/’ I{an>0} < N.

First, we show that for the centralized optimum a*,
we have > i Traesoy < M( %J —i—l), where M
is the number of channels. To proceed, we first denote
Cpla) 2 Zil Ia;—m) as the number of users on channel m
for a given decision profile a. Since 7,, > 0, we have
Ké(ap,a_, = 0) > K™ for a, > 0, i.e., there exists at
least a user that can achieve beneficial cloud computing by
letting the user choose cloud computing a, and the other
users choose local computing. This implies that for the cen-
tralized optimum a*, we have ) . Iars0y = 1. Let
Cmr (@) = maxye m{Cm(a*)}, ie., channel m* is the one
with most users. Suppose user n is on the channel m*. Then
we know that

>

i€EN\{n}:a;=m*
which implies that

(Cm* (ﬂ,*) - 1) Qmin S

qi9i,s < Tna

Z 4iGi.s
i€EN\{n}:a;=m*
<Ty < Thax-

It follows that

T
Cor(a®) < | 225 +1.
( ) LQl‘nin J

We hence have that

D Tazsoy = Z Cnla®) < MCp-(a*)  (23)
neN m=1
T
<M /[ |22 4+ 1). 24
(\‘QminJ ( )

Second, for the Nash equilibrium @, since Y, - v I{a,, >0} <
N, there exists at lease one user 7 that chooses the local com-
puting approach, i.e., a5 = 0. Since a is a Nash equilibrium, we
have that user 2 cannot reduce its overhead by choosing compu-
tation offloading via any channel m € M. We then know that

Z q4i9i,s Z Tﬁyvm € M:

ieNM\{n}:a;=m
which implies that

m( )Qmax et Z 4i9i.s-
iEN\{Aa}:a;=m
2 Tﬁ Z Tmin-

It follows that

Cone (@) >

Tmin \‘ Tmin J
- > .
Qmax Qmax
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Thus, we have

Z I{an >0} — Z C
neN
Based on (24) and (25), we can conclude that PoA >
| Gia |
Recall that the constraint 1,, > 0 ensures that some user
can achieve beneficial cloud computing in the centralized op-
timum, and avoid the possibility of the PoA involving “division
by zero”. Theorem 4 implies that the worst-case performance of
the Nash equilibrium will be close to the centralized optimum
a* when the gap between the best and worst users in terms of
wireless access performance gy, g» s and interference tolerance
threshold T, for achieving beneficial cloud computing is not
large.

Tmin
M .
zu g es

max

, which completes the proof. O

B. Metric II: System-Wide Computation Overhead

We then study the PoA in terms of another metric of the
total computation overhead of all the mobile device users in the
system, i.e., Y s Zn(a). Let a be the centralized optimal so-
lution that minimizes the system-wide computation overhead,
ie,a = arg mina6 N Y nen Zn(a). Similarly, we can
define the PoA as ey

maXgcy Z Zn, (a')
neN

> Zn(a)

neN
Note that, different from the metric of the number of benefi-
cial cloud computing users, a smaller system-wide computa-
tion overhead is more desirable. Hence, for the metric of the

system-wide computation overhead, a smaller PoA is better. Let
(AL 42500 )bn

PoA =

lfr: min = dndn,s ’\eL )‘fzt% exe and
w log, <1+ )
AL A q,) by,
2 ( . nd ) /\i Afltz, exe*

wlogQ 1+ dndn,s
w0+< > quh,.;)/lw
i€N\{n}

We can show the following result.

Theorem 5: For the multi-user computation offloading game,
the PoA of the metric of the system-wide computation overhead
satisfies that

N
> min{K*, K¢
1 <PoA < ”Nl
3> min{ K»

n=1
Proof: Leta € T be an arbitrary Nash equilibrium of the
game. Since the centralized optimum a* minimizes the system-
wide computation overhead, we hence first have that PoA > 1.
For a Nash equilibrium a € T, ifa,, > 0, we shall show that
the interference that a user n receives from other other users on

the wireless access channel a,, is at most

Z qi9i,s /A'/[

iEN\{n}

,mam}

K¢ }

n,min
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We prove this by contradiction. Suppose that a user n at
the Nash equilibrium & receives an interference greater than

(Zi@v\{n} qigm) /M . Then, we have that

> > digis | /M.
ieA\{n}:a,=4, ieM\{n}

According to the property of Nash equilibrium such that no user

can improve by changing the channel unilaterally, we also have

that
> by

iEN\{n}:a;,=m ieEN\{n}:a;=an

GnGn,s > (26)

qndn,s > qngms,Vm € M.

This implies that

DS

m=1icN\{n}:a;=m

dndn,s

27

> M >

iEN\{n}:4;=da,

dn8n,s

According to (26) and (27), we now reach a contradiction that

>

iENM\{n}t:éd;=éa,

(> ¥

m=1icAN\{n}a;=m

> qigia | /M <

ieAM\{n}

dndn,s

Gn9ns | /M

< Z %8s | /M.
iEN\{n}
Thus, a user n at the Nash equilibrium @ receives an interference
not greater than (Zie/\/\{n} qig.iws) /M . Based on this, if 4,, >
0, we hence have that

qndn,s

1+
wq + ( > Qigi7s> /M

rn(@) > wlog,

?

which implies that

AL 4 Aq,) by
(nJr nq) +A2Ln+)\ttc

nn,exe

Ko@) = e

(AL + A5gn) b

>
dnfn,s

wlogy | 14
W0+< > Qigi,s>/1\/[
ieN\{n}

+ Ae L, + ALtS

n'n,exe
=Kt
n,max’

Moreover, if K" < K ., and d,, > 0, then the user can
always improve by switching to the local computing approach

(i.e., &, = 0), we thus know that

Z,(a) < min{K}", K¢ 28)

max } -
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For the centralized optimal solution a, if @,, > 0, we have
that

Qngn;s
o + Z
ieN\{n}:a;=an

< wlog, (1 N Qngn,s> 7

wo

Tn (a) =w 10g2 1+

qi9i,s

which implies that

AL+ X¢qp) by
(n+ nq) +>\161Ln+)\ttc

n-n.exe

K (@) = .

(@)
t e
< </\77, + )‘nqn) b”

- o dndn.s
w log, (1 + o )
= K¢

n,min*

+ XS L, + ALtE

n'n,exe

Moreover, if K" < K7 .., and a,, > 0, then the system-wide
computation overhead can be further reduced by letting user n
switch to the local computing approach (i.e., @, = 0). This is
because such a switching will not increase extra interference to
other users. We thus know that

Zn (@) < min{K*, K

n?nzn}

(29)

According to (28) and (29), we can conclude that

maXeer ., Znla)
neN

>, Zn(a)

neN

1 < PoA =

™=

min{K™, K¢

mma;v}

IA
3
lL

M=z

min{ K7, K¢

n n,min}

3
Il
-

O
Intuitively, Theorem 5 indicates that when the resource for
wireless access increases (i.e., the number of wireless access
channels M is larger and hence K, ... is smaller), the worst-
case performance of Nash equilibrilim can be improved. More-
over, when users have lower cost of local computing (i.e., K"
is smaller), the worst-case Nash equilibrium is closer to the cen-
tralized optimum and hence the PoA is lower.

VI. EXTENSION TO WIRELESS CONTENTION MODEL

In the previous sections above, we mainly focus on exploring
the distributed computation offloading problem under the wire-
less interference model as given in (1). Such wireless interfer-
ence model is widely adopted in literature (see [21], [32] and ref-
erences therein) and can well capture user's time average aggre-
gate throughput in the cellular communication scenario in which
some physical layer channel access scheme (e.g., CDMA) is
adopted to allow multiple users to share the same spectrum re-
source simultaneously and efficiently. In this case, the multiple
access among users for the shared spectrum is carried out over
the signal/symbol level (e.g., at the time scale of microseconds),
rather than the packet level (e.g., at the time scale of millisec-
onds/seconds).
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In this section, we extend our study to the wireless contention
model in which the multiple access among users for the shared
spectrum is carried out over the packet level. This is most rel-
evant to the scenario that some media access control protocol
such as CSMA is implemented such that users content to capture
the channel for data packet transmission for a long period (e.g.,
hundreds of milliseconds or several seconds) in the WiFi-like
networks (e.g., White-Space Network [33]). In this case, we can
model a user's expected throughput for computation offloading
over the chosen wireless channel a,, > 0 as follows

W,
= R "

rn(a) (30)

W77; +
iEN\{n}:a;=ay,

w;’

where R,, is the data rate that user n can achieve when it can
successfully gab the channel, and W,, > 0 denotes user's weight
in the channel contention/sharing, with a larger weight W,, im-
plying that user n is more dominant in grabbing the channel.
When W,, = 1 for any user n, it is relevant to the equal-sharing
case (e.g., round robin scheduling).

Similarly, we can apply the communication and computation
models in the previous sections above to compute the over-
head for both local and cloud computing approaches, and model
the distributed computation offloading problem as a strategic
game. For such multi-user computation offloading game under
the wireless contention model, we can show that it exhibits the
same structural property as the case under the wireless interfer-
ence model. We can first define the received “interference” (i.e.,
aggregated contention weights) of user n on the chosen channel
as (@) = ZiEN’\{n}:ai:an W,. Then we can show the same
threshold structure for the game as follow.

Lemma 2: For the multi-user computation offloading game
under the wireless contention model, a user n achieves benefi-
cial cloud computing if its received interference p,(a) on the
chosen channel o, > 0 satisfies that p,(a) < T,, with the
threshold

( ()‘?rzt:;z + Afzezz - AfLLn - Afztfl e.re) Rn )
’ -1 W,.

n =

(A + A5aqn) by

By exploiting the threshold structure above and following the
similar arguments in the proof of Theorem 2, we can also show
that the multi-user computation offloading game under the wire-
less contention model is a potential game.

Theorem 6: The multi-user computation offloading game
under the wireless contention model is a potential game under
the wireless contention model with the potential function as
given in (31), and hence always has a Nash equilibrium and
the finite improvement property.

N

1 ,
@) = 5D WiWiltomap ia>o)
i=1 i

N
+ZWiTnI{an:0}' (€2))
i=1

Based on Lemma 2 and Theorem (6), we observe that the
multi-user computation offloading game under the wireless con-
tention model exhibits the same structural property as the case
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under the wireless interference model. Moreover, by defining
Gngn,s = Wy, the potential function in (31) is the same as that
in (16). Thus, by regarding the aggregated contention weights
Hn(@) = D ;e A\ {n}:ai=a, Wi as the received interference, we
can apply the distributed computation offloading algorithm in
Section IV to achieve the Nash equilibrium, which possesses
the same performance and convergence guarantee for the case
under the wireless contention model.

VII. NUMERICAL RESULTS

In this section, we evaluate the proposed distributed compu-
tation offloading algorithm by numerical studies. We first con-
sider the scenario where the wireless small-cell base-station has
a coverage range of 50 m [34] and N = 30 mobile device
users are randomly scattered over the coverage region [34]. The
base-station consists of M = 5 channels and the channel band-
width w = 5 MHz. The transmission power ¢, = 100 mWatts
and the background noise wy = —100 dBm [21]. According
to the wireless interference model for urban cellular radio envi-
ronment [21], we set the channel gain g,, s = [,,$, where I, ,
is the distance between mobile device user n and the wireless
base-station and « = 4 is the path loss factor.

For the computation task, we consider the face recognition
application in [2], where the data size for the computation of-
floading b,, = 5000 KB and the total number of CPU cycles
d, = 1000 Megacycles. The CPU computational capability f,
of a mobile device user n is randomly assigned from the set
{0.5, 0.8, 1.0} GHz to account for the heterogenous computing
capability of mobile devices, and the computational capability
allocated for a user n on the cloud is f; = 10 GHz [2]. For the
decision weights of each user n for both the computation time
and energy, we set that A}, = 1 — A% and \¢ is randomly as-
signed from the set {1, 0.5, 0}. In this case, if A{, = 1 (A;, =0,
respectively), a user n only cares about the computation energy
(computation time, respectively); if A, = 0.5, then user n cares
both the computation time and energy.

We first show the dynamics of mobile device users' compu-
tation overhead Z, (a) by the proposed distributed computa-
tion offloading algorithm in Fig. 2. We see that the algorithm
can converge to a stable point (i.e., Nash equilibrium of the
multi-user computation offloading game). Fig. 3 shows the dy-
namics of the achieved number of beneficial cloud computing
users by the proposed algorithm. It demonstrates that the algo-
rithm can keep the number of beneficial cloud computing users
in the system increasing and converge to an equilibrium. We fur-
ther show the dynamics of the system-wide computation over-
head .\ Z,(a) by the proposed algorithm in Fig. 4. We see
that the algorithm can also keep the system-wide computation
overhead decreasing and converge to an equilibrium.

We then compare the distributed computation offloading al-
gorithm with the following solutions:

A. Local Computing by All Users

each user chooses to compute its own task locally on the mo-
bile phone. This could correspond to the scenario that each user
is risk-averse and would like to avoid any potential performance
degradation due to the concurrent computation offloadings by
other users.
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B. Cloud Computing by All Users

each user chooses to offload its own task to the cloud via a
randomly selected wireless channel. This could correspond to
the scenario that each user is myopic and ignores the impact of
other users for cloud computing.

C. Cross Entropy Based Centralized Optimization

we compute the centralized optimum by the global optimiza-
tion using Cross Entropy (CE) method, which is an advanced
randomized searching technique and has been shown to be ef-
ficient in finding near-optimal solutions to complex combinato-
rial optimization problems [35].

We run experiments with different number of N =
15,...,50 mobile device users [34], respectively. We repeat
each experiment 100 times for each given user number N
and show the average number of beneficial cloud computing
users and the average system-wide computation overhead in
Figs. 5 and 6, respectively. We see that, for the metric of the
number of beneficial cloud computing users, the distributed
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computation offloading solution can achieve up-to 30% per-
formance improvement over the solutions by cloud computing
by all users, respectively. For the metric of the system-wide
computation overhead, the distributed computation offloading
solution can achieve up-to 68% and 55%, and 51% overhead
reduction over with the solutions by local computing by all
users, and cloud computing by all users, respectively. More-
over, compared with the centralized optimal solution by CE
method, the performance loss of the distributed computation
offloading solution is at most 12% and 14%, for the metrics of
number of beneficial cloud computing users and system-wide
computation overhead, respectively. This demonstrates the
efficiency of the proposed distributed computation offloading
algorithm. Note that for the distributed computation offloading
algorithm, a mobile user makes the computation offloading
decision locally based on its local parameters. While for CE
based centralized optimization, the complete information is
required and hence all the users need to report all their local
parameters to the cloud. This would incur high system over-
head for massive information collection and may raise the
privacy issue as well. Moreover, since the mobile devices are
owned by different individuals and they may pursue different
interests, the users may not have the incentive to follow the
centralized optimal solution. While, due to the property of Nash
equilibrium, the distributed computation offloading solution
can ensure the self-stability such that no user has the incentive
to deviate unilaterally.

We next evaluate the convergence time of the distributed
computation offloading algorithm in Fig. 7. It shows that the
average number of decision slots for convergence increases
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(almost) linearly as the number of mobile device users N
increases. This demonstrates that the distributed computation
offloading algorithm converges in a fast manner and scales well
with the size of mobile device users in practice.*

VIII. RELATED WORK

Many previous work has investigated the single-user com-
putation offloading problem (e.g., [10]-[16]). Barbera et al. in
[10] showed by realistic measurements that the wireless access
plays a key role in affecting the performance of mobile cloud
computing. Rudenko ef al. in [11] demonstrated by experiments
that significant energy can be saved by computation offloading.
Gonzalo et al. in [12] developed an adaptive offloading algo-
rithm based on both the execution history of applications and
the current system conditions. Xian et a/. in [13] introduced an
efficient timeout scheme for computation offloading to increase
the energy efficiency on mobile devices. Huang et al. in [14]
proposed a Lyapunov optimization based dynamic offloading
algorithm to improve the mobile cloud computing performance
while meeting the application execution time. Wen et al. in [15]
presented an efficient offloading policy by jointly configuring
the clock frequency in the mobile device and scheduling the data
transmission to minimize the energy consumption. Wu et al. in
[16] applied the alternating renewal process to model the net-
work availability and developed offloading decision algorithm
accordingly.

To the best of our knowledge, only a few works have ad-
dressed the computation offloading problem under the setting
of multiple mobile device users [9]. Yang et al. in [24] studied
the scenario that multiple users share the wireless network band-
width, and solved the problem of maximizing the mobile cloud
computing performance by a centralized heuristic genetic algo-
rithm. Our previous work in [17] considered the multi-user com-
putation offloading problem in a single-channel wireless setting,
such that each user has a binary decision variable (i.e., to of-
fload or not). Given the fact that base-stations in most wireless
networks are operating in the multi-channel wireless environ-
ment, in this paper we study the generalized multi-user com-
putation offloading problem in a multi-channel setting, which
results in significant differences in analysis. For example, we

4For example, the length of a slot is at the time scale of microseconds in LTE
system [29] and hence the convergence time of the proposed algorithm is very
short.
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show the generalized problem is NP-hard, which is not true for
the single-channel case. We also investigate the price of anarchy
in terms of two performance metrics and show that the number
of available channels can also impact the price of anarchy (e.g.,
Theorem 5). We further derive the upper bound of the con-
vergence time of the computation offloading algorithm in the
multi-channel environment. Barbarossa et al. in [9] studied the
multi-user computation offloading problem in a multi-channel
wireless environment, by assuming that the number of wireless
access channels is greater than the number of users such that
each mobile user can offload the computation via a single or-
thogonal channel independently without experiencing any in-
terference from other users. In this paper we consider the more
practical case that the number of wireless access channels is
limited and each user mobile may experience interference from
other users for computation offloading.

IX. CONCLUSION

In this paper, we propose a game theoretic approach for the
computation offloading decision making problem among mul-
tiple mobile device users for mobile-edge cloud computing. We
formulate the problem as as a multi-user computation offloading
game and show that the game always admits a Nash equilibrium.
We also design a distributed computation offloading algorithm
that can achieve a Nash equilibrium, derive the upper bound of
convergence time, and quantify its price of anarchy. Numerical
results demonstrate that the proposed algorithm achieves supe-
rior computation offloading performance and scales well as the
user size increases.

For the future work, we are going to consider the more gen-
eral case that mobile users may depart and leave dynamically
within a computation offloading period. In this case, the user
mobility patterns will play an important role in the problem for-
mulation. Another direction is to study the joint power control
and offloading decision making problem, which would be very
interesting and technically challenging.
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