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a b s t r a c t

This paper presents a new rolling bearing fault diagnosis method based on local mean
decomposition (LMD), improved multiscale fuzzy entropy (IMFE), Laplacian score (LS) and
improved support vector machine based binary tree (ISVM-BT). When the fault occurs in
rolling bearings, the measured vibration signal is a multi-component amplitude-modu-

quency analysis method can decompose any complicated signal into a series of product
functions (PFs), each of which is exactly a mono-component AM–FM signal. Hence, LMD is
introduced to preprocess the vibration signal. Furthermore, IMFE that is designed to avoid
the inaccurate estimation of fuzzy entropy can be utilized to quantify the complexity and
self-similarity of time series for a range of scales based on fuzzy entropy. Besides, the LS
approach is introduced to refine the fault features by sorting the scale factors. Subse-
quently, the obtained features are fed into the multi-fault classifier ISVM-BT to auto-
matically fulfill the fault pattern identifications. The experimental results validate the
effectiveness of the methodology and demonstrate that proposed algorithm can be
applied to recognize the different categories and severities of rolling bearings.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The rolling bearings are widely used and key components of rotating machinery and their condition monitoring tech-
niques are always a central topic for the maintenance of rotating machinery [1]. Due to the direct relationship between the
vibration and the structure of the rotating machine, numerous researches have been focused on the vibration analysis
method in recent years [2,3]. In general, vibration analysis method can be summarized into three steps: data acquisition,
fault feature extraction and fault pattern classification. Due to the nonlinear and non-stationary characteristics of the
vibration signal, it is hard to extract the fault information and many signal processing techniques have been developed to
extract fault features[4]. For example, Yang et al. applied empirical mode decomposition method (EMD) to decompose the
bearing vibration signal and the energy entropy of intrinsic mode functions (IMFs) was used as the fault feature to fulfill the
bearing fault diagnosis [5]. Lin et al. [6] presented a novel approach based on multiscale entropy and wavelet transform to
extract the fault features of misaligned motors. LMD and multiscale entropy were combined to classify the rolling bearing
fault condition by Liu et al. [7]. Zheng et al. [8] put forward a new approach called local characteristic-scale decomposition
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(LCD) to preprocess the rolling bearing vibration signal and took the fuzzy entropy of intrinsic scale components (ISCs) as
the inputs of the adaptive neuro-fuzzy inference systems (ANFIS) classifier.

The current time-frequency analysis techniques are mainly composed of two classes. The first one is that some para-
meters needed to be set before analyzing the vibration signal. The popular and well-known example is the wavelet
transform (WT) [9], which can decompose a multi scales into several scale time-frequency components, WT is widely
applied to diagnostic the rolling bearing fault. However, the wavelet basis function is needed to predefined, and different
choices of the wavelet basis function will have great influence on final results. Therefore, it doesn’t have the nature of self-
adaptive feature. As an improved approach, another one is self-adaptive time-frequency decomposition techniques, the
typical example is EMD [10], which can self-adaptively decompose any complicated signal into sum of IMFs. Unlike the
wavelet transform, EMD performs the decomposition according to natural oscillations embedded in the vibration signal.
Unfortunately, EMD has the end effect and mode mixing problems, which limit its applications [11]. A new self-adaptive
time-frequency analyzing method, Local mean decomposition (LMD) was proposed by Smith in 2005 [12]. LMD can auto-
matically decompose a multi-component AM–FM signal into a number of PFs and each PF is a mono-component AM–FM
signal. Also, the comparisons of LMD and EMD have been done and the merits of the LMD have been verified [13]. When the
rolling bearing fault occurs, the collected vibration signal often presents AM–FM features. Consequently, LMD is suitable for
processing the rolling bearing fault vibration signal.

Naturally, after LMD decomposition, a major focus is how to extract feature and identify the fault patterns by using the
obtained PFs. Many studies have been done to investigate the feature extraction methods. A statistical measure method,
called approximate entropy (ApEn) was put forward by Pincus, which was successfully applied to physiological time series
analysis [14]. However, ApEn is heavily dependent on the data length and its estimated value is uniformly lower than that
expected for short records as well [15,16]. To overcome the weakness of ApEn, Richman and Moorman proposed Sample
entropy (SampEn), which had attracted a lot of attentions [16]. Although SampEn can improve performance, it results in an
unacceptable result when applied to actual data analysis. In regard to this disadvantage, Costa [17] put forward a multiscale
entropy procedure to estimate the complexity of the original time series over a range of scales. Multiscale entropy (MSE)
was firstly applied to rolling bearing fault diagnosis by Zhang et al. [15] and the effectiveness of MSE was validated by
analyzing the complex time series. However, the short-time analysis of MSE is far more optimal. Focus on the drawbacks of
MSE, Wu et al. proposed modified Multiscale entropy (MMSE) to improve the performance of MSE, which can obtain
excellent results for the short-term time series short-time time series [18].

As an alternative approach of SamEn, the fuzzy entropy (FuzzyEn) was proposed by Chen et al., recently [19]. Compared
with SamEn calculation procedure, FuzzyEn replaces the Heaviside function with fuzzy membership function with a better
continuity, which was successfully applied to rolling bearing fault pattern recognition by Zheng et al. [4]. Also the concept of
the coarse-graining procedure combined with FuzzyEn (MFE) was developed to evaluate the self-similarity of original data
[20]. Nevertheless, MFE method also produces uncertain and unsatisfactory analysis for short-term data. There remains a
need for a reliable method that can overcome the weakness of MFE. In this paper, a novel approach called improved
multiscale fuzzy entropy (IMFE) is proposed, and the effectiveness of IMFE is verified by the simulation signal and actual
experiment data.

Hence, IMFE method is utilized to extract the fault features from the rolling bearings, then the obtained fault features are
fed into a multi-classifier to fulfill the fault diagnosis. However, the feature vectors extracted using IMFE method are high
dimension with information redundancy, it is time-consuming and often results in unacceptable classification accuracy
when the entire obtained features are adopted as inputs of SVM-BT. In this paper, we introduce an effective approach called
Laplacian Score (LS) to choose the first several important scale factors to construct the new fault feature vectors [21]. By the
virtue of the LS approach, the fault feature vectors can be automatically ranked according to their importance and corre-
lations with the main fault information [22], then we select the first four important scale factors as the new fault feature
vectors. By using LS approach, it can not only reduce the data dimension but also enhance the identification accuracy
greatly.

Naturally, after extracting feature vectors, a multi-fault classifier is employed to automatically identify the fault cate-
gories and severities of rolling bearings. Various artificial intelligence pattern recognition techniques in recent years are
used for fault detection in rotating machines, such as artificial neural networks (ANN) [23], adaptive neuro-fuzzy inference
system (ANFIS) [24] and Self-organizing maps (SOM) [25]. However, some limitations that restrict their applications. For
example, ANN, which adopts of empirical risk minimization (ERM) for classification is likely lead to failure because of the
insufficient training sample and unreasonable structure design [26]. As an alternative approach to other classifiers, support
vector machine based on binary tree (SVM-BT) [27] has superior recognition rates in comparison to other classification
methods, which is not only effective in making a reliable decision for a smaller number of datasets but also has good
generalization capability [27].

However, the SVM-BT often suffers from the hierarchical structures decision problems. In this paper, we introduce a
novel hierarchical structures design for SVM-BT, called improved SVM-BT (ISVM-BT), which is based on the combination of
inter-class Euclidean distance (ED) [28] and intra-class sample distribution [29,30]. ISVM-BT can not only reflect the class
separability more comprehensively but also improve the classification accuracy obviously. Hence, a novel rolling bearing
fault diagnosis approach based on LMD, IMFE, LS and ISVM-BT is proposed in this paper.

This paper is organized into six sections. In Section 2 a brief review of preprocessing method based on LMD is provided.
Section 3 describes the basis of IMFE and validates the superiority of IMFE using the simulation signal. Section 4 presents the
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LS for scale factor selection briefly. In Section 5 the ISVM-BT method is introduced, meanwhile, the calculation procedures of
ISVM-BT are illustrated. Section 6 discusses experimental results for the proposed rolling bearing fault diagnosis method.
Finally, conclusions are drawn in Section 7.
2. Local mean decomposition and principal PF component selection

2.1. Review of LMD method

LMD method can decompose a complicated signal into a set of product functions (PFs), each of which is the product of an
envelope signal and a purely frequency modulated signal. Given any signal x(t), it can be decomposed by LMD method in the
following way:

(1) Identify all local extrema ni of the original signal x(t), and then calculate the mean value mi of two successive extrema ni
and niþ1,and envelope estimate ai according to Eqs. (1) and (2).

mi ¼ ðniþ1þniÞ=2 (1)

ai ¼ niþ1�ni =2
���� (2)

(2) All mean values mi and envelope estimate ai are connected by straight lines. The local mean function m11(t) and the
amplitude function a11(t) are obtained by applying the moving averaging method to smooth the local means and
envelope estimates, respectively.

(3) The local mean function m11(t) is subtracted from the original data x(t), and the residual signal is denoted as h11(t).

h11ðtÞ ¼ x tð Þ�m11ðtÞ (3)

h11(t) is then divided by the amplitude function a11(t).

s11ðtÞ ¼ h11ðtÞ=a11ðtÞ (4)

The envelope a12(t) of s11(t) can then be calculated by steps (1) and (2). If the envelope function a12(t)¼ 1, stop the
procedure and take s12(t) as the first purely frequency modulated signal. If the envelope function a12(t)a1, regard s11(t)
as the original signal and repeat the steps(1)–(4) continues n times until a purely frequency modulated signal s1n(t) is
obtained.

h11ðtÞ ¼ xðtÞ�m11ðtÞ
h12ðtÞ ¼ s11ðtÞ�m12ðtÞ

⋮
h1nðtÞ ¼ s1ðn�1ÞðtÞ�m1nðtÞ

8>>>><
>>>>:

(5)

in which

s11ðtÞ ¼ h11ðtÞ=a11ðtÞ
s12ðtÞ ¼ h12ðtÞ=a12ðtÞ

⋮
s1nðtÞ ¼ h1nðtÞ=a1nðtÞ

8>>>><
>>>>:

(6)

The objective of the iterations is to obtain a signal whose envelope function should satisfy a1n tð Þ ¼ 1.
(4) The corresponding envelope is obtained by Eq. (7).

a1 tð Þ ¼ a11 tð Þa12 tð Þ⋯a1n tð Þ ¼ ∏
n

q ¼ 1
a1q tð Þ (7)

The envelope function a1(t) is then multipied by the purely frequency modulated signal s1n(t) and then the first product
function PF1(t) can be written as

PF1 tð Þ ¼ a1 tð Þs1n tð Þ (8)

(5) This derived PF1(t) is then subtracted from the original time series x(t),resulting in a new function u1(t), which repre-
sents a smoothed version of the original data since the highest frequency oscillations have been removed from it. Regard
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u1(t) as a new data and repeat the above procedure k times until uk(t) is a constant or contains no more oscillations.

u1 tð Þ ¼ x tð Þ�PF1 tð Þ
⋮

uk tð Þ ¼ uk�1 tð Þ�PFk tð Þ

8><
>: (9)

Thus, the original signal can be reconstructed k product functions and a residual uk(t) according to

x tð Þ ¼
Xk
p ¼ 1

PFk tð Þþuk tð Þ (10)

where uk(t) is the residue and k is the number of PF components.

2.2. The optimum PF component selection

As mentioned above, a number of PFs can be obtained by using LMD method, and the selection of PF component used to
conduct the fault feature extraction is a key step for fault diagnosis. Since kurtosis is effective to characterize the impulsive
feature, the PF with the highest kurtosis value indicate that it contains most impulsive characteristics [31]. Kurtosis is then
Fig. 2. The schematic illustration of the improved coarse-grained procedure for scale factor τ¼2 and τ¼3.

Fig. 1. The schematic illustration of the coarse-grained procedure for scale factor τ¼2 and τ¼3.
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taken as the criterion to select the optimum PF (OPF) component that contains the most fault information from the LMD
decomposition results. The main procedures of OPF selection with kurtosis can be described as follows:

(1) LMD method is firstly used to preprocess the vibration signals under different health conditions and then a number of
PF components are obtained.

(2) Kurtosis is then applied to calculate each PF component according to Eq. (11). Also the normalized kurtosis value can be
got by Eq. (12).

Ki ¼
1
n

Xn
k ¼ 1

PF4ik (11)

Ui ¼
KiPm

i ¼ 1
Ki

(12)

where Ki represents the kurtosis value of the ith PF component, n is the length of the data. Ui is the normalized kurtosis
value of the ith PF component, m is number of PF components.

(3) The Ui values are then used to select the OPF component, which contains the most fault information.
3. Improved multiscale fuzzy entropy

3.1. Fuzzy entropy

The definition and calculation steps of ApEn and SampEn are described by [32]. As the similarity definition of the two
vectors is mainly according to the Heaviside function, which is jumping. However, in the actual times series, the boundaries
of the two classes are mostly ambiguous, the Heaviside function is unsuitable to measure the similarity of two vectors. As an
improvement of ApEn, SamEn, FuzzyEn replaces the Heaviside function with a Gaussian function. Due to the continuity of
the exponential function, the FuzzyEn can avoid the drawbacks of ApEn and SamEn effectively [19]. The detailed steps of
FuzzyEn are listed as follows:

(1) Given a time series with the length N u ið Þ; i¼ 1;2;⋯;N
� �

, then the m dimensional vector at time i can be constructed as

Xm
i ¼ u ið Þ;u iþ1ð Þ;⋯;uðiþmþ1Þ� ��u0 ið Þ; i¼ 1;2;⋯N�mþ1 (13)

where Xm
i is a new time series, and the u0ðiÞ represents the mean value of the m consecutive u ið Þvalues.

u0ðiÞ ¼
1
m

Xm�1

k ¼ 0

uðiþkÞ (14)

(2) Define the maximum distance between Xm
i and Xm

j as dmij

dmij ¼ d½Xm
i ;X

m
j � ¼ max

kA ð0;m�1Þ
½uðiþkÞ�u0ðiÞ�� uðjþkÞ�u0ðjÞ

� ��� ��� �
i; j¼ 1;2;…N�m; ia j: (15)

(3) We can obtain the similarity degree Dm
ij by using the exponential function (namely, fuzzy function) μðdmij ;n; rÞ

Dm
ij ¼ μðdmij ;n; rÞ ¼ e� ln 2ðdmij =rÞn (16)

where n and r are the gradient and the width of the border, respectively.
(4) The φmðn; rÞ is then defined as follows:

φmðn; rÞ ¼ 1
N�m

XN�m

i ¼ 1

1
N�m�1

XN�m

j¼ 1
ja i

Dm
ij

0
BBBBBB@

1
CCCCCCA

(17)
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(5) Repeat Eqs. (15)–(17) for obtaining mþ1 dimensional, and φmþ1ðn; rÞ can be described as

φmþ1ðn; rÞ ¼ 1
N�m

XN�m

i ¼ 1

1
N�m�1

XN�m

j¼ 1
ja i

Dmþ1
ij

0
BBBBBB@

1
CCCCCCA

(18)

(6) Then the Fuzzy entropy of the time series x ið Þ; i¼ 1;2;⋯;N
� �

can be defied as

FuzzyEnðm;n; rÞ ¼ lim
N-1

ln φmðn; rÞ� ln φmþ1ðn; rÞ� �
(19)

If N is finite, FuzzyEn(m, n, r) can be expressed as

FuzzyEnðm;n; r;NÞ ¼ ln φmðn; rÞ� ln φmþ1ðn; rÞ (20)

3.2. The basis of multiscale fuzzy entropy

The multiscale analysis algorithmwas developed by Costa [17] to quantify the complexity of time series in the real world.
Because the application of single scale entropy algorithm to actual measurement time series may produce the unreliable
results, Costa introduced a coarse-grained procedure to yield a series of scale time series. Based on the concept of multiscale
analysis, MFE method was firstly proposed by Zheng et al. [20] and applied to rolling bearing fault diagnosis. MFE algorithm
contains two steps. Firstly, apply the coarse-grained procedure to get multiple scale time series from the original time series.
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Fig. 3. (a) Waveform of white noise, (b) waveform of 1/f noise, (c) FT spectrum of white noise and (d) FT spectrum of 1/f.
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Then, calculate the FuzzyEn at each coarse-grained time series. Two procedures of MFE algorithm are briefly described as
follows.

(1) To obtain the coarse-grained time series at a scale factor of τ, the original time series is divided into disjointed windows
of length τ, and the data points are averaged inside each window. Namely, the coarse-grained time series at a scale
factor of τ (τ is a positive integer), yτj can be constructed according to Eq. (21) and an example of the coarse-grained
procedure is illustrated in Fig. 1.

yτj ¼
1
τ

Xjτ

i ¼ j�1ð Þτþ1
ui 1r jrN

τ
(21)

In MFE analysis, the FuzzyEn of each coarse-grained time series is calculated based on Eqs. (13)–(19) and then plotted as
the function of the scale factor τ, which can be expressed as

MFEðx; τ;m; rÞ ¼ FuzzyEnðyτ;m;rÞ:
j (22)

Note that the r in the calculation for different scales is same, which is obtained by ther¼ λ�SD and SD is the standard
deviation of the original time series.
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3.3. Improved multiscale fuzzy entropy

From Fig. 1, we know that the coarse-graining procedure in MFE can be simply considered as the procedure of averaging the
original time series within a window of length τ and then downsampling by a factor of τ. However, the imprecise and unreliable
results may occur in the process of the downsampling at a certain time scale. To overcome the disadvantage of the coarse-graining
procedure in MFE, IMFE method is introduced in this paper, which is composed of two procedures: (1) The time series on different
time scales is obtained by performing a moving-averaging procedure; (2) The complexities of the new moving-averaged data are
calculated by FuzzyEn with a time delay τ. The detailed descriptions can be summarized as follows:

(1) Based on the improved coarse-graining procedure, a new vector time series vector called Hτ at a scale factor of τ is
constructed as

Hτ
j ¼

1
τ

Xjþ τ�1

i ¼ j

ui 1r jrN�τþ1 (23)

where N and τ are the length of original time series and scale factor, respectively. By Eq. (23) the original time seriesuðiÞ
is divided into τ coarse grained vector series Hτ with length of N�τþ1. The schematic illustration of the improved
coarse-grained procedure is shown in Fig. 2.

(2) The derived new time series Hτ is calculated by a modified FuzzyEn, the modified FuzzyEn is defined as IMFE value with
a time delay δ, it can be expressed as follows:

IMFEðu;m; τ; rÞ ¼ FuzzyEnðHτ ;m; δ¼ τ; rÞ (24)

Compared with traditional FuzzyEn, the modified FuzzyEn adds a time delay parameterδ (δ¼ τ) in the constraction of the m
dimensional vector at timei. Given a time series, N u ið Þ; i¼ 1;2;⋯;N

� �
, the new m dimensional vector Xm

i ðδÞ can be formed as

Xm
i δð Þ ¼ u ið Þ;u iþδð Þ;⋯;u iþ m�1ð Þδð Þ� ��u0 ið Þ; i¼ 1;2;⋯;N�mδ (25)
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Table 1
The FuzzyEn values obtained by MFE and IMFE with different data lengths (τ¼20).

Methods Data length

500 1000 1500 2000 3000 5000 8000 10,000

1/f noise MFE 1.5531 1.4450 1.4115 1.4061 1.3891 1.3668 1.3651 1.3505
IMFE 1.4466 1.3854 1.3790 1.3666 1.3622 1.3576 1.3568 1.3508

White noise MFE 0.8222 0.7556 0.7393 0.5743 0.6362 0.5836 0.6098 0.6253
IMFE 0.7348 0.6554 0.6459 0.6434 0.6204 0.6168 0.6198 0.6199
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Table 2
Statistic information of data sets.

Database Number of training data Number of testing data Number of classes Number of features

Wine 89 89 3 13
Segment 2100 210 7 19
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where Xm
i ðδÞ is a new time series, and the u0ðiÞ represents the mean value of the m u ið Þ values.

u0 ið Þ ¼ 1
m

Xm�1

k ¼ 0

u iþkδð Þ (26)

The following procedures are the same as the traditional FuzzyEn calculation. For the sake of convenient application, the
Matlab code of the IMFE method is also listed in Appendix A.

From the above analysis, we know that the length of the moving-averaged time series Hτat a scalar of τ is ðN�τþ1Þ and
the total number of vectors used to compute FuzzyEn with time delay δaccording to Eqs. (25) and (26) is ðN�ðmþ1Þτþ1Þ.
Whereas, in the conventional MFE method, the length of vectors used is ðNτ �mþ1Þ, which is much smaller than those in
IMFE method. Give an exmple to illustrate the advantage of IMFE alogrithm. Set N¼1500, m¼2 and τ¼15. In IMFE method,
there are 1454 vectors used to calculate FuzzyEn, while there are only 99 vectors used in the original MFE method.
Therefore, we can get the conclusion that the proposed IMFE method can provide a more precise and accurate estimation of
entropy in comparison with traditional MFE method, which is especial effective for the short-term time series analysis.

3.4. The parameter selection of IMFE

We need to set four parameters before using IMFE, including embedding dimension m, boundary width and gradient of
the exponential function r and n, and the scale factor τ. Since unsuitable m will result in loss of information, generally, is set
to 2; r is set by 0.1–0.25 multiplied by the standard deviation (SD), herer¼ 0:15�SD; n determines the boundary gradient of
the exponential function, it is convenient to fix n to 2; since a too large τ will affect the computation efficiency, while a too
small τ cannot extract enough information. In this paper, the scale factor τ is selected as 20.

3.5. Comparison between IMFE and MFE

In order to verify the effectiveness of IMFE method, a synthetic noise signal: white noise and 1/f noise are utilized to conduct
the comparisons between IMFE and MFE methods. The numerical results of the white noise and 1/f noise are plotted in Fig. 3
(a) and (b), respectively. Also we conduct the Fourier transform to the white noise and 1/f noise, which are illustrated in Fig. 3
(c) and (d), respectively. As can be seen from their spectrum, the 1/f noise is more complex than white noise.

To begin with, the IMFE and MFE are employed to analyze the white and 1/f noises across 20 scales and the obtained
results are shown in Fig. 4, fromwhich the following conclusions can be drawn. Firstly, FuzzyEn values of 1/f noise are larger
than that of white noise over the whole scales except the beginning scale factors (τ¼1, 2 and 3), which agrees with the
intuitive results drawn in the spectrum analysis results. Secondly, the FuzzyEn curve of white noise obtained by IMFE
method decreases monotonically with τ increasing, whereas the FuzzyEn curve obtained by traditional MFE method fluc-
tuates significantly [17]. Tirdly, the FuzzyEn curve of 1/f noise obtained by IMFE method is more smooth and steady than
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that using MFE method. The conclusions indicate that the IMFE method has a more stable performance than traditional MFE
method, which can provide a more accurate FuzzyEn estimation of nonlinear and non-stationary signals.

Then to further investigate the estimate performance of the IMFE and MFE methods, we apply IMFE and MFE to analyse 100
independent white and 1/f noises, each of which contains 1000 data points. The error bar calculated from 100 independent noise
signals at each scale are shown in Figs. 5 and 6, respectively. It is well known that the error bar at each scale indicates the standard
deviation (SD) of an FuzzyEn value. As seen the error bar of 1/f noise in Fig. 5, the fluctuation of the mean curve obtained through
MFE is larger than that of IMFE and the SD of MFE is more than that of IMFE. For white noise in Fig. 6, although the mean curve
obtained using MFE and IMSE are nearly equal, the SD of IMFE is less than that of MFE. The comparison results indicate that IMFE
has a better performance in estimating the complexity, which can provide a more precise estimation of entropy.

Furthermore, the effect of data length on the MFE and IMFE is also investigated, FuzzyEn is tested on simulated white and
1/f with various date lengths (N¼500, 1000, 1500, 2000, 3000, 5000, 8000, 10,000) at the scale 20 (τ¼ 20). 100 groups of
independent noises are employed in each case to calculate the means. The results are listed in Table 1.

From Table 1, it can be concluded that MFE is susceptible to be affected by the data length, especially when the data
length is smaller than 2000. Compared with MFE, IMFE method has some superiority in avoiding the undefined FuzzyEn and
providing a more reliable and accurate estimation. Hence, the IMFE is utilized to extract fault features from the nonlinear
and non-stationary rolling bearing vibration signal under various operating conditions.
4. Feature selection using laplacian score algorithm

The fault features extracted by IMFE in 20 scales are high dimension, if they are all fed into multi-classifier to complete
the fault patterns identification, it will not only enhance computation time but also result in information inefficient for
rolling bearing fault diagnosis. Therefore, it is still necessary for us to refine the obtained feature vectors.

To avoid the drawbacks of high dimension of feature vector, the Laplacian Score (LS) algorithm is introduced to auto-
matically choose the optimum feature vectors according to their importance and distinguishability. LS method is funda-
mentally founded on Laplacian Eigenmapsand Locality Preserving Projection. The basic idea of LS is to evaluate the
importance of a feature by its power of locality preserving.

Givenm data and each data has n features. Suppose that Lr represents the Laplacian Score of the rth feature, r¼1,…, n. Let
fri represents the ith sample of the rth feature, i¼1, 2, …, m. The main calculation procedures of LS algorithm can be written
as follows [20,21]:

(1) Construct a nearest neighbor graph Gwithm nodes, where the ith node corresponds to xi. Then and edge is put between
nodes i and j, if xi and xj are “close” (for example xi is among k nearest neighbors of xj, or xj is among k nearest neighbors
of xi). When the label information is available, one can put an edge between two nodes sharing the same label.
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Fig. 10. The rolling bearing experiment system and its sketch.
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(2) The weight matrix Sij of the models can be defined as

Sij ¼ e
‖xi � xj‖

t if nodes i and j are connected
0 otherwise

(
(27)

where t is a suitable constant.
(3) For the rth feature, fr can be expressed as

fr ¼ ½f r1; f r2;⋯; f rm�T ;D¼ diagðSIÞ; I¼ ½1;⋯;1�T ; L¼D�S (28)

where the matrix L is called graph Laplacian. Let

~fr ¼ fr�
fTrDI
ITDI

I (29)



Table 3
The detailed description of the experimental data sets.

Fault class Fault diameter(mm) Fault severity Number of training data Number of test data Class label

IRF 0.1778 Slight 10 40 1
0.3556 Medium 10 40 2
0.5334 Severe 10 40 3

ORF 0.1778 Slight 10 40 4
0.3556 Medium 10 40 5

BF 0.1778 Slight 10 40 6
0.7112 Very severe 10 40 7

Normal 0 10 40 8
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(4) The Laplacian Score of the rth feature can be written as follows:

Lr ¼
P

ij
ðfri � frjÞ2Sij
VarðfrÞ ¼ ~fr

T
L ~fr

~fr
T
D̃fr

(30)

where Var(fr) is the estimated variance of the rth feature value.
It should be noted that the bigger Sij value indicates the smaller the Laplacian Score value, which is the characteristic of

good feature. Therefore, the scales with lower LS values are taken as the important feature vectors.
In order to illustrate the advantage of LS approach for feature selection, we conduct the comparisons among LS, Fisher

score (FS) [33] and Relief [34]. Meanwhile, the UCI database [35]: wine and segment are utilized to estimate the clustering
performance of each feature ranking technique, whose information is summarized in Table 2.

The ISVM-BT is used as the classifier here, and the classification results of different feature selection methods varied with
the number of features are presented in Fig. 7. It can be clearly observed from Fig. 7 that the feature ranking techniques can
significantly affect the classification accuracies. Compared with FS and Relief, LS method has superiority in ranking the
features over the most number of selected features (such as N: 3–8). In contrast, FS and Relief methods result in lower
accuracy and such performance might be of limited use in roller bearing pattern recognition. This is due to the basic idea of
LS is to evaluate the importance of a feature by its power of locality preserving, which can choose the optimum feature
vectors according to their importance and distinguishability.

LS method not only avoids the high dimension but also provides important information about the feature vector. In this
manner, LS method is applied to select the important feature vector, leading to obvious enhancement of the identification
efficiency.
5. The improved SVM-BT

Support Vector Machines based Binary Tree (SVM-BT) takes the advantage of both the efficient computation of the tree
architecture and the high reorganization accuracy of SVMs. For a k-classes problem, only (k�1) SVM classifiers are needed
by applying the binary tree architecture. Nevertheless the super performance of SVM-BT on the pattern recognition is
heavily dependent on the sub-classifiers' assignment in hierarchical structures of BT. There are two common approaches to
design the hierarchical structures of BT. The first one is applying the average distances between classes[26]. Namely the
bigger average distances value indicates the better separability and then it should be put at the top of the hierarchical
structures of BT. The second one is applying distribution information inside one class[27], in which the class with wider
sample distribution will be put at the top of the hierarchical structures of BT. Based on the merits of the two approaches, a
new approach called improved SVM-BT(ISVM-BT) is proposed to design the hierarchical structures of SVM-BT, which is
based on the combination of average distance between classes and sample distribution inside one class. The major
advantage of the ISVM-BT lies in the combination of the two separability measures in a single SVM-BT, which can provide a
more comprehensive reflection of sample separability and enhance the accuracy of pattern recognition significantly.

In this paper, the Euclidean distance(ED) is selected as the two separability measure standards. The proposed approach to
design the hierarchical structures of SVM-BT consists of two algorithms, namely the average intra-class ED and the average
inter-class ED. In fact, the average intra-class ED and the average inter-class ED represent the average distance between
classes and sample distribution inside one class, respectively.

Algorithm 1. The average intra-class ED

Give a data set inside one class {ai, i¼1, 2, …ka}, the definition of the average intra-class ED is described as follows:
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Fig. 11. The vibration acceleration signal of each rolling bearing condition.
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Firstly, calculate the intra-class ED of one sample:

da
ij ¼ dðai; ajÞ (31)

Secondly, calculate the intra-class ED among different samples inside one class.

Da
i ¼

1
ka�1

Xka
j ¼ 1

daij; ia j (32)

Thirdly, calculate the average intra-class ED of one class.

AVa ¼ 1
ka

Xka
j ¼ 1

Da
i (33)

Note that the smaller average intra-class Euclidean distance value suggests more concentrated distribution.

Algorithm 2. The average inter-class ED

Give two classes sample sets: {ai, i¼1, 2,…ka} and {bi, i¼1, 2,…, kb}, (Note that aiAclass A, bjAclass B). The average inter-
class ED is defined as following.

Firstly, calculate the inter-class ED among different categories:

dab
ij ¼ dðai;bjÞ (34)

Secondly, calculate the average ED from sample ai to all samples of class B:

Dab
i ¼ 1

kb

Xkb
j ¼ 1

dab
ij (35)

Thirdly, calculate the average inter-class ED between class A and class B:

AVIab ¼ 1
ka

Xka
i ¼ 1

Dab
i (36)

Note that the bigger average inter-class ED value indicates higher divisibility between classes.
The aim of this study is to develop a separation criterion, which enables separate the class with bigger distance from

other classes and wider sample distribution within itself at first. Hence, the separability measure IA,B can be defined by the
combination of AVab and AVIab using the weight K, it can be written as

IA;B ¼ AVIabþKðAVaþAVbÞ (37)

where AVIab represents the average inter-class ED between class A and class B, AVa and AVb represent the average intra-class
ED inside class A and class B, K is the weight coefficient.

Based on the IA,B, the detailed procedures of the ISVM-BT can be described as follows:

(1) According to the training data, the average intra-class ED AV and inter-class ED AVI are calculated, and then give the
range of the weight K. (In this paper, Kn¼2n, �4rnr4, n is integer value);
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Fig. 12. LMD decomposition results of the vibration acceleration of bearing with inner race fault condition. (For interpretation of the references to color in
this figure, the reader is referred to the web version of this article.)
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(2) Compute the separability measure SI¼ Ii,j, i,j¼1,2,…,N, ia j for a given K and then construct the symmetric matrix as
follows:

SI¼

0 I1;2 L I1;N�1 I1;N
I2;1 0 L I2;N�1 I2;N
M M 0 M M

IN�1;1 IN�1;2 L 0 IN�1;N

IN;1 IN;2 L IN;1N�1 0

2
6666664

3
7777775

(38)

It should be noted that: the weight K selection is based on the index of 2, and the initial value of weight K is 2�4.
(3) Ensure hierarchical structures of BT by sorting the summation value of each row of the matrix SI;
(4) Change the weight Kn, and then repeat the steps (2) and (3) to generate a series of hierarchical structures of BT;
(5) Select one hierarchical structures of BT with weight Kn, and establish sub-classifiers of SVM according to the hierarchical

structures. For k-class task, it will generate k-1 sub-classifiers.
(6) For a certain hierarchical structures of BT with weight Kn, adopt the testing data to test the SVM-BT, generating a testing

accuracy rate.
(7) Let n¼nþ1 and repeat steps (5) and (6) until n¼4, then stop.
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(8) All the testing accuracy rates for weight Kn can be obtained, and determine the optimum hierarchical structures of BT
according to the highest testing accuracy rate.

Based on the above steps, the framework of the ISVM-BT calculation procedures are illustrated in Fig. 8.
The kernel function plays a crucial role in SVM, which can not only reduce the computational load but also solve the

high-dimensional transformation effectively. There are different kernel functions used in SVM, the most common kernel
functions used in SVM are listed as follows [36,37]:

(i) Polynomial kernel

Kðx; xiÞ ¼ ðoxUxi4þcÞd (39)

(ii) Linear kernel

Kðx; xiÞ ¼ oxUxi4 (40)

(iii) Radial basis function (RBF) kernel

Kðx; xiÞ ¼ expf�r‖x�xi‖2g (41)

where γ40, and d and γ are the kernel parameters.
In these kernel functions, RBF kernel is employed in this paper due to its universal application and good performance

[38,39].
In the experiments, the parameters: penalty parameter C and the kernel parameter γ of SVM are optimized by Genetic

Algorithm (GA) algorithm for each multi-class SVM method. The parameters are set in the following intervals: C (0.1, 1000)
and γ (0.001, 10) according to the literature [40]. In order to achieve better estimates of the error rates of the classifiers, 10-
fold cross-validation (CV) method is employed. For the 10-fold CV scheme, the training dataset is randomly partitioned into
ten subsets. Each sub-set is validated on the classifier that was trained using the other nine subsets. The process was
repeated 10 times, the error rate of the classifier is then given by the average of the error rates taken in each test fold. Hence,
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GA results are implemented 10 times for each training–validation–test set partition of a dataset with different initial
populations. Then select the best parameter ½γ;C� according to the highest cross-validation accuracy on the validation set
(average of the 10 classification accuracy rates).
6. The proposed fault diagnosis method and experimental validation

6.1. The fault feature extraction based on LMD and IMFE

Based on the superiorities of LMD, IMFE, LS and SVM-BT, a novel rolling bearing fault diagnosis approach is presented in
this paper, it can be summarized as follows:

(1) The measured vibration signals are firstly preprocessed by LMD method and a set of PF components are obtained.
(2) Calculate and sum the normalized kurtosis value of each PF under different conditions and then choose the OPF with

highest normalized kurtosis value;
(3) IMFE method is employed to calculate the selected OPF components under different scales. In the whole paper, we

define the scale factor τ from 1 to 20(τ¼1–20) and the FuzzyEn values of each coarse grained time series acquired by Eq.
(26) is computed with the dimension m¼2 and tolerance r¼0.15nSD.

(4) LS approach is utilized to sort the 20 feature vectors from low to high values according to their importance and
divisibility.

(5) Choose the first 5 scale factors with least LS values to construct the new fault feature vector;
(6) The obtained new fault features are fed into fault classifier ISVM-BT to identify the different health conditions.

A flow chart of the proposed algorithm is presented in Fig. 9.
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Fig. 19. Classification results of ISVM-BT using MFE method.

Table 4
Classification accuracy of each algorithm using IMFE and MFE as feature extractor.

Methods OAO OAA Intra-BT Inter-BT ISVM-BT
R (%) R (%) R (%) R (%) R (%)

IMFE 99.38 98.75 99.06 99.38 100
MFE 98.43 96.88 98.12 98.43 98.75

Table 5
Confusion matrix for OAA and MFE method.

Slight IRF Medium IRF Severe IRF Slight ORF Medium ORF Slight BF Very severe BF Normal Classified as

35 0 0 0 0 5 0 0 Slight-IRF
2 38 0 0 0 0 0 0 Medium-IRF
0 0 40 0 0 0 0 0 Severe-IRF
0 0 0 40 0 0 0 0 Slight-ORF
0 0 0 0 40 0 0 0 Medium-ORF
0 0 0 0 0 40 0 0 Slight-BF
0 0 0 3 0 0 37 0 Very severe BF
0 0 0 0 0 0 0 40 Normal

Table 6
Recognition accuracy of each class obtained using OAA method.

Actual class Recognition accuracy (%)

Slight-IRF Medium-IRF Severe-IRF Slight-ORF Medium-ORF Slight-BF Very Severe BF Normal

Slight-IRF 87.5 0 0 0 0 12.5 0 0
Medium-IRF 5 95 0 0 0 0 0 0
Severe-IRF 0 0 100 0 0 0 0 0
Slight-ORF 0 0 0 100 0 0 0 0
Medium-ORF 0 0 0 0 100 0 0 0
Slight-BF 0 0 0 0 0 100 0 0
Very Severe BF 0 0 0 7.5 0 0 92.5 0
Normal 0 0 0 0 0 0 0 100
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6.2. Experimental validation

The purpose of this section is to examine the utility of the proposed algorithm for analyzing the real rolling bearing
vibration data. The test bearing data are obtained from the Bearing Data Center of Case Western Reserve University Bearing



Table 7
The accuracy rates of the SVM outputs with different number of inputs.

The number of inputs 2 3 4 5 6

Accuracy rate (%) 100 96.88 100 100 98.12

Table 8
Comparisons between the current work and some published work.

References Machine
element

Fault types Fault sever-
ity levels

Feature extraction
method and Classi-
fier used

Classified
states

Maximum clas-
sification
efficiency

Denoising.
technique

Feature
selection
method

Wu et al. [18] Rolling element
bearings

ORF, IRF and BF Single MPE and SVM 4 100% NA NA

Vakharia et al.
[44]

Rolling element
bearings

ORF, IRF and BF Single Different attribute
filters and SVM,
ANN

4 97.5% Wavelet
denoising

NA

Liu et al. [7] Rolling element
bearings

ORF, IRF and BF Single MSE and SVM 4 100% LMD denoising NA

Li et al. [43] Rolling element
bearings

ORF, IRF and BF Single MPE and SVM 4 100% LMDdenoising LS

Shama et al.
[42]

Rolling element
bearings

ORF, IRF and BF Multiple Different attribute
filters and SVM,
ANN

7 100% NA Three
attribute
filters

Li et al. (Pre-
sent work)

Rolling element
bearings

ORF, IRF and BF Multiple IMFE and improved
SVM-BT

8 100% LMD denoising LS

Note: MPE is multiscale permutation entropy, ANN is artificial neural network and LMD is local mean decomposition.
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Data Center [41]. Fig. 10 gives the experiment system and its sketch. The 6205-2RS JEM SKF deep groove ball bearing is used
in this test. The vibration signals of bearing were collected under four conditions including inner race fault condition, outer
race fault condition, ball fault condition and the normal condition. In each bearing fault condition, the bearing was seeded
with signal point using the electro-discharge machining with fault diameters of 0.1778 mm, 0.3556 mm, 0.5334 mm and
0.7112 mm. An accelerometer was mounted on the front section end to collect the vibration signal. Besides, the sampling
frequency is 12,000 Hz and the shaft rotating speed of the motor was 1797 rpm without motor load.

The experimental vibration signals are composed of four fault categories and each fault category contains different levels
of severity. Based on the different fault categories and various fault degrees, actually, the experimental analysis is an eight-
class recognition problem. The vibration signals in the experiment are split into several non-overlapping segments with the
length of 1000. Hence, 50 samples are obtained for each bearing condition, and there are total 400 samples, out of which 80
samples will be randomly selected to train the ISVM-BT classifier and the residual 320 samples are used for testing. The
detailed numbers of samples description for each health condition are shown in Table 3. The time domain waveforms of
bearing vibration signals with different fault categories and severities as well as normal condition are illustrated in Fig. 11.

Since the measured vibration signal of mechanical system with fault often represents the nonlinear and non-stationary
characteristics, it is hard to distinguish the fault categories from each other only according to the time domain waveforms in
Fig. 11. Hence, it's necessary to preprocess the original vibration signals by applying LMD method. The vibration signals
under different health conditions can be decomposed into a sum of PF components by using LMD method. To save space,
only the decomposition results of inner race bearing fault with slight severity are shown in Fig. 12 as a representative.

Naturally, according to the flowchart of the proposed fault diagnosis model, the kurtosis criterion is then used to choose
the optimum PF (OPF) component with highest normalized kurtosis value. Take the rolling bearing with inner race fault for
example, the normalized kurtosis value of each PF component is 0.3298, 0.2457, 0.1553, 0.1055, 0.0918, 0.0757, respectively.
It is easily observed that the PF1 component has the highest normalized kurtosis value, thus the PF1 component (denoted in
red color) for different conditions are selected as the OPF component for further analysis.

IMFE method is then utilized to extract the fault features from the selected OPF component under 20 scales for each
bearing condition, which means the dimension of obtained feature space is 20 in the beginning analysis. The IMFEs over 20
scales of the bearing data under 8 health conditions are presented in Fig. 13. It can be seen from Fig. 13 that the rolling
bearing with normal condition has the largest FuzzyEn values among the whole scales except the first scale, which indicates
the normal bearing condition is more complex than the defective bearing conditions. Moreover, the FuzzyEn values of
rolling bearing with ball fault is larger than that of rolling bearing with inner race fault and outer race fault, and the rolling
bearing with outer race fault has the relative smallest FuzzyEn values (the order of FuzzyEn from high to low is ball
fault4 inner race fault4outer race fault).
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It can be explained in the following way [20]. When the rolling bearing works in a healthy condition, the vibration signals
over most scales are random and irregular. Therefore it has lower self-similarity and higher probability to generate new
modes, leading to larger FuzzyEn values. Whereas, the vibration signals of rolling bearing with fault conditions are no longer
random, which have lower probability to generate new modes, leading to lower FuzzyEn values. For further explanation of
the arrangement of the rolling bearing with defective conditions, it is well known that the rolling elements and inner race
are both rotating with the roller of the motor, moreover, the rolling element has its own rotation, whereas, the outer race is
fixed. Therefore, the vibration signals of rolling bearing with ball fault are more random and complex than inner race fault,
leading to larger FuzzyEn values. Also the FuzzyEn values of rolling bearing with inner race fault are larger than that of outer
race fault.

Based on the discussion above, although IMFE method can be employed to characterize the complexity and discriminate
the normal bearing condition and three fault categories with slight severity, it is still hard to distinguish the same fault
category with different degrees (such as the inner race fault with medium and serve degrees) and different fault categories
with various fault degrees (such as outer race fault with medium degree and ball fault with very serve degree) only from the
IMFE curves in Fig. 13. Therefore, a multi-fault classifier is applied to automatically recognize the various fault categories and
severities of rolling bearings. In this paper, a multi-fault classifier based on ISVM-BT is used to fulfill eight classes' classi-
fication, which has a higher classification accuracy compared with other classifiers.

However, if IMFE over 20 scales are all taken as the feature vector, it will be time-consuming as well as the classification
accuracy rate decreasing. In this paper, the LS algorithm is utilized to rank feature according to their importance. According
to the procedures described in Section 4, the new order of IMFE can be listed as follows:

LS11oLS6oLS7oLS15oLS12oLS14oLS13oLS10oLS5oLS4oLS16oLS8oLS17oLS18oLS9oLS19oLS20oLS2oLS1oLS3.
Note that the subscript of LS is the scale factors and the IMFE values are ranked and replotted in Fig. 14. Then the first

front five features (τ¼ 11;6;7;15;12) with most important information are chosen as new feature vectors. Naturally, after
calculating the feature vectors using IMFE and LS methods, the ISVM-BT classifier is needed to automatically complete the
fault conditions identifications. Besides, 80 samples are selected randomly from the whole data set as the training data and
the residual 320 samples as the testing data, then the training samples are used to train the ISVM-BT to get the optimum BT
architectures. Based on the procedures described in Section 5, the average intra-class ED AV and inter-class ED AVI are firstly
calculate to ensure the hierarchical structure of BT by using weight K(K¼2�4, 2-3,…, 23, 24). The optimum hierarchical
structure of BT is shown in Fig. 15.

Furthermore, the 10-fold CV has been used in this paper to give a more accurate estimate of the performance for our
method. The 10-fold CV is a standard way of predicting the error rate of a learning technique [42], it can give statistically
unbiased result and avoid overfitting problem while dividing data into training and testing set. The classification results of
the proposed method using 10-fold CV method are shown in Fig. 16, which includes the ISVM-BT outputs and the desired
outputs about the training and testing samples. As can be seen, there are no training and testing samples misclassified and
the average recognition accuracy reaches to 100 percent, it is demonstrated that the new proposed approach performs a
well classification result, which is exactly suitable and effective in rolling bearing fault diagnosis.

To validate the necessity of preprocessing the rolling bearing vibration signals, IMFE method is directly used to calculate
the FuzzyEns of the original signals. Through the same process as the above-mentioned in the proposed method (such as the
same number of training and testing data and ISVM-BT classification process), the desired outputs and actual outputs of
ISVM are shown in Fig. 17, it can be observed that 3 testing samples with inner race fault are misclassified into the wrong
fault degrees, with a classification accuracy of 99.06 percent, which is lower than the proposed method in this paper.
Therefore, the comparison results demonstrate the neccesanility of preprocessing of original vibration signals using LMD
method. It is because that the interference noise can be restrained and the fault information can be highlighted by LMD
decomposition, it is essential to decompose the vibration signals before extracting fault characteristics.

In order to verify the superiority of IMFE, a detailed comparison is made between IMFE and MFE by analyzing 50
independent PF1 components under 8 health bearing conditions. Fig. 18 represents the means and SDs of the corresponding
features obtained using the IMFE and MFE methods. The following conclusions can be drawn from Fig. 18. Firstly, for each
rolling bearing health condition, the mean curves of the FuzzyEn values derived from IMFE are really close to those derived
from MFE. Secondly, compared with MFE method, smaller SDs of the features can be obtained by using IMFE method,
especially when the scale factor is over 10. The above conclusions are consistent well with the analysis results of simulations
using white and 1/f noises.

To further illustrate the fault features extracted using IMFE have higher distinguishability than that of MFE, the fault
features obtained by MFE method are also fed into a classifier to distinguish the various health bearing conditions. The
number of training and testing data and other conditions remains the same as the mentioned above and the classification
accuracy based on MFE is 98.75 percent, with 4 testing samples misclassified. The ISVM-BT outputs for training and testing
samples are shown in Fig. 19. It can be easily observed from Fig. 19 that two testing samples with slight inner race fault are
misclassified into slight ball fault and two testing samples with very serve ball fault are misclassified into slight outer
race fault.

The comparison results provide compelling evidence that IMFE can provide much more accurate estimation of entropy
values with higher distinguishability than MFE. The above analysis results can be explained by the fact that when MFE
method is used to analyze the short time series, the calculation points decrease exponentially with scale factor increasing, it
can not only give rise to questionable and uncertain estimation of entropy values but also increase the SDs of features. The
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proposed IMFE method can avoid the above drawbacks of MFE effectively and obtain more precise estimation of entropy,
generating higher classification accuracy than that of MFE.

Eventually, for comparison purpose, the other multi-fault classifiers based on SVM such as: OAO, OAA, Intra-BT, Inter-BT
and ISVM-BT are all used to solve the eight-class recognition problem. Besides, the training and testing data are the same in
each algorithm. The classification accuracy of each multi-fault classifier using IMFE and MFE as feature extractor are
summarized in Table 4.

It can clearly observed in Table 4 that the highest classification accuracy of 100 percent is obtained using the proposed
method (ISVM-BT and IMFE) and the classification results of the proposed method are shown in Fig. 16. While the classi-
fication accuracy of 98.75 percent is obtained using ISVM-BT and MFE with 4 testing samples misclassified, which is shown
in Fig. 19. Meanwhile, the least classification accuracy of 96.88 percent is obtained using the OAA and MFE, with 10 testing
samples misclassified. To illustrate the reasons for the above results, the confusion matrix for OAA and MFE method is
presented in Table 5. Meanwhile, Table 6 shows the detailed recognition accuracy of each class obtained using OAA method.

Seen from Table 5, it is clearly observed that five testing samples with slight inner race fault are misclassified into slight
ball fault, two testing samples with medium inner race fault are misclassified into slight degree and three testing samples
with very serve ball fault are misclassified into slight outer race fault.

It can be explained in the following way. Firstly, compared with IMFE methods, MFE method could produce uncertain and
unsatisfactory analysis for short-term data. When MFE is applied to analyze the short time series, the calculation points decrease
exponentially with scale factor increasing, it can not only give rise to questionable and uncertain estimation of entropy values but
also increase the SDs of features, which would result in lower distinguishability. On the other hand, the comparison between the
classifiers OAA and ISVEM-BT indicate that OAA has lower classification performance in distinguishing different categories and
severities of rolling bearings with the same input features. This would further reduce the identification accuracy.

Through comparing the classification results, the conclusions can be got as follows. To begin with, the classification
accuracy rate using IMFE is higher than that of MFE in each multi-fault classifier, which reinforces superiority of IMFE over
MFE. Secondly, of all the multi-fault classifiers, ISVM-BT has the highest classification accuracy rate, which verifies the
advantage of ISVM-BT in classification performance. Lastly, the results rule out the possibility that the above advantages of
the proposed approach are a result of occasionality. Therefore, the comparison results demonstrate that the proposed
approach is effective in detecting rolling bearing faults.

Also, a basic problem about the number of the selected new features as inputs of ISVM-BT needs to be addressed here.
The training accuracy rates with different number of inputs are listed in Table 7. As we can see, 4 or 5 is the suitable number
to conduct the fault identification with a higher accuracy rate, while smaller or larger number can both result in a lower
accuracy rate, which can be partly explained by the fewer features with fewer fault information, while more features with
information redundancy.

In order to illustrate the potential application of proposed methodology in bearing fault diagnosis, a comparative study
between the present work and published literature is presented in Table 8 [18,42,43,44]. The comparing items include the
machine elements used, fault type, fault severity levels, feature extraction method and classifier used, classified states,
maximum classification efficiencies, denoising technique and feature selection method.
7. Conclusions

A novel rolling bearing fault diagnosis algorithm based on LMD, IMFE, LS and ISVM-BT is presented in this paper. In the
proposed method, LMD is employed to preprocess the vibration signal, resulting in a sum of PF components. Then, the
optimum PF (OPF) component is selected from the PF components according to their kurtosis features. IMFE is taken as
the feature extractor to calculate the multiscale FuzzyEn of the OPF component. Furthermore, to solve the selection
problem of the obtained features, the LS approach is introduced to automatically select the best scale factor according to
their importance and distinguishability. In addition, the ISVM-BT classifier is adopted to fulfill the fault classification. The
preliminary simulation demonstrates that the IMFE has a more stable performance and higher divisibility for short time
series analysis. Finally, the experimental rolling bearing fault diagnosis confirms that the proposed approach has superior
performance in identifying different categories and severities of rolling bearings. Moreover, the proposed method is
promising, which is not limited to rolling bearing fault diagnosis but could be applied in fault diagnosis of other
mechanical equipment.
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