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When Heavy-Tailed and Light-Tailed Flows
Compete: The Response Time Tail Under

Generalized Max-Weight Scheduling
Jayakrishnan Nair, Krishna Jagannathan, and Adam Wierman

Abstract—This paper focuses on the design and analysis of
scheduling policies for multi-class queues, such as those found in
wireless networks and high-speed switches. In this context, we
study the response-time tail under generalized max-weight policies
in settings where the traffic flows are highly asymmetric. Specif-
ically, we consider a setting where a bursty flow, modeled using
heavy-tailed statistics, competes with a more benign, light-tailed
flow. In this setting, we prove that classical max-weight scheduling,
which is known to be throughput optimal, results in the light-tailed
flow having heavy-tailed response times. However, we show that
via a careful design of inter-queue scheduling policy (from the
class of generalized max-weight policies) and intra-queue sched-
uling policies, it is possible to maintain throughput optimality,
and guarantee light-tailed delays for the light-tailed flow, without
affecting the response-time tail for the heavy-tailed flow.

Index Terms—First come first served, heavy-tailed traffic, large
deviations, last come first served, light-tailed traffic, maximum
weight scheduling, response time tail, stability.

I. INTRODUCTION

T HE task of scheduling conflicting links is central to a va-
riety of networking settings, such as wireless networks,

optical networks and high-speed switches. As a result, there is
a large literature studying scheduling policies in these contexts,
most of which is based on the maximum-weight (max-weight)
scheduling framework proposed by Tassiulas and Ephremides
in [2], [3]. At this point, there is a substantial body of literature
devoted to the analysis and application of the max-weight policy
and its variants; for example, see [4]–[10].
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Traditionally, the focus of research on max-weight sched-
uling has been on understanding its ‘stability region’, i.e., the
set of input rates that can be supported. Notably, max-weight
has been shown to be ‘throughput optimal’ in very general set-
tings, i.e., it has the largest possible stability region among all
scheduling policies [2], [3], [10]. In other words, if there exists
any scheduling policy that can keep the queueing network stable
under a given model of traffic arrival statistics, the max-weight
policy can stabilize the system.
Although throughput is an important first-order performance

metric, a more discerning metric is the response time, a.k.a.,
sojourn time or delay. Indeed, from the standpoint of the ap-
plications sending/receiving information, ensuring small, pre-
dictable response times is crucial. Although the stability region
and throughput optimality properties of the max-weight frame-
work are well studied, the literature on the delay performance is
relatively small. Average delay bounds are derived using Lya-
punov drift techniques in some works (for example, see [10]);
however, these are quite loose in general. Tighter delay bounds
have been established recently; see, for example, [11], [12].
In general, results about the response time of max-weight

policies, such as those above, tend to indicate that max-weight
policies perform well in symmetric traffic settings [2], [13],
[14]. This is primarily due to the tendency of these policies to
‘balance out’ the queues in the system, by preferentially serving
longer queues. For example, [2] contains a strong sample path
optimality result for queue backlogs under stochastically sym-
metric traffic to parallel queues; this is generalized in [13].
On the other hand, the traffic flows encountered in practice

tend to be highly asymmetric, with a wide range of vari-
ability or burstiness. Indeed, in the context of communication
networks, certain bursty traffic flows may be well modeled
using heavy-tailed arrival processes, and the more benign ones
better modeled using light-tailed processes. For example, an
internet user might generate occasional file download requests
with highly variable file sizes, that can be modeled as being
heavy-tailed. However, routine webpage loading and email
traffic are likely to be far less variable, and thus are better
modeled as being light-tailed. In order to capture the interaction
between heterogeneous traffic sources in a queueing network,
multi-class queueing models with a mix of heavy-tailed and
light-tailed traffic sources have been studied [15]–[18]. An
important paper in this category is [15], where the interaction
between light and heavy-tailed traffic flows under generalized
processor sharing (GPS) is studied. Another example is [16],
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Fig. 1. A network consisting of two parallel queues, with one of them fed with
heavy-tailed traffic. The channels connecting the queues to the server are unre-
liable ON/OFF links.

where the authors obtain the asymptotic workload behavior
under a general coupled-queues framework, which includes
GPS as a special case.
In summary, on the one hand, max-weight policies are

throughput optimal and often provide good response times
when the traffic is largely symmetric. On the other hand, the
interaction between bursty and benign traffic sources is well
studied within multi-class queueing and GPS frameworks, but
these policies are not throughput optimal.
Contributions of this Paper: The goal of this paper is to fill

this gap by studying response times under max-weight policies
when traffic is highly asymmetric. The first steps towards filling
this gap have been provided by the recent work of Markakis
et al. in [19] and Jagannathan et al. [20], [21], which analyze
a scenario where heavy-tailed and light-tailed flows interact
through a generalized max-weight policy. Our present paper
builds on these papers; in particular, our model is the same as
in [20]. However, the focus of the above papers is on queue
length asymptotics under different throughput optimal policies,
while in this paper, we analyze the distribution of response
times experienced by the heavy and light-tailed flows.
More specifically, in this paper, we consider a stylized setting

where the traffic asymmetry is extreme. We consider a system
consisting of two traffic classes contending for service from a
single server, where one class is heavy-tailed, and the other is
light-tailed (see Fig. 1). Both classes experience a time varying
connectivity with the server, and the server can serve a single
packet from a connected queue in each slot. Note that this model
captures a wireless uplink/downlink scenario with two nodes
communicating with an access point or base station via fading
channels. For this queueing system, we study the tail of the (sta-
tionary) response-time distribution that each traffic class expe-
riences under generalized max-weight policies.
In this context, there are two scheduling decisions: the inter-

queue scheduling and the intra-queue scheduling. The inter-
queue scheduling policy determines which queue to serve in
each slot, whereas the intra-queue scheduling policies specify
which waiting packet to serve from the queue selected for ser-
vice by the inter-queue scheduling policy.
The first contribution of this paper is to prove that the clas-

sical max-weight policy, which serves the longest connected
queue in each slot, causes the light-tailed flow to experience
heavy-tailed response times. This means that the classical
max-weight policy, while being throughput optimal, severely
throttles (starves) the light-tailed flow. Thus, while max-weight
performs well in symmetric settings, it can have poor perfor-
mance in asymmetric settings. Intuitively, this is because the

max-weight policy starves the light-tailed flow of service for
a long period of time when the heavy-tailed flow generates its
(frequent) large bursts.
The second contribution of this paper is to show that it is

possible to design a throughput optimal scheduling policy that
avoids the problems experienced by the classical max-weight
policy. In particular, we present a policy that provably guar-
antees light-tailed response times for the light-tailed flow. Im-
portantly, our results suggest that the response-time tail for the
heavy-tailed flow remains unaffected; we prove this formally
for the special case in which both queues are always connected
to the server.
Our policy design entails a careful choice of the inter-queue

scheduling policy, as well as intra-queue scheduling policies.
Our inter-queue policy is the so called ‘log-max-weight policy’,
which belongs to the class generalized max-weight policies [7]
and awards a significant priority to the light-tailed flow, while
maintaining throughput optimality. Our intra-queue policy dif-
fers between the heavy-tailed and the light-tailed queues: within
the heavy-tailed queue, Preemptive-Last-Come-First-Served
(PLCFS) is used, while within the light-tailed queue,
First-Come-First-Served (FCFS) is used.
Our analysis provides a clear insight into the intricate inter-

play between the intra-queue and inter-queue scheduling poli-
cies. Indeed, our results reveal that even with a good inter-queue
scheduling policy, the correct choice of intra-queue scheduling
policies is crucial in order to obtain good response-time tail be-
havior. In fact, the difference in response times between two
intra-queue policies can be significantly larger under general-
ized max-weight inter-queue scheduling than in a single server
queue.
Finally, it is worth commenting that in attaining the results

described above, we also settle an an open question in [21, pp.
171] regarding the asymptotics of log-max-weight scheduling.
In particular, we prove that under log-max-weight scheduling,
the (stationary) queue length distribution corresponding to the
light-tailed queue is light-tailed (Theorem 8), via a novel appli-
cation of Lyapunov bounds from [7].

II. MODEL AND PRELIMINARIES

A. System Model

Our goal is to study multi-class queues in a setting where
the traffic flows are highly asymmetric. To that end, we con-
sider a simple model where the asymmetry is extreme. In par-
ticular, we consider a scenario where two parallel queues con-
tend for service from a single server. One of the queues sees a
heavy-tailed arrival process, whereas the other sees a light-tailed
arrival process.We refer to the former queue as the heavy queue,
and the latter queue as the light queue.
Each queue experiences a stochastically time varying con-

nectivity with the server. Fig. 1 provides an illustration of our
setup. Time is slotted, and in each slot, the server can provide
a single unit of service to a connected queue. Henceforth, we
refer to this unit of service as a packet, and say the server can
process a single packet from a connected queue in each slot. Let
denote the time index.
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In each slot, a job, comprising a burst of packets, can arrive
stochastically into each queue. Let and denote, re-
spectively, the size of the job (in number of packets) arriving
into the heavy queue and the light queue in time slot We adopt
the convention that the size of the incoming job is zero if there
is no arrival in a slot.
Our stochastic model for the arrival processes is the fol-

lowing. The sequences and are i.i.d. across time slots,
and independent of one another. The random variable
is light-tailed, and the random variable is heavy-tailed.
Specifically, we assume that is regularly varying with
index .1 Let and denote
the mean arrival rates into the heavy queue and the light queue,
respectively.
Next, we describe the stochastic model for the connectivity of

each queue with the server. The connectivity of the heavy queue
and the light queue are described, respectively, by Bernoulli
sequences and . with
a value of 1 indicating that the corresponding queue is con-
nected to the server in time slot We assume that the sequences

and are mutually independent and indepen-
dent of the arrival processes. Let and

denote, respectively, the probabilities that
the heavy queue and the light queue are connected to the server
in each time slot. We assume that . We refer to the
special case of our model in which the two queues are always
connected to the server, i.e., , as the wireline sce-
nario. For technical reasons, we exclude from consideration the
scenario where only one of the queues is always connected to
the server, i.e., we exclude the cases and

. Finally, we assume that the server can de-
tect the connectivity state of both queues, as well as the queue
size (in number of packets) of a connected queue in each slot.
Note that our model captures an uplink/downlink setting with
two wireless nodes connected to a base station or access point
via independent fading channels.
Let and denote, respectively, the lengths (in

number of packets) of the heavy queue and the light queue
in the beginning of time slot . The queue lengths evolve as
follows:

If both queues are connected to the server in a certain slot, the
scheduling policy determines which queue will receive service.
If only one of the queues is connected to the server in a cer-
tain slot, then that queue receives service if it has any waiting
packets. We refer to such slots as exclusive slots. We use
and to denote, respectively, the stationary queue lengths of
the heavy queue and the light queue. We use to denote the
steady state response time experienced by a job in the heavy
queue, and to denote the steady state response time experi-
enced by a job in the light queue.

1We formally define light-tailed and regularly varying distributions in Sec-
tion II-D.

Fig. 2. Stability region is the pentagonal region above. The subset of
interest is shaded.

B. Stability Region
The stability region for the queueing system defined above,

i.e., the set of pairs that are stabilizable, is well
understood. It follows from [2] that

The stability region is visualized in Fig. 2. We seek scheduling
policies that are throughput optimal, i.e., policies that stabilize
the queueing system over the entire stability region.
Let . Note that is the probability that

only the light queue is connected to the server in a slot, i.e., the
probability that a slot is exclusive to the light queue. If
then the arrivals into the light queue can be stably supported by
just exclusive slots, implying the light queue essentially does
not need to compete for service with the heavy queue. This case
is uninteresting when analyzing the light queue, since the re-
sponse-time distribution is guaranteed to be light-tailed, irre-
spective of the inter-queue or intra-queue scheduling policy. For
the same reason, the case is uninteresting. Therefore,
when studying the response-time distribution in the light queue,
we restrict our attention to the subset of the stability region
over which , and . The set is depicted as
the shaded region in Fig. 2. Note that in the wireline scenario,

, and is simply the interior of the stability region.

C. Scheduling
We decouple the scheduling design as follows. The inter-

queue scheduling policy determines which queue to serve in
each slot, given the connectivity state and length (in number
of packets) of each queue. In the queue selected for service by
the inter-queue policy, the intra-queue scheduling policy deter-
mines which packet to serve in that slot, given the full state of
the queue. We consider a variety of possible policies, described
below, for each.
Recall that we have two performance goals for scheduler de-

sign: (i) throughput optimality, and (ii) good response-time tail
behavior. Note that the stability of the queueing system depends
solely on the inter-queue scheduling policy, since the evolution
of the queue lengths is insensitive to the intra-queue scheduling
policy. However, the response-time distribution is highly depen-
dent on the intra-queue scheduling policy.
1) Inter-Queue Scheduling: Given that the inter-queue

scheduling policy completely determines the stability of the
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system, it is crucial to use policies that are throughput optimal.
This motivates us to consider generalized max-weight policies
[7]. In particular, our focus is on two such policies:
Max-Weight- Scheduling: The max-weight- policy [19],

[21] is a generalization of the classical max-weight policy, and
is characterized by two positive parameters and . In each
slot, the max-weight- policy serves the queue that wins the
comparison

(1)

Ties may be broken arbitrarily, but we assume for concreteness
that ties are broken in favor of the light queue. Note that when

, the max-weight- policy is identical to the classical
max-weight policy. The throughput optimality of this policy fol-
lows easily from Theorem 1 in [7].
The parameters and determine the relative priorities

of the two queues. Since we will be interested in the scenario
where the light queue receives a higher priority than the heavy
queue, we focus on the case . Moreover, it is easy to
see that we may set without loss of generality. Indeed,
the comparison in (1) is equivalent to the comparison

Accordingly, we focus on the range of parameters satisfying
. Note that a higher value of implies a higher

priority for the light queue.
Log-Max-Weight Scheduling: The log-max-weight policy

[21] is defined as follows. In each slot , it serves the queue that
wins the comparison

(2)

As before, we assume for concreteness that ties are broken in
favor of the light queue. The throughput optimality of this policy
once again follows easily from Theorem 1 in [7].
The log-max-weight policy awards an even higher degree of

priority to the light queue than the max-weight- policy. Note
that in order to determine which queue to serve in a slot, the
max-weight- policy compares with , whereas
the log-max-weight policy compares with .
2) Intra-Queue Scheduling: While intra-queue scheduling

does not impact the stability of the system (as long as the poli-
cies considered are work-conserving), the intra-queue sched-
uling policy does have a significant impact on the response-time
distribution. In this paper, we focus on two candidate policies
for intra-queue scheduling: First-Come-First-Served (FCFS)
and Preemptive-Last-Come-First-Served (PLCFS).
While other policies could also be considered, the choice of

these policies is motivated by a few important factors. First,
FCFS is the most commonly assumed intra-queue policy in the
literature on max-weight scheduling. Second, there have been
suggestions recently that using PLCFS as the intra-queue sched-
uling policy can improve the delay-performance of max-weight
policies [22]. Third, in a single server queue, it is known that
the response-time tail under FCFS is optimal when job sizes
are light-tailed, while the response-time tail under PLCFS is
optimal (up to a constant) when job sizes are heavy-tailed (see
[23]).

D. Heavy-Tailed Distributions: Definitions and Properties
In this section, we give relevant definitions and preliminaries

related to heavy-tailed distributions.
For any non-negative random variable we use to de-

note its distribution function (d.f.), i.e., ,
and to denote its tail distribution function, i.e.,

. The random variable (or its d.f. ) is said to be
heavy-tailed if

Conversely, (or its d.f. ) is said to be light-tailed if it is
not heavy-tailed, i.e., if there exists such that

Intuitively, a d.f. is heavy-tailed if its tail is asymptotically
heavier than that of any exponential distribution.
An important characterization of heavy-tailed distributions

that we make use of in our analysis is the following (see The-
orem 2.6 in [24]). For any non-negative random variable , de-
fine .
Lemma 1: Suppose is non-negative random variable. Then
is heavy-tailed if and only if

From a modeling standpoint, an important subclass of heavy-
tailed distributions is the class of regularly varying distributions,
which is a generalization of the class of Pareto distributions [25].
Formally, a random variable (or its d.f. ) is said to be
regularly varying with index (denoted )
if where is a slowly varying
function, i.e., satisfies

. Recall that our model assumes that .
Our focus in this paper is on understanding the (logarithmic)

asymptotic behavior of the response-time tail. To study this for
a heavy-tailed , we use its tail index, defined as

when the limit exists. The tail index is useful for describing the
asymptotic tail behavior of distributions that exhibit a roughly
‘power-law’ tail, such as regularly varying distributions. In par-
ticular, if then [26, Prop. 2.6]. It is easy
to check that if , then is heavy-tailed. Moreover,
it can be shown that
(i) if then for ,
(ii) if then for .

Finally, note that a smaller value of tail index implies a ‘heavier’
tail.
To give a lower bound on the tail of a heavy-tailed random

variable , we use

It is easy to check that if then is heavy-tailed.
Moreover, if , then for .
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TABLE I
SUMMARY OF MAIN RESULTS. IS THE STATIONARY RESPONSE TIME IN QUEUE UNDER INTRA-QUEUE SCHEDULING POLICY

III. RESULTS
The multi-class queueing model in the previous section in-

volves two highly asymmetric traffic classes, one heavy-tailed,
and one light-tailed. Our goal now is to understand how max-
weight scheduling and its variants perform under such an ex-
treme form of asymmetry. We begin by considering the most
well studied subclass of generalized max-weight policies: max-
weight- policies [19], which includes the classical max-weight
policy as a special case. We then consider the log-max-weight
policy. Our main results are summarized in Table I.
Recall that both of these classes of inter-queue policies ensure

throughput stability regardless of the intra-queue policy used.
Therefore, our results focus on the response-time tail. Impor-
tantly, for this metric, our results highlight that the choice of
intra-queue scheduling is crucial.

A. Max-Weight- Scheduling
In this section, we present our results on the tail behavior of

the (stationary) response-time distribution in the heavy queue
and light queue under the max-weight- inter-queue scheduling
policy. We being by focusing on the light-queue.
The Performance of the Light Queue: Our first result is the

following upper bound on the response-time tail index for the
light queue under max-weight- inter-queue scheduling, and
any intra-queue scheduling policy in the light queue.
Theorem 1: Suppose that the arrival rates lie in the subset

of the stability region. Then under the max-weight- scheduling
policy between queues with

for any intra-queue scheduling policy in the light queue.
Theorem 1 states that under max-weight- scheduling be-

tween queues, , which implies that the light queue
sees heavy-tailed response times, irrespective of the intra-queue
scheduling policy. This means that although max-weight-
scheduling is throughput optimal, it severely throttles the light
queue. Note that this includes the classical max-weight policy
as a special case. Intuitively, this poor performance is the result
of (frequent) large arrivals into the heavy queue starving the
light queue of service for a long time.
However, it is important to note that the upper bound on the

response-time tail index given by Theorem 1 is an increasing
function of , approaching as . This suggests the
possibility of achieving an arbitrarily large response-time tail

index for the light queue (recall that a larger tail index implies
a lighter tail) by setting large enough, i.e., by awarding the
light queue sufficiently high priority. Theorems 2 and 3 below
imply that this is indeed the case, so long as the intra-queue
policy in the light queue is chosen appropriately. Intuitively, a
larger value of makes the interval of service starvation of the
light queue following the arrival of a large job into the heavy
queue shorter, thus improving the response-time tail.
Theorem 2: Suppose that the arrival rates lie in the subset
of the stability region. Then under max-weight- scheduling

between queues with and First-Come-First-
Served scheduling within the light queue

Theorem 3: Suppose that the arrival rates lie in the subset
of the stability region. Then under max-weight- scheduling

between queues with , and Preemptive-Last-
Come-First-Served scheduling within the light queue

Theorem 2 states that with FCFS scheduling within the light
queue, the response-time tail index increases linearly with .
This means that while the response-time distribution in the light
queue remains heavy-tailed for all , its tail index can be made
arbitrarily large by setting to a large enough value, i.e., by
giving the light queue sufficient priority. In contrast, Theorem
3 states that under PLCFS scheduling in the light queue, the tail
index remains bounded above by for all values of . This
highlights the importance of choosing the correct intra-queue
scheduling policy in order to exploit the priority awarded to it
by the inter-queue scheduling policy.
The Performance of the Heavy Queue: Next, we turn to

the response-time tail in the heavy queue under max-weight-
inter-queue scheduling. The following theorems summarize
our results for FCFS and PLCFS intra-queue scheduling in the
heavy queue.
Theorem 4: Under max-weight- scheduling between

queues with and First-Come-First-Served
scheduling within the heavy queue
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Theorem 5: In the wireline scenario, under max-weight-
scheduling policy between queues with and

, and Preemptive-Last-Come-First-Served scheduling
within the heavy queue,

(3)

Theorem 4 implies that with FCFS scheduling within the
heavy queue, the response-time tail index is insensitive to ;
i.e., it is insensitive to the level of relative priority awarded to
the light queue. Moreover, the response-time tail index is the
same as it would be in an isolated queue with the
same arrival process as the heavy queue.2
With PLCFS scheduling within the heavy queue, we are only

able to analyze the wireline scenario, when the inter-queue
priority to the light queue being sufficiently high (specifically,

). For this case, Theorem 5 implies as
before that the response-time tail index for the heavy queue is
insensitive to and is the same as it would be in an isolated

queue with the same arrival process.2 Furthermore,
this response-time tail index is optimal, since the response-time
tail index is bounded above by the tail index of the job size
distribution (i.e., ). We conjecture that Equation (3) holds
even in our general ‘wireless’ scenario, in which the two queues
have a stochastic connectivity with the server.3
To summarize, under max-weight- scheduling, the light

queue necessarily experiences heavy-tailed response times.
However, by setting large enough, i.e., by awarding suffi-
ciently high priority to the light queue, its response-time tail
index can be made arbitrarily large, with the correct choice of
intra-queue scheduling policy. Further, our results suggest that
the response-time tail index of the heavy queue is unaffected in
this process, and behaves like the response-time tail index in an
isolated queue (with the same arrival process).
Ultimately however, from a fairness standpoint, it is desirable

that response times in the light queue are light-tailed. Since the
level of priority awarded to the light queue by the max-weight-
policy is insufficient for this to happen, we now analyze the log-
max-weight inter-queue policy, which awards an even higher
degree of relative priority to the light queue.

B. Log-Max-Weight Scheduling

In this section, we study the tail behavior of the (stationary)
response-time distribution in the light queue and the heavy
queue under the log-max-weight inter-queue scheduling policy.
The Performance of the Light Queue: Our main result in

this section is that under log-max-weight scheduling between
queues, and FCFS scheduling within the light queue, the light
queue experiences light-tailed response times.

2In a queue with the same arrival process as the heavy queue,
it is well known that the response-time tail index equals under FCFS
scheduling, and under PLCFS scheduling (for example, see [23]).

3The extension to the ‘wireless’ case is made difficult by the fact that the busy
period tail behavior is unknown for this case. On the other hand, in the wireline
scenario, the busy period behaves identically to busy periods in a
queue which sees the combined arrival processes of the heavy and the light
queue in our model; this busy period is well understood.

Theorem 6: Suppose that the arrival rates lie in the subset
of the stability region. Then under log-max-weight sched-

uling between queues, and First-Come-First-Served scheduling
within the light queue, is light-tailed.
The above theorem implies that the log-max-weight policy

indeed provides sufficient priority to the light queue to make
its response-time distribution light-tailed. However, for this to
happen, the intra-queue scheduling policy cannot be chosen ar-
bitrarily. In fact, as the following theorem shows, with PLCFS
scheduling within the light queue, its response-time distribution
remains heavy-tailed.
Theorem 7: Suppose that the arrival rates lie in the subset
of the stability region. Then under log-max-weight sched-

uling between queues, and Preemptive-Last-Come-First-Served
scheduling within the light queue, is heavy-tailed.
This extreme contrast between the two policies highlights

once again the importance of correctly choosing the intra-queue
scheduling policy to exploit the priority awarded to the light
queue by the inter-queue scheduling policy. Theorems 6 and
7 demonstrate a remarkable phenomenon: with the same ser-
vice process for the light queue, one intra-queue scheduling
discipline results in heavy-tailed response times, whereas
another leads to light-tailed response times. In the context of
the queue, the impact of the intra-queue policy is
nowhere near this extreme, which highlights how crucial the
choice is for the multi-queue setting.
The proof of Theorem 6 relies crucially on the following.
Theorem 8: Under log-max-weight scheduling between

queues, is light-tailed.
This statement was originally conjectured in [21], but proved

only for the wireline scenario. In Section IV, we give a novel
proof of Theorem 8 based on Lyapunov arguments.
The Performance of the Heavy Queue: Under log-max-

weight inter-queue scheduling, we are only able to analyze the
response-time tail for the heavy queue in the wireline scenario.
For this case, we prove that with both FCFS and PLCFS
intra-queue scheduling, the response-time distribution has the
same tail index as in an isolated queue with the
same arrival process. These results show that in the wireline
scenario, the response-time tail index is unaffected by the
priority given to the light queue by the log-max-weight policy.
We conjecture that the same is true in our general ‘wireless’
model.3 The following theorems summarize our results.
Theorem 9: In the wireline scenario, under log-max-weight

scheduling between queues, and First-Come-First-Served
scheduling within the heavy queue

Theorem 10: In the wireline scenario, under log-max-weight
scheduling between queues, and Preemptive-Last-Come-First-
Served scheduling within the heavy queue,

To summarize, our results show that it is possible to achieve
light-tailed response times in the light queue using log-max-
weight inter-queue scheduling. In other words, it is possible
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to design inter-queue and intra-queue scheduling policies for
our system such that we maintain throughput optimality, and
achieve light-tailed delays for the light queue. Importantly, our
results suggest that this can be done without affecting the re-
sponse-time tail index for the heavy queue.

IV. PROOFS
This section is devoted to proofs of the results presented in

Section III.
First, we introduce some notation that is used heavily

in our proofs. For functions and , the notation
means . For ,

, and .
Note that and denote, respec-
tively, the number of packets entering the light queue
and the heavy queue in slots through . For ,

. Note that
is the number of packets entering the light queue from jobs of
size in slots through . Let .
It follows from the monotone convergence theorem that

. Let denote the
probability that a slot is exclusive for the heavy queue (re-
call that we have analogously defined ).
Finally, define ,
and .
and denote, respectively, the number of exclu-
sive slots available to the light queue and the heavy queue
in slots through . Note that in the wireline scenario,

.
Next, we state the following lemma which is used repeatedly

in our proofs; we give the proof in Appendix A.
Lemma 2: Let denote a Bernoulli process taking

values in , with Let denote
a random variable independent of taking values in .
Define

The following statements are true.
(i) If is light-tailed, then is light-tailed.
(ii) If is heavy-tailed with , then

.
Finally, our results for the max-weight- inter-queue sched-

uling rely on the following queue length tail asymptotics derived
in [21, Chapter 5]. It is proved there that under max-weight-
inter-queue scheduling

(4)

We are now ready to prove the results claimed in the previous
section. We prove these theorems in the order of their presenta-
tion in Section III.

A. Proof of Theorem 1
This section is devoted to the proof of Theorem 1. Our proof

is based on formalizing the intuition that if a job of size
arrives into the heavy queue early in the busy period, then with

high probability, the light queue is denied service for a period
of slots, except in its exclusive slots.
The proof relies on the following representation for the re-

sponse-time tail. Consider a tagged busy period of the system.
Let denote the number of jobs entering the light queue in
this busy period, and , for , denote the re-
sponse time of the th arriving job. The tail of has the fol-
lowing well-known representation [27, Theorem 1.2, Ch. 6]

(5)

where is the number of jobs in the
light queue that experience a response time exceeding in the
busy period.4 The proof proceeds by defining a ‘bad’ event
such that the bound

(6)

leads us to the statement of the theorem.
Without loss of generality, assume that the busy period under

consideration starts in time slot 1. Recall that over the subset
of the stability region, , and . Pick
large enough so that . Let .
We are now ready to define the event . Fix .

Informally, the event corresponds to the busy period
starting with a ‘large’ job of size entering the heavy
queue. The events , , and state that the number
of packet arrivals into the light queue and number of exclusive
slots for the light queue over the interval from slot 1 to slot

do not deviate much from their ‘law of large numbers’
estimates. Indeed, the weak law of large numbers implies
that the events , , and have a probability
approaching 1 as .
Next, we show that the event implies that at least jobs

entering the light queue in the busy period under consideration
experience a response time exceeding time slots. To see this,
note that the event implies that the heavy queue
has priority over the light queue in slots 1 through .
Indeed, implies that the length of the heavy queue re-
mains greater than over this interval, and

implies that the length of the light queue never exceeds
over the same interval. As a result, under event

4That may be justified as follows. It follows from the Lyapunov
analysis in [7] that the tuple of queue occupancies evolves according to a pos-
itive recurrent Markov chain. This implies that busy periods of the queueing
systems have finite mean, which in turn implies that via Wald's
lemma.
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, the light queue receives service only in its exclusive slots
until time . Note that gives an upper bound on
the number of exclusive slots received by the light queue until
time . Finally, gives a lower bound on the number
packets arriving into the light queue until time from
jobs of size . Therefore, under event , the number of
packets remaining in the light queue after time slot , cor-
responding to jobs of size exceeds

Now, since the corresponding jobs have a size of at most , we
conclude that under , the light queue contains at least
jobs at the end of slots. Since each of these jobs requires
at least one slot of service to complete, we conclude that under

, at least jobs experience a response time exceeding
in the busy period under consideration.
Returning now to the bound (6), we have defined the event
such that . To bound the probability

of , note that

since the arrival process into the heavy queue is independent of
the arrival process into the light queue and the queue connec-
tivity processes. Invoking the weak law of large numbers, we
conclude that for ,
for large enough . Therefore, for large enough ,

The above statement implies that

where the last step above uses the fact that ,
which implies that

This completes the proof.

B. Proof of Theorem 2
This section is devoted to the proof of Theorem 2. The proof is

relatively straightforward for the ‘wireless’ case, i.e.,
. We give the proof of this case here. The proof for the

wireline scenario is more involved; we omit this proof here due
to space constraints.5 We refer the reader to [28, Chap. 5] for the
proof.
Proof of Theorem 2 for the Wireless Scenario: Consider a

tagged job entering the light queue in slot 0 in steady state. The

5The analysis of the wireline case is more involved for the following reason.
At its core, the proof requires a lower bound on the service process of the light
queue. In the wireless case, the presence of exclusive slots provides a trivial
lower bound on the service process of the light queue. However, in the wireline
case, such a trivial bound is unavailable, and one needs to explicitly account for
the stochastics of the two arrival processes in bounding the service process of
the light queue.

tagged job has size and sees a queue length in
the light queue. Let us denote the response time of the tagged
job by . We need to prove that

(7)

We do this by proving matching asymptotic lower and upper
bounds on the tail of .
The lower bound on the tail of is easy: since packets in

the light queue are served in a FCFS manner, .
Therefore, , which implies, using
(4), that

(8)

We now obtain the upper bound on the tail of . Note that

Since the light queue uses FCFS scheduling, is simply equal
to the time it takes for the light queue to receive service
times. Define . Note that
is the time it takes after slot 0 for the light queue to see

exclusive slots. Clearly, . Since is heavy-tailed
with tail index , and is light-tailed, it is easy
to show that is heavy-tailed with tail index .
It follows then from Lemma 2 that is also heavy-tailed with
tail index . Since , we obtain

(9)

(8) and (9) of course imply (7). This completes the proof.

C. Proof of Theorem 3
Informally, the proof of Theorem 3 is based on the following

idea: a large arrival into the heavy queue early into the busy
period can cause a large number of jobs in the light queue to ex-
perience a response time of the same order as the length of the
busy period. We omit the proof here due to space constraints,
noting that the proof is structurally similar to the proof of The-
orem 7 in Section IV-G. We refer the reader to [28, Chap. 5] for
the full proof.

D. Proof of Theorem 4
This section is devoted to the proof of Theorem 4. Consider

a tagged job entering the heavy queue in slot 0 in steady state.
The tagged job has size . Let us denote the response
time of the tagged job by . We need to prove that

We do this by proving matching asymptotic lower and upper
bounds on the tail of .
The lower bound is easy: since packets in the heavy queue are

served in a FCFS manner, . Therefore,
, which implies, using (4), that
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We now obtain a matching upper bound. We do this separately
for the wireless (i.e., ) and the wireline case.
Wireless Case: Since the heavy queue uses FCFS sched-

uling, is simply equal to the time it takes for the heavy
queue to receive service times. Define

. Note that is the time it takes after
slot 0 for the heavy queue to see exclusive slots. Clearly,

. Since is heavy-tailed with tail index , and
is heavy-tailed with tail index , it is easy to show that
is heavy-tailed with tail index . It follows then

from Lemma 2 that is heavy-tailed with tail index .
Since ,

This gives us the matching upper bound, and completes the
proof for the wireless case.
Wireline Case: In the wireline case, we use the fact that
, where is the number of time slots following the arrival of

the tagged job till the system empties. We argue below that
. This implies that

This gives us the required matching upper bound. It remains
now to show that . Note that in the wireline
scenario, the sum of queue lengths evolves as a discrete time

queue in which the amount of work entering the
queue in slot equals . is simply the
residual busy period for this queue. Since is
regularly varying with index , it follows that the residual busy
period is regularly varying with index .

E. Proof of Theorem 5
This section is devoted to the proof of Theorem 5. As in the

previous proof, consider a tagged job entering the heavy queue
in slot 0 in steady state. The tagged job has size . Let
us denote the response time of the tagged job by . We need
to prove that

We do this by proving matching asymptotic lower and upper
bounds on the tail of .
The lower bound is easy: it is clear that . There-

fore,

To prove the upper bound, define

is defined so that at the end of time slot the total occu-
pancy of both queues equals the number of packets waiting in

the heavy queue at the time of the tagged job's arrival. Since the
heavy queue uses PLCFS scheduling, it follows that .
We now invoke Lemma 8 in Appendix C to show that

. Note that , and is heavy-tailed
with tail index . For the range of under consid-
eration, , i.e., has a heavier tail than

. This implies that . Therefore,
Lemma 8 in Appendix C implies that .
Finally, using the fact that , we have

This gives us the desired matching upper bound, and completes
the proof.

F. Proof of Theorem 6

This section is devoted to the proof of Theorem 6. We re-
strict ourselves to the ‘wireless’ case, i.e., , in
this paper. The proof for the wireline case is considerably more
involved, and can be found in [28, Chap. 5].5 Our proof relies
crucially on Theorem 8, which we prove first.
The proof of Theorem 8 utilizes a property (Lemma 3 below)

of the class of long-tailed distributions, which is an important
subclass of heavy-tailed distributions. Formally, a non-negative
random variable (or its d.f. ) is said to be long-tailed (de-
noted ) if
for all . The class of regularly varying distributions is a
strict subset of the class of long-tailed distributions, which in
turn is a strict subset of the class of heavy-tailed distributions
[25]. We use the following sufficient condition for a distribu-
tion to be long-tailed (see Appendix B for the proof).
Lemma 3: Suppose is a non-negative random variable. If

is eventually non-increasing, i.e., there exists
such that is non-increasing over , and

then .
Additionally, the proof of Theorem 8 relies on the following

lemma.
Lemma 4: Suppose that is the distribution function corre-

sponding to a non-negative random variable . If , and
is strictly decreasing over , then

under log-max-weight inter-queue scheduling,

The above lemma is a direct consequence of Theorem 1 in
[7]. Note that if , then grows sub-exponen-
tially. Therefore, Lemma 4 states that certain sub-exponential
moments of are finite. However, in order to prove that is
light-tailed, we need to show that certain exponential moments
of are finite, i.e., for some . We do this
as follows.
Proof of Theorem 8: For the purpose of obtaining a contra-

diction, let us assume that is heavy-tailed. Invoking Lemma
1, we conclude that . Fix .
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It is easy to argue that there exists a strictly increasing integer
sequence with , and such that
(i) is non-increasing with

,
(ii) for .
We now define a distribution that agrees with along

the sequence such that satisfies the conditions of
Lemma 4, implying that . We then show via
a direct computation that . This gives us a
contradiction, proving that is light-tailed.
We define the distribution as follows.

for all . For ,

(10)

Note that for , is defined by linearly
interpolating between and . Equa-
tion (10) implies, via simple algebraic manipulations that, for

, ,

where , . Note that is non-increasing
over for . It then follows from Condi-
tion above that is non-increasing over with

. From Lemma 3, we conclude then that
. Moreover, since is strictly decreasing over

by definition, Lemma 4 implies that .
We now show through a direct computation that

. Pick .

Now, since and agree along the sequence ,

(11)
where the last step above uses the fact that

for . Since for any
, it follows that . This gives us a contra-

diction, which proves that is light-tailed.

We are now ready to give the proof of Theorem 6 for the
wireless case.
Proof of Theorem 6 for the Wireless Case: Consider a tagged

job entering the light queue in slot 0 in steady state. The tagged
job has size and sees a queue length in the light
queue. Theorem 8 implies that is light-tailed.
Let us denote the response time of the tagged job by . We

need to prove that is light-tailed. Note that

Since and are both light-tailed, it follows that
is light-tailed. Now, since the light queue uses FCFS

scheduling, is simply equal to the time it takes for
the light queue to receive service times. Define

. Note that is the time
it takes after slot 0 for the light queue to see exclusive
slots. Clearly, . Now, it follows from Lemma 2 that

is light-tailed, which implies that is light-tailed. This
completes the proof of Theorem 6 for the wireless case.

G. Proof of Theorem 7

This section is devoted to the proof of Theorem 7. As in the
proof of Theorem 1, our proof of Theorem 7 is based on defining
a ‘bad’ event in a tagged busy period, such that the bound
(6) leads us to the statement of the theorem. Informally, the
event involves a large enough job arriving into the heavy
queue to start the busy period, resulting in jobs in the
light queue experiencing a response time of slots in the
busy period.
Without loss of generality, assume that the busy period under

consideration starts in time slot 1. Recall that over the subset of
interest of the stability region, , and

. Pick large enough so that . Pick such that
.

Our ‘bad’ event , where we define and
interpret the events and below.We start with the def-
inition of . This event is parameterized by , whose
value we fix later.

Roughly, states that a job of size
arrives into the heavy queue at the start of the busy period, and
the number of arrivals in the light queue, as well as the number
of exclusive slots seen by it in slots 1 through do not
deviate much from their ‘law of large numbers’ estimates. The
following lemma states a key implication of .
Lemma 5: implies that at the end of slots,
(i) the occupancy of the heavy queue strictly exceeds

i.e.,
,
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(ii) the occupancy of the light queue is strictly less that
i.e.,

,
(iii) the light queue contains at least packets from

jobs of size .
Proof: The first two claims of the lemma are easy to verify.

Indeed, Claim is a consequence of event and Claim
is a consequence of event . We give the arguments

for Claim below.
Note that implies that the light queue does not re-

ceive service, except in its exclusive slots, in slots 1 through
. Indeed, the event guarantees that

during this period, whereas the event implies that

over the same period. Also, during the period from slot 1 to
slot , gives an upper bound on the number of
exclusive slots received by the light queue, and gives
a lower bound on the number packets arriving into the light
queue from jobs of size . Therefore, under event , the
number of packets remaining in the light queue after time slot

, corresponding to jobs of size exceeds

This verifies Claim .
Now, invoking the weak law of large numbers, we know that

approaches 1 as . Therefore,
fixing ,

(12)

Next, we define the event . Let

The event concerns arrivals into the light queue, and ex-
clusive slots available to it over slots following slot

. Specifically, the event states that the number
of arrivals in the light queue, as well as the number of exclusive
slots available to it, do not deviate much from the corresponding
‘law of large numbers’ estimates over periods, each pe-
riod being slots long. For notational convenience, define

. Formally,

where

The following lemma states the key implication of our ‘bad’
event .

Lemma 6: The event implies that for
,

(i)
(ii) For ,

Proof: We first point out that over the slots fol-
lowing slot the event implies that

Therefore, if the light queue is to win service in a non-exclusive
slot during this period, its occupancy must strictly exceed

.
Note that Claim above is trivially true for .We prove

the lemma inductively as follows. We show that if Claim is
true for , then Claim is true for , and Claim

is true for .
Accordingly, let us assume that Claim is true for some

. That Claim holds for is obvious, since the
occupancy of the light queue can decrease by at most in

slots. To show that Claim holds for , we
consider the following two cases.
Case 1: In slots through , the light queue

received service only in exclusive slots.
In this case, since implies that the arrivals into the

light queue outnumber the number of free slots over this period,
it follows that , which implies
that Claim holds for given that it holds for

.
Case 2: In slots through , the light queue

received service in a non-exclusive slot.
As we have argued before, this case implies that in some slot

in the interval under consideration, the light queue occupancy
strictly exceeded . Thus, at the end of this
interval (of length slots), the light queue occupancy must
exceed

Since we know from Lemma 5 that

it then follows that Claim holds for .
This completes the proof.
The above lemma states that under event , over

slots following slot , the occupancy of
the light queue never dips more than below its level
after slot . Moreover, we know from Lemma 5 that
under event , at the end of slot , there are at least

packets in the light queue from jobs of size .
Therefore, since the light queue uses PLCFS, we conclude that
at least packets, from jobs of size , stay in
queue for more than slots. Since ,
this in turn implies that under event , at least
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jobs in the light queue experience a response time exceeding ,
i.e.,

(13)

Note that the Chernoff bound implies that there exists
such that and

. Therefore, , implying that

Let us fix . For this choice of , it is easy to show that
, implying that

(14)

Returning to our bound (6), we now have, using (12), (13),
and (14):

It then follows that

where the last step uses the fact that .
Since is heavy-tailed. This completes the

proof.

H. Proof of Theorem 9

The proof follows along similar lines as the corresponding
proof for max-weight- scheduling (i.e., the proof of Theorem
4 in Section IV-D), except that for the lower bound on the tail of

, we need to prove that . This is easy to show,
since , where is the stationary queue length of a

queue fed by the same arrival process as the heavy
queue. Since , it follows that .

I. Proof of Theorem 10

The proof of Theorem 10 is similar to the proof of Theorem
5 in Section IV-E, and is omitted.

V. CONCLUDING REMARKS

In this paper, we consider a scenario in which a heavy-tailed
(extremely variable) flow and a light-tailed (moderately vari-
able) flow contend for service from a single server. Prior
work [19]–[21] has focused on analysing the distribution of
queue-lengths in this setting. It was proved in [19]–[21] that
the classical max-weight inter-queue scheduling policy, while
throughput optimal, leads to heavy-tailed queue-lengths for
the light-tailed flow. Further, it was shown that generalized
max-weight policies that give relative priority to the light-tailed
flow can improve its queue-length tail, while maintaining
throughput optimality. In particular, it was proved in [21] that
under log-max-weight inter-queue scheduling, the queue-length

corresponding to the light-tailed flow is light-tailed in the
wireline setting.
In this work, we extend the above results, focusing on the

distributions of the response times seen by the flows. Indeed,
from the standpoint of applications sending/receiving infor-
mation, response time is perhaps a more relevant metric than
queue length. A key contribution of this work is that our
analysis of response times brings into focus the impact of the
intra-queue scheduling policies.6 Indeed, our results reveal
that the response time distribution is highly sensitive to the
intra-queue scheduling policy, much more so than in the case
of stochastically homogeneous flows. For example, note that
under log-max-weight inter-queue scheduling, FCFS sched-
uling within the light queue results in light-tailed response times
(Theorem 6), whereas PLCFS scheduling results in heavy-tailed
response times (Theorem 7). Thus, our results highlight that in
the presence of extreme stochastic variability between flows, a
careful choice of inter-queue as well as intra-queue policies is
crucial in order to achieve good response-time tail behavior.
Additionally, in the process of analysing response times, we

also prove a key extension of the queue-length tail asymptotics
in [21]. In particular, [21] proves that the queue-length corre-
sponding to the light-tailed flow is light-tailed under log-max-
weight in the wireline scenario. We prove, via a novel applica-
tion of Lyapunov bounds from [7], that this is also true in the
general wireless setting (Theorem 8).
The results in this paper motivate future research along sev-

eral directions. An immediate goal would be to complete the
analysis of the response-time tail of the heavy-tailed flow in
our model, i.e., to extend Theorems 5, 9, and 10 to the general
wireless model. We conjecture that the response-time tail index
would remain unchanged in the wireless model.
Additionally, it would be interesting to generalize our simpli-

fied model to more realistic network settings. There are at-least
two promising directions for generalization.
One potential model generalization is to consider a system

of parallel queues (where ), connected to a single
server via ON-OFF links. A subset of these queues would see
a heavy-tailed arrival process. Interestingly, some of the results
of this paper extend easily to this setting. Specifically, it is easy
to prove the following results, using similar arguments to those
used in this paper.
1) For any light-tailed flow , there exists a subset of the

capacity region over which max-weight scheduling results
in heavy-tailed response times.

2) Under log-max-weight inter-queue scheduling, the sta-
tionary queue length distribution for each light-tailed flow
is light-tailed (note that the proof of Theorem 8 does not
depend on having only two queues).

3) Under log-max-weight inter-queue scheduling, and FCFS
scheduling in all light queues, the response time distribu-
tion for all light queues is light-tailed, under the assumption
that all links have a positive probability of being OFF.

Another potential model generalization is to consider a
multi-hop wireless network with interference constraints,
wherein a subset of the traffic flows are heavy-tailed. The

6Note that queue lengths are insensitive to the intra-queue scheduling policy.
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first queue-length tail asymptotics in such a setting (under
max-weigh- inter-queue scheduling) have been derived re-
cently in [29].

APPENDIX A
PROOF OF LEMMA 2

In this section, we prove Lemma 2. Pick . We first
obtain the following upper bound on the tail of . For ,

Bounding the first term above using the Chernoff bound, we
conclude that there exists such that

(15)

Now, suppose that is light-tailed. Then by definition, there
exists such that for large enough .
Therefore, from (15), we conclude that there exist such
that for large enough , which implies that
is light-tailed. This completes the proof of Statement .
Next, suppose that is heavy-tailed with . It

then follows easily from (15) that

Also, since , it follows that ,
which implies that

It therefore follows that .7 This completes the
proof of Statement .

APPENDIX B
PROOF OF LEMMA 3

In this section, we prove Lemma 3. Pick . For large
enough ,

7Even though we have taken the limit of as
over , it is easy to show that the same limit holds as over .

The second step above uses the fact that is eventually
non-increasing. Since as , the above bound
implies that

Of course, since it is obvious that
. It therefore follows that

. This completes the proof.
APPENDIX C

TECHNICAL LEMMAS

In this section, we state two technical lemmas that are used
in our proofs.
The first concerns the probability of extremely large devia-

tions of the running sum of regularly varying i.i.d. random vari-
ables from the mean.
Lemma 7: Suppose that is an i.i.d. sequence of

non-negative random variables with , .
Also, suppose is a positive, increasing sequence that
is superlinear, i.e., . Then

Lemma 8: Intuitively, the above lemmameans that extremely
large deviations of the running sum from its expected value
occur most likely because of one extremely large value. The
proof is quite involved, but it omitted here as it follows along
the same lines as the proof of Example 23 in [30].
Lemma 9: Suppose is an i.i.d. sequence of non-neg-

ative random variables taking values in satisfying
for , and . Also, suppose that is

a non-negative random variable independent of , such
that takes values in , and where . Define

If , then .
In the above lemma, may be interpreted as a busy period in

a discrete-time queue, started by a job of size in
the queue in time slot 0, with denoting the amount of work
entering the queue in time slot The lemma states that if the
busy period is started by a random variable with tail heavier
than the job size distribution, then the residual busy period has
the same index as The proof is a straightforward application
of Tauberian theorems that relate the tail of a regularly varying
distribution and the behavior of its Laplace-Stieltjes transform
around the origin [31] (see also Section III in [32]). We omit the
proof here.
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