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� The presented framework can predict the properties of HFRC with the aggregate and ITZ effects.
� The properties of concrete and FRC can be calculated by the proposed micromechanical models.
� Different fibers can be considered by the multi-level homogenization scheme step by step.
� The homogenization sequence for different fibers has little influence on the predicting results.
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a b s t r a c t

Very few micromechanical models are available for hybrid fiber reinforced concrete (HFRC), although it
has been widely applied in many structures. To quantitatively predict the effective properties of HFRC
with the aggregate and interfacial transition zone (ITZ) effects, a multi-phase micromechanical frame-
work is proposed based on the material’s microstructures. In the proposed model, the multi-types of
fibers, aggregate, cement paste and ITZ are comprehensively considered. The volume fraction of the
ITZ is analytically calculated based on the aggregate grading. Multi-level homogenization schemes are
presented to predict the effective properties of HFRC. By utilizing the generalized self-consistent
approach, the equivalent matrix composed by the aggregate, cement and the ITZ between them are
obtained with the first and second level homogenization procedures. Through adding different types of
fibers step by step into the equivalent matrix, the properties of HFRC are reached with the modifications
to the Halpin-Tsai model. To demonstrate the feasibility of the proposed micromechanical framework,
the predictions herein are compared with the experimental data, the Voigt upper bound and the Reuss
lower bound. Finally, the influences of aggregate, ITZ, multi-types of fibers on the properties of HFRC
are discussed based on the proposed micromechanical model.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Fiber reinforced concrete (FRC) has been widely applied in
many structures, such as frames, slabs, and tunnels, because the
fiber addition in concrete can reduce the emergence and propaga-
tion of cracks, improve the mechanical behaviors, enhance the
material’s ductility, the impact resistance and the durability from
the literatures [1–23].
Owing to the well-established performance of FRC, major
efforts have been dedicated during the last decade to the modeling
of its behavior. Empirical formulations to evaluate the elastic
properties of concrete have been suggested by [24–28]. These
formulations are obtained by means of laboratory tests, which is
the phenomenological way to formulate the behavior of FRC. An
attractive alternative to handle this kind of problem is provided
by the framework of micromechanics, which reduces the labora-
tory expenses, meanwhile discloses the enhancing mechanism of
fibers from the micro-scale level [29–33]. Teng et al. proposed a
dedicated empirical formula for calculating the elastic moduli of
steel fiber reinforced concrete(SFRC) through adopting the
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equivalent inclusion method [30]. Dutra et al. [29] proposed a
micromechanical model for FRC and the linear elastic behavior is
examined by implementation of a Mori–Tanaka homogenization
scheme. Gal and Kryvoruk [31] employed the finite element
method to analyze the properties of FRC using a two-step homog-
enization approach, where the interfacial transition zone (ITZ)
between the aggregate and mortar is considered by a microme-
chanical homogenization process. Guan et al. [32] presented a
stochastic micromechanical model to characterize the elastic mod-
ulus and Poisson’s ratio of FRC.

Recently two or more types of fibers are usually added into the
concrete to improve the material’s performance, which is named
by Hybrid fiber reinforced concrete (HFRC) [33–40]. Unfortunately,
the current micromechanical models for FRC only consider one
kind of fiber [29–32], very few micromechanical models for HFRC
can be reached according to the author’s studies. Furthermore, pre-
sently little attention is paid to the quantitative influence of the
aggregate and ITZ on the properties of FRC [31], not to mention
on those of HFRC. To address these issues in this extension, a mul-
tiphase micromechanical framework based on the material’s
microstructure is proposed to analytically investigate the mechan-
ical performance of HFRC considering the aggregate and ITZ effects.
A newmulti-level homogenization scheme is presented to consider
the effects of multi-types of fibers. Meanwhile, quantitative influ-
ences of aggregate and ITZ on the properties of HFRC are taken into
consideration with the proposed homogenization framework and
analytical calculations for the ITZ volume fraction.

The rest of this paper is organized as follows. In Section 2, a mul-
tiphase micromechanical model for the HFRC is presented based on
the material’s microstructures. Section 3 introduces the microme-
chanical representations for the ITZ, including its properties and
the analytical calculations for its volume fractions. In Section 4,
multilevel homogenization procedures are proposed to estimate
the effective properties of HFRC. Numerical examples including
experimental validations and comparisons with existing models
are presented in Section 5, which also discusses the influences of
the aggregate, ITZ and fibers on the macroscopic properties of HFRC
based on the proposed micromechanical framework in this study.
And some conclusions are reached in the final section.
Aggregate
ITZ

Bulk cement paste

 Hybrid fibers
(like steel fiber,carbon fiber, etc)

Fig. 1. Multi-phase micromechanical model for hybrid fiber reinforced concrete
(HFRC).
2. Multiphase micromechanical model for HFRC

2.1. Microstructure of HFRC

Concretes are heterogeneous in nature and generally consist of
different constituents or phases, such as aggregate, cement paste
and C-S-H [41–45]. Further, the constituents of materials can be
treated as homogeneous at a certain length scale, but when
observed at a smaller length scale, the constituents themselves
may become heterogeneous, i.e. a multi-scale phenomenon for
heterogeneous concrete. For examples, the concrete can be treated
as the homogenous material at the macroscopic material. At the
lower level, the coarse aggregates are embedded in the mortar
matrix, which can be treated as two-phase composite composed
of the cement pastes and the sand particles. Moreover, the cement
pastes are formed by homogeneous C-S-H with large CH crystals,
aluminates, cement clinker and water [41,42]. Due to these hetero-
geneous and multi-scale natures, it is usually impractical and often
impossible to describe all the precise characters of the microstruc-
ture of concrete. To investigate the ITZ effects on the concrete
properties, the concrete are usually described by three phase mate-
rial consisting of the bulk cement phase, the aggregates (sand and
rock) and the ITZ between them [43–45], which implies that the
lower length scale structures, like C-S-H, CH crystals and alumi-
nates, etc., are not taken into considerations.
To predict the properties of HFRC with the ITZ effects, the
microstructures of the HFRC are characterized by embedding the
hybrid fibers into the three phrase material proposed by [43–45],
which means HFRC is described by a multiphase composite formed
by the bulk cement paste, aggregates, different types of fibers and
ITZs in the present study.

2.2. Micromechanical model for hybrid fiber reinforced concrete

According to the previous studies [42–45], to simply the analy-
sis, the shape of the aggregate is presumed to be spherical,
although the geometry of the aggregates is quite complex in real-
ity. The fibers are randomly distributed within concrete. They can
be represented by a set of flat prolate spheroids which differ in ori-
entations [29]. The interfaces between fibers and the cement paste
are presumed to be well bonded [29–31]. Actually, there are ITZs
between the fibers and concrete, which may deteriorate the effec-
tive properties of HFRC [46,47]. In this paper, we follow the
assumption that the interface between the fibers and concrete is
perfect according to many previous researches [29–31]. The quan-
titative effects of these ITZs between the fibers and concrete will be
carefully investigated in our coming works.

Using the aforementioned assumptions, a multiphase microme-
chanical model for HFRC is proposed, as displayed in Fig. 1. The
inner sphere is the aggregate phase, surrounded by a concentric
ITZ shell. The aggregate and the ITZ shells are embedded in bulk
paste matrix, where the shell elements are homogeneous and iso-
tropic in composition and mechanical property. The hybrid fibers
are randomly distributed in the ITZ and bulk paste matrix. By pre-
dicting the effective properties of the proposed model, the HFRC’s
macroscopic mechanical performance is revealed theoretically and
quantitatively from its microstructures. It is noted that the effects
of the different fiber lengths are not taken into considerations for
simplification purposes in this study since they very slightly affects
the moduli of fiber reinforced concrete according to the previous
studies [11,13,25,29,30].
3. Micromechanical representations for the ITZ

3.1. The properties of the ITZ

The restrained placement of cement around aggregates results
in a gradient of porosity, and therefore a gradient of properties,
around each aggregate [48]. It seems reasonable that the ITZ can
be divided into multi-layered spherical shells whose composition
and properties are allowed to vary with distance from the
aggregate surface and with the progress of hydration [43–45,48].
However, it is hard to get the exact gradient of ITZ properties,
and different assumptions for the ITZ properties distribution are
utilized in the previous work [43–45]. For simplifications, the ITZ
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in this paper is represented by a single shell of uniform property as
shown in Fig. 1 based on [49]. Three parameters are utilized to
character its properties, including one geometrical quantity to
describe its thickness and two mechanical constants (the Young’s
modulus and Poisson’s ratio).

3.2. The volume fraction of the ITZ

The high volume fraction of aggregates in a typical concrete
(60–75%) means that the spacing between adjacent aggregates is
only a few times the typical ITZ thickness [48]. The volume fraction
of ITZ is then computed, taking into account the overlapping of ITZ
shells, using the ‘void exclusion probability’ derived by [50] and
applied to concrete systems by [43–45,48,51].

As to the proposed multiphase micromechanical model for
HFRC, the void exclusion probability means the fraction of the bulk
paste, which can be expressed as below [45,48]:

cbk ¼ ð1� cagÞ expð�pqðat þ bt2 þ ct3ÞÞ ð1Þ

a ¼ 4R2

1� cag
ð2Þ

b ¼ 4�R
1� cag

þ 12e2R2

ð1� cagÞ2
ð3Þ

c ¼ 4
3ð1� cagÞ þ

8e2�R
ð1� cagÞ2

ð4Þ

e2 ¼ 2pqR2

3
ð5Þ

where cbk and cag are the volume fractions for the bulk cement paste
and aggregate (sand and rock), respectively; q is the total number of
aggregate per unit volume, and a, b and c are functions of the mean
aggregate radius �R and the mean square aggregate radius �R2 accord-
ing to the aggregate size distribution. According to [45,52], with the
assumption of uniform distribution by volume of aggregates, the
remaining parameters are calculated from aggregate size distribu-
tion as:

q ¼
XM
i¼1

9cagci
4pðr3iþ1 � r3i Þ

ln
riþ1

ri

� �
ð6Þ

�R ¼
XM
i¼1

9cagci
4pq r3iþ1 � r3i

� � riþ1 � rið Þ ð7Þ

R2 ¼
XM
i¼1

9cagci
4pq r3iþ1 � r3i

� � 1
2

r2iþ1 � r2i
� � ð8Þ

where ci is the volume fraction of aggregates with radius ranging
from ri to riþ1. The volume fraction of the ITZ is finally obtained
by simple subtraction:

citz ¼ 1� cag � cbk � chf ð9Þ
where chf is the volume fraction of hybrid fibers. It is the sum for the
volume fractions of different fibers.

4. Estimating the effective properties of HFRC

4.1. Multilevel homogenization scheme for estimating effective
properties

Micromechanical models for estimating the effective properties
of the composite are usually developed by averaging the stress
field and strain field of the material representative volume element
(RVE) featuring a ‘‘mesoscopic” length scale which is much larger
than the characteristic length scale of particles (inhomogeneities)
but smaller than the characteristic length scale of a macroscopic
specimen. Mathematically, this procedure is related to the homog-
enization method [54]. Previously published studies have shown
that a homogenization stepping scheme is an effective way to
obtain the effective properties of multi-inclusion composites
[49,53–73]. The multiphase micromechanical model used in the
present study also employs a multilevel homogenization proce-
dure. First, the three phase sphere model presented by Christensen
and Lo [74] is employed to homogenize the two-phase composite
composed of the aggregate and ITZ into the equivalent inclusions,
as shown in Fig. 2(a). Second, the first equivalent matrix is
obtained by homogenizing the two-phase composite composed
of the bulk cement paste and the equivalent inclusion obtained
in the first level homogenization with Christensen and Lo’s model
[74] again, as exhibited in Fig. 2(b). Due to the spherical symmetry,
the equivalent material present after this homogenization is still
isotropic. Third, by averaging the lower bounds and upper bounds
of the Halpin-Tsai model [75], the effective properties of the sec-
ond equivalent matrix can be obtained by the homogenization of
the two-phase composite composed of the first equivalent matrix
and the first kind fiber, as shown in Fig. 2(c). When the ith kind
of fiber is considered, the (i + 1)th equivalent matrix will be
reached by the (i + 2)th level homogenization with the ith equiva-
lent matrix obtained by the (i + 1)th level homogenization, as dis-
played in Fig. 2(d). If there are n kinds of fibers, the properties of
the HFRC can be calculated by the (n + 2)th level homogenization.
Take the concrete reinforced by the steel and carbon fiber as an
example (n = 2). After the first and second level homogenization,
the first equivalent matrix has been reached. Let’s consider the
steel fiber firstly (i = 1). The second equivalent matrix (composed
by the first equivalent matrix and steel fiber) will be reached by
the third level homogenization with the first equivalent matrix
obtained by the second level homogenization. For the carbon fiber
(i = 2 = n), the properties of the HFRC can be calculated by forth
level homogenization with the second equivalent matrix obtained
by the third level homogenization.

4.2. The first-level homogenization for the equivalent inclusion
composed of aggregate and ITZ

The first-level homogenization employs the three-phase
sphere model to obtain the effective bulk modulus and shear
modulus of the equivalent inclusion. For the two-phase compos-
ite made up of the aggregates (as the inner material) and ITZ
(as the outer material), the effective properties can be reached
based on Christensen and Lo’s work [74], which can be
expressed as below:

KF ¼ Kitz þ
/agðKag � KitzÞð3Kitz þ 4litzÞ

3Kitz þ 4litz þ 3ð1� /agÞðKag � KitzÞ ð10Þ

A
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10=3
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� �
/7=3
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g2/
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� 1
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(a)

Homogenization

(b)
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(c)

Homogenization

(d)

Homogenization

Aggregate ITZ

The first equivalent matrix
The equivalent inclusionBulk cement paste

The equivalent inclusion

The second equivalent matrix
The first equivalent matrix

The first type of fibers

The (i+1)th equivalent matrix
The ith equivalent matrix

The ith type of fibers

Fig. 2. The multilevel homogenization procedures: (a) the first-level: homogeniza-
tion of the aggregate and ITZ; (b) the second-level: homogenization of the bulk
cement paste and equivalent inclusion; (c) the third-level: homogenization of the
first equivalent matrix and the first type of fibers; (d) the (i + 2)-level: homoge-
nization of the ith equivalent matrix and the ith type of fibers. Here i = 1,2. . .n, with
n being the sum of the fiber types. The equivalent HFRC can be reached by the
(n + 2)th-level homogenization.
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where KF and lF are the effective bulk modulus and shear modulus
of the equivalent inclusions after the first level homogenization, /ag

is the volume fraction of aggregates in the two-phase composite
made up of the aggregate and ITZ, Kag , lag and mag (Kitz; litz and
mitz) are the bulk modulus, shear modulus and Poisson’s ratio for
the aggregates (the ITZ).

4.3. The second-level homogenization for the concrete composed of the
cement paste and equivalent inclusion

As to the concrete consisting of the cement paste and the equiv-
alent inclusion, the material’s effective mechanical properties can
be similarly obtained by employing the three-phase sphere model
[74]. Let Kbk, lbk and mbk signify the bulk modulus, shear modulus
and Poisson’s ratio of the bulk cement paste and mF be the effective
Poisson’s ratio of the equivalent inclusions. The effective properties
of the three phase composite, including the aggregates, the ITZ and
the bulk cement paste, can be reached by following alterations to
Eqs. (10)–(18): Firstly, Kitz, litz and mitz (Kag , lag and mag) in Eqs.
(10)–(18) should be replaced with Kbk, lbk and mbk (KF ; lF and
mF), respectively. Secondly, KF and lF should be turned into the
effective bulk modulus and shear modulus of the three phase com-
posite, denoted by KS and lS, respectively. Thirdly, /ag should be
replaced by /F , which can be defined by Eq. (19) as below.

/F ¼
cag þ citz

cag þ citz þ cbk
ð19Þ

After performing the above modifications and replacing Eq. (18)
with Eq. (19), the effective properties of the first equivalent matrix
(which is concrete) made up of the aggregates, the ITZ and the bulk
cement paste can be quantitatively reached with the second level
homogenization.

4.4. The homogenization for the HFRC

There are usually two or more than two kinds of fibers, such as
the steel fiber, polypropylene fiber and carbon fiber, in the HFRC.
The different fibers are taken into considerations by averaging
the lower bounds and upper bounds of the Halpin-Tsai model
[75]. Take the steel fiber as the first type inclusion. The second
equivalent matrix can be reached through homogenization of
two-phase composite made up by the first equivalent matrix and
the steel fiber inclusion. According to [30,75,76], the lower and
upper bounds for the effective properties of the steel fiber rein-
forced concrete (the second equivalent matrix) can be expressed
as follows:

Kl
T1 ¼ KS

1þ nk1gk1/st

1� gk1/st
; Ku

T1 ¼ KS
1þ nkugku/st

1� gku/st
ð20Þ

ll
T1 ¼ lS

1þ nl1gl1/st

1� gl1/st
; lu

T1 ¼ lS

1þ nluglu/st

1� glu/st
ð21Þ

gk1 ¼ Kst=KS � 1
Kst=KS þ nk1

; gku ¼ Kst=KS � 1
Kst=KS þ nku

ð22Þ
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Fig. 4. Comparisons among our predictions, the existing micromechanical results
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gl1 ¼ lst=lS � 1
lst=lS þ nl1

; glu ¼ lst=lS � 1
lst=lS þ nlu

ð23Þ

nk1 ¼ lS

KS
; nku ¼ lst

KS
ð24Þ

nl1 ¼ KS

2lS þ KS
; nlu ¼ lstKst

lSðKst þ 2lstÞ
ð25Þ

/st ¼
cst

cag þ citz þ cbk þ cst
ð26Þ

where Kst , lst and cst represent the bulk modulus, shear modulus,

and volume fraction of the steel fiber, respectively. Kl
T1 and ll

T1

(Ku
T1 and lu

T1) are the lower bounds (upper bounds) for the effective
bulk modulus and shear modulus of the second equivalent matrix.
In this paper, the average of these two bounds are adopted as the
estimations of the effective properties of the steel fiber reinforced
concrete (the second equivalent matrix), which can be expressed
as follows:

KT1 ¼ 1
2
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T1 þ Ku

T1

� 	
ð27Þ
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Fig. 3. The influence of homogenization sequences on the effective properties of
HFRC, with S1 representing the first homogenization sequence which is to perform
the former and the latter homogenizations with the steel fiber and the polypropy-
lene fiber, respectively; with S2 representing the opposite sequence and ratio in the
bracket denoting the volume proportions between the steel fiber and the
polypropylene fiber. Here chf represent the sum of the two different fiber volume
fractions.
lT1 ¼ 1
2
ll

T1 þ lu
T1

� � ð28Þ

where KT1 and lT1 are the effective bulk modulus and shear modu-
lus of the second equivalent matrix.By updating the fiber type and
and the experimental data [78] for the properties of concrete. Here cag is the volume
fraction of the aggregates.
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Fig. 5. Comparisons between the predictions in this study and the experimental
data [13] for the properties of fiber reinforced concrete. Here fst is the volume
fraction of the fiber reinforced concrete.
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the matrix phase, the other types of fiber can be similarly consid-
ered with Eqs. (20)–(28). Suppose that the polypropylene fiber is
the ith kind of fiber in the HFRC. Let Epo and lpo (ETi and lTi) signify
the bulk modulus and shear modulus of the polypropylene fiber
(the ith equivalent matrix), respectively. The effective bulk modulus
KTiþ1 and shear modulus lTiþ1 of the (i + 1)th equivalent matrix can
be calculated through following modifications to Eqs. (20)–(28): (1)
Est and lst (ES and lS) should be replaced by Epo and lpo (ETi and lTi),
respectively. (2) ET1 and lT1 should be replaced by ETiþ1 and lTiþ1;

respectively. (3) Eq. (26) should be replaced by the volume fraction
of the polypropylene fiber in the (i + 1)th equivalent matrix,
denoted by /po, which can be expressed as below:

/po ¼
cpo

cag þ citz þ cbk þ cst þ � � � ci�1 þ cpo
ð29Þ

where ci�1 and cpo are the volume fractions of (i � 1)th fiber and
polypropylene fiber in the HFRC. If there are n kinds of fibers, the
properties of the HFRC can be similarly calculated by the (n + 2)th
level homogenization.
4.5. Identification for the homogenization sequences for different types
of fibers

Take the HFRC reinforced by the steel and polypropylene fiber
as example. There are two homogenization sequences. One is to
perform the former and latter homogenization with the steel fiber
and the polypropylene fiber, respectively; the other is the opposite
order.
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Fig. 6. Comparisons among our predictions, the existing micromechanical results
and the experimental data [79] for the properties of HFRC with steel fiber and
polypropylene fiber, where fst is the volume fraction of the steel fiber, the volume
fraction of polypropylene fiber is 0.11% in this example.

Table 1
The predicted and experimental elastic moduli of HFRC, with E� and E0 representing the Y

Steel fiber Volume
Fraction, %

Palm fiber
Volume Fraction, %

Synthetic fiber
Volume Fraction, %

E�=E0

Experimental [80

2.0 0 0 1.04
1.75 0.25 0 1.14
1.50 0.5 0 1.06
1.25 0.75 0 1.00
1.0 1.0 0 0.97
1.5 0.25 0.25 1.19
1.25 0.50 0.25 1.09
1.25 0.25 0.50 1.03
1.0 0.50 0.50 0.83
To investigate the influence of proportions of these two fibers
on results obtained by different homogenization sequences, three
kinds of volume ratios, including cst : cpo = 9:1, 1:1 and 1:9, are
employed as examples in this section. The experimental data of
Williamson [77] are utilized as the input for the properties of the
concrete and steel fiber. Specifically, the Young’s modulus and
Poisson’s ratio of concrete (steel fiber) are 20.8 GPa (200 GPa)
and 0.28 (0.3), respectively. These two constants of Polypropylene
fiber are 4 GPa and 0.30 according to Dutra et al. [29]. It is noted
that the properties of the concrete are those of the first equivalent
matrix in the proposed framework.

Fig. 3(a) displays the variations in the effective bulk modulus of
the HFRC with different inclusion volume fractions using two dif-
ferent homogenization sequences. chf means the sum of cst and
cpo: It can be observed that the predicted results are very near to
each other with different homogenization sequences when differ-
ent inclusion volume proportions are considered.

Similar conclusions can be reached as to the effective shear
modulus as exhibited in Fig. 3(b), which implies that the homoge-
nization sequence play little role in the predicted results herein, i.e.
the proposed homogenization framework demonstrates adequate
consistency and stability for predicting results with different
homogenization sequences.
5. Verification and discussion

5.1. Comparison with the experimental data and results of the existing
models

Both the experimental data and the existing micromechanical
models are utilized to verify the proposed micromechanical model
for the HFRC. The experimental data include mechanical properties
of concrete [78], FRC [13] and HFRC [79,80].

Firstly, the Voigt upper bound and Reuss lower bound com-
bined with the experimental data of [79] are employed to compare
with the results obtained by the first and second level homogeniza-
tions, which are the predictions for the properties of the normal
concrete made up of the aggregate, ITZ and cement paste. In their
experiment, the maximum and minimum aggregate diameters
were 19 and 0.15 mm, respectively, and the aggregate volume frac-
tion was from 0.2 to 0.8. The Young’s moduli of aggregate and neat
cement paste were 74.5 and 11.6 GPa. As exhibited by Fig. 4, the
predictions herein correspond well with the experimental data
obtained by the Stock et al. [78]. Meanwhile the predictions lie rea-
sonably between the Voigt upper bounds and Reuss lower bounds.

Secondly, the experimental data of Thomas and Ramaswamy
[13] are adopted to illustrate the capacity of the proposed
micromechanical framework to predict the properties of FRC.
There are three types concrete matrix in their experiment, which
are C35, C65 and C85, respectively. The volume fraction of the steel
fiber varies from 0 to 1.5%, whose Young’s modulus and Poisson’s
oung’s modulus of the HFRC and the concrete matrix.

] Reuss Lower bound Voigt Upper bound The predictions in this study

1.02 1.06 1.03
1.00 1.05 1.01
0.98 1.04 1.00
0.96 1.03 0.99
0.95 1.02 0.98
0.98 1.04 1.00
0.97 1.03 0.99
0.97 1.03 0.99
0.96 1.02 0.99
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ratio are 210,000 MPa and 0.3, respectively. Fig. 5 shows the com-
parisons between the predictions herein and the experimental data
for the properties of FRC. It can be found from Fig. 5(a) that the pre-
dicted Young’s modulus for the FRC meet well with the experimen-
tal data when different types of concrete matrix are considered.
Similar conclusions can be obtained for the effective Poisson’s ratio
(a) The influence of the aggregate volume fraction
 on the shear modulus of HFRC  

(b) The influence of the aggregate volume fraction 
on the bulk modulus of HFRC 
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(c) The influence of the aggregate maximum diameter
 on the shear modulus of HFRC 
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Fig. 7. The influence of the aggregate on the properties of HFRC, where chf is the sum o
between them is 4:1.
reached by the proposed micromechanical framework, which is
shown in Fig. 5(b).

Thirdly, to validate the presented micromechanical model for
the HFRC, the experimental results of [79] are employed, where
the steel fiber and polypropylene fiber are used. The volume frac-
tion for the steel fiber varies from 1% to 3% and the volume fraction
(d) The influence of the aggregate maximum diameter
 on the bulk modulus of HFRC 
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(e) The influence of the aggregate properties 
on the shear modulus of HFRC 

(f) The influence of the aggregate properties 
on the bulk modulus of HFRC 
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(a) The influence of the ITZ thickness 
on the shear modulus of HFRC  

(b) The influence of the ITZ thickness
 on the bulk modulus of HFRC  
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on the shear modulus of HFRC 

(d) The influence of the ITZ properties
 on the bulk modulus of HFRC 
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Fig. 8. The influence of the ITZ on the properties of HFRC, where chf is the sum of volume fractions of steel fiber and polypropylene fiber, the volume fraction ratio between
them is 4:1.
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for the polypropylene fiber is 0.11%. Meanwhile Dawood and
Ramli’s work [80], including the steel fiber, Palm fiber and
Synthetic fiber, is also utilized to verify the presented
micromechanical predictions. Fig. 6 shows the comparisons among
the predictions of the proposed model, the existing micromechan-
ical results and the experimental data for the properties of HFRC.
From Fig. 6, it can observed that the predicted Young’s modulus
meet well with the experimental data of [79], with the maximum
relative difference being 5%. Further, the predictions herein still
stay between the two bounds reasonably.

When three different kinds of fibers are considered, the pre-
dictions herein are compared with the Voigt upper bound, Reuss
lower bound and the experimental data of Dawood and Ramli
[80], which is presented in Table 1. The results of the proposed
model agree well with the experimental data, with the average
relative difference being 3% and the maximum relative differ-
ence being 19%. At the same time, the results herein are still
greater (lesser) than the lower bounds (the upper bounds)
reasonably.

From the above, it can be summarized that the proposed
micromechanical framework in this study is capable of predicting
the properties of HFRC, FRC and concrete.
5.2. Influences of the aggregate and ITZ on the performance of the
HFRC

The aggregate and ITZ have significant effects on the effective
properties of the composite. To investigate these effects quantita-
tively, the steel fiber and polypropylene fiber are taken as exam-
ples and the volume fraction ratio between them is 4:1. The
properties of the aggregate, ITZ, and the cement paste in [78] are
taken as the inputs for the numerical simulations.

Fig. 7(a) and (b) display the influence of aggregate volume frac-
tion on the shear modulus and bulk modulus of HFRC. It can be
found that the properties of the composite increase and the
enhancement of fibers become less when the volume fraction of
the aggregate increase.

The different maximum diameter of the aggregate will lead to
different volume fractions of the ITZ, which will influence the prop-
erties of HFRC, even though the volume fractions are the same.
Fig. 7(c) and (d) demonstrate the influence of the aggregate maxi-
mum diameter. In this example, the aggregate volume fraction is
0.8 and the fuller grading is considered. It can be observed that
the shear modulus and bulk modulus of the composite become
greater with the increase of the aggregate diameter.
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Fig. 9. The influence of the fibers on the properties of FRC, where cf is the volume
fraction of different fibers.
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Fig. 10. The influence of the fiber mix proportions on the properties of HFRC, where
cst is the volume fraction of steel fiber. The volume fraction of each hybrid fibers is
5%.
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The higher properties of the aggregate may lead to stronger
properties of HFRC, which is shown by Fig. 7(e) and (f) for the shear
modulus and bulk modulus, respectively.

Fig. 8 shows the effects of the ITZ on the properties of HFRC. It is
noted that the exact value of the ITZ thickness is not the focus in
this study. More attention is paid to the quantitative influence of
the ITZ on the properties of HFRC for a given thickness. Suppose
that the volume fraction and properties of aggregate and the fibers
are constant, the properties of HFRC reduce with the increase of ITZ
thickness, as exhibited in Fig. 8(a) and (b). From Fig. 8(c) and (d), it
can be found that with the increase of the ITZ properties, the com-
posite demonstrates stronger properties.
5.3. Influences of the fiber types, concentrations and mix proportions
on the performance of the HFRC

Four different types of fibers, including steel, carbon,
polypropylene and glass fiber, are employed to illustrate the influ-
ences of fiber types and concentrations on the performance of FRC.
Fig. 9 shows variations of the effective properties of FRC when dif-
ferent fibers are considered. It can be seen from Fig. 9(a) that the
carbon fiber reinforced concrete (CFRC) demonstrates the highest
shear modulus and the fibers improve mechanical properties of
the concrete matrix better with the increase of their volume frac-
tion. Similar trend can be found in Fig. 9(b) for the bulk modulus
of FRC.

Three types of hybrid fibers are employed as examples to con-
sider the influence of their mix proportions on the performance
of the HFRC. The polypropylene, glass and carbon fiber are respec-
tively mixed with steel fiber as the first, second and third type of
hybrid fibers. The total volume fraction of each hybrid fibers is
5% as constant. Fig. 10(a) and (b) present the variations in the
mechanical properties of the HFRC when different fiber mix pro-
portions are considered. Due to the high properties of the steel
and carbon fiber, the combination of these two fibers improves
the shear modulus and bulk modulus best. Because the properties
of the steel fiber are stronger than those of glass and polypropylene
fiber, with the increase of the steel fiber, the HFRC’s mechanical
performance improves when the first and second type hybrid
fibers are considered. However, since the carbon fiber’s properties
are higher than those of the steel fiber, the HFRC’s properties
decrease when the relative volume fraction of steel fiber increases
as to the third type hybrid fibers.
6. Conclusions

As an extension of the previous micromechanical model for FRC,
this paper presents a multiphase micromechanical model for HFRC
considering the aggregate and ITZ effects. In the proposed model,
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HFRC is seen as a multiphase composite composed of the aggre-
gates, ITZ, bulk cement paste and different types of fibers. The vol-
ume fraction of the ITZ is analytically calculated according to the
aggregate grading. A new multi-level homogenization schemes
based on the generalized self-consistent approach and the
Halpin-Tsai model are developed to predict the effective properties
of HFRC. The first equivalent matrix, known as concrete, are
obtained with the first and second level homogenization proce-
dures to the composite composed by the aggregate, cement paste
and the ITZ between them. The properties of HFRC are reached
using the multi-level homogenization process through adding dif-
ferent types of fibers step by step into the equivalent matrix. More-
over, the predicted results herein are compared to available
experimental data and the existing estimations. The influences of
the aggregate, ITZ and fibers on the properties of HFRC are
discussed.

From this study, the following main conclusions can be drawn:

(1) The proposed multi-phase micromechanical framework for
HFRC is capable of predicting the properties of the HFRC
with the aggregate and ITZ effects. For the special cases,
the properties of concrete and FRC can also be calculated
by the presented micromechanical models in this study.

(2) The quantitative effects of the maximum size, the volume
fraction and properties of aggregates on the HFRC’s effective
properties can be predicted with the proposed microme-
chanical framework. Meanwhile, the influence of ITZ on
the mechanical performance of the HFRC can be estimated
for a given ITZ thicknesses. However, it is noted that the
exact value for the ITZ thickness is not considered in this
study.

(3) Based on the proposed model in this study, the moduli of
HFRC can be best improved by the carbon fiber, which is fol-
lowed by the steel fiber, glass fiber and polypropylene fiber.
The effects of different types of fibers can be quantitatively
taken into considerations by the multi-level homogenization
scheme step by step. However, the homogenization
sequence for different fibers has little influence on the pre-
dicting results herein.
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Appendix A

There are two homogenization sequences to obtain the effective
properties of the HFRC reinforced by the steel fiber and polypropy-
lene fiber. For the first sequence, the lower and upper bounds for
the properties of the second equivalent matrix composed by the
concrete and the steel fiber can be obtained as below [22,67,68]:

Kl
T1 ¼ KS

1þ nk1gk1/st

1� gk1/st
; Ku

T1 ¼ KS
1þ nku1gku1/st

1� gku1/st
ðA1Þ
ll
T1 ¼ lS

1þ nl1gl1/st

1� gl1/st
; lu

T1 ¼ lS

1þ nlu1glu1/st

1� glu1/st
ðA2Þ

gk1 ¼ Kst=KS � 1
Kst=KS þ nk1

; gku1 ¼ Kst=KS � 1
Kst=KS þ nku1

ðA3Þ

gl1 ¼ lst=lS � 1
lst=lS þ nl1

; glu1 ¼ lst=lS � 1
lst=lS þ nlu

ðA4Þ

nk1 ¼ lS

KS
; nku1 ¼ lst

KS
ðA5Þ

nl1 ¼ KS

2lS þ KS
; nlu1 ¼ lstKst

lSðKst þ 2lstÞ
ðA6Þ

/st ¼
cst

cag þ citz þ cbk þ cst
ðA7Þ

where Kst , lst and cst represent the bulk modulus, shear modulus,

and volume fraction of the steel fiber, respectively. Kl
T1 and ll

T1

(Ku
T1 and lu

T1) are the lower bounds (upper bounds) for the effective
bulk modulus and shear modulus of the second equivalent matrix.
In this paper, the average of these two bounds are adopted as the
estimations of the effective properties of the steel fiber reinforced
concrete (the second equivalent matrix), which can be expressed
as follows

KF
T1 ¼ 1

2
Kl

T1 þ Ku
T1

� 	
ðA8Þ

lF
T1 ¼ 1

2
ll

T1 þ lu
T1

� � ðA9Þ

where KF
T1 and lF

T1 are the effective bulk modulus and shear modu-
lus of the second equivalent matrix using the first homogenization
sequence. The properties of the HFRC can be similarly reached as
below:

KF
T2 ¼ 1

2
Kl
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� 	
ðA10Þ
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2
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1� gk2/po
; Ku

T2 ¼ KF
T1

1þ nku2gku2/po

1� gku2/po
ðA12Þ

ll
T2 ¼ lF

T1

1þ nl2gl2/po

1� gl2/po
; lu

T2 ¼ lF
T1

1þ nlu2glu2/po

1� glu2/po
ðA13Þ

gk2 ¼ Kpo=K
F
T1 � 1

Kpo=K
F
T1 þ nk2

; gku2 ¼ Kpo=K
F
T1 � 1

Kpo=K
F
T1 þ nku2

ðA14Þ

gl2 ¼ lpo=lF
T1 � 1

lpo=lF
T1 þ nl2

; glu2 ¼ lpo=lF
T1 � 1

lpo=lF
T1 þ nlu2

ðA15Þ

nk2 ¼ lF
T1

KF
T1

; nku ¼ lpo

KF
T1

ðA16Þ

nl2 ¼ KF
T1
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where KF
T2 and lF

T2 are the effective bulk modulus and shear modu-
lus of the HFRC using the first homogenization sequence.

As to the second homogenization sequence, the properties of
the second equivalent matrix composed by the concrete and the
polypropylene fiber can be obtained similarly as below [22,67,68]:

KS
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2
Kl
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� 	
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2
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With
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where KS
T1 and lS

T1 are the effective bulk modulus and shear modu-
lus of the second equivalent matrix using the second homogeniza-
tion sequence. The properties of the HFRC can be similarly
calculated:
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where KS
T2 and lS

T2 are the effective bulk modulus and shear modu-
lus of the HFRC using the second homogenization sequence.
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