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Network-Layer Performance Analysis of Multihop
Fading Channels

Hussein Al-Zubaidy, Jörg Liebeherr, Fellow, IEEE, and Almut Burchard

Abstract—A fundamental problem for the delay and backlog
analysis across multihop paths in wireless networks is how to
account for the random properties of the wireless channel. Since
the usual statistical models for radio signals in a propagation
environment do not lend themselves easily to a description of
the available service rate, the performance analysis of wireless
networks has resorted to higher-layer abstractions, e.g., using
Markov chain models. In this paper, we propose a network cal-
culus that can incorporate common statistical models of fading
channels and obtain statistical bounds on delay and backlog
across multiple nodes. We conduct the analysis in a transfer
domain, where the service process at a link is characterized by the
instantaneous signal-to-noise ratio at the receiver. We discover
that, in the transfer domain, the network model is governed by a
dioid algebra, which we refer to as the algebra. Using
this algebra, we derive the desired delay and backlog bounds.
Using arguments from large deviations theory, we show that the
bounds are asymptotically tight. An application of the analysis is
demonstrated for a multihop network of Rayleigh fading channels
with cross traffic at each hop.
Index Terms—Communications technology, control systems,

fading, queueing analysis, Rayleigh channels, signal processing,
traffic control, wireless communication, wireless networks.

I. INTRODUCTION

N ETWORK-LAYER performance analysis seeks to pro-
vide estimates on the delays experienced by traffic

traversing the elements of a network, as well as the cor-
responding buffer requirements. For wireless networks, a
question of interest is how the stochastic properties of wireless
channels impact delay and backlog performance. Wireless
channels are characterized by rapid variations of the channel
quality caused by the mobility and location of communicating
devices. This is due to fading, which is the deviation in the at-
tenuation experienced by the transmitted signal when traversing
a wireless channel. The term fading channel is used to refer to a
channel that experiences such effects. In this paper, we explore
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the network-layer performance of a multihop network where
each link is represented by a fading channel.
We model a multihop wireless network by tandem queues

with randomly varying capacity servers, where each server
represents the random capacity of a fading channel. We as-
sume that the transmission rates over the fading channels are
equal to their information-theoretic capacity limit in bits per
second, . The capacity limit is expressed as a function of the
instantaneous signal-to-noise ratio (SNR) at the receiver, , by

, where is the channel bandwidth (in
Hertz). This model assumes the existence of a channel coding
scheme that achieves the channel capacity with arbitrarily
small error probability. It does not take into consideration
the relationship between codeword length and available link
capacity, i.e., that transmission of long codewords requires
additional link capacity, whereas short codewords induce trans-
mission errors that trigger retransmissions. Numerous models
are available to describe the gain of fading channels depending
on the type of fading (slow or fast) and the environment (e.g.,
urban or rural). We express the capacity of a fading channel as
the natural logarithm of a function of by (see [30, Ch. 14.2])

(1)
where is a constant and is used to characterize the fading
channel. We are interested in finding bounds on the end-to-end
delay and backlog for a cascade of fading channels, with store-
and-forward processing at each channel.
The analysis in this paper follows a system-theoretic sto-

chastic network calculus approach [18], which describes the
network properties using a dioid algebra. Arrival and
departure processes at a network element are described by bi-
variate stochastic processes and , respectively,
denoting the cumulative arrivals and departures in the time in-
terval . A network element is characterized by the ser-
vice process , denoting the available service in . The
input–output relationship at the network element is described by

(2)
where the convolution operator “ ” is defined as

. If network traffic
passes through a tandem of network elements with service
processes , then the traffic will see a network
service process that is given by .
The stochastic properties of fading channels present a chal-

lenge for a network-layer analysis since the service processes
corresponding to the channel capacity of common fading
channel models, such as Rician, Rayleigh, or Nakagami- ,
require to take a logarithm of their distributions. As discussed
in Section II, researchers frequently turn to higher-layer
abstractions in order to overcome the difficulty of working
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directly with these distributions. Widely used abstractions
are the two-state Gilbert–Elliott model and its extension to a
finite-state Markov channel (FSMC) [31]. FSMC models sim-
plify the analysis to a degree that the network model becomes
tractable, at least at a single node. Extensions to multihop
settings encounter a rapidly growing state space. As of today, a
general multihop analysis that is applicable to common fading
channel models remains an open problem.
In this paper, we pursue a novel approach to the analysis of

multihop wireless networks. We develop a calculus for wireless
networks that utilizes a service description in terms of a phys-
ical-layer fading channel model and a traffic description based
on network-layer traffic models in order to provide end-to-end
performance bounds. We view the network-layer model with ar-
rival, departure, and service processes as residing in a bit do-
main, where traffic and service is measured in bits. We view the
fading channel models used in wireless communications as re-
siding in an alternate domain, which we call the SNR domain,
where channel properties are expressed in terms of the distribu-
tion of the signal-to-noise ratio at the receiver. We then derive a
method to compute performance bounds from these traffic and
service characterizations.
A key observation in our work is that service elements in the

SNR domain obey the laws of a dioid algebra. We devise a suit-
able dioid, the algebra, where the minimum takes the
role of the standard addition, and the second operation is the
standard multiplication, and use it for analysis in the SNR do-
main. In this domain, multihop descriptions of fading channels
become tractable. In particular, we find that a cascade of fading
channels can be expressed in terms of a convolution in the new
algebra of the constituting channels. The key to our analysis is
that we derive performance bounds entirely in the SNR domain.
Observing that the bit and SNR domains are linked by the ex-
ponential function, we transfer arrival and departure processes
from the bit to the SNR domain. Then, we derive backlog and
delay bounds in the transfer domain using the algebra.
The results are mapped back to the original bit domain to finally
give us the desired performance bounds. Using results from
large deviations theory, we show that our bounds are asymptoti-
cally tight. Our derivations in the SNR domain require the com-
putation of products and quotients of random variables. Here,
we use theMellin transform to facilitate otherwise cumbersome
calculations. Then, the computational problem is reduced to
finding the Mellin transform for service and traffic processes.
Although, the mapping from algebra to al-
gebra is one-to-one, the algebra is better suited for the
analysis of wireless networks performance.
The main contribution of this paper is the development of

an alternative approach for modeling the impact of channel
gain models on the network-layer performance of wireless
networks. For the purposes of this paper, the SNR domain is
used solely as a transfer domain that enables us to solve an
otherwise intractable mathematical problem. On the other hand,
the ability to relate quantities that appear in network-layer
models and concepts found in a physical-layer analysis may
prove useful in a broader context, e.g., for studying cross-layer
performance issues in wireless communications. Moreover, the

algebra and the Mellin transform form a tool set that
can be applied more generally in wireless communications for
studying the channel gain of cascades of fading channels.

We emphasize that this paper only considers simple net-
work scenarios and makes numerous convenient assumptions
(which are made explicit in Section III). In addition to the
channel capacity model, which ignores the effects of finite
code block lengths, we assume a time-slotted system where
the signal-to-noise ratio in each time-slot is independent and
identically distributed. This assumption is justified when the
sampling intervals for the channel state are longer than the
channel coherence time. We also assume that fading remains
constant during the length of the sampling interval. A channel
model that conforms to these assumptions is block fading
without memory [29]. Frequency hopping (FH) is a system
where such a channel model applies [19]. This results in an
idealized analytic model of the wireless channel. Refinements
of the model that account for finite codeword lengths, imperfect
coding and decoding, and fading channels with memory, all of
which result in a discounted service process, are left for future
work. We emphasize that the network calculus methodology
can be applied to settings without independence, i.e., channels
with memory. This requires additional model parameters to
characterize the time correlations. Relaxations of other as-
sumptions, as well as extensions of the presented model using a
network calculus methodology remain open research problems.
The remainder of the paper is organized as follows. In

Section II, we discuss related work. We describe the system
model in Section III, where we also motivate the use of the SNR
domain. In Section IV, we present the algebra and
derive performance bounds. We also address the tightness of
these bounds. In Section V, we apply the analysis to a cascade
of Rayleigh channels. In Section VI, we present numerical
examples. Conclusions are provided in Section VII.

II. RELATED WORK

Approaches for a network-layer performance analysis of
wireless networks include queueing theory, effective band-
width, and, more recently, network calculus. Since the service
processes corresponding to the channel capacity of Rician,
Rayleigh, or Nakagami- fading channel models require to
take a logarithm of their distributions, researchers often turn to
higher-layer abstractions to model fading channels, which lend
themselves more easily to an analysis. Widely used abstractions
are the two-state Gilbert–Elliot channel model and subsequent
extensions to an FSMC [36]. Markov channel models are well
suited to express the time correlation of fading channel samples.
Queueing theoretic studies of fading channels generally apply

approximations to reduce the complexity of multihop models.
Le et al. [22] pursue a decomposition approximation to ana-
lyze the loss probability and average delay of a multihop wire-
less network with slotted transmissions for a batch Bernoulli
arrival process, and with independent cross traffic at each node.
Another decomposition approximation is presented by Le and
Hossain [21], who consider a multihop tandem network with a
batch arrival process and multirate transmissions, to develop a
routing scheme that canmeet given delay and loss requirements.
The analysis obtains end-to-end loss rates and delays with a
decomposition analysis and feeds the results as metrics to the
routing algorithm. Bisnik and Abouzeid [4] model a multihop
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wireless network as an open network of G/G/1 queueing sys-
tems. Using a diffusion approximation, they obtain closed-form
expressions for average end-to-end delays.
Effective bandwidth analysis [20] seeks to develop (asymp-

totic) bounds on performance metrics, e.g., an exponential
decay of the backlog. Wu and Negi [39] have adapted an
effective bandwidth approach to the analysis of fading chan-
nels. They introduce the concept of effective capacity, which
characterizes a wireless channel by a log-moment generating
function (log-MGF) of the channel capacity. They obtain
an asymptotic approximation of the delay bound violation
probability of a Rayleigh fading channel. Due to the difficulty
of computing the moment generating function (MGF) of the
Rayleigh distribution, they simplify the analysis by assuming
noncorrelated distributions with low SNR and estimate channel
parameters from measurements. The work has been extended
to correlated Rayleigh and correlated Nakagami- channels,
and to cascades of fading channels [37], [38], [40]. A closely
related concept is the effective channel capacity presented by
Li et al. [25], which describes the available channel capacity by
a first-order Markov chain and computes the log-MGF of the
underlying Markov process. Using methods developed in [24],
they compute statistical delay bounds for Nakagami- fading
channel. Hassan et al. [16] use an effective bandwidth analysis
to study delay and loss performance at a single wireless link,
which is modeled by an FSMC. For fluid ON–OFF traffic and
FIFO buffering, they obtain a closed-form expression for the
effective bandwidth required to guarantee bounds on delay and
packet loss.
There is a collection of recent works that apply stochastic net-

work calculus methods to wireless networks with fading chan-
nels. The stochastic network calculus is closely related to the
effective bandwidth theory in that it seeks to develop bounds
on performance metrics under assumptions also found in the ef-
fective bandwidth literature [18]. Different from the effective
bandwidth literature, stochastic network calculus methods seek
to develop nonasymptotic bounds. An attractive element of a
network calculus analysis is that it is often possible to extend a
single node analysis to a tandem of nodes, using the
convolution.
Fidler [13] presents a network calculus methodology for

a two-state FSMC model of a single-hop fading channel. He
applies the MGF network calculus from [6, Ch. 7] and [12]. The
MGF network calculus takes its name from the extensive use of
moment generating functions in the derivation of performance
bounds. Mahmood et al. [27] apply the MGF network calculus
to MIMO channels and derive delay bounds for periodic traffic
sources. Zheng et al. [41] also use an MGF network calculus
to study the performance of two-hop relay networks. A similar
methodology is applied in [28] to compute the throughput of
a multiuser DS-CDMA system with delay constraints and,
in [42], to study the performance of a wireless finite-state
Markov channel. In the MGF network calculus-based work
above, models for a cascade of fading channels become com-
plex, so that multinode results for networks with more than two
nodes have not been obtained.
The network calculus developed in this paper uses

similar descriptions and assumptions for traffic and service as
the MGF network calculus. By performing computations in a

Fig. 1. Tandem network model.

transfer domain, where fading channel models take a simpler
form, we are able to compute multinode service descriptions for
an arbitrarily large number of nodes.
The MGF network calculus assumes that arrivals and service

at each node are independent. These assumptions can be relaxed
using statistical envelope descriptions for traffic (effective
envelopes) and service (statistical service curve ) [5], [18].
Jiang and Emstad [17] have applied an approach with envelopes
to a fading channel that is characterized by two stochastic
processes: an ideal service process and an impairment process,
where the impairment process captures effects due to fading,
noise, and cross traffic. Verticale and Giacomazzi [35] have
obtained a closed-form expression for the variance of a service
curve that describes the available service by a Markov chain.
This is used for the analysis of an FSMC model of a Rayleigh
fading channel. For computing the bounds for Markovian
arrivals, they apply the bounded-variance network calculus
introduced in [14], which is an extension of the central limit
theorem methods by Choe and Shroff [8] to multihop paths.
Verticale [34] has applied the same methodology to constant bit
rate traffic. Ciucu et al. [10] and Ciucu [9] present closed-form
expressions for the delay and throughput distributions for
multihop wireless networks. Here, the fading channel is mod-
eled by an abstraction that uses a link layer model of the
transmission channel. The channel is assumed to behave like
a slotted-ALOHA system in half-duplex mode. The model of
this channel is a two-state ON–OFF server, where a node can
transmit (i.e., is in the ON state) only when all other nodes in
the interference range are not transmitting.
There is also a literature on physical-layer performance

metrics of fading channels in multihop wireless networks.
Hasna and Alouini [15] have presented a framework for evalu-
ating the end-to-end outage probability of a multihop wireless
relay network with independent, nonregenerative relays, i.e.,
amplify-and-forward (AF), over Nakagami fading channels.
Similar bounds were found in [33] and [2] for the average error
probability and end-to-end SNR for AF relay networks. These
works study physical-layer performance bounds of channel-as-
sisted, amplify-and-forward relaying over a multihop fading
channels. They do not consider buffering or traffic burstiness
and are not concerned with network-layer performance metrics
addressed in this paper. Delay and backlog analysis and opti-
mization of multihop wireless networks remain open research
problems [21].

III. NETWORK MODEL IN THE BIT AND SNR DOMAINS

We consider a wireless -node tandem network as shown in
Fig. 1, where each node is modeled by a server with an infi-
nite buffer. We are interested in the performance experienced
by a (through) flow that traverses the entire network and may
encounter cross traffic at each node. One can think of the cross
traffic at a node as the aggregate of all traffic traversing the node
that does not belong to the through flow. The service given to
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Fig. 2. Transfer domain of network model.

the through flow at a node is a random process, which is deter-
mined by the instantaneous channel capacity as well as the cross
traffic at the node. We consider a fluid-flow traffic model where
the flow is infinitely divisible. We will work in a discrete-time
domain ZZ , where ZZ is the set
of integers and is the length of a time unit. Setting
allows us to replace by , which we interpret as the index of
a time-slot. We assume that the system is started with empty
queues at time .
Different nodes and different traffic flows will be distin-

guished by subscripts. The cumulative arrivals to, service
offered by, and departures from a node are represented, respec-
tively, by random processes , , and that will be described
more precisely in the following. Throughout this work, we
assume that arrival and service processes satisfy stationary
bounds.

A. Traffic and Service in the Bit Domain
Consider for the moment a single node. We write

and

for the cumulative arrivals and departures, respectively, at the
node in the time interval , where denotes the arrivals and
the departures in the th time-slot. Due to causality, we have

. The processes lie in the set of nonnega-
tive bivariate functions that are increasing in the second
argument and vanish unless . The backlog at time

is given by

(3)
and the delay at the node is given by

(4)
A node where backlog and delay increase with time and be-
come unbounded is said to be unstable. Conditions to ensure
that and are finite at all times are referred to as stability
conditions.
The service of the node in the time interval is given by

a random process , such that (2) holds for every arrival
process and the corresponding departure process . This ser-
vice description with bivariate functions is referred to as dy-
namic server. Initially defined for nonrandom service [7], dy-
namic servers have been extended to random processes in [6]
and [12].
The model in Fig. 1 is a classical network-layer model, where

traffic is measured in bits and service is measured in bits per
second. We thus refer to this model of arrivals, departures, and
service as residing in a bit domain.

The network calculus exploits that networks that satisfy
the input–output relation of (2) with equality can be viewed
as linear systems in a dioid algebra [3], [23]. In
the dioid, the minimum and addition
replace the standard addition and multiplication operations.
The network calculus is based on the fact that is
again a dioid [6]. Note that the min-plus convolution, which is
the second operation in the dioid, is not commutative in .

B. Service Model for Fading Channel
We assume that the state of a wireless channel is sampled

at equal time intervals. Denoting by the instantaneous
signal-to-noise ratio observed at the receiver in the th sam-
pling epoch, is a nonnegative random variable that has
the probability distribution of the underlying fading model.
We assume that the random variables are independent and
identically distributed. This assumption is justified when the
sampling epoch is longer than the channel coherence time. We
also assume that fading remains constant for the duration of one
time unit. Both assumptions are consistent with a block fading
channel model. For channels that cannot be described by block
fading, when choosing to be longer than the coherence
time, the second assumption results in a quantization error. To
minimize the quantization error, should be selected as the
smallest value that still justifies the independence assumption.
Using (1), the instantaneous service offered by the channel in

the th slot is given by , and the corresponding service
process is given by

(5)

where, for notational simplicity, we have chosen units such that
the constant in (1) takes the value . Computed bounds
obtained with the normalization are scaled when .
The service description in (5) requires us to work with

the logarithm of fading distributions, which presents a non-
trivial technical difficulty via the usual network calculus or
queueing theory. On the other hand, observe that the exponen-
tial is described more simply by

(6)

This motivates the development of a system model that allows
us to exploit the more tractable service representation in (6).
In this alternative model, arrivals, departures, and service re-
side in a different domain, where we can work directly with the
distribution functions of the fading channel gain and the corre-
sponding SNR at the receiver.

C. Network Model in the SNR Domain
We now proceed by mapping the network model from

Fig. 1 into a transfer domain, which we refer to as SNR do-
main. We seek to derive performance bounds in the transfer
domain, and then map the results to the bit domain to obtain
network-layer bounds for backlog and delays. The relationship
of the network models in bit domain and SNR domain is
illustrated in Fig. 2.
In Section III-B, we constructed the service process for a

wireless link in the SNR domain in (6) as
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By analogy, we describe the arrivals and departures in the SNR
domain respectively by

and

Throughout this paper, we use calligraphic letters to represent
processes that characterize traffic or service as a function of the
instantaneous SNR in the sense of (6). Due to the monotonicity
of the exponential function, and are increasing
in and satisfy the causality property . The
backlog process is then described by

The transformation does not affect time. Therefore

(7)

To interpret these processes in the transfer domain, let
be the instantaneous channel SNR required to transmit

in a single time-slot, assuming transmission at the rate of the
capacity limit. The arrival process in the SNR domain can then
be expressed in terms of these variables as

(8)

Here, we are treating channel quality expressed in terms of the
instantaneous SNR as a commodity. An arrival in a time unit
represents a workload, and expresses the amount of re-
sources that will be consumed by the workload. The backlog
can similarly be expressed in terms of the instantaneous SNR

with the interpretation that a node with backlog at time
requires full use of the channel capacity for time units to

clear the backlog.
Most importantly, the concept of the dynamic server trans-

lates to the SNR domain. In a network system, the service
process in the bit domain satisfies (2) if and only if the process
in the SNR domain satisfies

(9)

We refer to a network element that satisfies (9) for any sample
path as dynamic SNR server. In this general setting, we do not
require that takes the form in (6), in particular, does
not have to be equal to .
Traffic aggregation in the SNR domain is expressed in terms

of a product. When flows have arrivals at a node with ar-
rival processes denoted by , then the total
arrival, , are given for any by

. Since is a sum of random processes, it
expresses statistical multiplexing gain. If we let and
denote the corresponding processes in the SNR domain, we see
that

With the above definitions, the usual network description by
a dioid algebra in the bit domain can be expressed in

Fig. 3. Single fading channel with cross traffic.

the SNR domain by a dioid algebra on where the second op-
erator is a multiplication. This enables the development of the

network calculus in Section IV. We observe that the
exponential function defines a one-to-one correspondence be-
tween arrival and departure processes in the bit and SNR do-
mains. The physical arrival, departure, service, and backlog pro-
cesses can be recovered from their counterparts in the SNR do-
main by taking a logarithm (see Fig. 2).

IV. STOCHASTIC NETWORK CALCULUS
This section contains our main contribution: the derivation of

statistical end-to-end performance bounds for a network where
service is expressed in terms of fading distributions residing in
the SNR domain. A key characteristic of the approach is that
it does not require secondary (network-layer) models of fading
distributions when expressed in the SNR domain, that is, bounds
are expressed in terms of the fading parameters of the channel
model.
By an SNR process, we mean a bivariate process

taking values in that is increasing in the second argument,
with for all . The space of SNR processes will
be denoted by . For any pair of SNR processes and

, set

(10)

and

(11)

We refer to “ ” and “ ” as the convolution and
deconvolution operators, respectively.

The arrival, departure, and service processes constructed in
Section III are SNR processes. With the convolution,
we can express the defining property of a dynamic SNR server
from (9) as

(12)
for every pair of SNR arrival and departure processes
and .
We note that, in fact, for any system description in the bit

domain by the and the dioid
algebras, there exists a corresponding description in the SNR
domain using and dioids.

A. Wireless Node With Cross Traffic
Consider a scenario in Fig. 3 where a through flow arriving

to a fading channel shares the available bandwidth with other
flows. We will refer to the traffic from these other flows as cross
traffic. We use and to denote the SNR arrival
processes of the through flow and the cross traffic, respectively,
and let and denote the corresponding departure
processes. In the SNR domain, cross traffic can be viewed as
reducing the channel capacity of the through flow by generating
interference.
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The following lemma states that, in the SNR domain, the ser-
vice available to a through flow that experiences cross traffic at
a channel can be expressed by a dynamic SNR server.
Lemma 1: Consider a channel with a through flow and cross

traffic as shown in Fig. 3. Assume that the channel provides a
dynamic SNR server to the aggregate of through flow and cross
traffic, with service process , i.e.,

Then

is a dynamic SNR server satisfying for all that

(13)
We refer to the process as a “leftover server.” In light

of Lemma 1, it is reasonable to view the cross traffic as interfer-
ence in the SNR domain, that is, cross traffic reduces the SNR
of the through traffic.

Proof: For any sample path, and any , we have

Let be the point where the infimum is assumed. Dividing by
, we obtain

where we used that by causality. The
lemma follows from the definition of the convolution.

Note that need not be monotone in and may take
values below one, i.e., it may not lie in . Monotonicity can
be restored by replacing with a smaller increasing function.

can be ensured when the SNR service of the
cross traffic satisfies an upper bound on the departure process,
as given in the following corollary.
Corollary 1: Under the assumptions in Lemma 1, if the ser-

vice to the cross flows satisfies the upper bound
, then

(14)
Proof: To prove this claim, assume that
. Then, , and therefore

Combining this with Lemma 1, we obtain

proving the corollary.
Note that Lemma 1 and Corollary 1 permit descriptions of

channel models with memory in the form of time-correlated
cross traffic. When a time-correlated cross traffic process, e.g.,
a Markov modulated arrival process, is used in the calculation
of the leftover service process, the resulting service process in
this case is time-correlated as well.

Fig. 4. Tandem of dynamic SNR servers.

B. Server Concatenation and Performance Bounds
The existing network calculus in the bit domain allows

for the concatenation of tandem service elements using the
convolution (see Section I). As an immediate con-

sequence, single-node performance bounds are extended to a
multihop setting. We now establish the corresponding result in
the network calculus. Specifically, the concatenation
of dynamic SNR servers is again a dynamic SNR server. We
will prove the result for a tandem network of two nodes, as
shown in Fig. 4.
Lemma 2: Let and be two dynamic SNR

servers in tandem as shown in Fig. 4. Then, the service offered
by the tandem of nodes is given by the dynamic SNR server

with

Proof: Using (9), the departure process can be
written as

The extension to networks with more than two nodes follows
by iteratively applying Lemma 2. Hence, the dynamic network
SNR server with nodes in tandem is given by

(15)
Performance bounds in the network calculus are

computed with the deconvolution operator. This is
analogous to the role of the deconvolution in the ex-
isting network calculus. The bounds are expressed in
the following lemma.
Lemma 3: Given a system with SNR arrival process

and dynamic SNR server .
• OUTPUT BURSTINESS. The SNR departure process is
bounded by .

• BACKLOG BOUND. The SNR backlog process is bounded
by .

• DELAY BOUND. The delay process is bounded by
.

Proof: For the output bound, we fix and with
and derive

where we used the inequality in the
second step.
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For any given sample path, fix an arbitrary . The bound
on the backlog is derived by

where we used in the second step.
By definition of the delay in (7), a delay bound satisfies

(16)

where we used the inequality
in the second line.
With an algebraic description for network performance

bounds in the SNR domain in hand, we now turn to the problem
of computing the bounds.

C. Mellin Transform in the SNR Domain
The concise expressions from Section IV-B for the network

service and performance bounds in the SNR domain hide the
difficulty of computing these expressions. In fact, all expres-
sions of the network calculus contain products or quo-
tients of random variables. TheMellin transform [11] facilitates
such computations, particularly when the arrival and service
processes are independent.
The Mellin transform of a nonnegative random variable is

defined by

(17)

The Mellin transform of a product of two independent
random variables and equals the product of their Mellin
transforms [11]

(18)

Similarly, the Mellin transform of the quotient of independent
random variables is given by

(19)

where we used independence to factor the expectation.
We will evaluate the Mellin transform only for real valued ,

where it is always well defined (though it may take the value
). For every nonnegative random variable , it holds that

and . When , the
Mellin transform is order-preserving, i.e., for any pair of random
variables with we have

for all . When , the order is reversed. Hence
bounds on the distribution of a random variable generally
imply bounds on its Mellin transform.
A more subtle question is how to obtain bounds on the dis-

tribution of a random variable from its Mellin transform. Here,

the complex inversion formula is not helpful. Instead, we use
the moment bound

(20)

for all and . For bivariate random processes ,
we write .
We work with the Mellin transform of convolutions

and deconvolutions, which not only involves products and quo-
tients, but also requires to compute infimums and supremums.
The exact computation of the Mellin transform for these opera-
tions is generally not feasible. We therefore resort to bounds, as
specified in the next lemma.
Lemma 4: Let and be two independent non-

negative bivariate random processes. For , the Mellin
transform of the convolution is bounded
by

(21)

For , the Mellin transform of the deconvolution
is bounded by

(22)

Proof: Note that the function is increasing
for and decreasing for . For , the convolution
is estimated by

In the last step, we have used the nonnegativity of and
and the union bound to replace the supremum with a sum, and
their independence to evaluate the expectation of the products.
Equation (21) follows by inserting the definition of the Mellin
transform. The deconvolution is similarly estimated for
by

(23)

and (22) follows from the independence assumption and the def-
inition of the Mellin transform.
As a remark, in the lemma we assumed that the arrival and

service processes are independent. This is a convenient and
often justifiable assumption, however it limits the applicability
of the obtained results to wireless systems that exhibit unmit-
igated co-channel interference, which introduces dependence
between service processes in a multihop setting. For the anal-
ysis of processes that are dependent, weaker bounds can be
obtained by applying the Hölder inequality. For example, if the
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two processes and in (23) are dependent, then
we can apply the Hölder inequality to the last step and bound
their deconvolution by

for any and . We used the positivity of
and and applied the Hölder inequality in the first step and

the definition of the Mellin transform in the second step. This
bound can be optimized over the choice of .

D. Performance Bounds for the Bit Domain
We next obtain network-level performance bounds for the bit

domain. This involves a transformation from the SNR domain
to the bit domain via the relationship in Fig. 2.
Theorem 1: Given a system where arrivals are described by

a bivariate process , and the available service is given by
a dynamic server . Let and be the corre-
sponding SNR processes. Fix and define, for

Then, we have the following probabilistic performance bounds.
• OUTPUT BURSTINESS: , where

• BACKLOG: , where

• DELAY: , where is the smallest
number satisfying

If stability of the system is not assured, the bounds in the the-
orem may not be finite or grow over time. We address stability
conditions and the tightness of the bounds in Section IV-E.

Proof: Lemma 3 defines the three performance bounds in
terms of the deconvolution of and . For the bound
on the distribution of the output burstiness, we start from the
inequality . It follows from the moment
bound and Lemma 4 that, for any choice of and all

To obtain the claim, we set the right-hand side equal to , solve
for , and optimize over the value of to obtain .

The proof of the backlog bound proceeds in the same way,
starting from the inequality , resulting in

(24)

The delay bound is slightly more subtle. Fix . Using
Lemma 3 and the moment bound with , we obtain that

for every . By Lemma 4, the Mellin transform
satisfies a bound that agrees with the

function , except that the upper limit in the sum-
mation that defines would have to be replaced
by . To obtain the sharper estimate from the claim,
we use instead (16) from the proof of Lemma 3. The resulting
bound is that

satisfies

(25)
where we have used that the supremum in the definition of
extends only up to , and then repeated the proof of (22).
The claim follows by optimizing over .
Corresponding bounds as in Theorem 1 can be obtained

using the algebra and the network calculus with
moment-generating functions [12]. The significance of
Theorem 1 is that it permits the application of network calculus,
where traffic is characterized in the bit domain, and service is
naturally expressed in the SNR domain. This will become evi-
dent in Section V, where the theorem gives us concise bounds
for delays and backlog in multihop networks with Rayleigh
fading channels.

E. Asymptotic Tightness of the Bounds
In this section, we show that the upper bounds in

Theorem 1 have an exponential rate of decay, and that the rate
of decay cannot be improved without adding assumptions. We
show the derivations for the backlog. We require that arrival and
service processes are stationary. We assume that the average
service rate exceeds the average arrival rate, i.e.,

(26)

We will see that this inequality, which, by stationarity, does not
depend on , is the stability condition of the system. It guaran-
tees that the backlog process is stochastically increasing
in , and converges in distribution to the steady-state backlog
process [26, Lemma 2].
We start with a corollary to Theorem 1 that provides an ex-

ponential decay rate for the backlog bound. Define

(27)

The function is related to expressions for the effective band-
width [20] and effective service [39]. It is convex because it is
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defined as a limit of convex functions. Since and

either changes sign exactly once from negative to positive,
or for all . Let denote the point where the
switch occurs, with when remains negative. If

and is differentiable, we note for later use that the
convexity of forces .
Corollary 2: For each with , there is a constant

such that the backlog bound

(28)
holds for all .
The constant in the corollary depends on the arrival and

service processes, but not on .
Proof: Consider the backlog bound in (24). We want to

show that

The constant can be evaluated as

We have used stationarity to replace the time interval with
, changed the variable from to , and then taken
. For , we have . By (27) there

exists an and a time such that

for all . It follows that

for . Therefore, the sum that determines converges
for all .
Since does not depend on , (28) holds also for the

steady-state backlog process . Solving for and then taking
the limit , we see that

We now show that this bound on the decay rate is tight in the
sense that it cannot be improved without adding further assump-
tions to Theorem 1. To this end, we consider the special case
of a dynamic server that satisfies (9) with equality, i.e.,

. An example of this is the fading channel
service model described in Section III-A.
We also need the following technical conditions. The func-

tion should be defined and differentiable on some interval
, and its derivative should be unbounded from above.

Moreover, we assume that changes sign, so that .
Under these assumptions, we will obtain an exponential lower
bound on for every .
In a similar fashion as in [6, Ch. 9] for showing that the ef-

fective bandwidth offers a lower bound on resource require-
ments, we will apply large deviations theory, specifically the
Gärtner–Ellis theorem. In the context of the SNR domain and
with our notation, the theorem as given in [32, Theorem D.8]
takes the following form.

Lemma 5 (Gärtner–Ellis): Let be a sequence of
nonnegative random variables, and let denote their
Mellin transform. Assume that

exists for and defines a differentiable function
whose derivative is unbounded from above. Then

where the rate function is given by the Legendre transform

(29)

We will apply Lemma 5 to the process .
With our assumptions, from (27) satisfies the conditions
needed for the Gärtner–Ellis theorem.
Theorem 2: Under the assumptions stated before Lemma 5

(30)
where is the unique positive solution of .
The theorem implies that there exists for each a con-

stant such that

for all . Together with Corollary 2, it extends
[6, Theorem 9.1.1] to variable rate servers.

Proof: We may assume that (otherwise, there is
nothing to show). We start from the observation that

implies

It follows that

for every and all . Let be arbitrary. Setting
and taking , we have

(31)

where Lemma 5 is used in the last step. Finally, we choose
. For , the supremum in (29) is assumed at

. The proof is completed by inserting the value
into (31).

V. NETWORK PERFORMANCE OF RAYLEIGH CHANNELS
We now apply the techniques developed in Sections III and

IV to a network of Rayleigh channels. Consider the dynamic
SNR server description for a Rayleigh fading channel, as con-
structed in Section III-B. We use (6), with the function
given by

(32)
where is the average SNR of the channel and is the fading
gain. For Rayleigh fading, is a Rayleigh random variable
with probability density . In a physical system,

, where and are the received signal power
and the (additive white Gaussian) noise power at the receiver,
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respectively. Then, is exponentially distributed, and the
Mellin transform of is given by

(33)
where is the upper incomplete
Gamma function. Using the assumption that the are inde-
pendent and identically distributed, we obtain for the Mellin
transform of the dynamic server

(34)

A. Arrival Model
For the arrival process, we use a characterization due to

Chang [6], referred to as -bounded arrivals, where
the moment-generating function of the cumulative arrival
process in the bit domain is bounded by

for some . In general, and are nonnegative in-
creasing functions of that may become infinite when is large.
This characterization can be viewed as a probabilistic extension
of a traffic flow that is deterministically regulated by a token
bucket with rate and burst size . It describes a large traffic
class that is well suited to express traffic with burstiness, in-
cluding bursty traffic with memory, such as Markov modulated
ON–OFF traffic [6].
This class of arrival processes can be equivalently character-

ized in the SNR domain as a bound on the Mellin transform of
the SNR arrival process as follows:

(35)
for some . This traffic class is also referred to as

-bounded arrivals.
To describe a Markov-modulated arrival process character-

ized as -bounded arrivals, we begin with the log
MGF of Markov modulated arrival process, which is given
by [6]

where , , is
the transmission rate when in state , is the cardinality of the
state space, is the state transition matrix with the element
in row and column , and is the spectral radius of the
matrix , i.e., the largest eigenvalue of the matrix.
In the numerical examples, we will use a Markov modu-

lated ON–OFF process, which has two states , where
index 1 indicates the OFF state , index 2 indicates the
ON state , and rate is referred to as the peak rate.
The transition probabilities are and . Then,
using a arrival description, we have and

, where

Since, for real-valued , theMellin transform of an SNR process
is related to the MGF of its bit domain equivalent by

we can compute the Mellin transform for SNR arrivals from the
MGF of the corresponding processes in bit domain. We obtain

(36)

B. Network Service Description
Consider a cascade of fading channels, as in Fig. 1, which is

traversed by a through flow. Each fading channel is described
by a dynamic SNR server satisfying (6), and the cross traffic
at each channel is satisfying (35) with parameters and

. Assume that arrivals from through flow and cross traffic,
as well as the service processes at each channel, are indepen-
dent. Then, we can compute a bound for the Mellin transform
of the SNR service process for the through flow in the entire
cascade.
Lemma 6: Given a cascade of fading channels with cross

traffic as described above. Let denote the dynamic SNR
server that describes the service of the through flow in the cas-
cade. The Mellin transform of satisfies for
that

(37)
Proof: For a single channel , we obtain with

Lemma 1 that for

where we have used that for . When the service
of the through flow at the th channel is denoted by , by
Lemma 2, the service of the cascade of channels is given by the

convolution .
We use Lemma 4 to bound its Mellin transform by

where the sum runs over all sequences
with and . Each product appearing in the equa-
tion evaluates to the same term

Then, we collect terms with the binomial identity

and the claim follows.
For a cascade of fading channels with no cross traffic, we have

and (37) reduces to

C. Performance Bounds for Rayleigh Fading Channels
Now we consider the performance of -bounded

through traffic with parameters and in a cascade of
Rayleigh fading channel with cross traffic, where cross traffic
at each channel is -bounded with parameters
and . TheMellin transform for the Rayleigh fading channel
is given by (33), and those for through and cross traffic by (35).
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We compute end-to-end performance bounds using Theorem 1.
Using Lemma 6, we compute the function for

as

(38)

where is the maximum of and 0 and

The sum in (38) converges when . This is ensured for
some value of when the stability condition in (26) is satisfied.
When , e.g., when computing output burstiness or

backlog bounds, we have

where we applied the combinatorial identity from Lemma 7 in
the Appendix. Then, using Theorem 1, the output burstiness of
the through flow at the network egress for a violation probability
is given by

(39)

and the end-to-end backlog of the through flow is bounded by

(40)

For the delay bound, we estimate for that

(41)

Here, the first term in the minimum is obtained by extending the
summation in (38) down to and applying Lemma 7. The
second term results from Lemma 8 in the Appendix.
The delay bound is determined according to Theorem 1

by setting the right-hand side of (41) equal to , solving for
, and minimizing over . Because of the complexity of the

bound in (41), the last two steps must be performed numerically.
The performance bounds for networks without cross traffic are
obtained by inserting the values and in the
performance bounds expressions derived above.
It is apparent that the complexity of computing end-to-end

bounds is no different than bounds for a single channel. More
importantly, we observe that the end-to-end bounds scale lin-
early in the number of nodes .

VI. NUMERICAL EXAMPLES

In this section, we present numerical results for a cascade
of Rayleigh channels with a transmission bandwidth of

kHz, using the expressions we derived in Section V. We
consider two cases: a network with and without cross traffic.
For through traffic in both cases, we use -bounded
arrivals with default values kb and kb/s
for all values of , i.e., the rate and burst size are deterministic
and correspond to a traffic flow that is shaped by a token bucket
with a given rate and burst size. By choosing a deterministic
model for the through traffic, the remaining sources of ran-
domness are those of the channel and the cross traffic. Thus,
in examples without cross traffic, we can study how fading
channel variability impacts network performance. In examples
with cross traffic, we can observe the relative impact of random
cross traffic and channel conditions on network performance.
For the cross traffic, we use a Markov-modulated ON–OFF

traffic model, characterized as -bounded traffic,
where at each node we use identical parameters and

. This represents a scenario composed of a cascade of
uniformly spaced wireless nodes in a static environment, hence

for all , which experience Rayleigh fading,
i.e., severe fading with no line-of-sight component.
To evaluate the quality of the derived bounds, we also include

a simulation of a tandem of queues with the parameters above.
Since simulations of large networks become computationally
prohibitive, the comparison to simulations uses a scenario with
at most 10 nodes. The simulations use a fluid-flow arrival and
service model, in a time-slotted system with intervals of 1 ms.
Simulations are run for 10 time-slots for one node, and are
increased to 10 time-slots for 10 nodes.
Recall that existing performance analyses of fading channels

generally rely on Markov channel or other secondary models
of the fading channels. Since these models involve additional
parameter selections, and the accuracy of the selections with
regard to actual channel conditions cannot be determined, we
do not attempt a comparison of our numerical results to those of
prior analyses.

A. Performance Bounds Without Cross Traffic
We eliminate cross traffic by setting .

For a violation probability of , in Fig. 5 we show the
end-to-end backlog for a cascade of Rayleigh channels, as a
function of the average SNR of each channel. Even though the
backlog bounds increase only linearly in the number of nodes,
the per-node requirements—at least for the last node of the cas-
cade—must satisfy the end-to-end bounds since it cannot be
assumed that backlog is equally distributed across the nodes.
When the SNR of the nodes is sufficiently high, the backlog re-
mains low even for a large number of hops. We observe that the
channel becomes saturated for dB. When the number of
nodes is small, the backlog increases sharply in the vicinity of

dB, but remains low everywhere else.
In Fig. 6, we present, for an average SNR value of dB,

how the end-to-end backlog increases as a function of the ar-
rival rate for different network sizes. Here, the maximum
achievable rate that results in a finite backlog decreases as the
number of nodes is increased.
Suppose that buffer sizes are set to satisfy the end-to-end

backlog. Then, for a fixed buffer size , we can use the
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Fig. 5. End-to-end backlog bound versus average channel SNR
for multihop Rayleigh fading channels with , bounded
traffic with kb and kb/s, and kHz.

Fig. 6. End-to-end backlog bound versus arrival rate for mul-
tihop Rayleigh fading channels with , bounded traffic
with kb and dB, and kHz.

Fig. 7. Loss probability versus average channel SNR for multihop
Rayleigh fading channels for , and 20 with buffer size 400 kb,

bounded traffic with kb and or 30 kb/s,
and kHz.

probability as an estimate of the proba-
bility of dropped traffic, which we refer to as loss probability.
In Fig. 7, we depict the loss probability as a function of the av-
erage channel SNR for kb, traffic with a rate of

and 30 kb/s, and for , and 20 nodes. The
figure shows the minimum SNR needed to support a given loss
probability is very sensitive to the number of network nodes.
Now we evaluate the violation probability for given end-

to-end delay bounds, for a single node and a mul-
tihop network for different SNR values. As before,
the through traffic is deterministic, with kb for the
burst and kb/s for all . For this example, we also in-
clude simulation results. The simulated through traffic consists
of a Markov modulated ON–OFF flow with , ,

Fig. 8. Delay bound violation probability , computed and simulated,
versus end-to-end delays for multihop Rayleigh fading channels for

, dB, bounded traffic with kb
and kb/s, and kHz.

and peak rate kb/s, which is subsequently shaped
by a token bucket with bucket size 50 kb and rate 20 kb/s. This
creates a bursty traffic flow that saturates the rate of the token
bucket. We use the simulations to evaluate the accuracy of our
bounds for violation probabilities ranging from 10 to 10 .
Fig. 8 illustrates that at sufficiently high SNR values, low de-
lays are achieved even when traffic traverses 10 links. When
the SNR is decreased, we observe how the delay performance
deteriorates in the multihop scenario. The graphs illustrate the
dependence of the exponential decay rate of the tail of the delay
distribution on the average SNR, i.e., the decay rate increases
with . A comparison of analytical and simulation results shows
that the computed upper bounds provided by our analysis are
reasonably close to the simulated system and reflect the same
decay. The results also show that the computed bound are closer
to simulation results when the number of nodes is small.

B. Performance Bounds With Cross Traffic
As a final example, we consider Rayleigh fading channels

with cross traffic and study the impact of cross traffic character-
istics on the channel quality experienced by the through traffic.
We fix the number of nodes to . The parameters of the
Raleigh channel are as used earlier. The through traffic is again
deterministic with the default parameters given at the beginning
of the section. The cross traffic is based on a Markov modulated
ON–OFF arrival process as characterized in Section V-A. Its av-
erage rate, denoted by , is obtained as . The param-
eters and are selected so that the average cycle time of the
Markov chain as well as the peak-to-average traffic rate have
given values. Specifically, we set the cycle time ms,
and the peak-to-average ratio to and 2. The different
peak-to-average ratios indicate the burstiness of the cross traffic.
We also consider deterministic cross traffic as our baseline for
comparison, where , that is, cross traffic is a constant bit
rate traffic source.
In Fig. 9, we show end-to-end backlog bounds

for the through traffic as a function of the average channel
SNR . The graphs are grouped according to the average cross
traffic rate . Obviously, the service offered to the through traffic
by the fading channel is reduced when is increased. We ob-
serve that for smaller values of , varying the burstiness of
traffic has a less pronounced effect than for large values of .
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Fig. 9. End-to-end backlog bound versus average channel SNR
for multihop Rayleigh fading channels with Markov modulated ON–OFF cross
traffic. Parameters are , , kHz,
bounded through traffic with kb, kb/s, cross traffic
has average rates kb/s and peak-to-average ratios (de-
terministic), 1.5, 2.

As expected, when the cross traffic has a larger share of the
total traffic, its traffic characteristics have a bigger influence on
the perceived channel quality of the through traffic. However,
the impact of varying the burstiness is remarkable. For
and 25, the blow up of the backlog occurs much earlier when
the peak-to-average ratio of traffic is increased. Nevertheless,
according to Section IV-E, all curves with the same value of
have identical asymptotic behavior. We note that with larger

peak-to-average ratio values for , the backlog
bounds will surpass that of with no or moderate bursti-
ness. This provides evidence of the major role of burstiness of
interfering flows on the performance of wireless communica-
tion channels.

VII. CONCLUSION
We have developed an analysis of networks with multihop

fading channels that can incorporate fading channel distribu-
tions, without the need for secondary models, such as FSMC.
Since such models generally leave open the accuracy of model
parameters, they may raise concerns over the fidelity of com-
puted performance metrics with respect to the actual channel. In
this paper, we took a fresh point of view, where the descriptions
of the arrivals and the fading channels reside in different do-
mains, referred to as bit domain and SNR domain.We found that
by mapping arrival processes to the SNR domain, an end-to-end
analysis with fading channels becomes tractable. An important
discovery was that arrivals and service in the SNR domain obey
the laws of a dioid algebra. The analytical framework
developed in this paper appears suitable to study a broad class
of fading channels and their impact on the network-layer perfor-
mance in wireless networks. Even though we made numerous
assumptions for the fading channels, our network cal-
culus may be applicable to networks where these assumptions
are relaxed. Generalizing our framework and obtaining a more
profound understanding of the dioid algebra and computational
methods in the SNR domain is the subject of future research.

APPENDIX

Lemma 7: Let . For all with

(42)

Proof: For , the sum reduces to the geometric series.
For , we expand the right-hand side as

The last sum in parentheses counts the number of -tuples of
nonnegative integers that add up to . Since its value equals the
binomial coefficient , the claim is proved.
Lemma 8: For every and all with

Proof: We write the binomial coefficient as a product

Since for all and all ,
it follows that

This yields for the sum

In the last step, we have changed variables to and
used again (42).
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