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This paper presents a new variant of the Harmony Search (HS) algorithm. This Hybrid Harmony Search (HHS)
algorithm follows a new approach to improvisation: while retaining HS algorithm Harmony Memory and pitch
adjustment functions, it replaces the HS algorithm randomization function with Global-best Particle Swarm
Optimization (PSO) search and neighbourhood search. HHS algorithm performance is tested on six discrete
truss structure optimization problems under multiple loading conditions. Optimization results demonstrate
the excellent performance of the HHS algorithm in terms of both optimum solution and the convergence
behaviour in comparison with various alternative optimization methods.
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1. Introduction

Structural optimization has gained much attention because of its di-
rect applicability to the design of structures [16]. Number of design var-
iables, size of search area, and number of design constraints are factors
that influence the time needed by designers to find optimized designs.
Designers and owners desire optimized structures in order to reduce
building structure costs [20]. Optimized structures should minimize
the cost of a structure while meeting code-specified behaviour and per-
formance requirements. Optimization allows to yield better designs at
the lowest cost in terms of time and money.

Most recent studies on optimal structure designs have adopted con-
tinuous variables [7,8,21,23,33]. However, the availability of standard
member sizes and precision limitations inherent in the modern steel
manufacturing sector suggests to select cross-sectional areas from an
available list of discrete values. Discrete optimization problems are far
more difficult to solve than continuous problems [25,35]. Traditionally,
researchers have used mathematical methods that employ rounding
off techniques based on continuous solutions to solve discrete optimiza-
tion problems. However, these methods may become infeasible or
generate increasingly suboptimal solutions with larger numbers of var-
iables [26]. This drawback has led researchers to rely on simulation-
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basedmetaheuristic algorithms to solve engineering optimization prob-
lems. Metaheuristic algorithms combine rules and randomness to imi-
tate natural phenomena and try to find the optimum design using
‘trial and error’ in a reasonable amount of computing time [40]. The ca-
pability to balance intensification and diversification during a searchde-
termines the efficiency of a specific metaheuristic algorithm.
Intensification (exploitation) aims to identify the best solution and se-
lect during the process a succession of best candidates/solutions. Diver-
sification (exploration) ensures, usually by randomization, that the
algorithm explores the search space efficiently. To address global search
needs, modern metaheuristic algorithms have evolved to incorporate 3
main purposes: solving problems faster, solving larger problems, and
enhancing algorithm robustness [5,13].Modernmetaheuristic algorithms
include: Genetic Algorithms (GA) [18], Particle Swarm Optimization
(PSO) [22], Differential Evolution (DE) [34], Artificial Bee Colony (ABC)
[19], Bees Algorithm (BA) [29], Firefly Algorithm [39], Cuckoo Search
(CS) [41], and Symbiotic Organisms Search (SOS) [4], among others.

Rather drawing its inspiration from biological or physical processes,
the HS algorithm originally proposed in [14] is inspired by an artistic-
creative process. The HS algorithm conceptualizes the behaviour of
musicians searching for harmony and then continuing to refine their
tune to achieve an increasingly better state of harmony.Musical harmo-
ny is analogous to an optimization solution vector and a musician's im-
provisations are analogous to local and global search schemes in
optimization techniques. Due to its ease of application and simplicity,
the HS algorithm has garnered growing attention and been successfully
employed to awide variety of practical structural optimization problem,
such as truss structures [24], steel sway frames [9], grillage systems [32],

http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2016.05.023&domain=pdf
http://dx.doi.org/10.1016/j.autcon.2016.05.023
mailto:martin.marcello@hotmail.com
http://dx.doi.org/10.1016/j.autcon.2016.05.023
http://www.sciencedirect.com/science/journal/09265805
www.elsevier.com/locate/autcon


22 M.-Y. Cheng et al. / Automation in Construction 69 (2016) 21–33
cellular beams [11], and web-expanded beams [10]. In comparison to
earlier metaheuristic algorithms, the HS algorithm imposes fewer
mathematical requirements and is easily adopted to solve various engi-
neering optimization problems. In addition, this algorithm does not re-
quire initial values for decision variables, thus it may escape the local
optima. The HS algorithm generates a new vector after considering all
existing vectors based on the Harmony Memory Considering Rate
(HMCR) and Pitch Adjusting Rate (PAR) rather than considering only
two (parents) as in the Genetic Algorithm. Furthermore, instead of
using gradient search, the HS algorithm uses stochastic random search
based on HMCR and PAR, which obviates the need for derivative infor-
mation [15]. These features increase HS algorithm flexibility and pro-
duce better solutions. Although several variants of the HS algorithm
have been proposed, their effectiveness in dealing with diverse prob-
lems remains unsatisfactory [38].

While the HS algorithm is good at identifying the high performance
regions of a solution space in a reasonable amount of time, this algo-
rithm performs local searches for numerical applications poorly [28].
To improve the local search ability of the HS algorithm, this paper pro-
poses a new algorithm called the Hybrid Harmony Search (HHS) algo-
rithm. The HHS algorithm integrates the memory consideration and
pitch adjustment process of the HS algorithm with Global-best PSO
and neighbourhood search. Six classical truss design problems with
sizing variables are solved in this study in order to demonstrate the ef-
ficiency of the HHS algorithm. It is shown that the present algorithm is
very competitive with other optimization methods documented in
literature.

The remainder of this paper is organized as follows: Section 2 pre-
sents the formulation of the discrete sizing optimization problem;
Section 3 briefly reviews the HS and IHS algorithm; Section 4 describes
the HHS algorithm in detail; Section 5 describes the test problems and
discusses the optimization results; and Section 6 presents conclusions
and recommendations for future research.

2. Discrete structural optimization problems

Since many problems in engineering have multiple solutions
selecting. Discrete sizing optimization attempts to find the optimal
cross-section of system elements in order to minimize structural
weight. However, theminimumdesignmust also satisfy inequality con-
straints that limit design variable sizes and structural responses [25].

The discrete structural optimization problem for a truss structure
may be formulated as:

Find
A ¼ ½A1;A2;…;Ang�;
Ai ϵ Di;Di ¼ ½di;1;di;2;…di;rðiÞ�

To minimize

W Að Þ ¼
Xnm
i¼1

γi�Ai � Li ð1Þ

Subject to σmin≤σ i ≤σ max i ¼ 1;2; …;n
δmin≤δi≤δmax i ¼ 1;2; …;m

where: A represents the set of design variables; Di is an allowable
set of discrete values for design variable Ai; ng is the number of design
variables or member groups; r(i) is the number of available discrete
values for the ith design variable; W(A) is the weight of the structure;
n is the number of componentmembers in the structure; m is the num-
ber of nodes; γi is the material density of member i; Li is the length of
member i; δi is the nodal displacement/deflection at node i; σi is the
stress developed in the i-th element; and min and max represent the
lower and upper bounds, respectively.

The optimum design of truss structures must satisfy optimization
constraints stated in Eq. (1). This paper uses a constraint handling
procedure developed by Deb [6] to handle the problem-specific con-
straints. This procedure consists of the following three rules:

• Rule 1: Any feasible solution is preferred to any infeasible solution.
• Rule 2: Between two feasible solutions, the one having the better ob-
jective function value is preferred.

• Rule 3: Between two infeasible solutions, the one having the smaller
constraint violation is preferred.

The first and third rules orient the search toward feasible regions.
The second rule orients the search toward the feasible region with
good solutions.

3. Harmony Search algorithm

3.1. Harmony Search algorithm

Harmony Search (HS) algorithm is a metaheuristic algorithm that
imitates the natural music improvisation process that musicians use
to achieve a perfect state of harmony such as that achieved during
jazz improvisation. The HS algorithm holds several important advan-
tages over other competing algorithms and has been applied successful-
ly to a wide variety of optimization problems. Key advantages include
ability to handle both discrete and continuous variables, conceptual
simplicity, ease of implementation, and few parameters requiring
adjustment.

The HS algorithm uses an optimization process to attain a global
solution defined by an objective function similar to the way musicians
attain aesthetic harmony as defined by an aesthetic standard. Each mu-
sician corresponds to one decision variable; the pitch range of musical
instruments corresponds to the value range of the decision variable;
musical harmony at a certain time corresponds to the solution vector
at a certain iteration; and audience aesthetics correspond to the objec-
tive function.

In musical improvisation, each players plays at any pitch within the
possible range, creating one harmony vector. If all pitches are in good
harmony, the experience is stored in the memory of each player and
the possibility of creating good harmony increases in the subsequent
timeframe. In engineering optimization, each decision variable initially
chooses any value within the possible range to create a solution vector.
If all variable values create a good solution, the design is stored in the
memory of each variable and the possibility of creating a good solution
increases in the subsequent timeframe.

When a musician improves the musical harmony, he or she has three
possible options: (1) playing any known tune exactly from memory,
(2) playing a tune similar to a known tune, (3) composing a new tune
at random. These three options correspond to the three main HS
algorithm concepts of:memory consideration, pitch adjustment, and ran-
domization. In general, the HS algorithm procedure consists of 5 steps:

Step 1. Initialize the problem and algorithm initial parameters.

The optimization problem is defined as Minimize f(x) subject to
LBi ≤ Xi ≤ UBi, in which i = 1, 2,.…, N. LBi and UBi are the lower
and upper bounds for the decision variables. This step also specifies
the HS algorithm parameters, including Harmony Memory Size
(HMS), Harmony Memory Consideration Rate (HMCR), Pitch
Adjusting Rate (PAR), bandwidth (bw), and number of improvisa-
tions (NI) or stopping criterion. The NI equals the total number of
function evaluations. A good set of parameters will improve the abil-
ity of the algorithm to search for the global optimum with a high
convergence rate.
Step 2. Initialize the Harmony Memory (HM).

The second step is Harmony Memory initialization. The HS algo-
rithm has memory storage, called Harmony Memory (HM), in which
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all solution vectors (decision variable sets) are stored. In this step, the
HMmatrix is filled with as many randomly generated solution vectors
as the HMS. The initial HM is generated using a uniform distribution
in the range [LBi, UBi], where 1 b i b N, with Eq. (2).

xj
i ¼ LBi þ randðÞ � UBi−LBið Þ ; j
¼ 1;2;…;HMS; where rand � U 0;1ð Þ ð2Þ

where LBi andUBi are the lower and upper bounds of the ith decision
variable, respectively, and rand is a uniformly distributed random num-
ber generated for each value of j. Fig. 1 illustrates the HM form. Candi-
date solution vectors in HM are then analysed, after which objective
function values are calculated (f(xi,:), i = 1, 2,.…, HMS) and sorted by
objective function f(x) value.

Step 3. Improvise a new harmony from the HM.
Generating new harmony is called improvisation. The new harmony
vector x′=(x′1, x′2,.…, x′N) is generated using three rules:memory
consideration, pitch adjustment, and random selection. The proce-
dure works as follows [14]:
where r and rand() are uniformly generated randomnumbers in the
region of (0,1) and bw is an arbitrary distance bandwidth.
Step 4. Update Harmony Memory.
This step updates the HM. If the objective function value of the new
improvised harmony vector is better than theworst harmony stored
in HM, this vector replaces the worst harmony in the HM, after
which HM is resorted according to objective function value.
Step 5. Terminate the process.
The HS algorithm is terminated when the stopping criterion (maxi-
mum number of improvisations [NI]) is satisfied. Otherwise, steps 3
and 4 are repeated.
Fig. 1. Structure of the Harm
3.2. The improved Harmony Search (IHS) algorithm

Prior studies have worked to improve HS algorithm performance
and eliminate the limitations associated with fixed values for PAR
and bw. In [28], it was developed a new HS algorithm variant called
improved Harmony Search (IHS). Each step in this algorithm is the
same as the original HS Algorithm with the exception of Step 3,
which dynamically updates PAR and bw parameter using (3) and
(4), respectively.

PAR tð Þ ¼ PARmin þ
PARmax−PARmin

NI
� t ð3Þ

where, PAR(t) is the pitch adjustment rate in generation t and
PARmin and PARmax are the minimum and maximum pitch adjust-
ment rates, respectively.

bw tð Þ ¼ bwmax exp c� tð Þ

c ¼
Ln

bwmin

bwmax

� �

NI

ð4Þ

where, bw(t) is the distance bandwidth in generation t, bwmin is the
minimum bandwidth, and bwmax is the maximum bandwidth.

4. The Hybrid Harmony Search (HHS) algorithm

Intensification and diversification are two critical components in
modern metaheuristic algorithms. Intensification (exploitation) inten-
sifies a local search in the neighbourhood of an optimal or near-
optimal solution. Diversification (exploration) involves the global
search to ensure that an algorithm explores the search space efficiently
and effectively. Excessive diversification causes solutions to jump
around within a potentially optimal solution and increase the conver-
gence time to the optimum.On the other hand, excessive intensification
may trap the algorithm in local optima because only a fraction of local
spacemay be visited [40]. Therefore, a good algorithm requires a proper
balance between these two components to ensure fast and efficient con-
vergence, prevent trapping the algorithm in a local optima, and guaran-
tee solution quality.

Although the HS algorithm has demonstrated its ability to find near
global regionswithin a reasonable time, it is comparatively inefficient in
performing local searches [12]. This paper thus proposed the HHS algo-
rithm as a new and superior HS algorithm variant to improve HS algo-
rithm local search capabilities and balance associated intensification
and diversification components. The HHS algorithm introduces a new
improvisation scheme. In addition to the concepts of HarmonyMemory
and Pitch Adjustment, HHS algorithm employs two new features to en-
sure that the newharmony imitates the global best harmony of the HM.
These two features are Global-best PSO search and neighbourhood
search. Furthermore, HHS algorithm omits the randomization function
of the original HS algorithm.
ony Memory matrix.
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Global-best PSOwas inspired by Particle SwarmOptimization (PSO).
PSO is an optimization procedure based on social organizations found in
nature such as bird flocks and fish schools [22]. In PSO, a population of
particles starts to move in a search space by following current optimum
particles and changing their positions to find the best particle. In other
words, PSO directs its particles to move toward good areas in a search
space in response to information distributed through the swarm [3,
27]. Neighbourhood search, the second feature added to the HHS algo-
rithm, provides powerful capabilities to search in the neighbourhood
of the selected particle. These searches guide particles to search in
more promising (optimumornear-optimum) areas. Appropriately inte-
grating Global-best PSO and neighbourhood search increases HHS algo-
rithm efficiency. Fig. 2 shows the HHS algorithm flowchart.

The following five subsections present the 5 steps of the HHS
algorithm.
4.1. Initialize the problem and algorithm parameters

This step specifies algorithm parameter, including Harmony
Memory Size (HMS), Harmony Memory Consideration Rate mini-
mum (HMCRmin), Harmony Memory Consideration Rate maximum
(HMCRmax), Pitch Adjustment Rate minimum (PARmin), Pitch Ad-
justment Rate maximum (PARmax), bandwidth minimum (bwmin),
bandwidth maximum (bwmax), Global-Best Rate (GBR), and number
of improvisations (NI) or stopping criterion. GBR, a new parameter
introduced into the HHS algorithm, determines the probabilities
of improvising new harmony using Global-best PSO search and
neighbourhood search, respectively. Subsection 4.3 provides a de-
tailed explanation.
Fig. 2. Flowchart of the HHS algorithm.
4.2. Initialize the Harmony Memory (HM)

As in the HS Algorithm, in this step, the HarmonyMemory matrix is
filled with the same number of randomly generated solution vectors as
in the HMS. To create the initial memory, random values between the
lower and upper bounds of the decision variable are assigned to each
decision parameter of each memory vector, as follows.

xj
i ¼ LBi þ randðÞ � UBi‐LBið Þ ; j ¼ 1;2;…;HMS; where rand
� U 0;1ð Þ ð5Þ

where LBi and UBi are lower and upper bounds of the ith decision
variable, respectively, and rand is a uniformly distributed random num-
ber generated for each value of j. After initialization, the objective func-
tion values are evaluated and then the HM are sorted by objective
function (fx) value.

4.3. New harmony improvisation

This step generates a new harmony vector x′ = (x′1, x′2,.…, x′N)
based on four rules: memory consideration, pitch adjustment, Global-
best PSO search, and neighbourhood search. As the HS algorithm, the
HHS algorithm produces one new ‘child’ during each iteration. In
other words, the number of iterations in the HHS algorithm equals the
number of evaluations. Fig. 3 shows the new harmony improvisation
flowchart.

4.3.1. Memory consideration
The value of a design variable may be chosen from the values stored

in HM using the Harmony Memory Consideration Rate (HMCR). The
HMCR, which varies between 0 and 1, is the probability of selecting
one value from historical values in the specified HM range. The (1-
HMCR) in the HHS algorithm is the probability of improvising new har-
mony based on the Global-best PSO search or neighbourhood search, as
shown in the following pseudo-code.
4.3.2. Pitch adjustment
Each component obtained using the memory consideration is

checked for pitch adjustment need by moving to a neighbour value of
a selected value from the HMwith a pitch adjustment rate (PAR) prob-
ability. The pseudocode for the pitch adjustment process, where r2 is a
uniform random number between 0 and 1 and bw is an arbitrary dis-
tance bandwidth, is shown as follows.
4.3.3. Global-best PSO search and neighbourhood search
In the original HS algorithm, (1-HMCR) refers to the probability of

randomly selecting one value from the range of possible values.



Fig. 3. Flowchart of new harmony improvisation in the HHS algorithm (Step 3).
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However, in the HHS algorithm, this randomization process is omitted
and replaced with Gbest, the best harmony of the decision variable.
This step uses the existing best harmony to improvise a new harmony.
Thereafter, there are two options available determined by the Global-
best Rate (GBR). GBR is the probability of generating one harmony by
imitating the behaviour of the Global-best PSO and (1-GBR) is the
probability of generating one harmony from the neighbourhood of the
Gbest. These two options increase the probability of the HHS algorithm
to obtain the optimum value of the design variable.

4.3.3.1. Global best PSO search. If rand b GBR, the HHS algorithm imitates
the performance of Global-best PSO. It should be noted that, as in PSO,
the purpose of this step is tomake the target variablemove in the direc-
tion of the global best. First, we must randomly determine the variable
to be moved. Next, Eq. (6) calculates a new velocity, where xm = the
variable to be moved and rand = a uniform random number between
0 and 1. Eq. (7) then calculates the new position.

New Velocity jð Þ ¼ randðÞ � Gbest jð Þ−xm jð Þð Þ ð6Þ

x jð Þ¼ xm jð Þ þNew Velocity jð Þ ð7Þ

4.3.3.2. Improved randomization based on neighbourhood search. If
(rand N GBR), the HHS algorithm employs a neighbourhood search to
spread the new harmony through the neighbourhood of Gbest, as
shown in Eq. (8), where rand = uniform random number between 0
and 1.

x jð Þ ¼ Gbest jð Þ � randðÞ−0:5ð Þ � 2þ Gbest jð Þ ð8Þ
The pseudocode for these steps can be described as follows.
The second modification allows the HHS algorithm to update dy-
namically the value of HMCR using Eq. (9), with the values of HMCRmin

and HMCRmax derived from our experiments 0.1 and 0.9, respectively.
Conversely, the original HS algorithm and other HS algorithm variants
apply a fixed value to the HMCR.

HMCR tð Þ ¼ HMCRmin þ
HMCRmax−HMCRmin

NI
� t ð9Þ

where HMCR(t)=HMCR for generation t. PAR and bwparameter of
the HHS algorithm are dynamically updatedwith Eqs. (3) and (4) in the
IHS algorithm [28].

These principles enable the HHS algorithm to balance exploration
and exploitation capabilities. In the early stage, the HHS algorithm fo-
cuses on global search using memory consideration and pitch adjust-
ment, while, in later stages, the HHS algorithm focuses on local search



Table 1
Comparison of HHS optimization results with the literature for the 10-bar truss problem
(Case 1).

Variables (in2) GA [30] HPSO [26] SA [37] BB–BC [2] HHS

A1 33.50 30.00 33.50 33.50 33.50
A2 1.62 1.62 1.62 1.62 1.62
A3 22.00 22.90 22.90 22.90 22.90
A4 15.50 13.50 14.20 14.20 14.20
A5 1.62 1.62 1.62 1.62 1.62
A6 1.62 1.62 1.62 1.62 1.62
A7 14.20 7.97 7.97 7.97 7.97
A8 19.90 26.50 22.90 22.90 22.90
A9 19.90 22.00 22.00 22.00 22.00
A10 2.62 1.80 1.62 1.62 1.62
Best (lb) 5613.84 5531.98 5490.74 5490.74 5490.74
Average (lb) N/A N/A N/A 5494.17 5493.489
Stdev (lb) N/A N/A N/A 12.420 10.463
No. of analyses 800 50,000 10,500 8694 5000
Constraint violation 0.03% None None None None

Table 2
Comparison of HHS optimization results with the literature for the 10-bar truss problem
(Case 2).

Variables (in2) Ringertz [31] HPSO [26] HHS

A1 30.50 31.50 30.50
A2 0.10 0.10 0.10
A3 23.00 24.50 24.00
A4 15.50 15.50 14.00
A5 0.10 0.10 0.10
A6 0.50 0.50 0.50
A7 7.50 7.50 7.50
A8 21.0 20.50 21.50
A9 21.5 20.50 21.50
A10 0.10 0.10 0.10
Best (lb) 5059.9 5073.51 5067.33
Average (lb) N/A N/A 5068.36
Stdev (lb) N/A N/A 2.343
No. of analyses N/A 50,000 5000
Constraint violations 0.04% None None
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using Global-best PSO search and neighbourhood search. The complete
pseudocode for the improvisation step of the HHS algorithm is present-
ed as follows.

4.4. Update Harmony Memory

If thenewly improvisedharmonyvector is better than theworst har-
mony vector stored in HM, the new harmony vector is included and the
worst harmony is excluded from the HM. Subsequently, the HM is
sorted by objective function value.

4.5. Terminate the optimization process

The HHS algorithm is terminated when the termination criterion
(maximum number of improvisations [NI]) is satisfied. Otherwise,
steps 3 and 4 are repeated.

5. Test problems and optimization results

In order to investigate efficiency of theHHS algorithm,we solved the
weight minimization problems of three planar and two spatial bar truss
structures under multiple loading conditions using discrete variables.
The algorithms were coded in Matlab and structures were analysed
using the finite element (direct stiffness) method. Optimization results
Fig. 4. Schematic of the planar 10-bar truss structure.
were compared to the results obtained by other optimization methods
in order to demonstrate HHS algorithm efficiency. HHS internal param-
eters were set as follows: Harmony Memory Size (HMS) was set to 10;
HMCR increased linearly from 0.1 to 0.9; PARmin was set to 0.4; PARmax

was set to 0.9; bwmin and bwmax were set to 0.0001 and 1, respectively;
Fig. 5. Convergence curves for the planar 10-bar truss structure (Case 1).



Fig. 6. Convergence curves for the planar 10-bar truss structure (Case 2).

Table 3
Comparison of HHS optimization results with the literature for the 15-bar truss problem.

Variables (mm2) Improved-GA [42] HPSO [26] HHS

A1 308.6 113.2 113.2
A2 174.9 113.2 113.2
A3 338.2 113.2 113.2
A4 143.2 113.2 113.2
A5 736.7 736.7 736.7
A6 185.9 113.2 113.2
A7 265.9 113.2 113.2
A8 507.6 736.7 736.7
A9 143.2 113.2 113.2
A10 507.6 113.2 113.2
A11 279.1 113.2 113.2
A12 174.9 113.2 113.2
A13 297.1 113.2 113.2
A14 235.9 334.3 334.3
A15 265.9 334.3 334.3
Best (lb) 142.117 105.735 105.735
Average (lb) N/A N/A 106.157
Stdev (lb) N/A N/A 1.095
No. of analyses N/A 25,000 5000
Constraint violations None None None
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and GBRwas set to 0.5. The limit number of analyses was set to 5000 for
each design problem. Thirty independent runswere performed for each
design problem starting from different initial populations. It should be
noted that one iteration in HPSO [26] entailed 50 structural analyses:
therefore 1000 iterations in the convergence curve correspond to
50,000 structural analyses.
5.1. Planar 10-bar truss structure

The 10-bar truss structure shown in Fig. 4 is one of themost popular
test problems in structural optimization, previously solved in [30,31,2,
37,26]. Fig. 4 shows the geometry and support conditions for this two
dimensional, cantilevered truss with loading condition. The material
density is 0.1 lb/in3 and the modulus of elasticity is 10,000 ksi. The al-
lowable displacement for all nodes in both vertical and horizontal direc-
tions equals ±2.0 in. Members are subjected to stress limitations of
±25 ksi for both tension and compression. Both loads, P1 = 105 lb
and P2 = 0, are considered. There are 10 design variables and two
cases to study in this problem.

For the first case, we selected discrete variables from the set: D =
[1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47,
3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74,
7.22, 7.97, 11.50, 13.50, 13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 19.90,
22.00, 22.90, 26.50, 30.00, 33.50] (in2).

For the second case, we selected discrete variables from the set:D=
[0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5,
Fig. 7. Schematic of the planar 15-bar truss structure.
9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5,
16.0, 16.5, 17.0, 17.5, 18.0, 18.5, 19.0, 19.5, 20.0, 20.5, 21.0, 21.5, 22.0,
22.5, 23.0, 23.5, 24.0, 24.5, 25.0, 25.5, 26.0, 26.5, 27.0, 27.5, 28.0, 28.5,
29.0, 29.5, 30.0, 30.5, 31.0, 31.5] (in2).

Tables 1 and 2 compare HHS optimization results with literature.
In Case 1, HHS found an optimum weight of 5490.74 lb after 3533
structural analyses. Optimum weights found by BB–BC, SA, HPSO,
and GA were 5490.74, 5490.74, 5531.98 lb, and 5613.84 lb, respec-
tively. Although. HHS algorithm obtained the same weight with SA
and BB–BC, it required less structural analyses than the other report-
ed algorithms. Meanwhile, HPSO required over 20,000 structural
analyses to obtain the optimum weight of 5531.98 lb whereas the
HHS algorithm obtained the same using only 2835 structural
analyses.

In Case 2, the HHS algorithm obtained the second-best design after
[31]. The HHS algorithm result was 0.147% heavier than the best design.
The HHS algorithm obtained the optimum weight of 5067.33 lb after
2291 structural analyses. HPSO obtained the optimum weight of
5073.51 lb aftermore than 25,000 structural analyses, while the HHS al-
gorithm obtained the same weight in 2057 structural analyses. Figs. 5
Fig. 8. Convergence curves for the planar 15-bar truss structure.



Fig. 9. Schematic of the spatial 25-bar truss structure.

Table 4
Loading condition for Case 1 of the 25-bar truss problem.

Load cases Nodes

Loads

Px (kips) Py (kips) Pz (kips)

Case 1 1 1 1.0 −10.0 −10.0
2 0.0 −10.0 −10.0
3 0.5 0.0 0.0
6 0.6 0.0 0.0

Table 6
Comparison of HHS optimization results with the literature for the 25-bar truss problem
(Case 1).

Variables (mm2) GA [30] HS [25] HPSO [26] SA [37] BB–BC [2] HHS

A1 0.1 0.1 0.1 0.1 0.1 0.1
A2–A5 1.8 0.3 0.3 0.3 0.3 0.3
A6–A9 2.3 3.4 3.4 3.4 3.4 3.4
A10–A11 0.2 0.1 0.1 0.1 0.1 0.1
A12–A13 0.1 2.1 2.1 2.1 2.1 2.1
A14–A17 0.8 1.0 1.0 1.0 1.0 1.0
A18–A21 1.8 0.5 0.5 0.5 0.5 0.5
A22–A25 3.0 3.4 3.4 3.4 3.4 3.4
Best (lb) 546.01 484.85 484.85 484.85 484.85 484.85
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and 6 confirm the good convergence behaviour of HHS in the 10-bar de-
sign problem.
Average (lb) N/A N/A N/A N/A 485.10 484.946
Stdev (lb) N/A N/A N/A N/A 0.44 0.365
No. of analyses 800 13,523 25,000 7900 9090 5000
Constraint violation None None None None None None

Table 7
Comparison of HHS optimization results with the literature for the 25-bar truss problem
(Case 2).

2
Ringertz HS HPSO DHPSACO
5.2. Planar 15-bar truss structure

Fig. 7 shows the geometry and the loading condition of the planar
15-bar truss structure, previously studied in [42,26]. Thematerial densi-
ty is 7800 kg/m3 and themodulus of elasticity is 200GPa. Themaximum
allowable stress for all members is 120 MPa (the same for tension and
compression) and maximum displacements for all free nodes in the X
and Y directions must not exceed 10 mm. This test problem includes
15 discrete design variables that can be selected from the following
discrete set:
Table 5
Loading conditions for Case 2 of the 25-bar truss problem.

Load cases Nodes

Loads

Px (kips) Py (kips) Pz (kips)

Case 2 2 1 0.0 20.0 −5.0
2 0.0 −20.0 −5.0

3 1 1.0 10.0 −5.0
2 0.0 10.0 −5.0
3 0.5 0.0 0.0
6 0.5 0.0 0.0

Variables (mm ) [31] [25] [26] [21] HHS

A1 0.01 0.01 0.01 0.01 0.01
A2–A5 1.6 2.0 2.0 1.6 2.0
A6–A9 3.6 3.6 3.6 3.2 3.6
A10–A11 0.01 0.01 0.01 0.01 0.01
A12–A13 0.01 0.01 0.01 0.01 0.01
A14–A17 0.8 0.8 0.8 0.8 0.8
A18–A21 2.0 1.6 1.6 2.0 1.6
A22–A25 2.4 2.4 2.4 2.4 2.4
Best (lb) 568.69 560.59 560.59 551.61 560.59
Average (lb) N/A N/A N/A N/A 560.785
Stdev (lb) N/A N/A N/A N/A 0.743
No. of analyses N/A 7435 25,000 25,000 5000
Constraint violation None None None 0.10% None



Fig. 10. Convergence curves for the spatial 25-bar truss structure (Case 1).
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D = [113.2, 143.2, 145.9, 174.9, 185.9, 235.9, 265.9, 297.1, 308.6,
334.3, 338.2, 497.8, 507.6, 736.7, 791.2, 1063.7] (mm2).

The structure is subject to three independent loading conditions:
Load Case 1: P1 = 35 kN, P2 = 35 kN, P3 = 35 kN; Load Case 2: P1 =
35 kN, P2 = 0 kN, P3 = 35 kN; and Load Case 3: P1 = 35 kN, P2 =
35 kN, P3 = 0 kN.

Table 3 shows the optimal result of the HHS algorithm with 15 size
variables and compares these results with the literature. HPSO obtained
aminimumweight of 105.735 lb in more than 7500 structural analyses,
while the HHS algorithm obtained the same weight in only 3563 struc-
tural analyses. Fig. 8 confirms the better convergence rate of HHS that
requires less structural analyses than the other reported algorithms.
5.3. Spatial 25-bar truss structure

The 25-bar transmission tower spatial truss shown in Fig. 9 has been
studied by several researchers including [30,26,2,37,25]. Thematerial of
the structure has mass density of 0.1 lb/in3 and elastic modulus of
10 Msi. The stress limits in tension/compression is ±40,000 psi and
maximum nodal displacement is ±0.35 in. The structure includes 25
members categorized into the following 8 groups: (1) A1, (2) A2–A5,
Fig. 11. Convergence curves for the spatial 25-bar truss structure (Case 2).

Fig. 12. Schematic of the planar 52-bar truss structure.
(3) A6–A9, (4) A10–A11, (5) A12–A13, (6) A14–A17, (7) A18–A21 and
(8) A22–A25.

Two optimization cases were implemented, as follows.

Case 1. Discrete values of cross-sectional areas were selected from the
following set: D = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2,
1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4]
(in2). Loads are shown in Table 4.

Case 2. Discrete values of cross-sectional areas were selected from the
following set: D = [0.01, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.4,
4.8, 5.2, 5.6, 6.0] (in2). Loads are shown in Table 5.

Tables 6 and 7 compare the results obtained by the HHS algorithm
with the other optimization methods reported in the literature. In
Case 1, HPSO obtained a minimum weight of 484.85 lb in over 25,000
structural analyses. The HHS algorithm obtained the same weight in
1739 structural analyses. Table 7 shows that the HHS algorithm also
obtained the second-best design, which weighed 1.7% more than



Table 8
Available cross-sectional areas from the AISC design code.

No. in2 mm2 No. in2 mm2

1 0.111 71.613 33 3.840 2477.414
2 0.141 90.968 34 3.870 2496.769
3 0.196 126.451 35 3.880 2503.221
4 0.250 161.290 36 4.180 2696.769
5 0.307 198.064 37 4.220 2722.575
6 0.391 252.258 38 4.490 2896.768
7 0.442 285.161 39 4.590 2961.284
8 0.563 363.225 40 4.800 3096.768
9 0.602 388.386 41 4.970 3206.445
10 0.766 494.193 42 5.120 3303.219
11 0.785 506.451 43 5.740 3703.218
12 0.994 641.289 44 7.220 4658.055
13 1.000 645.160 45 7.970 5141.925
14 1.228 792.256 46 8.530 5503.215
15 1.266 816.773 47 9.300 5999.988
16 1.457 939.998 48 10.850 6999.986
17 1.563 1008.385 49 11.500 7419.340
18 1.620 1045.159 50 13.500 8709.660
19 1.800 1161.288 51 13.900 8967.724
20 1.990 1283.868 52 14.200 9161.272
21 2.130 1374.191 53 15.500 9999.980
22 2.380 1535.481 54 16.000 10,322.560
23 2.620 1690.319 55 16.900 10,903.204
24 2.630 1696.771 56 18.800 12,129.008
25 2.880 1858.061 57 19.900 12,838.684
26 2.930 1890.319 58 22.000 14,193.520
27 3.090 1993.544 59 22.900 14,774.164
28 3.130 2019.351 60 24.500 15,806.420
29 3.380 2180.641 61 26.500 17,096.740
30 3.470 2238.705 62 28.000 18,064.480
31 3.550 2290.318 63 30.000 19,354.800
32 3.630 2341.931 64 33.500 21,612.860

Fig. 13. Convergence curves for the planar 52-bar truss structure.
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DHPSACO, the best design. However, the best design using DHPSACO is
considered to be infeasible because it has slightly violated the constraint
with a violation percentage of 0.10%. Figs. 10 and 11 show that the HHS
algorithm has better convergence behaviour than other reported
methods.

5.4. Planar 52-bar truss structure

Fig. 12 shows t he geometry and loading condition of a planar
truss structure consisting of 52 bars and twenty nodes. This problem
was previously studied in [36,25,26]. The members of this structure
are divided into 12 groups: (1) A1–A4, (2) A5–A10, (3) A11–A13,
Table 9
Comparison of HHS optimization results with the literature for the 52-bar truss problem.

Variables (mm2) HS [25] HPSO [26] DHPSACO [21] HHS

A1–A4 4658.055 4658.055 4658.055 4658.055
A5–A10 1161.288 1161.288 1161.288 1161.288
A11–A13 506.451 363.225 494.193 494.193
A14–A17 3303.219 3303.219 3303.219 3303.219
A18–A23 940.000 940.000 1008.385 940.000
A24–A26 494.193 494.193 285.161 494.193
A27–A30 2290.318 2238.705 2290.318 2238.705
A31–A36 1008.385 1008.385 1008.385 1008.385
A37–A39 2290.318 388.386 388.386 494.193
A40–A43 1535.481 1283.868 1283.868 1283.868
A44–A49 1045.159 1161.288 1161.288 1161.288
A50–A52 506.451 792.256 506.451 494.193
Weight (kg) 1906.760 1905.495 1904.830 1902.605
Average (kg) N/A N/A N/A 1904.587
Stdev (kg) N/A N/A N/A 1.309
No. of analyses 19,104 150,000 5300 5000
Constraint violation 2.66% None 0.27% None
(4) A14–A17, (5) A18–A23, (6) A24–A26, (7) A27–A30, (8) A31–A36,
(9) A37–A39, (10) A40–A43, (11) A44–A49, and (12) A50–A52. The mate-
rial density is 7860.0 kg/m3 and the modulus of elasticity is 207 GPa.
The maximum allowable stress for all members in terms of both
tension and compression is 180 MPa. Loads Px = 100 kN and Py =
200 kN are both considered. Discrete values of cross-sectional areas
can be selected from Table 8.

Table 9 shows the results obtained by the HHS algorithm and other
optimizationmethods. The HHS algorithm converged to the best design
overall corresponding to the structural weight of 1902.605 kg. The opti-
mization process was completed in 4523 structural analyses. DHPSACO
obtained the second best weight of 1904.83 kg after 5300 structural
analyses, roughly twice as many as the 2639 structural analyses re-
quired byHHS. It is worth noting that the design using DHPSACOhas vi-
olated the constraint with a violation percentage of 0.27%. Fig. 13 clearly
shows the good convergence behaviour of HHS in the 52-bar design
problem.
5.5. Spatial 72-bar truss structure

The72-bar, 4-level tower, shown in Fig. 14,was optimized in [26,36].
Material density andmodulus of elasticitywere the same as those of the
10 and 25-bar truss structures. The stress limit in tension/compression
was ±25,000 psi. The top nodes could not displace by more than
±0.25 in in both X and Y-directions. The structure is subjected to the
two load cases described in Table 10.

The 72 structural members of this spatial truss are categorized into
16 groups using symmetry considerations: (1) A1–A4, (2) A5–A12,

(3) A13–A16, (4) A17–A18, (5) A19–A22, (6) A23–A30 (7) A31–A34, (8) A35–
A36, (9) A37–A40, (10) A41–A48, (11) A49–A52, (12) A53–A54, (13) A55–
A58, (14) A59–A66 (15) A67–A70, (16) A71–A72. Discrete values of cross-
sectional areas were selected from the following set:

D = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5,
1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2]
(in2).

Table 11 compares the results obtained by the HHS algorithm and
other optimization methods. Fig. 15 compares the corresponding con-
vergence rates. In this case, the HHS algorithm obtained the same best
weight as DHPSACO (385.54 lb). HPSO, HS, and GA obtained best
weights of 388.94 lb, 387.94 lb, and 400.66 lb, respectively. The HHS al-
gorithm obtained the best solution in 3294 structural analyses. The
HPSO and DHPSACO algorithms obtained the best solution after
50,000 and 5330 analyses, respectively.



Fig. 14. Schematic of the spatial 72-bar truss structure.

Table 11
Comparison of HHS optimization results with the literature for the 72-bar truss problem.

Variables (mm2) HS [25] HPSO [26] DHPSACO [21] HHS

A1–A4 1.9 2.1 1.9 1.9
A5–A12 0.5 0.6 0.5 0.5
A13–A16 0.1 0.1 0.1 0.1
A17–A18 0.1 0.1 0.1 0.1
A19–A22 1.4 1.4 1.3 1.4
A23–A30 0.6 0.5 0.5 0.5
A31–A34 0.1 0.1 0.1 0.1
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5.6. Planar 200-bar truss structure

An 11-level planar truss structure consisting of 200 bars, shown in
Fig. 16, was optimized in [1,17]. The material density is 0.283 lb/in3

whereas the modulus of elasticity is 30,000 psi. The stress limit
was ±10,000 psi. The structure is subjected to the two load cases:
(1) One kip is applied in positive × direction at nodes 1, 6, 15, 20, 29,
34, 43, 48, 57, 62, and 71; (2) 10 kips is applied in negative Y direction
at nodes 1, 2, … , 6, 8, 10, 12, 14, 15, … , 20, 22, 24, 25, … , 73, 74, and
75; (3) Cases 1 and 2 are combined together.

The 200 structural members of this spatial truss are categorized into
29 groups described in Table 12. Discrete values of cross-sectional areas
were selected from the following set:

D = [0.1, 0.347, 0.44, 0.539, 0.954, 1.081, 1.174, 1.333, 1.488, 1.764,
2.142, 2.697, 2.8, 3.131, 3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 8.525,
9.3, 10.85, 13.33, 14.29, 17.17, 19.18, 23.68, 28.08, 33.7] (in2);

Table 13 compares the results obtained by the HHS algorithm and
other optimization methods. Fig. 17 compares the corresponding
convergence rates. In this case, the HHS algorithm obtained the same
best weight as ADS (27,190.49 lb). ESASS obtained best weight of
28,075.49 lb. The HHS algorithm obtained the best solution in 7500
Table 10
Loading conditions for the 72-bar truss problem.

Nodes

Load Case 1 Load Case 2

Px (kips) Py (kips) Pz (kips) Px (kips) Py (kips) Pz (kips)

17 5.0 5.0 −5.0 0.0 0.0 −5.0
18 0.0 0.0 0.0 0.0 0.0 −5.0
19 0.0 0.0 0.0 0.0 0.0 −5.0
20 0.0 0.0 0.0 0.0 0.0 −5.0
structural analyses. The ADS and ESASS algorithms obtained the best so-
lution after 5000, 11,156, and 51,360 analyses, respectively.

6. Conclusions

This paper proposes a new variant of theHS algorithmcalled theHy-
bridHarmony Search (HHS) algorithm. In addition toHarmonyMemory
and pitch adjustment concepts, the HHS algorithm integrates two new
features based on Global-best PSO search and neighbourhood search
and omits the randomization used in the original HS algorithm. In
A35–A36 0.1 0.1 0.1 0.1
A37–A40 0.6 0.5 0.6 0.5
A41–A48 0.5 0.5 0.5 0.5
A49–A52 0.1 0.1 0.1 0.1
A53–A54 0.1 0.1 0.1 0.1
A55–A58 0.2 0.2 0.2 0.2
A59–A66 0.5 0.5 0.6 0.6
A67–A70 0.4 0.3 0.4 0.4
A71–A72 0.6 0.7 0.6 0.6
Best (lb) 387.94 388.94 385.54 385.54
Average (lb) N/A N/A N/A 386.040
Stdev (lb) N/A N/A N/A 1.155
No. of analyses 16,044 50,000 5330 5000
Constraint violations None None None None



Fig. 15. Convergence curves for the spatial 72-bar truss structure.

Fig. 16. Schematic of the planar 200-bar truss structure.

Table 12
Design variables in planar 200-bar truss problem.

Groups/Variables No. of truss members

A1 1, 2, 3, 4
A2 5, 8, 11, 14, 17
A3 19, 20, 21, 22, 23, 24
A4 18, 25, 56, 63, 94, 101, 132, 139, 170, 177
A5 26, 29, 32, 35, 38
A6 6, 7, 9, 10, 12, 13, 15, 16, 27, 28, 30, 31, 33, 34, 36, 37
A7 39, 40, 41, 42
A8 43, 46, 49, 52, 55
A9 57, 58, 59, 60, 61, 62
A10 64, 67, 70, 73, 76
A11 44, 45, 47, 48, 50, 51, 53, 54, 65, 66, 68, 69, 71, 72, 74, 75
A12 77, 78, 79, 80
A13 81, 84, 87, 90, 93
A14 95, 96, 97, 98, 99, 100
A15 102, 105, 108, 111, 114
A16 82, 83, 85, 86, 88, 89, 91 92, 103, 104, 106, 107, 109, 110, 112,

113
A17 115, 116, 117, 118
A18 119, 122, 125, 128, 131
A19 133, 134, 135, 136, 137, 138
A20 140, 143, 146, 149, 152
A21 120, 121, 123, 124, 129, 127, 129, 130, 141, 142, 144, 145, 147,

148, 150, 151
A22 153, 154, 155, 156
A23 157, 160, 163, 166, 169
A24 171, 172, 173, 174, 175, 176
A25 178, 181, 184, 187, 190
A26 158, 159, 161, 162, 164, 165, 167, 168, 179, 180, 182, 183, 185,

186, 188, 189
A27 191, 192, 193, 194
A28 195, 197, 198, 200
A29 196, 199

Table 13
Comparison of HHS optimization results with the literature for the 200-bar truss problem.

Variables (in2) ESASS [1] ADS [17] HHS

A1 0.1 0.1 0.1
A2 0.954 0.954 0.954
A3 0.1 0.347 0.1
A4 0.1 0.1 0.1
A5 2.142 2.142 2.142
A6 0.347 0.347 0.347
A7 0.1 0.1 0.1
A8 3.131 3.131 3.131
A9 0.1 0.1 0.1
A10 4.805 4.805 4.805
A11 0.347 0.44 0.44
A12 0.1 0.1 0.347
A13 5.952 5.952 5.952
A14 0.1 0.1 0.347
A15 6.572 6.572 6.572
A16 0.44 0.539 0.954
A17 0.539 0.1 0.347
A18 7.192 8.525 8.525
A19 0.44 0.539 0.1
A20 8.525 9.3 9.3
A21 0.954 0.954 1.081
A22 1.174 0.1 0.347
A23 10.85 10.85 13.33
A24 0.44 0.954 0.954
A25 10.85 13.33 13.33
A26 1.764 1.333 1.764
A27 8.525 7.192 3.813
A28 13.33 10.85 8.525
A29 13.33 14.29 17.17
Best (lb) 28,075.49 27,190.49 27,163.59
Average (lb) N/A N/A 28,159.59
Stdev (lb) N/A N/A 1149.91
No. of analyses 11,156 5000 5000
Constraint violations None None None
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Fig. 17. Convergence curves for the spatial 200-bar truss structure.
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principle, the HHS algorithm aims to optimize the balance between ex-
ploration and exploitation. Therefore, the HHS algorithm uses memory
consideration and pitch adjustment to focus on global search in the
early stage and Global-best PSO search and neighbourhood search to
focus on local search in the later stage.

This paper tested the HHS algorithm extensively on six discrete
truss structure optimization problems under multiple loading condi-
tions. We compared the numerical results for various trusses obtain-
ed by the HHS algorithm with results obtained by other published
approaches in order to verify HHS algorithm effectiveness, efficiency,
and robustness.

The HHS algorithm generally performed better than the optimiza-
tion methods used for comparison in terms of both optimum solution
and convergence capability. In nearly all design examples, theHHS algo-
rithm obtained a result that was comparable or better than literature
and required much less structural analyses. Because HHS algorithm
not only strikes an optimal balance between exploration and exploita-
tion but also converges to the optimum solution significantly faster
than other testedmethods, this algorithm is an idealmethod for dealing
with complex engineering problems.

The HHS algorithm infused the advantages of several current tech-
niques to improve overall effectiveness and overcome weaknesses in-
herent in each individual technique. Obtained results confirm the
effectiveness of this hybrid algorithm in minimizing shortcoming in
local searching abilitywhile stillmaintaining the good capability infind-
ing the high performance regions of searching space. Further research is
required to clarify HHS efficiencies in dealingwith large-scale optimiza-
tion problems.
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