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Using unmanned aerial vehicles (UAV) as devices for traffic data collection exhibits many advantages in
collecting traffic information. This paper introduces a new vehicle detecting and tracking system based on
image data collected by UAV. This system uses consecutive frames to generate vehicle's dynamic information,
such as positions and velocities. Four majormodules have been developed: image registration, image feature ex-
traction, vehicle shape detecting, and vehicle tracking. Some unique features have been introduced into this sys-
tem to customize the vehicle and traffic flow and to jointly use them in multiple consecutive images to increase
the system accuracy of detecting and tracking vehicles. Field tests demonstrate that the present system exhibits
high accuracy in traffic information acquisition at different UAV altitudes with different view scopes, which can
be used in future traffic monitoring and control in metropolitan areas.
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1. Introduction

With the ongoing growth of our metropolitan road network, it is in-
dispensable to have a comprehensive monitoring system for the com-
plex transportation. However, there are many limitations based on the
current monitoring systems. Firstly, the range of traditional road traffic
monitoring is restricted to the sensor's distributions, such as induction
loops, radar sensors and traffic cameras. According to the sparse distri-
bution of the current traffic monitory system, there are many blind re-
gions on a city road network. In certain cases such as emergency
mitigation, it is required to temporarily supervise the detailed traffic sit-
uations at the “hotspots”, such as the regions of traffic incidents, sources
and/or destinations of traffic flow, and the emergency locations with
damage of ground infrastructure [1], etc. Secondly, most traffic sensors
are designed to collect traffic information on a fixed road section or
with a limited road length. As a result, it is convenient to obtain traffic
data at lane's level, including each lane's average speed, density and
flow, but it is hard to obtain traffic data at vehicle's level based on
these discretely distributed sensors, such as vehicle's trajectory data.

The vehicle's level data is the fundamental data for both intelligent
transportation systems (ITS) and transportation management [2].
Therefore, a monitor method designed for traffic data at vehicle's level
is of significance in transportation engineering. On the other hand, in
the research of driving behaviors, a detailed and accurate vehicle trajec-
tory data is also necessary. Driving behaviormodels capture drivers' tac-
tical maneuvering decisions in different traffic conditions, which are
1 212 854 6267.
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essential components in microscopic traffic simulation systems. Due to
the limited availability of detailed trajectory data, most models have
not been validated rigorously [3]. Data availability has posed a signifi-
cant obstacle to the advancement of driving behavior modeling. There-
fore, a system for detecting and tracking vehicles based on UAVs can on
one hand compensate the disadvantage in the existing transportation
monitoring system,while on the other hand it can also fulfill the data re-
quirements in the research of driving behaviors modeling.

As a useful and powerful aerial robot, UAVs have been playing
important roles on data and image acquisition. For example, they have
been widely used in the research of agriculture, geology, hydrology,
cinematography, etc. [4–9]. Compared with traditional transportation
sensors located on the ground or low angle cameras, UAVs exhibit
many advantages, such as low cost, easy to deploy, high mobility,
large view scope, uniform scale, etc. UAVs can record a load with
different lengths by adjusting flying altitude to fulfill different research
requirements. Compared with low angle cameras, the video recorded
by UAVs has less influence on the block of vehicles in a lane, and could
measure a vehicle's position more accurately from the top view [10].
However, UAVs are rarely applied in the transportation monitoring.
One of the main reasons is the lacking of an effective and robust
method to detect and track vehicles in UAV's image data.

Usually, the traffic data captured by UAV containsmuch complex in-
formation than those by traditionalmonitoring system.UAV's videos in-
clude not only the traditional data such as the trafficflow average speed,
density and flow, but also each vehicle's level data, such as vehicle's tra-
jectory data, lane change data and car following data on the road. In ad-
dition, the data from a frame of a UAV's video containsmultiple vehicles
and the frame frequency of the UAV's video is very high, thus the data
size from the UAV's video is very large. Moreover, data from the UAV's
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video contain the fundamental information of transportation research
and management, and play an important role in several other fields of
transportation science and engineering, including safety studies and ca-
pacity analysis [3,11,12]. Considering such features, the data collection,
reduction and analysis can be considered as an important component in
the big data analysis in transportation. It can also be extended to other
civil engineering applications.

Compared with traditional traffic surveillance systems, detecting
and tracking vehicles through the images captured by aUAVhas specific
challenges. First of all, the camera of a UAV surveillance platform chang-
es frequently because the camera in a UAVmay rotate, shift and roll dur-
ing video recording. In addition, sudden shakes might also happen due
to wind fluctuations, which can cause negative effects in the vehicle
tracking. On the other hand, in driver behavior research models, such
as car following and lane change models, each car's accurate trajectory
data is needed.Missing car data and tracking error could affect the accu-
racy of the model parameters settings. Therefore, a high resolution of
images is crucial for accurately calculating vehicle speed and lateral po-
sition of vehicles in the process of vehicle detecting and tracking.

Some approaches to vehicle detecting and tracking based on a UAV
system have been proposed in the literature [13]. Based on the recogni-
tion methods applied in the researches, a vehicle recognition method
can be categorized into optical flow and feature extraction-matching
methods. The optical flow method has many advantages in tracking
and detecting moving objects in consecutive frames, such as autono-
mous robot navigation and surveillance of large facilities. Optical flow
can capture the moving objects in a video, but the movement is the
sum of the motion of both the camera and the vehicles. It is essential
to identify and separate the camera's motion from the vehicle's motion.
Rodríguez-Canosa, et al. [8] developed a real-timemethod to detect and
track moving objects from UAVs. This method introduces an artificial
optical flow by estimating the camera's motion, compares it with the
real optical flow directly calculated from the video, and then calculate
the motions of objects. Xu et al. [14] introduced a vehicle detecting
and tracking method for low angle camera video. The cellular neural
network was used to subtract the background and to refine the detec-
tion results with optical flow. Frarnebäck and Nordberg [15] construct-
ed a polynomial expansion to approximate themovement between two
consecutive frames at the pixel level. Based on the optical flow field con-
structed, the vehicle's motion could be calculated.

The feature extraction-matching method has been widely used in
photogrammetry and computer vision. The working process consists
of extracting features of interest from two or more images of the same
object and matching these features in adjacent images [16]. In the
photo-based research, generally these methods search the vehicle-like
features in one or two photos, and then refine the detection results
through classification and representation based on the predefined data-
base. The vehicle-like features include a vehicle's edges, shapes, feature
points, colors, gradients, etc. Zhao and Nevatia [17] figured out the im-
portant car features from a captured photo based on human experience
in psychological tests, and then used the boundary of the car, front
windshield and the shadow as car features in car recognition. Kaâniche
et al. [18] presented a vision system for traffic surveillance with a fixed-
wing UAV. The method analyzed the corner and edge information in a
frame, and the Dempster–Shafer theory was used in the process of ver-
ification to increase the accuracy of vehicle detection. Kim and Malik
[19] introduced a new vehicle detection method, which combines
photos of multiple cameras and generates a 3D-model of vehicles. This
vehicle detection anddescription algorithmwas based on a probabilistic
line feature grouping, and it could increase the computing speed and re-
liability. Gleason et al. [20], introduced a multiple features extraction
and classification method for vehicle detection. The vehicle features,
such as histogram of oriented gradients, edge orientation, and color
were applied to increase the detecting accuracy. Leifloff [21] presented
an approach for vehicle detection from optical satellite images, where
an improved Haar-like feature was used in the method. Vehicle queues
were detected using a line features extraction technique in the analysis.
Tuermeret al. [22] applied the features of histogram of oriented gradi-
ents, Haar-like features and local binary patterns in the vehicle detec-
tion, where a sophisticated blob detector was used for vehicle
detection. Leitloff et al. [23] developed a vehicle detection method that
relies on an extended set of Haar-like feature operators. The support
vectormachinewas used in the process of classification and refine vehi-
cle detection results.

In general, because of the limited information available in one photo,
the photo-based vehicle recognition method could only obtain a
vehicle's static information, like position or gap between vehicles, but
it is impossible to get the dynamic information, such as speed and accel-
eration of vehicles. However, the video based feature extraction-
matching method focuses on the relationship and connection among
the matched feature points, rather than their characteristics. Therefore,
the video based feature extraction-matchingmethod exhibits many ad-
vantages for vehicle tracking compared with the photo-based vehicle
recognition method. Cao et al. [24] introduced a new framework of
multi-motion layer analysis to detect and track moving vehicles in a
UAV's video. The Kanade–Lucas–Tomasi (KLT) feature was selected in
the vehicle motion and background motion layers. The new method is
more effective and robust in the application. Cao et al. [25] applied a his-
togram orientation gradient (HOG) feature on vehicle detection. All
HOG features are combined to establish the final feature vector to
train a linear SVM classifier for vehicle classification. Lingua et al. [16]
analyzed the advantages of a scale invariant feature transform (SIFT)
operator for the feature extraction-matching method in the UAV sys-
tems, and developed an auto-adaptive version of the SIFT operator
used in the UAV's photogrammetry field. Many researchers have also
used the feature extraction-matching method for vehicle tracking.
Some studies used the vehicle image as a feature [23,26] or thematched
feature points [27–29] to track a vehicle's motion on the road.

Overall, detecting and tracking vehicles in traffic by UAV videos and
photos has been attracting increasing attentions among transportation
research community. However, many problems have not been solved
yet. Firstly, the accuracy of vehicle recognition is low. Normally, the de-
tecting accuracy of the existing technology is lower than 90% [20,22,23,
30], and the driver's detail trajectory data cannot be obtained [31,32].
Moreover, traffic information, such as road, traffic flow and driver be-
havior features, have not been included in these methods [13,27,33].
Overall, a well-developed vehicle detecting and trackingmethod for ac-
tual transportation application has not been developed yet.

This paper introduces a new method attempting to address these
problems. It combines many features in different optical methods into
an integrated system, which consists of four modules as follows:
image registration, image feature extraction, vehicle shape detecting,
and vehicle tracking. Complementary advantages of different optical
methods considerably improve the accuracy by this method. In addi-
tion, vehicle and traffic flow features and the corresponding specifica-
tions have been implemented in the system. In what follows, Section 2
will introduce the experiments with the UAV; Section 3 will present
the methodology of vehicle detection and tracking in traffic. Section 4
will demonstrate the numerical results based on the experimental
data for the vehicle detection and tracking. Finally, some conclusions
of this work are provided in Section 5.

2. Experiments

A UAV traffic monitoring system has been set up to study traffic in-
formation, which consists of a quadrocopter, a camera mount, an
image transfer system, and a camera as shown in Fig. 1a, while the cam-
era mount and the camera are enlarged in Fig. 1b.

The quadrocopter used in the experiments of this paper is the DJI
Phantom 2. It includesmotors, battery, electronic parts, and the connec-
tion port for the camera mount. The core control part of the UAV is the
flight control unit, which is a lightweight multi-rotor control platform



Fig. 1. The UAV traffic monitoring system used in this experiment: (a) the whole setup and (b) the camera mount and the camera.
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specially designed for this lightweight UAV. The flight control unit com-
bines themain controller (MC), a gyro-accelerometer, and a barometric
altimeter. The basic information of the machine is listed in the Table 1.

The second device is the camera mount. A 3-axis H3-3D gimbal
(Fig. 1b) powdered by a built-in inertial measurement unit (IMU) and
special servo module was applied, which can compensate movement
of the quadrocopter and provide stable quality visual video during the
data collection. The camera used in the experiment is a GoPro 3 in silver
version. The camera parameter settings in the experiments are listed in
Table 2.

The third part of the UAV used in experiment is the image transfer
system. It transmits real time video and UAVs' flight data back to the
controller. The information displayed on the controller's screen is
shown in Fig. 2a. In addition, the more important real-time flight data
is superimposed on the video. The information includes power voltage,
channel, distance between aircraft and home points, height, control
mode, fail-safe mode, pitch attitude, roll attitude, flight velocity, GPS
satellite, video input, vertical velocity, attitude line and aircraft nose di-
rection. During the test, the VAV's position has significant influence on
the results, therefore the height and aircraft nose direction are key to
the experiment. In order to control the UAV more precisely, reference
lines are added on the screen. The video monitor is attached with the
quadrocopter's remote controller, and the working image is shown in
Fig. 2b.

Considering the capability restrictions of image transfer system, the
video was stored in the camera's SD card, and only the low-resolution
images were obtained in the monitor during the experiment. Because
of this, the vehicle tracking and detection method cannot be operated
in real-time with current experiment devices. However, with a more
powerful image transfer system, the videomight be directly transferred
into a computer. Therefore, the vehicles' real-time detecting and track-
ing could be possible using the method introduced in this paper.
Table 1
Parameters of the quadrocopter in the experiments.

Parameter Range

Operating temperature −10°C~50°C
Power consumption 3.12 W
Take-off weight b1000 g
Hovering accuracy (GPS Mode) Vertical: ±0.8 m, horizontal: ±2.5 m
Max yaw angular velocity 200°/s
Max ascent/descent speed Ascent: 6 m/s, descent: 2 m/s
Max flight velocity 10 m/s
Diagonal distance 350 mm
Weight with battery 800 g
Max flight time without load 25 min
3. Vehicle detecting and tracking methodology

In this section, the whole procedures of the method for vehicle de-
tection and tracking are presented. The workflow chart of the system
is illustrated in Fig. 3, which consists of four major modules: image reg-
istration, image feature extraction, vehicle shape detecting and vehicle
tracking. Each part will be elaborated subsequently.

Two factors of this method are highlighted. First, three image fea-
tures are simultaneously used, including edge, optical flow and the
local feature point which are elaborated in Section 3.2. These features
work together to increase the accuracy of vehicle recognition. On the
other hand, vehicle detecting and vehicle tracking are analyzed as two
independent modules in this method. It is convenient to make specific
adjustments based on their different objectives. For instance, vehicle de-
tection aims to accurately identify each vehicle's shape in a single frame,
while vehicle tracking focuses on each vehicle's motion between con-
secutive frames. Therefore, each module of the present method is
based on the combination of computer vision and transportation. The
properties of traffic flow and driver behavior have also been taken
into account in this method.
3.1. Image registration

Because of the instability of the UAV flying in the air, the vehiclemo-
tion recorded in the video is actually the sum of the real motion of the
vehicle and that of the camera. In order to obtain each vehicle's trajecto-
ry data, the camera motion should be separated and eliminated from
the vehicle motion in the video. This section describes a sequential
and automatic framework aiming at the precise registration of a road
area. In the computer vision science, these processes of transforming
different sets of frames into one coordinate system are called as image
registration, which includes transformation models and matching
point selection [34,35]. In Section 3.1.1 three types of transformation
Table 2
Camera parameters in the experiments.

Parameter Range

Resolution 1920 × 1080
Frequency 30 fps
Optical zoom 1×
Horizontal degree of field of view 94.4
Vertical degree of field of view 55.0
Diagonal degree of field of view 107.1
Dimensions 177 mm × 100 mm × 100 mm
Weight 590 g



Fig. 2. Image capture and transfer system: (a) image taken during the experiment and (b) the remote controller of the quadrocopter and video monitor.
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and corresponding applications are introduced. The methods of
matching point selection in road environment are discussed in
Section 3.1.2.

3.1.1. Transformation models
Normally, the general transformation between two images could be

expressed in the following equation [36]:

Xa;p ¼ TXb;p ð1Þ

where Xa ,p and Xb ,p are the image coordinates of the point p in the frame
a and frame b; T is the transformation matrix, which includes the infor-
mation of rotationmatrix from a to b, translation vector from a to b, and
camera's intrinsic parameter matrices, etc.

Because an optical imaging system strongly relies on the weather
and illumination conditions during the experiment [33], there is no uni-
form transformation model could be applied for all UAV videos and all
traffic situations, thus the matrix T in Eq. (1) has different expressions
correspondingly. Theoretically, a complex T is more compatible for
Fig. 3.Workflow chart for vehicle detec
complex situations, but has higher probability to fail, while a simple T
could only be used in a specific situation, but is relatively stable in the
image registration [33].

For an arbitrary object, the relationship of a fixed point in an image
and a reference image is following a fundamental matrix [34,37]. How-
ever, if a road surface in aUAV's video is planar, and the scene height dif-
ferences are relatively small compared to the UAV's flight height, the
image transformation process could be assumed as a homography
transformation problem [33]. The homography transformation matrix
can be expressed as Eq. (2) [33,38].

x0

y0

1

2
4

3
5 ¼

h1 h2 h3
h4 h5 h6
h7 h8 1

2
4

3
5 x

y
1

2
4

3
5 ð2Þ

where h1 to h8 are the parameters needed to be determined. At least
four corresponding points are required to determine the homography
matrix, while three of them must be non-collinear [38].

Because of the camera mount in a UAV system, some camera move-
ments along certain specific directions could be well controlled by
tion and tracking in a UAV system.



Fig. 4. Two frames in a UAV experiments: (a) the 120th frame, (b) the 1530th frame.

298 L. Wang et al. / Automation in Construction 72 (2016) 294–308
adjusting the operational parameters. As shown in Fig. 4, the camera's
rotation along the road lateral direction is very small, but itsmainmove-
ment is on the road lateral direction. In that situation, the lines along the
longitudinal direction of the road are always parallel and follow the lin-
ear transformation requirements. Although the lines in the frame are
not always parallel on the lateral direction, considering the road length
is much longer than the width in the video, and the vehicle's width is
relatively small, we still can assume that this is an affine transformation.
Accordingly, the transformationmodel can be expressed by Eq. (3) [36].
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where the 3 × 3 matrix is the affine transformation matrix. The param-
eters a1to a4 define the scale, rotation, and sheering effects of the com-
bination of any linear transforms, and tx and ty are translation
parameters on the x and ydirections. In Eq. (3), 6 parameters are needed
to be determined.

If the wind during the experiment is very small and the whole UAV
system is well optimized, the camera mount could isolate the UAV's
movement and accurately maintain the camera always vertically facing
to the ground (Fig. 5). In that situation, the transformation model could
be considered as a scale–rotation transformation, which can be mathe-
matically expressed in Eq. (4) [36].
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where the transformation matrix has four unknown parameters. Be-
sides tx and ty, s represents the scale changes, and γ is the rotation
angle of the camera. Two matching points are required to determine
the matrix.
Fig. 5. The camera mount iso
For a real UAV video, the transformationmodel selection is based on
the quality of the video. Table 3 lists the three most possible image
transformation models could be used in the image registration. Consid-
ering the field testing environment and the stability of a UAV's video,
the scale– rotation matrix has been implemented in our simulation in
the following part of this paper.

3.1.2. Matching point selection
Normally, the altitude of a UAV is higher than 100m, and the region

of a road is only a small part of the whole view scope of a UAV's camera.
As a result, the scene covers a large amount of unnecessary information,
which might cause errors in the process of image registration [33]. On
the other hand, repeated patterns are also a severe problem that may
lead to the failure of the algorithm. As there are several similar road el-
ements, such as landmarks and lights, the road area of a freeway severe-
ly suffers from such a problem. For these reasons, traditional image
registration methods, such as SIFT-based matching [39] and Kanade–
Lucas–Tomasi (KLT) based matching [40], may have difficulties in pa-
rameter determination [33].

To improve the accuracy and robustness of image registration for the
UAV's video, twomethods are proposed in thematching point selection.
First, the road features are selected to calculate the camera motion. To
reduce the error caused by the repeated pattern, the elements of a
road are used as matching points, including road width, road direction
angle θ and lane mark. However, the relatively higher objects on the
road, such as signal boards, are not recommended as matching points,
because the height of signal board is usually higher than 10 m, which
do not accurately satisfy the plane assumption of homography transfor-
mation that all objects in the image should be in the same plane. For ex-
ample, the two signal boards in Fig. 6b, which have been marked in
green boxes, are not proper matching points.

Furthermore, the color form of the video is recommended to trans-
form into HSV, which represents the hue, saturation and value. Com-
pared with other color forms, HSV easily captures the road features,
late of the quadrocopter.



Table 3
Transformation models in the image registration.

Transformation
model

Minimum matching
points

Requirements

Homography 4 The observed road in a plane or the height
of the observed object is relatively small
compare with UAV's altitude.

Affine 3 The camera rotation along the road lateral
direction is small.

Scale–rotation 2 The camera could always vertically face to
the ground.
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because the roadmaterials usually absorb light while lanemarks reflect
light clearly. The road area showsmuch lower value of V than others. As
a result, by setting a suitable threshold for V, the road information can
be easily captured. Fig. 6a illustrates an example of image registration;
whereas Fig. 6b shows the result of setting the threshold of V as 0.35,
which is set according to the illumination and the camera parameters.

3.2. Image feature extraction

After the image registration, the next step is to extract the image fea-
tures such as edge, optical flow and local feature point. The image fea-
tures will be used in the modules of vehicle detection and vehicle
tracking in Sections 3.3 and 3.4. In this section, the concepts of three
image features are briefly introduced. Considering the characteristics
of traffic flow to be investigated, some specific modifications are made
in the process of image feature extraction.

3.2.1. Edge
Edge detection has been carried out by a set of mathematical

methods, which aim at identifying points in a digital image at which
the image brightness changes sharply or, more formally, exhibits dis-
continuities. Such points are typically organized into a set of curved
line segments termed edges [41]. In this method, the operator of the
Prewitt edge detection [35] is applied. Mathematically, the Prewitt op-
erator uses two 3 × 3 kernels that are convolved with the original
image to calculate approximations of the derivatives—one for horizontal
changes, and the other for vertical, which could be expressed by Eq. (5)
[35].

Gx ¼
�1 0 1
�1 0 1
�1 0 1

2
4

3
5 � A and Gy ¼

�1 �1 �1
0 0 0
1 1 1

2
4

3
5 � A ð5Þ

where * denotes the two-dimensional convolution operation; A is an a
grayscale digital image, which is converted from the original UAV's
video; and Gx and Gy are two images which contain the horizontal and
vertical derivative approximations at each point.
Fig. 6. Traffic flow in UVA's frame: (a) the original UVA's frame a
In this method, we only analyze the direction vertically to the longi-
tudinal direction of the road. Therefore, the lateral direction edge used
in the method can be calculated by

Glat ¼ Gxsinθþ Gycosθ ð6Þ

where θ is the angle from the x-coordinate to the road longitudinal di-
rection, in which the value is obtained in the process of image registra-
tion in Section 3.1.

Then based on each pixel'sGlat(i, j), it is possible to generate the edge
binary image with a proper threshold δ, where i and j are the pixel in-
dexes at the x- and y-axes separately. The value of δ is affected by exper-
imental environments and operational parameters of a UAV's camera.
Each pixel's value in the binary image can be calculated by Eq. (7) and
a frame of the resulted edge is shown in the Fig. 7.

Fedge i; jð Þ ¼ 1 Glat i; jð Þ ≥ δ
0 Glat i; jð Þ b δ

�
ð7Þ

Although Fig. 7 only shows the vehicles' lateral boundary and the ve-
hicle shape is not very clear, the vehicle shape could be easily recog-
nized together with the optical flow result which will be introduced in
the following section.

3.2.2. Optical flow
Optical flow is the pattern of any apparent motion of objects, sur-

faces, and edges in a visual scene caused by the relativemotion between
an observer (an eye or a camera) and the scene [42]. For a 2D case with
an extra time dimension being considered, a voxel at location (x,y, t)
with intensity I(x,y, t) canmove by Δx,Δy and Δt between two consec-
utive image frames, and the brightness is similar. Assuming the move-
ment is small, the image constraint at I(x,y, t) with Taylor series can be
expressed by Eq. (8) [42].

I xþ Δx; yþ Δy; t þ Δtð Þ ¼ I x; y; tð Þ þ ∂I
∂x

Δxþ ∂I
∂y

Δyþ ∂I
∂t

Δt þ Ο Δx2;Δy2;Δt2
� �

ð8Þ

Eq. (8) can be rewritten into

∂I
∂x

Vx þ ∂I
∂y

Vy þ ∂I
∂t

¼ 0 ð9Þ

where Vx, Vy are the x and y components of the velocity.
Eq. (9) is known as the optical flow equation [40]. Because there are

two unknown variables (Vx and Vy), an additional equation is required,
given by some other constraints. Different optical flow methods intro-
duce different extra conditions for that.

The Lucas–Kanade operator [40] is applied in this method. It as-
sumes that the flow is essentially constant in a local neighborhood of
nd (b) the BW figure by setting the threshold of V = 0.35.



Fig. 7. Edge feature in the lateral direction of the road.
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the pixel under consideration, and solves the basic optical flow equa-
tions for all the pixels in that neighborhood by using the least squares
criterion. The optical flow equation for pixel p can be assumed to hold
for all pixels within a region Ω centered at p. Namely, the local image
flow vector (Vx,Vy) can be obtained by calculating the minimum value
of the following weighted item [40].

∑
x;y∈Ω

W2 xð Þ IxVx þ IyVy þ It
� �2 ð10Þ

whereW is an n×n diagonal matrix containing the weights Wii=ωi to
be assigned to the equation of pixel qi. Usually there is more weight to
the pixels that are closer to the central pixel p. The Lucas–Kanademeth-
od obtains a compromise solution by the least square criterion [40]:

ATW2AV ¼ ATW2b ð11Þ

where A=(ΔI(q1), … ,ΔI(qn))T, W=diag(W(q1), … ,W(qn)), b ¼
�ð∂Iðq1Þ∂t ;…; ∂IðqnÞ∂t ÞT and V is obtained as Eq. (12) [40]:

V ¼ ATW2A
� ��1

ATW2b

Vx
Vy

� �
¼ ∑iIx qið Þ2 ∑iIx qið ÞIy qið Þ

∑iIy qið ÞIx qið Þ ∑iIy qið Þ2
" #�1

�∑iIx qið ÞIt qið Þ
�∑iIy qið ÞIt qið Þ

� �
ð12Þ

Each vehicle's speed includes two directions: longitudinal and later-
al. Normally, the latter can be assumed to be zero unless the driver
wants to make a lane change. In that case, the lateral speed should be
still very small compared with the longitudinal speed. In a UAV's
Fig. 8. Optical flow in the longitudinal direction of the road. (a)
video, most movements in the lateral direction belong to the camera
motion. To minimize such errors, only the vehicle's velocity along the
road longitudinal direction is considered, which can be expressed by

Vlon ¼ Vxcosθþ Vysinθ ð13Þ

Although it is possible to obtain each pixel's velocity in Eq. (13), be-
cause of the instability of the optical flow at pixel level, it is hard to di-
rectly obtain each vehicle's speed accurately from the result of optical
flow [43]. Therefore, in this method, the optical flow is used to detect
the shape of each vehicle, and the value of Vlon will be transferred into
a binary value according to a proper threshold in Eq. (14). Fig. 8 is the
final binary figure for one frame.

FOF i; jð Þ ¼ 1 Vlon i; jð Þ ≥ τ and Vlon ≤ σ
0 otherwise

�
ð14Þ

where τ and σ are the maximum and minimum rational speeds, which
relate to the UAV's altitude and the stability after the image registration.
Higher altitude leads to smaller τ and σ, while the lower stability re-
quires bigger σ to eliminate the camera motion.

3.2.3. Local feature point
The scale-invariant feature transform (SIFT) is an algorithm in com-

puter vision to detect and describe local features in images. This algo-
rithm was published by David Lowe in 1999 [44]. The SIFT has been
widely used in many applications, such as object recognition, image
stitching, 3D modeling, gesture recognition, video tracking, individual
identification of wildlife andmatchmoving [16], etc. The SIFT is selected
as the feature detector and matching method in this method due to its
advantages over other methods. The local feature points are invariant
to image scaling, translation, and rotation, and partially invariant to illu-
mination changes and affine or 3D projection [44]. The stability of local
feature could compensate the negative effects caused by themovement
and vibration of the UAV's camera in the air. Furthermore, because each
vehicle in a video will change its position as proceeding forward, from
the perspective of the camera, the angle of a vehicle will also according-
ly change. This scenerio is illustrated in Fig. 9, in which the image of a
vehicle has a transparent change as it proceeds. The vehicle tracking ac-
curacy is challenged by the obvious angle change of a vehicle in the
video. However, the SIFT local feature points are immune to image rota-
tion and remain invariant in this situation. Also, the UAV's camera set-
ting might slightly change during video recording, such as brightness
andwhite balance. As SIFT doesn't rely on the absolute values of bright-
ness and colors, it can handle these differences in the process of
matching.
The original grayscale frame and (b) the optical flow result.



Fig. 9. Different relevant angles between vehicle and UAV.
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In conclusion, three image features are used in the method, which
includes edge, optical flow and local feature point. The input, required
orientation, calculation range and applications of each feature are sum-
marized in Table 4.

3.3. Vehicle shape detection

In this module, the method detects the boundary of a vehicle ap-
peared in the vehicle shape detection region. To solve the potential
problems in vehicle shape detection, both features of optical flow and
edge are used.

3.3.1. Vehicle shape detection region
Considering the vehicle is a rigid body, each vehicle's shape will not

change after determined in the following processors. As a result, vehicle
shape detection can be conducted in a region of interest, which is called
as the vehicle shape detection region in this method.

There are two requirements for the vehicle shape detection. The first
is that the length of the region should be longer than that of the longest
vehicle during the experiment; whereas the second is that the vehicle
shape detection region should be an areawhere vehicles stay in the cen-
ter of the lane in the shape detection region if no lane change is consid-
ered. In this method, the features of image edge are used to refine the
result of vehicle shape. A region of a vehicle edge with less lane mark
interrupted could increase the accuracy of vehicle shape detecting. As
shown in Fig. 10, the left side part of red line is the vehicle shape detec-
tion region in this test, we choose the left (upstream) 300 pixels width
as shape detection region.

3.3.2. Vehicle shape detection with optical flow and edge
From the image feature result of optical flow obtained in

Section 3.2.2, it is possible to identify the rough vehicle shape
Table 4
The summary of three types of image features.

Features Input Orientation R

Edge One frame Vertical to the road longitudinal direction O
Optical flow Consecutive frames Parallel to the road longitudinal direction A
Local feature point Consecutive frames No direction I
information. However, the result of the optical flow has some potential
errors in the process of vehicle shape recognition.

Firstly, the similar brightness inside a vehicle implies that thematrix
A in Eq. (11) is singular, where A is defined as the difference of intensity
around the subject point. When pixels intensity is similar to the insider
of a vehicle's region, matrix A will be close to zero and be singular. The
velocity at this point, V=(ATW2A)-1ATW2b, is considered as zero [43].
Consequently, when the middle area of a long vehicle has few recog-
nized features from the top view, the optical flow method could recog-
nize the long vehicle as two separated parts. Thus it is possible that one
vehicle will be recognized as two short vehicles. Another error is when
two vehicles are close to each other, the optical result cannot accurately
identify the boundaries of the two close vehicles. For example, two cars
move on two adjacent lanes with a similar speed, and the distance be-
tween the two vehicles is small. Due to the vehicle shadowand the cam-
era angle, the gap between two vehicles is invisible in the result of
optical flow. This method will mistakenly recognize two cars as one.
These two optical flow potential errors are shown in top in Fig. 11b.

In order to quantify the two potential errors in optical flow, the edge
feature (Fig. 11c) is used as a supplement to the optical flow method.
The pseudo code of the framework is listed in Table 5. The code from
line 4 to 6 can solve the first potential error, and that from line 7 to 8
can solve the second potential error. The result of vehicle shape detec-
tion is shown in Fig. 11d. After one vehicle shape is confirmed, the sys-
tem will move to the next step of vehicle tracking.

3.4. Vehicle tracking

To improve the accuracy and decrease the error rate, both features of
local feature point and opticalfloware used in the vehicle trackingmod-
ule. Occlusion is also considered in thismethod. Theworkflowof the ve-
hicle tracking algorithm is illustrated in Fig. 12. The local feature points
ange Application

n the vehicle shape detection region Vehicle shape detection
ll the road region Vehicle shape detection and vehicle tracking
nside detected shape of each vehicle Vehicle tracking



Fig. 10. The result of vehicle shape detection.
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are matched in two consecutive frames in each vehicle shape, and the
matched points are selected in vehicle tracking, which will be intro-
duced in Section 3.4.1. There are some traffic signs or bridge that may
block a vehicle's shape. To avoid these occlusion's negative effects, this
methodwill check eachmatched local feature point, and identify the oc-
clusion point. Then the recognized occlusion local feature point will be
stored into a database, which will be helpful to recognize the occlusion
point in the following steps. The occlusion case will be discussed in
Section 3.4.2. Because the matched local feature points are not reliable
in the process of vehicle tracking, as a backup method, optical flow
could also help to track vehicle. The relevant introductions are present-
ed in Section 3.4.3. In Section 3.4.4, the validation of each vehicle's track-
ing result will be demonstrated.

3.4.1. Update speed with matched local feature points
In the step of vehicle tracking, we use the matched local feature

points to detect the movement of the vehicle in consecutive frames.
As shown in Fig. 13a, the blue local feature points belong to the frame
at time n, and the red local feature points belong to the frame at time
n+Δ t, where Δ t is the time between two consecutive frames. The
matched local feature pair is considered as the same point on the vehi-
cle. As a result, the distance between the matched local feature pairs is
considered as the distance of vehicle movement during Δt. In Fig. 13b,
two consecutive frames are shown in cyan–red figure.
Fig. 11. (a) The original figure; (b) the optical flow result; (c)
3.4.2. Occlusion with traffic signs
In some situations, part of the vehicle will be occluded by the traffic

signs in the video. Then the matched local feature points on the vehicle
will be clustered into two groups. One group remains moving in the
original speed and the other group is static, because these matched
local feature points are from the traffic signs. Several steps are taken
to solve this problem. In the first place, these matched local feature
points of the traffic signs are removed and the matched local feature
points left are used to track the vehicle. If no matched local feature
points are left, the vehicle's previous speed would be used to track the
vehicle. Then, the matched local feature points of the occlusion will be
stored in the occlusion point database. If the same occlusion point ap-
pears in the following frames, the computer will easily recognize it
and eliminate the negative influences of the occlusion point directly.
3.4.3. Track vehicle through optical flow
As is known, the SIFT method is a powerful tool in the research of

feature point. However, in the process of finding the matched local fea-
ture points, there exist many restrictions and requirements [16,45]. If
the resolution of the image is not enough or the altitude of UAV is too
high, the pixels for each vehicle will be fairly limited. As a consequence,
itwill be difficult to identifymatched local feature points in the region of
detected vehicle shape. Thus, it is impossible to track vehicle based on
the edge feature result; and (d) the final detection result.



Table 5
Framework of the vehicle shape detection with optical flow and edge.

Line Code

0 Input: optical flow feature in road longitudinal direction and edge feature in
road lateral direction

1 For I = first frame to last image
2 Recognize vehicle shape set {Bj} based on result of optical flow in each frame
3 For j = all vehicle shape Bj
4 For k = all vehicle shape Bk close to Bj, where Bk∈{Bj}
5 If Bj and Bk share two continuous edge lines
6 Link the areas of Bj and Bk as one vehicle.
7 If the width of Bj is bigger than the threshold λ (in the calculation λ=4m)
8 Separate Bj according to the result of edge, and recalculate the vehicle shapes
9 Output: the confirmed vehicle shape with a unique ID
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the SIFT method. To deal with such problem, the optical flowwill be in-
cluded in vehicle tracking.

As shown in Table 6, the vehicle optical flow results at time t + Δt
are demonstrated as a black block, the blue box is the vehicle position
at time t, and the dashed box is the estimated vehicle position at time
t+Δt. By this way, each vehicle shape at time t is markedwith 9 points
(Table 6). There are 5 points on both longitudinal and lateral directions.
In the longitudinal direction, if one optical flow block covers 3 of the 5
points, this block is considered as part of the car and this optical flow
block could be used in tracking this vehicle. The same principle is ap-
plied in the lateral direction. If the vehicle speed is low or the video
Fig. 12.Workflow of
frequency is high, one optical flow block will be considered as part of
the car only when it covers at least 4 of the 5 longitudinal points.

This is a relatively conservative principle to minimize the detecting
error in the vehicle tracking process. However, because only the optical
flow block occupied 3 of the 5 points could be used in vehicle tracking,
the vehicle trajectory result is not very smooth comparedwith updating
speed with local feature points. Considering that optical flow is only a
backupmethod in vehicle tracking process and to avoid tracking failure,
this rule is reasonable.

3.4.4. Vehicle speed verification
In order to test whether the tracking results are reasonable, the

movement of each vehicle is required to satisfy certain basic criteria. If
the acceleration value of a vehicle is larger than the threshold, the vehi-
cle tracking result is considered as a failure. In this situation, previous
step's speed will be used. The vehicle movement limitations used are
based on the parameters of the Gipps car following model. The maxi-
mum acceleration is 3m/s2 and the maximum deceleration is -3.5m/
s2 [46].

4. Results and discussion

To demonstrate the present vehicle detecting and tracking system,
field tests were conducted and the modeling results are compared
with the actual observations. The location of the field tests was selected
as the north part of the 5th Ring Road in Beijing, China. The testing road
vehicle tracking.



Fig. 13. (a) The demonstration of vehicle tracking based on matched local feature points. (b) One example of track vehicle with matched local feature points.
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has two direction traffic flows, which is an arterial road and the traffic
flow is large. The side stretching from west to east has four lanes with
an additional merging lane and a shoulder lane. The other side of the
roadhas four laneswith a shoulder lane. This road section includes com-
plex traffic marks on the lane, such as the number of speed limit and di-
rection sign. Near the merging lane, there is a traffic signal board. The
image of the experiment road is shown in Fig. 14.

From 2014 Dec to 2015 May, the road was monitored by 66 times
and the total video length is over 850min. Limited by the battery capac-
ity, each testwas about 13min. Except for the time of taking off, landing
and adjustment, the length of each valuable video on vehicle detecting
and tracking is about 10 min. Considering the conditions of traffic
flow, weather and sunshine, the tests were chosen at the morning
time from 6:30 a.m.–7:20 a.m.

Considering its convenience and portability, a MacBook Pro laptop
was selected in the tests. The processor is 2.7 Ghz Intel Core i7, memory
is 16 GB 1600 Mhz DDR3, graphics is Intel HD graphics 4000 1536 MB.
Themethod is programmed inMATLAB. The basic image feature extrac-
tion methods used in the program are listed in the following Table 7.

The running time depends on the traffic situation of the observed
road section and the frame frequency of the video. Considering the
road section length is 228m (UAV's altitude is 120m), about 25 vehicles
on each frame (only consider on direction traffic flow); and video frame
frequency is 30 Hz, and the resolution is 1920 × 1080. In such condi-
tions, a 10 min UAV video requires 142 min of the image processing,
which equals to 0.47 s/frame.

4.1. Vehicle detection results

To evaluate the vehicle detection and tracking algorithms, the values
for correctness, completeness and quality are calculated for different
Table 6
The rule of vehicle tracking based on optical flow.

Original situation Adjustment result
scenes from several campaigns. They are defined in Eqs. (15–17) from
reference [23], with true positives being the number of vehicles detect-
ed, false positives as the number of non-vehicle detections and false
negatives the number of vehicles missed.

Correctness ¼ true positives
true positivesþ false positives

ð15Þ

Completeness ¼ true positives
true positivesþ false negetives

ð16Þ

Quality ¼ true positives
true positivesþ false negetivesþ false positives

ð17Þ

The vehicle detection results are listed in Table 8 and are validated
manually. It is worthy to note that through the camera horizontal degree
of field of view is 94.4° (Table 2), however, after the correcting the image
deformation, the observed road section lengthmay reduce. From Table 8,
the results of correctness are 100% for all cases with different altitudes,
which means every recognized vehicle is correct. In transportation re-
search, the correctness is more important than completeness in vehicle
shape detection, because one false positive failure (consider a non-
vehicle as a vehicle) will directly cause the failure of vehicle tracking in
the following steps (as vehicle tracking is depending on the vehicle de-
tecting result). Furthermore, this false positive detected “vehicle” (this
is not a vehicle in the video) is like a “ghost” vehicle, andwill generate un-
predictable errors, which could cause difficulties in the traffic flow
analysis.

There are two main reasons that may cause false negative failures.
On one hand, when vehicle is crossing the lane mark in the vehicle
shape detection region, the lanemark will have negative effects in vehi-
cle detecting. Especially in vehicle lateral edge figure, the computer can-
not tell the vehicle shape with lane mark edge. On the other hand, if a
vehicle shape is very different from the typical vehicle, it will cause
false negative failure. For this reason, a predefined vehiclewidth thresh-
old is set in the vehicle shape detecting. If a vehicle is over that limita-
tion, the vehicle will not be recognized. For example, in the 120 m-
altitude video, the vehicle recognized width limitation is 30 pixels to
45 pixels.

Overall, vehicle detecting could provide acceptable accuracy when
the UAV's altitude within the range of 100 m–120 m. But when the
UAV's altitude increases to 150 m, the accuracy decreases to 96.1%. Be-
cause each vehicle's occupied pixels in video is reduced (in 150 m-
altitude video, each vehicle occupies only about 150 pixels), corre-
spondingly the optical flow and lateral edge are not accurate enough
for vehicle detection. Theoretically, a higher resolution camera could in-
crease the accuracy of detection results in higher altitude.



Fig. 14. The experiment location (altitude is 150 m).

Table 8
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4.2. Vehicle tracking results

Because thismethod separate the vehicle detection and tracking into
two different processes, the vehicle tracking results will be demonstrat-
ed individually. However, there's no exact method or standard to eval-
uate the result of vehicle tracking. Indirectly, the concept of “lost
vehicle” [48–50] is introduced in macroscopic traffic simulation, which
is defined as a vehicle moving out of the lane, or superimposed on an-
other one, or staying in a position for an irrationally long time. The num-
ber of “lost vehicles” can be an indicator to evaluate the vehicle tracking
algorithms. The results of vehicle tracking at different altitudes are listed
in Table 9. The vehicle tracking accuracywill decreasewhen the UAV al-
titude increase. But the presented method could still generally keep a
higher accuracy in tracking each vehicle from 100 m to 150 m altitude.

For each vehicle tracking result, both the vehicle longitudinal and
the lateral positions are recorded in an equal time interval sequence.
Fig. 15 is a typical vehicle tracking results. This vehicle moves from the
second lane to the third lane and takes about 20 s through the research
region (200 m). It is clear that during the lane change the vehicle de-
creases its speed for a proper gap to enter. The average speed at the sec-
ond lane is about 14 m/s, and the average speed at destination lane
(third lane) is about 12 m/s. However, at gathering vehicle positions,
whatever the technique is used, the observed points happen to be dis-
persed in the neighborhoods of the actual points and the path drawn
on the observed positions inevitably fluctuates around the true path
followed by the vehicle [51]. Therefore there are two types of limitations
of the raw experiment results. Firstly, the vehicle's trajectory position
and speed vibrate greatly, and two consecutive frames have great differ-
ences (Fig. 15). Secondly, themeasurement error is more obvious in the
Table 7
The main image feature extraction method applied in the code.

Image feature Method Code

Edge Prewitt edge detection MATLAB
Optical flow Lucas–Kanade operator MATLAB
Local feature point SIFT VLFeat [47]
vehicle lateral direction. Compared with a vehicle's longitudinal speed,
the vehicle's lateral speed is relatively very small. As shown in
Fig. 15(b), themaximum lateral speed is only 10% of themaximum lon-
gitudinal speed,whichmeans that the samemeasurement errorwill oc-
cupy higher percentage in vehicle lateral speed. On the other hand,
vehicle lateral position is hard to predict. A driver may change lateral
speed and direction at any time, whichmeans that it is hard to set a lim-
itation to eliminate unreasonable lateral movement.

In general, the raw vehicle trajectory data could describe a vehicle's
main behavior, such as speed change, lane change, etc. However the raw
trajectory data still has some limitations and disadvantages for micro-
scopic transportation research with higher accuracy requirements. A
proper assessment and optimize method for raw vehicle trajectory
data is thus highly demanded in the transportation analysis.

4.3. Applications and limitations

The presentedmethod provides a convenient and reliableway to ac-
quire each vehicle's information. The trajectory data could be used in
most transportation research and traffic data analysis. This method
can be directly used in actual traffic monitoring and control in dense
metropolitan areas for disaster mitigation and emergencymanagement
[1]. As a useful aerial robot, UAV is playing an important role in the
transportation monitoring system for the ongoing growth of city road
network. The high quality trajectory data based on thismethodwill pro-
vide important information for city transportation management, plan-
ning and construction.
Vehicle detection results.

UAV altitude (m)/Road section length(m) 100/190 120/228 150/285

Vehicle average speed (m/s) 12.4 11.2 12.0
True positives 1999 1877 1520
False positives 0 0 0
False Negatives 2 3 61
Correctness 100% 100% 100%
Completeness 99.9% 99.8% 96.1%
Quality 99.9% 99.8% 96.1%



Table 9
Vehicle tracking results.

UAV altitude (m)/Road section length (m) 100/190 120/228 150/285

Number of vehicles 1999 1877 1520
Number of “lost vehicle” 0 11 32
Error rate 0% 0.6% 2.1%
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In addition, with the aid of emerging technologies in data and image
acquisition, the UAVs are attractingmore attentions among researchers
and engineers in new applications. The presentmethod is not limited to
the vehicle monitoring in road networks. With the improvement of the
accuracy, the presentmethod can be applied in construction-related en-
vironments, search and rescue applications, structural inspection and
healthmonitoring. For example, by introducing a road curvature instead
of the static road direction in this study, the present method might be
applied at different scenarios, such as a complicated overpass or open
pit mines; the vehicle detecting method can be modified for different
types of tracking object; if optical flow and local feature point are used
in recognizing objects, themethod could be applied in trackingwild an-
imals and people.

Nevertheless, as a novel equipment emerging in traffic monitoring
system, there still exist some limitations of applying UAVs in vehicle de-
tecting and tracking:

• The UAV's behavior is sensitive to the testing environment. Based on
the field experiences, the video vibration increases as the wind veloc-
ity increases. As a consequence, it might cause the image registration
failure [33]. Additionally, the UAV might not properly work in bad
weather conditions, such as foggy or snowy conditions. With the ad-
vance of technology, the UAV's stability and endurance might be im-
proved considerably in the near future, and thus the effect of
weather conditions and battery capacity limitations can be overcome.

• The UAV's continuous working time is limited by its battery capacity.
As a traffic-monitoring device, the short continuous working time is
not able to provide enough consecutive data for a long-termmonitor-
ing of a load section. The UAV used in this test is only 15 min. To the
authors' knowledge, a UAV as a traffic-monitoring device is still in re-
search level, but has not been widely used in city road today.

• The shadowwill have negative effects on vehicle tracking and detect-
ing accuracy. Intensive research is required to effectively address this
issue in the computer vision [52]. To address the shadow problem, the
infrared waveband camera might be an alternative way, where each
vehicle can be detected and tracked by extracting its engine's heat.

• In macroscopic transportation analysis, a longer road section, say
5 km, is required [53]. However it is hard to extend the observation
scope by increasing a UAV's altitude while keeping enough pixels for
recognizing each vehicle. Simultaneous applications of multiple
UAVs might be one of solutions.
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Fig. 15. A typical vehicle trajectory data; (a) vehicle position
5. Conclusions

A UAV-based vehicle detecting and tracking system has been
presented with many advantages in both traffic monitoring system and
driver behavior research. The method extracts vehicle trajectory data
from the UAV's video at different altitudes with different view scopes.
Three significant features of the method have been demonstrated:

• Three image features, including edge, optical flow and local feature
point, work jointly in this method to detect and track vehicles in a
UAV's video. Compared with traditional single image feature
methods, the presented method considerably improves the recogni-
tion accuracy and the system robustness.

• Thismethod is specifically designed for vehicle detection and tracking.
Based on the analysis of road, traffic flow and driver behavior charac-
teristics, some adjustments, such as transforming image's color form
into HSV to obtain road features, extracting longitudinal direction fea-
ture of Optical flow for vehicle detection, vehicle shape detection re-
gion and checking vehicle speed based on the Gipps acceleration
model have been introduced in themodel to further improve efficien-
cy and accuracy.

• The vehicle detection and tracking results based on the presentmeth-
od showed that considerable improvement of the detecting accuracy
has been reached. Three road section lengths 190 m, 228 m and
285m,were studied, all the test results are very reliable, and the vehi-
cle detection error is lower than 3.9% and vehicle tracking error is
lower than 2.1%.

As UAV is gainingmore applications in the automatic control system,
more exciting studies of UAVwill be explored in the near future. For ex-
ample, based on the image analysis and traffic flow theory, theUAVmay
automatically locate the traffic accident sites and transfer real-time data
to the traffic management center. In addition, vehicle detecting and
tracking methods for different altitudes and different accuracy should
be considered. Furthermore, based on different transportation situa-
tions and observation scopes, UAVs are desired to adjust observation al-
titude during the operation. With those new features, the UAV can be
extended to more applications.
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