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Understanding the state, behavior, and surrounding context of construction workers is essential to effective pro-
ject management and control. Exploiting the integrated sensors of ubiquitous mobile phones offers an unprece-
dented opportunity for an automated approach to workers' activity recognition. In addition, machine learning
(ML) methodologies provide the complementary computational part of the process. In this paper, smartphones
are used in an unobtrusive way to capture body movements by collecting data using embedded accelerometer
and gyroscope sensors. Construction activities of various types have been simulated and collected data are
used to train five different types of ML algorithms. Activity recognition accuracy analysis has been performed
for all the different categories of activities and ML classifiers in user-dependent and -independent ways. Results
indicate that neural networks outperform other classifiers by offering an accuracy ranging from 87% to 97% for
user-dependent and 62% to 96% for user-independent categories.
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1. Introduction

Effective and timely analysis and tracking of workforce activities are
essential to overall productivity measurement, progress evaluation,
labor training programs, and safety and health management [1–3].
The construction industry, as a major contributor to the U.S. economy,
has traditionally suffered from low productivity and high inefficiency
stemmed from misallocating resources resulting in under-utilizing or
over-utilizing them in the project. Arguably, the first step in alleviating
this problem is to accuratelymonitor and evaluate the time spent on in-
terconnected construction tasks involving labor force, and compare the
resultswith project benchmarks in order to improve the amount of time
and resources spent on work packages involved in typical construction
activities [4]. In addition to its benefits to productivity monitoring, the
outcome of this analysis can be used for stochastic process simulation
input modeling, work sampling, and integrated detailed assessment
and continuous workflow improvement. For instance, the authors
have designed and implemented a data-driven construction simulation
framework by tracking construction entities [5,6]. Joshua and Varghese
[7] adopted a similar approach to facilitate the manual process of work
sampling in construction projects.
khavian),
Process monitoring and control provides a solid basis for tracking
and measurements required for activity analysis. Recent advancements
in automated data collection to track resources andmeasurework prog-
ress have shown promising prospects for streamlining crew activity
analysis compared to the conventional (manual) approaches such as di-
rect observations and survey-based methods. This is mostly because
manual methods involving human observers are tedious, time consum-
ing, and error-prone. Furthermore, large amounts of data should be col-
lected in order to maintain the statistical significance of observations.

However, automated technologies for data acquisition are still being
assessed in terms of their reliability and feasibility in construction do-
main applications. In one hand, vision-based techniques have been pro-
posed and investigated by a number of researchers for automated
activity analysis [8]. On the other hand, wireless sensor-based method-
ologies have been examined to collect spatio-temporal activity data [9].
While vision-basedmethods are often prone to extant occlusions and il-
lumination variability in construction jobsites, sensor-based techniques
do not require a clear line-of-sight (LOS) and extensive computations
and can provide relatively low cost solutions (compared to laser-scan-
ning for instance). Despite their advantages, a longstanding challenge
and impediment to the widespread use of sensor-based data collection
schemes is that traditional sensor installation and maintenance in con-
struction jobsites is not a trivial task (if not at all impossible) due to pro-
hibitive ambient factors such as dust, adverse weather conditions, and
harsh working environments.
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To remedy this situation, a relatively newer data collection tech-
nique has been trending which uses ubiquitous sensors that are readily
available to and carried by most individuals on a daily basis. Such tech-
nologies are, for instance, provided throughbuilt-in sensors inmostmo-
bile phones. Mobile devices are advantageous over other activity
recognition data collection platforms since they unobtrusively provide
a self-sufficient data collection, computing, and storage scheme. Recent-
ly, several research projects within the construction domain have taken
advantage of ubiquity of smartphones to design and prototype useful
applications for construction workers on the jobsite [10,11]. Such appli-
cations in essence deliver information to the site personnel, while there
is a great potential to infer information using the built-in sensors. A typ-
ical smartphone has an almost inclusive subset of these context-aware
sensors including accelerometer, gyroscope, GPS, magnetometer, ba-
rometer, proximity sensors, light sensors, Bluetooth, Near Field Com-
munication (NFC), and cameras [9]. In addition to academic
endeavors, a number of construction equipment and toolmanufacturers
have started to produce rugged drop-proof, and dust- and water-resis-
tant smartphones specifically designed for construction jobsites [12].

This paper presents a thorough evaluation of the performance of an
activity analysis framework for recognition and classification of various
constructionworker activities using smartphone built-in sensors. In this
research, data are collected from a variety of construction activities per-
formed by construction workers and are annotated for feature extrac-
tion to train machine learning classifiers. Data-driven methodologies
in activity recognition fall into one of the twomajor categories of gener-
ative or discriminative approaches. While in generative approach prob-
abilistic models such as Baysian network are used to build a description
of input, the discriminative approach models the mapping from inputs
to outputs or data to activities [13]. Using generative models such as
hidden Markov models (HMM) and dynamic Baysian network (DBN)
is notwithin the scope of this research since they are not capable of cap-
turing transitive dependences of the observationsdue to their very strict
independence assumptions.

2. Literature review

2.1. Automated recognition of construction worker activities

Previous research for activity recognition and classification of con-
struction workers mainly falls into the vision-based category. Microsoft
Kinect, for example, was employed by some researchers for vision-
based activity recognition in indoor and controlled environments [14,
15]. In another set of studies, 2D videos are used to collect visual data
for action recognition in construction sites. For example Favela, Tentori,
Castro, Gonzalez, Moran and Martínez-García [3] used a wireless video
camera to extract human poses from video to recognize construction
workers' actions. In a different study, 3D range image camera was
used for tracking and surveillance of construction workers for safety
and health monitoring [16]. Gonsalves and Teizer [16] indicated that if
their proposed system is used in conjunction with artificial neural
network (ANN), the results would be more robust for prevention of
fatal accidents and related health issues. In their study on construction
workers' unsafe actions, Han and Lee [17] developed a framework
for 3D human skeleton extraction from video to detect unsafe
predefined motion templates. All of these frameworks, although pre-
sented successful results in their target domain, require installation of
multiple cameras (up to 8 in some cases), have short operational
range (maximum of 4 m for Kinect), and require a direct LOS for imple-
mentation. Such shortcomings have served as a major motivation to in-
vestigate alternative solutions that can potentially alleviate these
problems.

Recently, researchers in construction engineering and management
(CEM) have investigated the applications of senor-based worker activi-
ty analysis. For example, a data fusion approach using ultra-wide band
(UWB) and Physiological Status Monitors (PSMs) for productivity [4]
and ergonomics [18] analysis was proposed. In these studies, UWB
and PSM data were fused and the result was categorized using a
spatio-temporal reasoning approach. However, the level of detail in rec-
ognizing the activities was limited to identification of traveling, work-
ing, and idling states of workers and could not provide further insight
into identified activities. Prior to this study, the integration of UWB, pay-
load, and orientation (angle) data with spatio-temporal taxonomy-
based reasoning was adopted by the authors for construction equip-
ment activity analysis to support process visualization, remotemonitor-
ing and planning, and knowledge-based simulation input modeling
[19–21]. More recently, the authors have used smartphone-based
data collection and activity recognition for data-driven simulation of
construction workers' activity by extracting process knowledge and ac-
tivity durations [22]. Joshua and Varghese [7] were among the first re-
searchers who explored the application of accelerometer in
construction for work sampling. However, the scope of their work was
limited to only a single bricklayer in a controlled environment. More-
over, their proposed framework used accelerometer as the sole source
of motion data. Also, the necessity of installing wired sensors on the
worker's body may introduce a constraint on the worker's freedom of
movement.

2.2. Activity recognition using cellphone sensors

Detection and classification of human activities usingwearable iner-
tial measurement units (IMUs) consisting of accelerometer and gyro-
scope gained traction among computer science researchers in mid-
2000′swith applications in differentfields such as healthcare and sports
[23–25]. In all such studies, data pertaining to human physical move-
ments are captured using IMUs and different postures and dynamic
transitions are detected by training classifiers. However, recent studies
are mostly geared toward leveraging the ubiquity, ease of use, and
self-sufficiency of mobile phones for human activity recognition [26–
29]. In one study, Reddy, Mun, Burke, Estrin, Hansen and Srivastava
[30] used decision tree and dynamic hidden Markov model (DHMM)
to classify activities such as standing, walking upstairs, biking, driving
a car, and jumping using accelerometer and GPS data. In another re-
search, Sun, Zhang, Li, Guo and Li [28] used support vector machines
(SVMs) to build a human daily physical activity recognition system
usingmobile phone accelerometers. More recently, mobile phone gyro-
scope has been also employed in addition to accelerometer for activity
recognition. For example, using accelerometer and gyroscope data and
hierarchical SVM, Kim, Cho and Kim [31] classified daily activities to sit-
ting, walking up- and downstairs, biking, and having no motion. More-
over, Martín, Bernardos, Iglesias and Casar [32] used decision table,
decision tree, and naïve Bayes to classify data from various smartphone
sensors such as accelerometer and gyroscope to classify daily activities
into standing, sitting, jogging, and walking upstairs.

Despite its great potential for construction automation, and consid-
ering the existing interest in construction workers' activity recognition,
the application of such emerging data collection platforms has not been
fully investigated within the CEM domain. In the research presented in
this paper, signature patterns observed in the signals received from
wearable IMUs of ubiquitous smartphones are analyzed to recognize ac-
tivities performed by different construction workers.

3. Research objectives and contributions to the body of knowledge

As stated in the previous Section, existing work on activity recogni-
tion within the CEM domain has primarily focused on vision-based sys-
temswhile a very limited number of studies aimed at developingmulti-
modal sensor-based data collection schemes. Hence, the presented
study in this paper contributes to the body of knowledge by investigat-
ing construction worker activity recognition through (1) using the sen-
sors embedded in mobile phones to (2) identify complex activities that
consist of more than one task by (3) deploying combined features of
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accelerometer and gyroscope (i.e. IMU) data. In particular, this research
provides new insight into the accuracy of recognizing construction
workers' complex and continues activities through different learning al-
gorithms where more than one task is performed by a worker, using
mobile built-in IMUs.

4. Methodology

In this study, data are collected using mobile phone accelerometer
and gyroscope sensors. Collected raw sensory data are segmented into
windows containing certain number of data points. Next, key statistical
features are calculated within each window. Furthermore, each seg-
ment is labeled based on the corresponding activity class performed at
the time identified by the timestamp of the collected data. In order to
train a predictivemodel,five classifiers of different types are used to rec-
ognize activities performed in the data collection experiments. Fig. 1 de-
picts the steps from data collection to activity recognition. All data
processing including the statistical computation of features and train-
ing, testing, and validation of the classifiers were performed in Matlab
using in-house codes.

4.1. Data acquisition using mobile phones

Wearable sensors are small sizemobile sensors designed to be worn
on the body. Most such wearable mobile sensors can be found in
existing smartphones. Accelerometer, gyroscope, ambient temperature
sensor, light sensor, barometer, proximity sensor, and GPS are some of
the sensing technologies that are built-in on most of the commercially
available smartphones. Accelerometer sensorsmeasure the acceleration
of the device. The reading can be in one, two, or all three axes of X, Y, and
Z. The raw data is represented as a set of vectors and returned together
with a timestamp of the reading. Gyroscope is a sensor that measures
the rotation rate of the device by detecting the roll, pitch, and yawmo-
tions of the smartphone about the X, Y, and Z axes. Similar to accelerom-
eter, readings are presented as time-stamped vectors.When themobile
device is attached to a human body involved in different activities, these
two sensors generate different (and unique) patterns in their transmit-
ted signals.
Fig. 1. Framework for construction worker ac
4.2. Data preparation

When collecting data for a long period of time, it can be observed
that sometimes the sensors temporarily lag or fail to properly collect
and store data for fractions of a second to a few seconds and in return,
compensate for the missing data points by collecting data at a rate
higher than the assigned frequency. In such cases, a preprocessing tech-
nique to fill in for missing data points and remove redundant ones can
help insuring a continues and orderly dataset. Also, since the raw data
are often collected with a high sampling rate, segmentation of the
data helps in data compression and prepares data for feature extraction
[33]. If segmentation is performed considering an overlap between ad-
jacent windows, it reduces the error caused by the transition state
noise [34]. The length of the window size depends on the sampling fre-
quency and the nature of activities targeted for classification from
which data is collected [34].

4.3. Feature extraction

Feature is an attribute of the raw data that should be calculated [33].
In data analytics applications, statistical time- and frequency-domain
features generated in each window are used as the input of the training
process [23]. The ability to extract appropriate features depends on the
application domain and can steer the process of retaining the relevant
information.Most previous studies on activity recognition have used al-
most the same features for training the models and classification of ac-
tivities [35].

4.4. Data annotation

Following data segmentation and feature extraction, the corre-
sponding activity class labels should be assigned to each window. This
serves as the ground truth for the learning algorithm and can be re-
trieved from a video, recorded at the time of the experiment.

4.5. Supervised learning

In supervised learning classification, class labels are provided to the
learning algorithms to generate a model or function that matches the
tivity recognition using mobile sensors.
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input (i.e. features) to the output (i.e. activity classes) [23]. The goal is to
infer a function using examples forwhich the class labels are known (i.e.
training data). The performance of this function is evaluated bymeasur-
ing the accuracy in predicting the class labels of unseen examples. Re-
searchers have used different types of supervised classification
methods for activity recognition [28,30,31].

4.6. Model assessment

In order to determine the reliability of the trainedmodel in detecting
new examples of activity classes, part of the training dataset is used for
testing themodel. It is recommended that the test set is independent of
the training set, meaning that the data that are used for testing have not
been among the training data. For example, randomly chosen 10% of the
training data can be left out so that the training is performed on the re-
maining 90% of data. Assessment of the model provides an opportunity
for its fine-tuning so that certain variables (e.g. regularization factor to
prevent over-fitting in neural networks) in the algorithm can be revised
to yield the best possible model.

4.7. Activity recognition

Once the model is trained and its parameters are finalized, it can be
used for recognizing activities for which it has been trained. While data
is being collected to determine the activities according to a trained classi-
fier, such data can be stored in a dataset repository and be added to the
existing training data, so that the model is further trained with a richer
training dataset.

5. Experiment setup and data analysis

In this research, experiments were conducted in an outdoor
workspace where different activities performed by multiple construction
workers were imitated. These activities included sawing, hammering,
turning a wrench, loading sections into wheelbarrows, pushing loaded
wheelbarrows, dumping sections from wheelbarrows, and returning
with empty wheelbarrows. Activities were performed in 3 different cate-
gories in order to assess certain circumstances (described in the following
Subsections) in the outcome of classification. A commercially available
armbandwas used to secure a smartphone on the upper arm of the dom-
inant hand of eachworker. Recent research on the selection of accelerom-
eter location on bricklayer's body for activity recognition has shown that
according to the body movement of the worker while performing differ-
ent bricklaying activities, among 15 potential locations for wearing an ac-
celerometer, the lower left arm and the upper right arm are the two best
locations that yield the highest information gain [36]. In this study, the
lower arm was not selected for recognition of the activities of interest
since the workers stated that it would preclude convenient execution of
some activities. Consequently, the selection of the upper arm was
Fig. 2. Data collection experiments (mobile d
expected to provide accurate and consistent results compared to other lo-
cations on the body. Fig. 2 shows some snapshots of the construction
workers wearing mobile phones on their upper arms while performing
assigned activities in the experiments conducted in this research. As it ap-
pears in Fig. 2, the second worker's armband is located slightly above the
elbow. The movements produced are the same as the upper arm and as
long as the position of the device does not change significantly during
the experiment, the training and later testing are still valid. It should be
noted that all four human subjects were Construction Engineering and
Management studentswhohad basic prior experienceworking in various
construction jobsites.
5.1. Data collection

Smartphone built-in sensors and sensor logging applications in both
Android and iOS operating systems were used for data collection.
Most of the current iOS and Android smartphones are equipped with
3 degree-of-freedom (DoF) sensors including three-axis accelerometer
and gyroscope. For example, Apple iPhones are equipped with
STMicroelectronics LIS331DLH accelerometer and the L3G4200D gyro-
scope. There are plenty of free applications available on both Apple
Store and Google Play that enable data collection and spreadsheet log-
ging. The spreadsheet files are automatically saved following the data
collection and transferred to a remote computer for processing. The
sampling frequency was set at 100 Hz. This frequency is neither too
low to miss any movement corresponding to the target activities, nor
too high to result in a large size for the collected data file. This sampling
frequency has been also used in previous studies for accelerometer
based activity recognition [37,38]. Data was collected in all 3 axes (X,
Y, Z) from accelerometer and gyroscope. Construction workers were
asked to do their assigned activities for a certain period of time while
waiting for a few seconds in between each instance of their assigned ac-
tivities. Each activity was performed by two subjects for later user-inde-
pendent evaluations. Two subjects performed only sawing. In this case,
the goal of activity recognition was to differentiate between the time
theywere sawing and the time theywere not sawing. Two other subjects
performed hammering and turning a wrench. In this case, the activity
recognition was intended to detect the time they were hammering, the
time they were turning the wrench, and the time there were not doing
any of the two activities. Finally, the last two subjects were responsible
for pushing the wheelbarrow and loading/unloading the sections.
Therefore, the activities to be recognized in this case were loading sec-
tions into a wheelbarrow, pushing a loaded wheelbarrow, dumping sec-
tions from a wheelbarrow, and returning with an empty wheelbarrow.
Workers in the experimentswere not instructed to perform any activity
in any specific way; rather theywere only tasked with completing their
own job in their natural body pose and movements.

Time-stamped data were logged into comma separated values (CSV)
spreadsheets. The entire experiment was videotaped for data annotation.
evices are marked with dashed circles).
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Time-stamped data from accelerometer and gyroscope were also syn-
chronized and subsequently matched with the timer of the video during
the data annotation process. This step is to ensure that the timing of the
individual sensory data points within the dataset is mapped precisely to
that of the recorded video so that a data point labeled at t1 represents
an activity performed at t2 if and only if t1 = t2 in the experiment.

5.2. Data analysis

Table 1 shows the number of data points collected per sensor per
axis. Since classifications are conducted in 3 activity categories, the
numbers of collected data points are tabulated and reported for each
category. Category 1 includes only one distinguishable activity, sawing,
to assess the performance of the classifiers in detecting value-adding
versus non-value-adding instances in a pool of accelerometer and gyro-
scope data. The result of classification in this category contributes to the
overall performance of the developed activity recognition systemwhen
used for productivity measurement. In this category, sawing is catego-
rized against idling. Category 2 includes instances of consecutive ham-
mering and turning a wrench as two completely separate but adjacent
activitieswith almost similar correspondingmovements of theworker's
arm. These two activities are also classified against idling to assess the
accuracy of the developed activity recognition system in differentiating
between activities that produce similar physical body motions. Finally,
in category 3, four activities that produce different distinguishable
body movements are categorized. These activities include loading sec-
tions into a wheelbarrow, pushing a loaded wheelbarrow, dumping sec-
tions from a wheelbarrow, and returning an empty wheelbarrow, that
were also categorized against idling. Multiplication of the number of
data points by 6 will result in all data points collected from two sensors
in three axes.

The smartphone clock is used as the reference clock for all the appli-
cations that collect data using smartphone's embedded sensors. There-
fore, it is fair to assume that all sensor data are collected with a
uniform sampling rate and each data point from any given sensor can
be paired with a data point from another sensor, as long as their
timestamps match. However, due to the inevitable drift of the sensors
in high frequency data collection mode, a pre-processing step is neces-
sary. This is tomake sure that data points are alignedwith each other ac-
cording to the timestamp and eventually belong to the same timestamp
in the recorded video of the same experiment.

In order tomake up for themissing data and remove redundant data
collected in a higher rate than the assigned sampling frequency, the
timestamps of the adjacent collected data points were examined. Con-
sidering the 100 Hz sampling frequency, the normal difference between
the two adjacent timestamps must be around 0.01 s. Therefore, in the
data preparation phase, if this difference is greater than 0.015 s, the X,
Y, and Z values of the missing data point were interpolated as the aver-
age of the two adjacent data points. As for the redundant collected data,
any data point collected within less than 0.005 s of the last collected
data point was removed. This assures the compatibility of the collected
datawith the recorded videotape for data annotation. As far as data seg-
mentation was concerned, every 128 data points were segmented in
onewindow and considering the 100 Hz sampling frequency, eachwin-
dow amounts to 1.28 s of data collection. The choice of 128 data points
was due to conversion of the time domain to the frequency domain
using fast Fourier transform (FFT) in which the window size should be
Table 1
Collected data points per sensor per axis in each activity category.

Category Activity Number of data points
per sensor per axis

1 Sawing 120,755
2 Hammering + turning a wrench 149,682
3 Loading + hauling + unloading + returning 337,800
a power of 2 [18,19]. If the window size is not a power of 2, zeros will
be added to the end of the window or it would be truncated to become
a power of 2. With regard to the overlapping of the adjacent windows,
previous studies for accelerometer-based activity recognition have sug-
gested a 50% overlap between the adjacentwindows [23,39] and hence,
a 50% overlapwas also considered for data analysis in this research. 50%
overlap means that the second half of the first section will be over-
lapped with the first half of the second section. The overlapping assures
that no value-adding activity thatmay be split into two consecutive sec-
tions will go unnoticed.

Moreover, common features used for activity recognition found in
literature [35] were selected in this study and extracted from the raw
data. In particular, mean, maximum, minimum, variance, root mean
square (RMS), interquartile range (IQR) and correlation between each
two pairs of axes comprised the seven time-domain features and spec-
tral energy and entropywere the two frequency domain features.Mean,
maximum, minimum, and variance are simply calculating the same for
the data points in a window. RMS is the square root of the arithmetic
mean of the squares of the values in a section. IQR is the difference be-
tween the first and third quartile on the data point values. Also, the cor-
relation of the mean of the section data points from each two pair of
axes is calculated. Finally, spectral energy describes the distribution of
the signal's energy by the frequency and spectral entropy measures
the irregularity of the signal by calculating the normalized information
entropy of the discrete FFT component magnitudes [24]. Considering
data collection in three axes of the two sensors and nine independent
features extracted per sensor per axis, a total of 54 features were ex-
tracted from all collected data. Labeling windows was performed man-
ually according to the recorded video of the data collection experiment.
The extracted features include but are not limited to statistical time-do-
main features such as mean, maximum, and RMS, as well as statistical
frequency-domain such as signal energy and entropy.

5.3. Classifier training

The performance of five different classification techniques in accu-
rately detecting worker activities was systematically evalauted. In par-
ticular, neural network, decision tree, K-nearest neighbor (KNN),
logistic regression, and support vector machine (SVM) were employed
for classification. Decision tree, KNN, and SVM have been previously
used for activity recognition [23,37,38] so they were also selected in
this study. However, neural network and logistic regressionwere exam-
ined to a much lesser extent [40].

5.3.1. Neural network
The architecture of the neural network used for recognizing the ac-

tivities is depicted in Fig. 3.
As shown in this figure, the network consists of one input, one hid-

den, and one output layer. Considering the 54 features that serve as
the input of the neural network, the input layer has m = 54 units. The
hidden layer consists of p = 25 units; this is selected considering the
Fig. 3. The architecture of the neural network used in this research.
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average of the sum of the units in the input and output layers [41]. The
number of units for the output layer is equal to the number of activity
classes, n in each case. Given the large feature space and in order to pre-
vent overfitting, regularization was used. Using a regularization param-
eter, the magnitude of the model weights decreases, so that the model
will not suffer fromhigh variance to fail to generalize to the newunseen
examples [42]. The activation function (i.e. hypothesis) used for mini-
mizing the cost function in the training process is a Sigmoid function
shown in Eq. (1),

hΦ xð Þ ¼ 1
1þ e−Φx ð1Þ

in which hΦ(x) is the activation function (i.e. hypothesis), Φ is a matrix
of model weights (i.e. parameters), and x is the features matrix. In this
study, in order to minimize the cost function, the most commonly
used neural network training method, namely feed-forward
backpropagation is used. Considering a set of randomly chosen initial
weights, the backpropagation algorithm calculates the error of the acti-
vation function in detecting the true classes and tries to minimize this
error by taking subsequent partial derivatives of the cost function with
respect to the model weights [43].

5.3.2. Decision tree
Decision tree is one of themost powerful yet simplest algorithms for

classification [44]. The decision tree method that is used in this research
is classification and regression tree (CART). CART partitions the training
examples in the feature space into rectangle regions (a.k.a. nodes) and
assigns each class to a region. The process begins with all classes spread
over the feature space and examines all possible binary splits on every
feature [44]. A split is selected if it has the best optimization criterion
which is the Gini diversity index in this research, as shown in Eq. (2),

IG fð Þ ¼ 1−∑
k

i¼1
f 2i ð2Þ

inwhich IG is theGini index, fi is the fraction of items labeledwith value i
and k is the number of classes. The process of splitting is repeated iter-
atively for all nodes until they are pure. A node is considered pure if it
contains only observations of one class, implying a Gini index of zero,
or that there are fewer than 10 observations to split.

5.3.3. K-nearest neighbor (KNN)
Similar to the decision tree and unlike the neural network, KNN is a

simple algorithm. Training examples identified by their labels are
spread over the feature space. A new example is assigned to a class
that is most common amongst its K nearest examples considering the
Euclidean distance that is used as the metric in this research and as ap-
pears in Eq.(3),

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 1ð Þ
i −x 1ð Þ

new

� �2
þ x 2ð Þ

i −x 2ð Þ
new

� �2
þ…þ x dð Þ

i −x dð Þ
new

� �2
r

ð3Þ

in whichD is the Euclidean distance, xi is an existing example data point
which has the least distance with the new example, xnew is the new ex-
ample to be classified, and d is the dimension of the feature space.
Table 2
Classification accuracy (%) for category 1 activities.

Category1 Neural network Decisi

Training Subject I 100.00 99.36
Subject II 99.25 99.15

10-Fold CV Subject I 96.77 96.06
Subject II 97.02 95.42
5.3.4. Logistic regression
Logistic regression is a type of regression problems in which the out-

put is discretized for classification [45]. Logistic regression seeks to form
ahypothesis function thatmaps the input (i.e. training data) to the output
(i.e. class labels) by estimating the conditional probability of an example
belonging to class k given that the example actually belongs to the class
k. This is accomplished by minimizing a cost function using a hypothesis
function and correct classes to find the parameters of the mapping
model [45]. The hypothesis function used in this research is the same as
the activation function introduced in Eq. (1) (the Sigmoid function) and
thus the cost function to minimize is as shown in Eq. (4),

J θð Þ ¼ −
1
m

½∑
m

i¼1
y ið Þ loghθ x ið Þ

� �
þ 1−y ið Þ
� �

log 1−hθ x ið Þ
� �� �

ð4Þ

in which J(θ) is the cost function,m is the number of training examples, θ
is the feature, h(θ) is the hypothesis function, x(i) is the ith training exam-
ple, and y(i) is the corresponding correct label. Once the cost function is
minimized using any mathematical method such as the Gradient Decent
[45] and parameters are found, the hypothesis will be formed. In multi-
class classification, the one-versus-all method is used to determine if a
new example belongs to the class k [45]. Therefore, considering k classes,
k hypothesis functions will be evaluated for each new example and the
one that results in the maximum hypothesis is selected.

5.3.5. Support vector machine (SVM)
Compared to decision tree and KNN, SVM is considered as a more

powerful classification algorithm. Although it has been widely used in vi-
sion-based pattern recognition and classification problems, some re-
searchers [44] used it for classifying daily activities and thus its
performance is also assessed in this research. In a nutshell, SVM tries to
maximize the margin around hyperplanes that separate different classes
from each other. SVM can benefit from a maximum margin hyperplane
in a transformed feature space using kernel function to create non-linear
classifiers. The kernel function used for non-linear classification in this re-
search is Gaussian radial basis function (rbf) which has been successfully
applied in the past to activity recognition problems [23]. Further descrip-
tion of SVMmodels are out of the scope of this study but can be found in
[44].

6. Results and discussion

The performance of the classifiers is assessed in two ways. First, the
training accuracy of each classifier was calculated. This means that all
collected data points were used for both training and testingwhich pro-
vided an overall insight into the performance of a host of classification
algorithms in recognizing construction worker activities using acceler-
ometer and gyroscope data. Next, a more robust approach in evaluation
of classifiers was adopted. In particular, 10-fold stratified cross valida-
tion was used and the results of the 10 replications of the training and
testing were averaged out to report the overall accuracy. In k-fold
cross validation, data are divided into k parts with (almost) equal num-
ber of data points. Next, in k recursive steps, one part is left out for test-
ing and the remaining k-1 parts are used for training. In “stratified”
version of k-fold cross validation, the k fold segmentation is done in a
way that the proportion of the data from every class in each of the k
parts remains the same as that of the entire training data [45]. It is
on tree KNN Logistic regression SVM
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Fig. 4. Confusion matrices of 10-fold cross validation of neural network classification for category 1 activities.
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worth mentioning that in the following Subsections, accuracy is mea-
sured as the ratio of the sum of true positive and true negative over
the total instances.
6.1. Category 1

The classification accuracies are reported for 3 activity categories
listed in Table 1. The following activity codes are used in reporting the
results: in the first category, activity sawing (SW) and being idle (ID)
are classified. In the second category, activities hammering (HM), turning
a wrench (TW), and being idle (ID) are classified. Finally, in the third cat-
egory classification is performed on the activities loading sections into
wheelbarrow (LW), pushing a loaded wheelbarrow (PW), dumping sec-
tions from wheelbarrow (DS), returning an empty wheelbarrow (RW),
and being idle (ID). Table 2 shows the results of training and 10-fold
cross validation classification accuracy of both subjects performing ac-
tivities of category 1.

According to Table 2, over 99% training accuracy was achieved for
both subjects in category 1 using neural network classifier. This con-
firms the hypothesis that IMU data pertaining to a single activity per-
formed by different workers contain highly distinguishable patterns.
However, training accuracy is not an appropriate measure to assess
the ability of using suchdata for new instances of the same activity. Nev-
ertheless, the stratified 10-fold cross validation results confirm that re-
gardless of the nature of classification algorithm, a single activity can
be recognized with over 95% accuracy using all five classifiers. A thor-
ough exploration of classification results within each category can
help understanding the accuracies of each one of the activities versus
the non-value-adding (i.e. idling) state. To achieve this, the confusion
matrices of 10-fold stratified activity classifications for both subjects re-
sulted from the best classifier (i.e. neural network) are shown in Fig. 4.
In this confusion matrix, the rows show the percentage of actual in-
stances and columns indicate thepercentage of predicted instance of ac-
tivities labeled. For example, in Fig. 4 for Subject 1, row ID, in 90% of the
instanceswhere the subjectwas Idle the predicted instancewas Idle too.
However in 10%, it was predicted as Sawing. Fig. 4 indicates more than
90% accuracy in correct detection of the instances of the two activities.
Table 3
Classification accuracy (%) for category 2 activities.

Category2 Neural network Decis

Training Subject I 98.62 97.07
Subject II 93.30 94.67

10-Fold CV Subject I 93.19 85.83
Subject II 86.64 78.20
6.2. Category 2

Since it is very likely that a constructionworker performsmore than
one highly distinguishable activity at a time, activities performed in cat-
egory 2 are designed such that they produce almost the same physical
armmovement. Table 3 shows the training and 10-fold cross validation
classification accuracy results of both subjects performing activities of
category 2.

Similar to category 1, the training accuracies are high particularly for
the neural network classifier and the decision tree. CART decision trees
are not very stable and a small change in the training data can change
the result drastically. Moreover, a decision tree is actually expected to
have a training accuracy of around 100% anyway due to its training na-
ture. However, as appears in the outcomeof the 10-fold cross validation,
neural network presents an average of around 90% accuracy for both
subjects. This is while all other classificationmethods performed almost
the same with a slight superiority of KNN relative to the other algo-
rithms. This result is particularly important considering the fact that
the two activities in category 2 (i.e. hammering and turning a wrench)
produce almost similar physical movements in a worker's arm. Fig. 5
shows how these two activities are classified using 10-fold cross valida-
tion of the result obtained from neural network.

As appeared in Fig. 5, both activities have been in fact classified with
a high accuracy and the major contributor to lowering the overall accu-
racy was the idling state. This can be justified by the fact that the non-
value-adding state may include different forms of physical movements
in case different activities are performed. In other words, the ID class in-
cludes various movements of different types so that relative to other
two activities, more instances have been misclassified.
6.3. Category 3

In the third category, a mixture of different distinguishable activities
performed by construction workers is included to evaluate the perfor-
mance of the developed activity recognition system in recognizing
them. Table 4 shows the training and 10-fold cross validation classifica-
tion accuracy results of both subjects performing activities of category 3.
ion tree KNN Logistic regression SVM
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Fig. 5. Confusion matrices of 10-fold cross validation of neural network classification for category 2 activities.
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According to Table 4, again decision tree yielded a high accuracy in
training while as expected, its performance is not the same in 10-fold
cross validation evaluation. However, except for the decision tree and
SVM, all other classifiers, namely neural network, KNN, and logistic re-
gression resulted in around 90% average accuracy for both subjects. Sim-
ilar to the other two categories, the feedforward back-propagation
implementation of the neural network resulted in the highest accuracy
among all. Fig. 6 shows how different activities in this category are clas-
sified using 10-fold cross validation of the result obtained from neural
network.

Based on the confusion matrices of Fig. 6, the non-value-adding or
idling state was classified properly in both cases. The most confused ac-
tivities are LW and RW, particularly for the first subject, and LW, PW,
and RW for the second subject. This might be due to the fact that LW
and RW result in similar body movement patterns, while as confirmed
in the two presented cases, different humans perform various activities
with slightly different body movements (function of body height, body
shape,…). This may result in some confusion between two or more ac-
tivities in each case.

6.4. Combined data

After classifying the activities within each category based on the in-
dividual data received from each subject, the data collected from both
subjects were combined to perform another round of classification.
This evaluation allows further investigation of whether appending
new data collected in future instances to existing data warehouse
would result in acceptable classification and recognition of activities.
Table 5 shows the result of the classification of combined data in all
three categories.

According to Table 5, all categories have training accuracies of more
than 90% in at least one classification algorithm. This promising result
indicates that there exist classifiers that can categorize activities of dif-
ferent natures using combined data collected from wearable IMUs in
different instances. In case of new examples, considering the robust
10-fold cross validation technique, while logistic regression's and to a
larger extent, KNN's performance is very close to that of neural network,
again neural network outperforms all the other classifiers. Fig. 7 shows
Table 4
Classification accuracy (%) for category 3 activities.

Category3 Neural network Decisi

Training Subject I 94.80 97.11
Subject II 90.37 96.58

10-Fold CV Subject I 92.01 87.95
Subject II 88.90 87.12
the confusion matrices of neural network for combined data of all three
categories. According to Fig. 7, some of the classes such as ID in Category
2 and LW in Category 3 are not classified with as much accuracy as the
other activities. Obviously, part of this error is attributed to the overall
accuracy of classification that requires further improvement. In case of
Category 2 and the ID class, it seems that Subject 2 (according to
Subsection 6.2) introduces the majority of error as a result of what has
been discussed in Subsection 6.2. This, however, needs to be taken
into consideration for further improvement of the accuracy of detecting
ID class in future. In case of Category 3, the LW is mostly confused with
the PW classwhich again ismore associatedwith Subject 2movements.
This error can be the result of similarity of movement in Subject 2 as
well the adjacency of the two activities that may have resulted in false
recognitions. It should be noted that all such errors are subject to further
refinements of the detection and classification framework.

6.5. Subject-independent evaluation

The last evaluation of classifiers' performances is conducted for the
case of using data from one subject as the training set to classify activi-
ties of the second subject. This assessment is particularly important
when trained model with the existing data is sought to be used for
newly collected data. Table 6 shows the results of training each classifier
using the data collected from subject I/II and tested on the data collected
from subject II/I. In each category, the “I on II” row indicates that the
classifiers were trained using the subject I data and tested on subject II
data, and the “II on I” row indicates that the classifiers were trained
using the subject II data and tested on subject I data. Comparing differ-
ent classifiers, it is apparent from Table 6 that KNN has the best classifi-
cation accuracywhich is even slightly better than neural network in this
case. This is true for all the categories and thus indicates the power of
KNN (despite its simplicity) in generalizing a trained model to new ex-
amples. Comparing different activity categories in this scenario, while
classification of category 1 activitieswith only one distinguishable activ-
ity results in an accuracy of more than 96%, classification of activities in
the other two categories have resulted in less accuracies. In particular,
category 2 with two similar activities shows a less accurate perfor-
mance. Nevertheless, while category 3 classification was performed
on tree KNN Logistic regression SVM
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Fig. 6. Confusion matrices of 10-fold cross validation of neural network classification for
category 3 activities.
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using 5 different classes, an accuracy of around 80% in the best case (i.e.
KNN) shows promising results when a rich data warehouse is available.

7. Summary and conclusions

In spite of its importance, automated recognition ofworker activities
on construction jobsites has not been given due attention in CEM liter-
ature. While some efforts have been made in the past to develop vi-
sion-based techniques for automated tracking and recognition of
construction entities, the state-of-the-art in employing IMU sensors
with wide variety of applications in other domains has not been yet ex-
plored within the CEM context. This paper introduces a novel method-
ology for designing and testing a low-cost pervasive construction
worker activity recognition system capable of detecting activities of var-
ious natures that are typical to construction jobsites. Towards this goal,
Table 5
Classification accuracy (%) for combined data of subjects I and II in all three activity categories

Combined data for subjects I & II Neural network Decis

Training Category 1 99.75 99.04
Category 2 91.67 95.49
Category 3 89.49 96.48

10-Fold CV Category 1 96.27 95.58
Category 2 87.78 78.57
Category 3 88.17 85.62
built-in sensors of ubiquitous smartphoneswere employed to assess the
potential of wearable systems for activity recognition. Smartphones
were affixed toworkers' arms using sport armbands, and accelerometer
and gyroscope data were collected from multiple construction workers
involved in different types of activities.

The high levels of training accuracies achieved by testing several
classification algorithms including neural network, decision tree, K-
nearest neighbor (KNN), logistic regression, and support vector ma-
chine (SVM) confirmed the hypothesis that different classification algo-
rithms can detect patterns that exist within signals produced by IMUs
while different construction tasks are performed. Through 10-fold strat-
ified cross validation, algorithms were trained with 90% of the available
data and the trainedmodelswere tested on the remaining10%. In differ-
ent categories of activities, around and over 90% accuracy was achieved.
This promising result indicates that built-in smartphone sensors have
high potential to be used as integrated data collection and activity rec-
ognition platforms in construction environments. However, it should
be noted that the results might be affected by the fact that workers in
the experiments were not actual construction workers and the experi-
ments were conducted in a controlled environment. Thus, detection of
various (subtly different) ways of carrying a field task may not have
been reflected in the results achieved.While the results show a promis-
ing prospective to employ ubiquitous smartphones for construction ac-
tivity recognition, there are some implementation details that can
potentially affect the results in real-world settings. Therefore, a direc-
tion for future work will be to explore potential scenarios that may in-
troduce anomalies in the data and to investigate the system under
such conditions. For example, sudden movements, or potential cases
where a smartphone is not worn and/or does not function properly
should be meticulously considered in a holistic framework of activity
recognition. Another example of real world implementation issues is
limited battery life and storage capacity of smartphones. Although
such issues will be eventually addressed over time and as the hardware
design technology catches up with the rapid pace of application devel-
opment, one potential solution to this problem could be using a dynam-
ic data collection frequency that varies over time depending on the
resolution of the worker's movements and/or significance of certain
body motions to activity recognition.

Further investigations were conducted by combining the data from
multiple subjects. In the first two categories with less activities to be
classified, accuracies of more than 90% were achieved which indicate
that combination of data collected from different workers can result in
promising outcome for activity recognition. When the number of activ-
ities increased and more similar activities were sought to be classified
(i.e. category 3) the recognition accuracy fell to 70%–80%. In the last as-
sessment, data from each subject were used to train two different clas-
sifiers. The trained models were then tested using the data collected
from another subject.While this scenario introduced themost challeng-
ing situation, KNN was able to present around 95%, 75%, and 80% accu-
racies. It is worth mentioning that in terms of computational time,
KNN is highly superior to neural network as it is much less complex be-
cause there is no need for an optimization process with high iteration
numbers. KNN simply compares the test data to the training data and
that is why it is also referred to as a “lazy learner” [44].

Overall, results indicated that the CEM domain similar to other sec-
tors such as health and fitness, medicine, and elderly care can benefit
.

ion tree KNN Logistic regression SVM
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Fig. 7. Confusion matrices of 10-fold cross validation of neural network classification for combined data of subjects I and II in all three activity categories.
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from the applications of activity recognition on construction jobsites.
Some application areas include productivity measurement, progress
evaluation, labor training programs, and safety and health
management.
8. Future work

While the results show a promising prospective to employ ubiqui-
tous smartphones for construction activity recognition, there are some
implementation details that can potentially affect the results in real-
world settings. Therefore, a direction for future work will be to explore
potential scenarios that may introduce anomalies in the data and to in-
vestigate the systemunder such conditions. For example, suddenmove-
ments, or potential cases where a smartphone is not worn and/or does
not function properly should be meticulously considered in a holistic
framework of activity recognition. Another example of real world im-
plementation issues is limited battery life and storage capacity of
smartphones. Although such issues will be eventually addressed over
time and as the hardware design technology catches up with the rapid
pace of application development, one potential solution to this problem
could be using a dynamic data collection frequency that varies over time
depending on the resolution of the worker's movements and/or signifi-
cance of certain body motions to activity recognition.
Table 6
Accuracy (%) of classifiers trained with data from one subject and tested on data from another

Neural network Decision

Category 1 I on II 94.24 94.78
II on I 95.73 92.00

Category 2 I on II 62.10 63.05
II on I 73.65 55.10

Category 3 I on II 78.85 73.66
II on I 77.86 57.31
Another potential direction for future work in this area will be to ex-
plore whether the results achieved so far can be used for automatically
extracting process knowledge such as activity durations and precedence
logic for the purpose of ubiquitously updating and maintaining simula-
tion models corresponding to field operations. In addition, another
branch of futurework rooted in the current research is automated iden-
tification of unsafe workers' body postures in physically demanding
construction activities. Work-related Musculoskeletal Disorder
(WMSD), back, knee, and shoulders injuries are among the most com-
mon injuries that can be prevented or reduced by complyingwithOccu-
pational Safety and Health Administration (OSHA) or the National
Institute for Occupational Safety and Health (NIOSH) standards and
rules [46].

Productivity measurement and improvement is another direction
for future work of this study. There has been a great deal of research
on different techniques for productivity evaluation, tracking, and im-
provement in construction industry such as the construction industry
institute (CII) productivity measurement methods [47], the construc-
tion productivity metric system (CPMS) [48], activity/work sampling
[49,50], and recent studies targeting the relationship between task-
level productivity and physical movements such as the study conducted
by Gatti, Migliaccio, Bogus and Schneider [51]. In particular, using the
collected data it is possible to calculate the proportion of time dedicated
by each worker to each activity. For example, Fig. 8 shows pie charts
subject.

tree KNN Logistic regression SVM
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Fig. 8. Discovered time allocation proportions in the conducted experiments, for productivity measurement.
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indicating the proportions of time dedicated to each activity in the ex-
periments conducted in this research, as discovered by the designed ac-
tivity recognition system. It is worth mentioning that although
imbalanced classes of activities affect classification accuracy, the devel-
oped system is capable of differentiating dominant activities (those that
take more time) and other activities. This is evidenced by the first pie
chart in Fig. 8.

The discovered knowledge presented in this Figure is of great impor-
tance to the process of productivity measurement and improvement.
Particular to the activity/work sampling, this information can help auto-
mate the process, thus significantly reducing the manpower required
for manual analysis and potential errors and inconsistencies associated
with manual observations.
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