
Automation in Construction 69 (2016) 131–150

Contents lists available at ScienceDirect

Automation in Construction

j ourna l homepage: www.e lsev ie r .com/ locate /autcon
An evolutionary approach for 3D architectural space layout
design exploration
Ipek Gürsel Dino
Middle East Technical University, Department of Architecture, Universiteler Mah., Dumlupinar Bulvari, No:1, 06800 Ankara, Turkey
E-mail address: ipekg@metu.edu.tr.

http://dx.doi.org/10.1016/j.autcon.2016.05.020
0926-5805/© 2016 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 9 November 2015
Received in revised form 24 April 2016
Accepted 22 May 2016
Available online 24 June 2016
This work introduces Evolutionary Architectural Space layout Explorer (EASE), a design tool that facilitates the
optimization of 3D space layouts. EASE addresses architectural design exploration and the need to attend to
many alternatives simultaneously in layout design. For this, we use evolutionary optimization to find a balance
between divergent exploration and convergent exploitation. EASE comprises a novel sub-heuristic that con-
structs valid spatial layouts, a mathematical framework to quantify the satisfaction of constraints, and evolution-
ary operators to improve alternative layouts'fitness.We test EASE on the design of a library building.Weevaluate
EASE's performance for different building forms and different evolutionary algorithm parameters. The results
suggest that EASE can generate valid layouts, quantify the constraints' degree of satisfaction and find a number
of optimal layout solutions. The layouts that EASE generates are intended not as end results but design artifacts
that provide insight into the solution space for further exploration.

© 2016 Elsevier B.V. All rights reserved.
Keywords:
Design exploration
Evolutionary algorithms
Architectural space layout design
1. Introduction

Space layout design (SLD) is one of the key phases of architectural
design, which comprises decisions regarding the search for an optimal
spatial configuration that satisfies a set of constraints. It is also a com-
plex problem due to the subjective and fuzzy nature of dependencies,
the difficulties in quantifying solution quality and its discontinuous
andmultimodal design space [29]. SLD typically is manually conducted.
However, due to the vast number of alternatives, alternative configura-
tions cannot be systematically explored by hand.

Computation-aided design optimization can support SLD by the
automated generation, manipulation and evaluation of design alterna-
tives. This way, rational decision-making based on quantitative criteria
can be facilitated towards well-performing design solutions. At the
same time, creative design problems are said to resist being solved to
optimality by deterministic methods, as there is no complete under-
standing of the problem structure at the outset of the design process
and the relationship between the design variables and objective
function(s) is not clear. This mismatch between rational methods of ex-
ploitation and creative acts of design synthesis is a major hindrance to
the effective implementation of optimization in early design. Moreover,
it is generally accepted that layout problems are NP-complete, and their
time complexity is upper-bounded by exponential functions. This
means that such problems cannot be solved with definite optimality
in a reasonable amount of time. Therefore, the focus should be the
formulation of efficient heuristics that seek for near-optimal solutions.
Evolutionary computing methods have the potential to tackle such
complex design problems while expanding opportunities for emer-
gence and creativity.

In our research, we address two distinguishing characteristics of ar-
chitectural design and SLD. The first is the privilege that the architects
place upon architectural form. Typically form addresses higher-order
architectural qualities such as esthetics, meaning, context or perfor-
mance, and therefore precedes the design of its layout configurations.
The second characteristic is the importance of divergent thinking and
working with multiple alternatives. Similarly in architectural design,
architects explore not one but a number of design alternatives simulta-
neously until a complete understanding of the design context is
attained. This means that SLD design tools should be able to deal with
arbitrary building forms that architects propose. Quantitative explora-
tion of the layout solutions of a number of different building forms can
help benchmark them against each other and aid the selection of the
most optimal building forms and layouts. Therefore, it is important to
be able to operationalize a heuristic for SLD that tackles arbitrary build-
ing forms proposed by the architects.

This paper presents a novel approach to the multi-floor, unequal-
area 3D space layout problem. Evolutionary Architectural Space layout
Explorer (EASE) is a design tool that facilitates the generation and
optimization of 3D space layouts. Within EASE, layouts are generated
by a novel heuristics named Precedence-Based Layout Configuration
Heuristics (P-LCH) that can satisfy hard constraints of space overlaps
and empty areas. Generated layouts are evaluated by a number of con-
straints that quantify the size, geometry, placement and topology

http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2016.05.020&domain=pdf
http://dx.doi.org/10.1016/j.autcon.2016.05.020
mailto:ipekg@metu.edu.tr
http://dx.doi.org/10.1016/j.autcon.2016.05.020
http://www.sciencedirect.com/science/journal/09265805
www.elsevier.com/locate/autcon

132 I.G. Dino / Automation in Construction 69 (2016) 131–150
relations. Evolutionary algorithms (EA) then facilitate the generate/
evaluate cycle to improve individuals' fitness by crossover, mutation
and repair operators. EASE is tested on a building design case using
the form alternatives for a given architectural brief. We comparatively
evaluate the layout performances of these forms based on empirical
and quantitative data. We presentmetrics to describe different building
forms to be able to find their correlations with constraints. Then we
discuss the convergence characteristics of EASE. Finally, the effect of
different EA parameters on the performance of EASE is investigated.

2. Concepts for sld support

2.1. Design tools for exploration and exploitation

Design is a creative activity that cannot be solvedwith certainty, as it
resists definitive formulations and lacks objective evaluation criteria
[42]. Where the cost of finding an optimal solution is high, designers
search for “good enough” solutions that meet the minimum objectives,
known as satisficing [48]. By nature, satisficing entails large design
spaces and divergent exploration. As it aims to extend the boundary of
a design situation to achieve a large and fruitful search space, divergent
(exploratory) designer behavior is also associatedwith design creativity
[30]. The ability to simultaneously attend to alternative design threads
within such large search spaces is ameasure of the frequency of creative
leaps during conceptual design [7]. Conversely, convergent design nar-
rows and intensifies search towards more promising areas. It invests
only in areas of high opportunity through testing and validation. At
this phase, uncertainties are resolved, objectives are agreed upon and
design variables are identified.

Design is an interplay of divergence and convergence, where de-
signers engage in a continuous cycle of broadening and narrowing the
design space. Well-informed decision-making can be facilitated by
Fig. 1. EASE m
equally encouraging creative variation and rational optimality. Such ap-
proaches need to generate and present feedback for a number of design
alternatives by assessing the relative impact of design performance pa-
rameters. Such quantitative information can be used to compare or
benchmark the quality of design alternatives.
2.2. Metaheuristics as design support

A common characteristic of creative, non-routine design is that
neither an inherent solution structure nor an a priori problem for-
mulation exists. During design, design formulations constantly
change together with the designer's understanding of the problem.
As requirements cannot be definitively and exhaustively defined, a
direct operational strategy to find a good solution (heuristics) isn't
available either. Metaheuristics are suitable for design, or “I know it
when I see it” type of problems, as can evaluate a candidate solution
once it is instantiated [37]. Metaheuristic methods comprise a class
of upper-level approximate methods that aim efficient search space
exploration within discontinuous, multimodal solution spaces.

Evolutionary algorithm (EA) is a metaheuristic method that uses
principles of biological evolution, wherein successive generations of
design instances evolve bymeans of recombination andmutation oper-
ators. As a high-level decision support technique, it can support multi-
variate design problems with multimodal and discontinuous design
spaces [16]. We support that EA can address creative design by main-
taining a balanced amount of divergence for novelty and convergence
for utility. EA's micro-level bottom-up organizational principles can
motivate macro-level creativity [46]. As such they can facilitate de-
sign experimentation and design discovery and eventually contrib-
ute to new architectural values that initially remain unnoticed and
unexplored.
odules.

Table 1
Nomenclature.

Ainit The initial 3D boolean array that represents a discretized
building

Aspace The 3D array that represents a spatial configuration
generated by EASE. The matrix maps the space indices to
the corresponding voxels.

depthb ,heightb ,widthb The width, height and length values of the of the building's
minimum axis-aligned bounding box. This also represents
the dimensions of Ainit and Aspace

Si Space
Pi The initial rectangular prism of Si
Cx
i , Cyi , Czi The x, y and z coordinates of the center voxel of Pi

widthi, depthi, heigthi Width, depth and height of Pi
CPL Collision Precedence List
FPL Fill Precedence List
L A building layout represented by Aspace

Ns Number of spaces in a building
NRv

i Number of required voxels in Si
NAv

i Number of actual voxels in Si
CoGi Center of gravity point of Si
Vj
i Voxel j that belongs to Si

cormax The user-defined maximum number of corners for all
spaces

cori The actual number of corners of Si
cnvi The total number of concavities of Si
facadei The required façade direction for Si (North, South, East

or West)
floi The required floor for Si
Vfac
i Number of voxels belonging to Si that are aligned to facadei

Vflo
i Number of voxels belonging to Si that are on floi

rwi ,rhi ,rli The user-defined width, height and length of the AABB
that Si needs to fit in

awi ,ahi ,ali The actual width, height and length of the minimum AABB
of Si

Atopo An array that maintains topology information between
spaces, where N = neighborhood, S = separating spaces,
and empty otherwise.

rDist(Si,Sj) The rectangular distance between Si and Sj
eDist(Pa,Pb) The Euclidean distance between points Pa and Pb
vDist(Va,flok) The vertical distance between voxel Va and flok
face(Si,Sj) The total number of voxel faces that Si and Sj share
csize Space size constraint
cdim Space absolute dimension constraint
ccompact Space compactness constraint
cjag Space jaggedness constraint
cconvex Space convexity constraint
cfacade Façade constraint
cfloor Floor constraint
cneigh Neighborhood constraint
csep Separation constraint

133I.G. Dino / Automation in Construction 69 (2016) 131–150
2.3. The space layout design (SLD) problem

2.3.1. Architectural form and space layout
One of the first tasks of architectural design is architectural form-

making (architectural massing). Architectural form is important
because it defines the building's identity and its impact on the urban en-
vironment by composing forms into ameaningful architectural configu-
ration [5]. For architects, form is usually non-negotiable and almost
autonomous, as it expresses key architectural qualities such as esthetics,
meaning, context, etc. The design of space layout begins once the build-
ing form materializes, guided by both the form and the architectural
brief. Together with the building form, the space layout is paramount
in determining and evaluating the quality of a building design.
2.3.2. Existing computational approaches
The layout problem can be generalized as an assignment problem,

which seeks for the assignment of entities to locationswhileminimizing
cost/time or maximizing the satisfaction of the specified requirements.
Several approaches such as greedy algorithms, dynamic programming,
mixed integer programming, or best fit decreasing or first fit decreasing
algorithms are widely used to solve the assignment problem. However
in its generalized form, the assignment problem does not take into ac-
count spatial constraints that architectural layout problems tackle. SLD
support tools need to address the domain-specific spatial intentions
and propose efficient formulations that take into account architectural
qualities.

The existing solution strategies addressing SLD can be classified as
construction methods and improvement methods [40]. Construction
methods work with incomplete solutions, gradually building layouts
in a series of steps using heuristics. Examples include inexact heuristics
such as greedy algorithms [2,15], exact algorithms such as branch and
bound methods [24,31,55] and dynamic programming [44]. However,
it might not be possible to extend partial optimality over the totality
of the problem. Moreover, additional sub-evaluation functions to
evaluate a partial solution are required when assembling subproblems
into a global solution. Improvement methods, on the other hand, con-
struct an initial complete solution and gradually improve it by compar-
ingmultiple solutions. Thismeans that, there is at least one sub-optimal
solution at any given time even if the algorithm fails. Examples are ex-
haustive search, local search (such as hill climbing), single-solution
metaheuristic methods such as tabu search [1,18], simulated annealing
[13,19,39] or variable neighborhood search, and population-based
metaheuristic methods such as ant colony algorithms [12,51], particle
swarm intelligence and evolutionary algorithms (EA).

2.3.3. Sub-heuristics for the design of space layouts
The principles of EA has beenwidely used in the layout problems for

space, facility, plant, manufacturing system and construction site design
with single or multiple floors. However, EA operates in a knowledge-
lean context and alone cannot support SLD without a sub-heuristic
that constructs layouts. In this section we discuss the existing SLD
sub-heuristics that are combined with EA.

A common approach is to assign spaces into a building layout using
methods of configuration, resulting in emergent building form. As ex-
ample is graph theoretic approaches that arrange a number of spaces
in a planar graph. The building form emerges from the resulting graph
as it is converted into its orthogonal geometric dual. Differently,
Rosenman and Gero [45] develop a design grammar that arranges po-
lygonal spaces into house plans. In either case, the building's regularity
aswell as contextual and esthetic value cannot be fully controlled by the
designer.

In contrast, we support that architects demand to maintain control
over a building's form. Therefore we study the cases in which a fixed
building form already exists prior to the layout design. The slicing tree
approach is such an example, which acquires spaces by repeatedly
subdividing a given area by vertical and horizontal dissections [3,4,6,8,
10,23,25,33,47,52,54]. A binary tree is used for representation, where
the terminal nodes are the spaces and the internal nodes specify the ver-
tical or horizontal dissection of its children nodes. However, the subdi-
vision approach fails in 3D layouts, non-sliceable floor plans, non-
rectangular spatial and building forms.

An alternative approach is to assign entities to the cell(s) of a matrix
representation. This assignment can be generalized as a quadratic as-
signment problem that matches a number of resources with the same
number of cells [9,22,36,38,41]. The one-to-many form is a much com-
plex problem as it needs to ensure that spaces are not split and no
empty cells remain. Based on this approach, various spatial forms can
be grown by means of a design rule schema encoded in the genotype
for design transformations [29]. Other studies combine EA with space
filling curves (SFC) that define a continuous path that generates spaces
on the matrix [17,28,32,53]. Similarly, spaces can grow from seeds
placed by the user by a rule-based heuristics [27]. SFC is advantageous
to the slicing tree approach in that it doesn't impose shape restrictions
on the building or the spaces. However, these approaches fail to gener-
ate 3D vertically-continuous spaces that span multiple floors.

Fi
g.

2.
A
di
ag

ra
m

of
th
e
P-
LC

H
.

134 I.G. Dino / Automation in Construction 69 (2016) 131–150

Fig. 3. P-LCH pseudocode.

135I.G. Dino / Automation in Construction 69 (2016) 131–150
A third heuristic allocates fixed or flexible spatial blocks within a
given boundary. Dunker et al. use an iterative co-evolutionary method
to solve the packing problem of groups of departments [20]. Lee et al.
[35] combine EA with graph algorithms for the calculation of the dis-
tances between departments through aisles. Bausys et al. determine
the detailed layout of units with EA based on lighting, heating, and
sizes [11]. Koenig et al. develop a data structure for the hierarchical or-
ganization of layout elements to organize larger layout problems into
subsets [34]. Rodrigues et al. develop a hybrid evolutionary technique
for detailed design with lower-scale architectural elements as paramet-
ric objects [43]. In these approaches, the main obstacle is the computa-
tion time to detect and avoid collision and empty spaces, and their
limited range of simplified spatial forms.
The developed model, EASE, differs from the abovementioned heu-
ristics in that it addresses SLD problems that start with arbitrary orthog-
onal building forms, within which spaces with arbitrary butmeaningful
forms are allocated. This is a non-trivial problem because a method to
determine these space forms that fulfill requirements including size, ab-
solute dimensions and regularity needs to be formulated. At the same
time, it is necessary to ensure the seamless arrangement of spaces as
well as the satisfaction of constraints.

3. Evolutionary Architectural Space layout Explorer (EASE)

Evolutionary Architectural Space layout Explorer (EASE) is a design
tool for early architectural design that aims to facilitate better informed

Table 2
Constraint formulation.

Constraint category Constraint name

C.1.1. Space size C.1.1. Space size: ensures that a space contains the required number of voxels. The ratio of the actual and
required number of voxels for each space is aggregated.

csize ¼ ∑
i¼1

Ns

ðmin½NAi
v

NRi
v
;
NRi

v

NAi
v
�Þ

C.1.2. Space geometry constraints: specify a space's
acceptable geometries, avoiding extreme forms towards the
search for simpler and compact geometries.

C.1.2.1. Absolute dimensions: ensures that a space's dimensions are within user-defined limits. The designer
first specifies an axis-aligned bounding box (AABB) for each space Si, within which it must fit with its height,
width and length (rwi, rhi, rli). Then EASE calculates the number of voxels belonging to Si that hang outside
this AABB in all directions. This number is normalized by the difference between the building and Si’s width,
length and height.

cdim ¼ ∑
i¼1

Ns ðmaxð0;rwi−awi Þþmaxð0;rli−aliÞþmaxð0;rhi−ahiÞ Þ
ððmaxð0;depthb−awi ÞÞþmaxð0;widthb−ali Þþmaxð0;heightb−ahi ÞÞ

C.1.2.2. Form irregularities
C.1.2.2.1. Compactness: ensures the compactness of a space by minimizing its Moment of inertia with respect
to the rotation axis defined as the center of gravity (CoGi) of Si. Then, the distance between CoGi and the
voxels of Si are aggregated and squared. Eventually this value is normalized by the inertia of the building.

ccompact ¼ ∑
i¼1

Ns
inertiai

inertiabuilding

inertiai ¼ ∑
i¼1

Ns

eDist ðCoGi;CoGVi
j
Þ2

C.1.2.2.2. Jaggedness: ensures a space's geometric regularity by minimizing its number of corners. First, the
users define the maximum acceptable corner number (cormax). A space Si is penalized only if the actual
number of corners (cori) is above cormax. A voxel Vj

i belonging to Si with coordinates (x,y,z) is a corner if at
least three of its neighboring voxels in the direction of cardinal axes [(x-1,y,z), (x + 1,y,z), (x,y-1,z), (x,y +
1,z), (x,y,z-1), (x,y,z + 1)] are of a different space.

cjag ¼ ∑
i¼1

Ns

max½0; cor i−cormax
cormax

�; cori N cormax

0; otherwise

8<
:

C.1.2.2.3. Convexity: ensures the convexity of a space's form. We first draw axes in cardinal directions
through each voxel on widthb, heightb, lengthb. If an axis cuts though Si more than once, this means that Si is
concave on that voxel on that direction. We normalize a space's convexity by its number of voxels, then
aggregate all the spaces.

cconvex ¼ ∑
i¼1

Ns
cnv i

NAi
v

C.1.3. Space placement constraints: ensure that the specified
spaces are assigned to designated parts of the building.

C.1.3.1. Façade preference: maximizes a space's number of voxels facing towards a given building façade
facadei (N,S,E or W). We first count Vfac

i (the number of voxels of Si that are aligned to facadei).
For each voxel Vj

i belonging to Si with coordinates (x,y,z), we iterate through its horizontal neighbors, and
apply the following rule:
Vj
i is aligned to:

North if (x,y + 1,z) voxel is empty
South if (x,y-1,z) voxel is empty
East if (x + 1,y,z) voxel is empty
West if (x-1,y,z) voxel is empty
To normalize this value, we first invert it, and finally ensure its maximization by subtracting in from 1.

cfacade ¼ ∑
i¼1

Ns

1− 1
1þVi

fac

C.1.3.2. Floor preference: places a space Si on a user-defined floor floi. For this, EASE aggregates for each
Si the distance of each voxel Vj

i to floi. This value is normalized by Si's number of voxels.

cfloor ¼ ∑
i¼1

Ns

∑
j¼0

m
vDistðVi

j ;floi Þ
NAi

v

C.2. Space topology C.2.1. Neighborhood: ensures that two spaces are placed next to each other by maximizing their geometric
interface. For all the space pairs in Mtopothat are specified as neighbors (N), the number of voxel faces they
share is computed. To normalize this value, we first invert it, and finally ensure its maximization by
subtracting it from 1.

cneigh ¼ ∑
i¼1

Ns−1
∑
N
s

j¼ iþ1
1− 1

faceðSi; S j Þþ1 ;Atopoði; jÞ ¼ N

0; otherwise

8><
>:

C.2.2. Separation: ensures that given two spaces are physically separated as much as possible. For all the
space pairs in Mtopo specified to be separated, the rectangular distance between them is computed. To
normalize this value, we first invert it, and finally ensure its maximization by subtracting in from 1.

csep ¼ ∑
i¼1

Ns−1
∑
N
s

j¼ iþ1
1− 1

rDist ðSi; S j Þþ1 ;Atopoði; jÞ ¼ S

0; otherwise

8><
>:

136 I.G. Dino / Automation in Construction 69 (2016) 131–150
decision-making under spatial constraints using evolutionary optimiza-
tion. EASE tackles multi-floor, unequal-area layout problems starting
with arbitrary a priori architectural forms. EASE doesn't aim to generate
a finalized layout, but a number of low-resolution solutions that provide
insight into the solution space and initiate further exploration. This
quantitative inquiry is aimed to facilitate the designers' qualitative and
comparative analysis of layout performances. As such, it offers an alter-
native to fully automated optimization approaches that seeks to find a
single optimal solution.

The three activities of computational design synthesis are genera-
tion, evaluation, and guidance. EASE addresses these activities in three
integrated modules (Fig. 1). Precedence-based Layout Configuration

Fig. 4. Chromosome representation.

137I.G. Dino / Automation in Construction 69 (2016) 131–150
Heuristics (P-LCH) is a novel heuristic that generates layouts without
overlaps or empty spaces. The Constraint Checker quantifies the fitness
of each generated layout bymeans of constraint penalties. Based on the
fitness values, the Evolutionary Engine provides feedback to P-LCH
through recombination and mutation to improve solutions. Input data
is a discretized building form, a list of spaces, constraint settings,
weights and EA parameters. Table 1 summarizes the symbols used to
formulate EASE.

3.1. Precedence-based layout configuration heuristics (P-LCH)

Precedence-Based Layout Configuration Heuristics (P-LCH) is novel
method that generates valid space layouts that avoid overlap conflicts
or empty areas within given building forms. First, the building form
needs to be discretized into a number of equal-area voxels by the
users. This form is represented as a 3D Boolean matrix (Ainit), following
the same scheme as the building's voxel structure. The spaces in the ar-
chitectural brief need to be discretized in the same manner, such that
Fig. 5. Crossover po
the total number of spatial units is equal to the total number of
voxels. This reduces both the dimensions of the search space and
the computational complexity by avoiding expensive geometric
overlap detection operations. As a result, the layout problem is trans-
formed into an assignment problem, where each space with n num-
ber of units are to be matched with n number of voxels. As the spaces
are assigned to voxels, the space indices that occupy the voxels are
registered in a second 3D matrix (Aspace) with the same voxel struc-
ture as Ainit.

P-LCH takes as input the building representation (Ainit) and the space
sizes. Thereon, three subtasks are repeated for each layout instance, as
discussed below. In Fig. 2, we demonstrate P-LCH on a simple example
that assigns four spaces in a single-story building. The pseudocode can
be seen in Fig. 3.

Step 1 concerns the generation of initial 3D spatial forms and their
assignment to building voxels (Fig. 2, Step 1). P-LCH distinguishes be-
tween the layouts of the very first generation and the remaining
generations.
ints and types.

Fig. 6. Swap repair operation.

138 I.G. Dino / Automation in Construction 69 (2016) 131–150
First generation: P-LCH first generates for each space Si a rectangular
prism Pi that aims to approximate its total number of voxels (NRvi) as
much as possible. The prisms' dimensions are determined by generating
random values over [0, 1] for their width (ratioW), depth (ratioD) and
height (ratioH) ratios (Fig. 3, line 5–7). Then the prisms' actual widthi
is calculated by multiplying ratioW with the cube root of the voxel
size divided by its ratioW, ratioD and ratioH. The same is calculated for
heigthi and depthi in the same manner (Fig. 3, line 9–11). To place Pi in
the building, first a center point (Cxi ,Cyi ,Czi) is randomly generated
(Fig. 3, line 13–15) where:

0 ≤ Ci
x b depthb and0 ≤ Ci

y bwidthb and0C
i
z b heightb

The building voxels that will be occupied by Pi in Ainit are calculated
from the upper-left to the lower-right voxels (Fig. 3, line 21–26). If the
prism overflows the building, it is trimmed off. Eventually, the calculat-
ed spaces are assigned to the corresponding indices of Aspace. In the
resulting configuration, an index can be occupied by multiple spaces,
and/or some indices may remain empty. This conflict is resolved in the
next two steps by using two permutation lists, Collision Precedence
List (CPL) and Fill Precedence List (FPL), whichmaintain the precedence
of each space in case of collision and empty voxels. The higher ranking
space has the priority to preserve the overlapping voxels or to annex
the empty neighboring voxels. The values of CPL and FPL are generated
randomly for the first generation.

Following generations: Recombination operators are used to gener-
ate and assign prisms to voxels, and modify the CPL and FPL (see
Section 3.3.2 and 3.3.3).

Step 2 eliminates the collisions (overlap) between spaces, if any, by
determining which space preserves those voxels (Fig. 2, Step 2). For all
voxels inAspace, if there aremultiple spaces assigned, then CPL is referred
to. Only the highest ranking space is allowed to keep the voxel island.
Following, the remaining space(s) withdraw from this voxel island.

Step 3 determines which space extends itself towards the unoccu-
pied areas, if any, remaining in the building (Fig. 2, Step 3). First, the
voxel islands (adjacent voxel groups) that don't have spaces assigned
to them are detected with flood fill algorithm. For each such island, all
theneighboring spaces that border these voxels are calculated. Amongst
Table 3
Library spaces.

Space Surface area (m2)

S1 Reading 1 1300
S2 Reading 2 900
S3 Books 900
S4 Administration 650
S5 Café 1 500
S6 Working 1500
S7 Conference room 75
S8 Café 2 75

Total 5900
these, we eliminate the spaces that have already reached their required
size (NRvi bNAvi). For all the remaining spaces, the highest ranking in FPL
extends itself onto the island. As a result, all the empty voxels are occu-
pied by the neighboring spaces.
3.2. Constraint checker

In the previous step, P-LCH generates a generation of valid layouts
that have no overlaps or empty spaces. However, it doesn't guarantee
the satisfaction of spatial requirements. The Constraint Checker quan-
tifies thefitness of a layout bymeans of penalizing constraints that eval-
uate (C.1) singular spaces and (C.2) pairs of spaces (Table 2). For C.1,
each space's penalty is separately calculated and then aggregated into
the constraint's total penalty score. For C.2, only the penalties of the in-
dicated space pairs in Atopo are calculated and aggregated. To allow the
prioritization of some constraints over others, the calculated penalties
are multiplied by user-defined weight values (w). Finally, weighted
penalty values are aggregated into a single fitness function that is min-
imized towards zero. The eventual objective function can be formulated
as below, where f(L) is the function to beminimized for a given layout L,
and w is the user-defined penalty weights.

minimize f Lð Þ ¼ ∑
Ns

i¼1
ð wsize Csize þwdim Cdim þwcompact Ccompact

þwjag Cjagþwconvex Cconvex þwfacade Cfacade þwfloor CfloorÞ

þ ∑
Atopo:length

j¼1
wneigh Cneigh þwsep Csep
� �

EASE acknowledges that design problems are inherently tolerant to
violating constraints as long as the purpose of design is not severely
compromised. Therefore, it seeks to find trade-off solutions in which
constraints are satisfied at the highest possible level, if not fully. To
this end, EASEminimizes the difference between the required and actual
constraint values. We formalize the constraint calculation procedures
such that they are all subject to minimization. Each constraint calcula-
tion procedure takes as input a property Pri of the space or space pair
under evaluation. To avoid different orders of magnitude, we normalize
the constraints' penalty values to the (0–1) range using the following
rules. For a property Pri to be minimized, if a user-defined target value
exists (as in csize, cdim and cjag), then we normalize by calculating for
each space the ratio between the actual value Pri and this target value.
If not, (as in ccompact , cconvex and cfloor), we normalize the constraint
value with other properties of the building or the space. Alternatively,
when constraints deal with properties that are to be maximized (as
in cfacade , cneigh and csep), we convert it to a normalized value that is
also subject to minimization, using the general form 1−(1/(1+Pri)).

The Constraint Checker quantifies each layout's fitness by introduc-
ing the constraints into a single objective function by means of penal-
ties. In the next step, individuals will be selected and recombined to
generate new individuals to improve the individuals' fitness.

Table 4
Form alternatives.

139I.G. Dino / Automation in Construction 69 (2016) 131–150
4.1. Evolutionary engine

4.1.1. Chromosome representation
In EA the effectiveness of recombination operators is largely due to

the chromosome representation. In EASE the chromosomes don't main-
tain the exact building layout, but only the spatial information dealt by
P-LCH. In the chromosome, we use value encoding to represent the in-
formation about the spaces' rectangular prisms, and permutation
encoding for the two precedence lists. (Fig. 4). In value encoding, a vec-
tor of values representing each space's initial rectangular prism's (Pi) di-
mensions is stored: the center point (Cxi ,Cyi ,Czi), followed by
depthi and heigthi (width is calculated only when required). For each al-
lele, we use floating-point numbers in the genotype, but in the
Table 5
Façade, floor and absolute dimension constraint values.

cfacade cfloor cdim

w d h

S1 5 5 4
S2 5 5 4
S3 5 5 4
S4 5 5 3
S5 South 3 5 5 1
S6 5 5 5
S7 North 1 1 1
S8 0 1 1 1
phenotype we map this value to its floor (the largest previous integer)
to match the indices of Aspace.

The two precedence lists are represented by permutation lists that
maintain the indices of the spaces to be allocated in Aspace. The spaces'
ordering in these lists specify their precedence to gain voxels in case
of overlap and empty area conflicts.

The chromosome representation of EASE indirectly encodes a layout
design, as opposed to more straightforward approaches, i.e. one-to-one
mapping of voxels to the spaces. In biological evolution, this principle is
known as the genotype/phenotype distinction, which states that an
individual's genetic information and its observable characteristics
need not be the same. This may seem disadvantageous from the point
that a valid layout (the phenotype) can be instantiated only by means
Table 6
Atopo:cneigh (N) and csep (S) constraint values.

S1 S2 S3 S4 S5 S6 S7 S8

S1 – – – – – – – –
S2 – – – N – – – –
S3 – – – N – – – –
S4 – N N – N N – –
S5 – – – N – – N S
S6 – – – N – – – –
S7 – – – – N – – –
S8 – – – – S – – –

Table 7
Constraint weights.

Constraint Weight

C.1.1. csize 200
C.1.2.1. cdim 250
C.1.2.2.1. ccompact 10
C.1.2.2.2. cjag 750
C.1.2.2.3. cconvex 10
C.1.3.1. cfacade 20
C.1.3.2. cfloor 80
C.2.1. cneigh 30
C.2.2. csep 1

140 I.G. Dino / Automation in Construction 69 (2016) 131–150
of the P-LCH algorithm. But at the same time, the high level of abstrac-
tion entailed by this distinction is advantageous, as it condenses the
chromosome into merely Ns×7 genes. An alternative representation,
which maps each voxel and to the spaces one-to-one, would be signifi-
cantly longer and the recombination operators would not ensure the
connectivity of a space's voxels.

4.1.2. Selection
To ensure genetic diversity and high fitness in the selection of the in-

dividuals that will contribute to the following generation, we imple-
ment operations for elitism, crossover, mutation and repair. First we
sort the current generation in descendingfitness values. The elitist strat-
egy copies the best individuals in the sorted list into the new generation
with a rate of Pe so to preserve them in the population. For the remain-
ing individuals, we loosen the selection pressure and perform a selec-
tion scheme that is random but biased towards fitter individuals. We
generate a random value rnd (0≤ rndb1), and select the individuals
with the index (rnd2 ×Np) in the sorted list with a rate of Pc, where
Npis the population size. Mutation is performed randomly with the
rate Pm, which is to be multiplied by the number of generations where
no fitness improvement is observed (Nni). This way, it increases genetic
variation when EASE starts to stagnate. Similarly, repair operators ran-
domly select individuals with the rate of Pr, but decides whether to re-
pair the selected chromosome or not based on its satisfaction of
certain constraints (see Section 3.3.3). The number of individuals to be
selected for each strategy is as follows:

The number of elites = Pe×Np

The number of individuals to be crossed-over = Pc×Np

The number of individuals to be mutated: Pm×Nni

The number of individuals to be repaired (initial selection)= Pr×Np

4.1.3. Reproduction

4.1.3.1. Crossover. According to the building block hypothesis, an effi-
cient EA assembles solutions by combining short, low-order and highly
fit schemas with strong non-linear interdependencies to form fitter,
higher-order schemas [26]. Therefore, the crossover operation should
accordingly identify the dependent and independent blocks in the chro-
mosome. IN EASE, a space's information (size and location combined) is
strongly interdependent, while CPL and FPL operate independently of
Table 8
EA parameters.

EA parameter Value

Pc Crossover rate 0.9
Pe Elitism rate 0.1
Pm Mutation rate 0.1% ∗ number of non-improving generations
Pr Repair rate 0.1% ∗ number of non-improving generations
Np Population size 1000 individuals
Nt Termination condition 300 non-improving generations
spatial information. Therefore, we select the crossover points such that
space information remains intact as a building block (Fig. 5).

When selecting the crossover method, problems regarding the loss
of diversity and premature convergence play a role.We implement uni-
form crossover, which provides a rather disruptive but also efficient re-
combination technique for exploratory search [49]. First, a boolean
mask with the same length as the chromosome is created, encoding
True with a probability Po of 70%. This mask indicates which parent
will provide its alleles to its offspring. The allele is taken from the first
parent if the mask suggests True, and from the second parent if other-
wise. Here we can change the level of disruption by parameterizing Po.

For ordered lists, a different method is necessary to prevent invalid
chromosomes with repeating alleles [50]. For CPL and FPL, special re-
combination operators that maintain and combine parents' adjacency
information are implemented. We use Partial Mapping Crossover
(PMX) due to its emphasis on absolute position rather than adjacency.
PMX generates valid offspring that both inherit parents' alleles while in-
troducing random new traits. PMX selects split points and swaps allele
values one by one, immediately followed by swapping the duplicate
values in a chromosome and repairing damages as they occur.

Due to our biased selection strategy that privileges fitter individuals,
crossover might introduce to the population clones of the parents. As a
result, that individual can dominate the population and cripple the ge-
netic diversity. Therefore, after the reproduction operations, we inspect
the new generation for clones, and apply random mutation if we find
any.

4.1.3.2. Mutation.Mutation in general ensures that new genetic material
is introduced into the population and the unexplored areas in the search
space are reached. On the chromosome's value encoded part, we apply
mutation by replacing alleleswith randomly generated values, such that
0≤Cxi bdepthband 0≤Cyi bwidthb and 0≤Czi bheightb and 1≤widthib rwi

and 1≤heigthib rhi. Themutation of CPL and FPL is performed differently
by switching two random gene positions with each other. As such, it in-
creases genetic variation when EASE starts to stagnate.

4.1.3.3. Repair operators. In EASE, we implement repair mechanisms to
transform infeasible solutions into feasible ones. Repair mechanisms
operate not on the phenotype but the genotype level. Due to the fact
that P-LCH can only map the genotype to the phenotype, there is no di-
rect feedback mechanism and therefore we can only indirectly repair a
layout. This also means that a repair act only creates an opportunity to
improve constraint satisfaction, without any certainty. For this reason,
it is similar to the mutation operator that exploits random changes for
improvement, but different from it as it is directed towards chromo-
some parts that are not performing well.

EASE's repair mechanism implements two separate repair operators
that modify a chromosome internally. Each repair operator is activated
sparingly based on a violated constraint. The first is initiated if the se-
lected individual L consists of two spaces Si and Sj that have a similar
number of voxels, and at the same timeperformpoorly in terms of cneigh.
Wemathematically express this condition as follows: Higher swapmu-
tation ratio (SMR) values make sure that only space pairs with approx-
imately the same number of voxels are selected to swap.

min
NRi

v

NRj
v

;
NRj

v

NRi
v

" #
≥SMR

 !
∧ Si:cneigh ¼ 0
� �

If the above condition is satisfied, Si and Sj ‘s size and location infor-
mation as well as their ordering in CPL and FPL are swapped Fig. 6. This
swap changes Si and Sj's neighboring spaces togetherwith their physical
location in the building, generating a random opportunity to improve
their cneigh.

The second repair operator is activated when csize of the selected in-
dividual

Table 9
The fitness values and raw constraint penalties of ten simulations for five building forms. The best individual of each form is highlighted, and visualized in Table 10.

Fo
rm

 A

Constraints A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Raw avg. Weig. avg.

C.1.1. 0 0 0 0 0 0.0217803 0 0 0 0.01736111 0.00391414 0.78282828

C.1.2.1. 0 0 0 0 0 0 0 0 0 0 0 0

C.1.2.2.1. 0.29479578 0.29479578 0.29479578 0.26218709 0.31048254 0.2714372 0.26171132 0.26171132 0.29479578 0.27539945 0.28221121 2.82211205

C.1.2.2.2. 0.00195313 0.00195313 0.00195313 0.00390625 0.00195313 0 0.00195313 0.00195313 0.00195313 0.00195313 0.00195313 1.46484375

C.1.2.2.3. 0 0 0 0 0 0 0 0 0 0 0 0

C.1.3.1. 0.32142857 0.32142857 0.32142857 0.32142857 0.32142857 0.32142857 0.32142857 0.32142857 0.32142857 0.32142857 0.32142857 6.42857143

C.1.3.2. 0 0 0 0 0 0 0 0 0 0 0

C.2.1. 0.72083333 0.72083333 0.72685185 0.74166667 0.70601852 0.73333333 0.85185185 0.85185185 0.72685185 0.73333333 0.75134259 22.5402778

C.2.2. 0.76923077 0.76923077 0.76923077 0.69230769 0.92307692 0.84615385 0.53846154 0.53846154 0.92307692 0.46153846 0.72307692 0.72307692

FITNESS 33.2356038 33.2356038 33.4161593 34.9224375 33.1018731 36.3451579 36.6045454 36.6045454 33.5700055 36.5811704 34.7617102

Fo
rm

 B

Constraints B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 Raw avg. Weig. avg.

C.1.1. 0 0 0 0 0 0.01907895 0 0 0 0 0.00190789 0.38157895

C.1.2.1. 0 0 0 0 0 0 0 0 0 0 0 0

C.1.2.2.1. 0.15593668 0.15778364 0.15514512 0.15760774 0.18693931 0.16291719 0.16072999 0.16864556 0.15976253 0.19593961 0.16614074 1.66140737

C.1.2.2.2. 0.00520833 0.00173611 0.00520833 0.00260417 0.00173611 0.00260417 0.00260417 0 0.00434028 0.00520833 0.003125 2.34375

C.1.2.2.3. 0 0 0 0 0 0 0 0 0 0 0 0

C.1.3.1. 0.23809524 0.29166667 0.35 0.29166667 0.32142857 0.23809524 0.23809524 0.375 0.23809524 0.29166667 0.28738095 5.74761905

C.1.3.2. 0 0.00925926 0 0.02777778 0.03472222 0.02777778 0.04861111 0.09722222 0 0.02314815 0.02685185 2.14814815

C.2.1. 0.64444444 0.67222222 0.53888889 0.52777778 0.61666667 0.74166667 0.6 0.62222222 0.65 0.56944444 0.61833333 18.55

C.2.2. 0.92857143 0.42857143 0.5 0.64285714 0.5 0.78571429 0.92857143 0.64285714 0.92857143 0.71428571 0.7 0.7

FITNESS 30.4894263 30.0492319 29.1243679 28.0609484 31.3778257 37.4179276 31.13979 36.2737572 30.0433099 31.3484503 31.5325035

Fo
rm

 C

Constraints C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Raw avg. Weig. avg.

C.1.1. 0.02859477 0.0316585 0.01475694 0 0.01475694 0 0 0 0.01475694 0.01736111 0.01218852 2.43770425

C.1.2.1. 0 0 0 0 0 0 0 0 0 0 0 0

C.1.2.2.1. 0.20187542 0.18654326 0.17173476 0.17105512 0.16610851 0.23344562 0.16040542 0.17383607 0.18450547 0.18376667 0.18332763 1.83327632

C.1.2.2.2. 0.00297619 0 0.00446429 0.00744048 0.0014881 0.00892857 0.00446429 0.00892857 0.00372024 0.0014881 0.00438988 3.29241071

C.1.2.2.3. 0.01190476 0 0 0 0 0 0 0 0 0 0.00119048 0.01190476

C.1.3.1. 0.30555556 0.35 0.30555556 0.30555556 0.35 0.30555556 0.375 0.35 0.35 0.35 0.33472222 6.69444444

C.1.3.2. 0 0 0 0 0 0 0 0.03125 0 0 0.003125 0.25

C.2.1. 0.38055556 0.40833333 0.47083333 0.36527778 0.56666667 0.33955026 0.38492063 0.36732804 0.43214286 0.47685185 0.41924603 12.577381

C.2.2. 0.78571429 0.71428571 0.78571429 0.78571429 0.64285714 0.92857143 0.71428571 0.64285714 0.78571429 0.85714286 0.76428571 0.76428571

FITNESS 28.402391 28.1614177 29.0387762 25.1460671 30.3714025 26.2570753 24.7141733 29.5974877 28.3366222 28.5886588 27.8614072

Fo
rm

 D

Constraints D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Raw avg. Weig. avg.

C.1.1. 0 0 0 0 0 0 0 0 0 0 0 0

C.1.2.1. 0 0 0 0 0 0 0 0 0 0 0 0

C.1.2.2.1. 0.24429632 0.19742227 0.22939955 0.21919095 0.180609 0.19761316 0.18880948 0.1804792 0.21293751 0.17199621 0.20227536 2.02275365

C.1.2.2.2. 0.00510204 0.00510204 0.00892857 0.00255102 0.00637755 0.00255102 0.00510204 0.00318878 0.00255102 0.00255102 0.00440051 3.30038265

C.1.2.2.3. 0 0 0 0 0 0 0 0 0 0 0 0

C.1.3.1. 0.32142857 0.32142857 0.375 0.375 0.32142857 0.32142857 0.32142857 0.375 0.375 0.32142857 0.34285714 6.85714286

C.1.3.2. 0 0 0.01785714 0 0 0 0 0 0.01785714 0.01785714 0.00535714 0.42857143

C.2.1. 0.49074074 0.42222222 0.28492063 0.41269841 0.35555556 0.42222222 0.53769841 0.37777778 0.25833333 0.4 0.39621693 11.8865079

C.2.2. 0.73333333 0.8 0.73333333 0.6 0.66666667 0.73333333 0.93333333 0.8 0.6 0.93333333 0.75333333 0.75333333

FITNESS 28.1536208 25.6959914 27.1999479 24.5861272 24.3511581 23.7179683 29.2074826 23.829707 21.3212118 24.4237036 25.2486919

Fo
rm

 E

Constraints E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Raw avg. Weig. avg.

C.1.1. 0.0217803 0 0.0217803 0.0217803 0.0217803 0 0.0217803 0.0217803 0 0.01822917 0.0148911 2.9782197

C.1.2.1. 0 0 0 0 0 0 0 0 0 0 0 0

C.1.2.2.1. 0.29116915 0.27527137 0.24614428 0.2431592 0.2778607 0.26633876 0.26927861 0.25062189 0.25763229 0.24677748 0.26242537 2.62425373

C.1.2.2.2. 0 0 0 0 0 0.00347222 0 0 0.00347222 0 0.00069444 0.52083333

C.1.2.2.3. 0 0 0 0 0 0 0 0 0 0 0 0

C.1.3.1. 0.35 0.375 0.375 0.32142857 0.32142857 0.32142857 0.375 0.32142857 0.41666667 0.375 0.3552381 7.1047619

C.1.3.2. 0 0 0.02083333 0 0 0.01388889 0 0.01388889 0 0 0.00486111 0.38888889

C.2.1. 0.27103175 0.45 0.35277778 0.39047619 0.30714286 0.39351852 0.32222222 0.39444444 0.32222222 0.31111111 0.35149471 10.5448413

C.2.2. 0.4 0.7 0.4 0.4 0.7 0.9 0.7 0.6 0.4 0.6 0.58 0.58

FITNESS 22.7987045 26.2065463 26.9675034 25.3305098 23.4775247 25.5127924 24.9155133 26.8352954 23.5804896 23.5469414 24.7417988

141I.G. Dino / Automation in Construction 69 (2016) 131–150

Table 10
The best layout of each form alternative.

142 I.G. Dino / Automation in Construction 69 (2016) 131–150

143I.G. Dino / Automation in Construction 69 (2016) 131–150
L is low. In this case, first the difference di between the required and ac-
tual number of voxels NRvi and NAv

i for each space Si in L is calculated.
Following, we select either CPL or FPL with a probability of 50%, and en-
tirely reorder the selected one, such that the spaceswith higher d values
are assigned to the higher indices in the selected list. As a result, spaces
that fall short of voxels will gain higher precedence to occupy more
voxels during for collision or empty areas. The reason we reorder only
one of the lists is that the combined effect would be severely biased to-
wards the currently unsuccessful spaces.

4.1.4. Termination condition
EASE is terminated when it stagnates, or if the highest fitness value

remains the same for a predetermined number of successive genera-
tions (Nni).

5. Design explorations with ease

In this section,we evaluate EASE by testing it in the actual design of a
library building. We implement the EASE model into a prototype soft-
ware application using Java. Using this prototype, we first empirically
evaluate if EASE can generate well-performing spatial layouts in differ-
ent building forms provided by the architects. Then we investigate the
Fig.7. The average fitness and weighted constraint penalty valu
convergence characteristics of EASE. Finallywe study the effect of differ-
ent EA parameter values on EASE's performance.

5.1. Form explorations
We evaluate EASE's capacity to generate layouts within arbitrary

forms. For this, we study the design of a library building being designed
by an architectural firm. The brief specifies a total surface area of ap-
proximately 5900 m2, and consists of 8 spaces (Table 3). We asked the
architects to provide five form alternatives with approximately the
same size (Table 4). First, each form and the spaces in the brief are
discretized into units varying slightly between 72 and 80 depending
on the building size. The façade, floor, absolute dimension and topology
constraints are specified by the designers (Tables 5, 6), and the maxi-
mum corner constraint is set to 12. Finally, the constraint weights
(Table 7) and EA parameters (Table 8) are quantified. These parameters,
too, are determined in a trial-and-error fashion after experimentation.
Neighborhood was the most important constraint to satisfy, so its
weight was intentionally kept high. A discussion on the effect of other
parameter values can be found in Section 3.3.

To evaluate EASE's performance, we performed ten simulations for
each form, and plotted the raw and weighted constraint penalties to-
gether their fitness scores in Table 9. We also visualize the best layout
es of the ten layout alternatives of buildings A,B,C,D and E.

Table 11
The SA/V and connectivity (CON) values of buildings A,B,C,D and E.

Building Surface area
(voxel faces)

Volume
(voxels)

Surface/volume
ratio (SA/V)

Connectivity
(CON)

A5 164 72 2.277778 264
B4 138 80 1.725 300
C7 144 78 1.846154 324
D6 124 76 1.631579 302
E1 108 72 1.5 328

144 I.G. Dino / Automation in Construction 69 (2016) 131–150
alternative of each building form in Table 10. As P-LCH already eliminat-
ed overlaps and empty voxels, all layouts can be said to be acceptable.
However, the constraint penalties and fitness values vary from building
to building (Fig. 7). To understand the influence of form on constraints
and fitness (the latter two are already quantified in Tables 9 and 10),
we introduce and calculate two metrics regarding building form: com-
pactness and connectivity (Table 11). We quantify building compact-
ness by the ratio of a building's surface area to its volume (SA/V). To
quantify building connectivity (CON), we calculate and aggregate for
each voxel the number of its neighbors in the building in three cardinal
dimensions. For instance for a voxel occupying the (x,y,z) location in the
building, we count the voxels that occupy six possible neighbors
(x + 1,y,z), (x-1,y,z) (x,y + 1,z), (x,y-1,z), (x,y,z + 1), (x,y,z-1). Finally
we investigate the correlations between building form, constraints and
fitness by calculating Pearson's correlation coefficient (r) for the best in-
dividuals of the five forms (Table 12). The results show that cneigh is neg-
atively correlated with CON (r = −0.96039 in cell L8) and positively
correlated with SA/V (r = 0.8803 in cell K8). This can be because well-
connected and compact voxel structures can accommodate a higher
number of adjacent spaces. As in our example the neighborhoodpenalty
dominates the fitness value, the same correlations apply to the final
fitness as well (r=−0.90929 in cell L10 and r= 0.90608 in cell K10 re-
spectively). As a result, building forms with minimum SA/V and maxi-
mum CON earn higher fitness values.

Other high correlations between constraints that Table 12 reveals
are more difficult to interpret. For instance, the apparent correlation
between size and jaggedness, separation and neighborhood (cells
D1, H1 and I1) are less straightforward, because aggregation-based
evaluation functions are compensative. This implies that a constraint
may be compromised to make up for another without showing an ef-
fect on fitness. Despite these difficulties, it is still possible draw
several empirical observations. The positive correlation between
cneighand csep (cell I8) suggests that the success of separation in-
creases as spaces marked for adjacency pull themselves together.
The negative correlation between façade and floor constraints (cell
G6) suggests that two constraints that try to assign spaces to differ-
ent building parts cannot both succeed.
Table 12
The Pearson correlation coefficient values between the building form metrics (AS/v and CON),

1 2 3 4 5 6

csize cdim ccompact cjag cconvex cfacade
A csize
B cdim -
C ccompact 0.520714 -
D cjag −0.80831 - −0.74961
E cconvex - - - -
F cfacade 0.318956 - 0.0560344 0.1990357 -
G cfloor −0.25 - −0.506367 0.1011544 - −0.709
H cneigh −0.65144 - 0.206527 0.1880838 - −0.555
I csep −0.83629 - 0.0200225 0.5254468 - −0.216
J Fitness −0.489506 - −0.378297 0.0793768 - −0.462
K SA/V −0.556161 - 0.3194574 0.2935297 - −0.097
L CON 0.5354999 - −0.378297 0.001662 - 0.587

Highly correlated items are indicated in bold.Highly correlated items are indicated in bold.
There are other situations that Table 12 doesn't reveal, in which ini-
tial conditions (building form) conflict with the constraints. In such
cases, penalties remain unavoidable from the beginning:

• The satisfaction of cfac is directly proportional to the total vertical area
oriented towards that direction. Similarly cflo satisfaction is propor-
tional to the required floor's surface area;

• cdimand cinertia can be satisfied to the extent that the space can fit
within the building. Difficult aspect ratios for both spaces and build-
ings challenge this;

• Low space convexity inevitably means high jaggedness, but not vice
versa;

• A space with an odd number of required voxels cannot easily
minimize cjag , as it cannot avoid many corners.

In these cases, the users can either tolerate the suboptimal solutions
if searching for ‘good enough’ solutions. On the other extreme, such dif-
ficulties can be seen as an indication of the infeasibility of the building
form, leading to the abandonment of that form altogether. Alternatively,
theweight of the troublesome constraint can be reduced to relax the se-
lection pressure. However, assigning correct constraint weights remain
a challenge, as the relative ranking between a high numbers of con-
straints with no apparent correlations is difficult to find. Moreover, the
influence of weights on the eventual fitness is almost untraceable, as
this kind of evaluation is compensative.

Despite the aforementioned difficulties, design explorations with
constraint weights yield an expanded search space exploiting fuzzy in-
formation. While exhaustively characterizing the parametric space de-
pendencies does not seem realistic for early design, the design process
can greatly benefit from a systematic exploration of the relationships
between constraints. Future work for EASE includes the study of the in-
terrelationships between the initial form, constraints and the layout
solutions.

5.2. Population convergence
We investigate the convergence characteristics of EASE to under-

stand the pace with which it reaches the optimal solution. First, we
compare the convergence of the best layout alternatives of the five
building forms (Fig. 8). The results show the expected asymptotic con-
vergence for each layout. However, layouts with worse fitness values
converge slower, as the intervals between improvements in theirfitness
are much longer. When we study the best, worst and average fitness
values of each generation of layout E1 (Fig. 9), we observe that best fit-
ness gradually increases as expected, while the worst fluctuates within
a value range. However, average fitness value starts to decrease as the
best fitness value ceases to improve, because Pm increases and inserts
random variation in the population. Moreover, average fitness increases
constraints and fitness.

7 8 9 10 11 12

cfloor cneigh csep Fitness SA/V CON

26
106 0.2225804
9 −0.117891 0.85051
854 0.2104612 0.9668 0.74724
007 −0.133549 0.8803 −0.81593 0.90608
1195 −0.079008 −0.96039 −0.81593 −0.90929 −0.81649

Fig. 8. Convergence graph of the best layouts (A5, B4, C7, D6, E1).

145I.G. Dino / Automation in Construction 69 (2016) 131–150
with best fitness, as the population is momentarily dominated by that
successful individual's genetic traits. In time, the genetic variance also
increases together with Pm.

Finally, we investigate the change in E1’s raw constraint penalties
over generations (Fig. 10). Here we see that cneigh,csep, cfacand cinertia
start with higher values, and cannot be improved after a degree. To
compensate for this difference, weight values need to be selected ac-
cordingly low (see the previous section). Moreover, we observe that
Fig. 9. The convergence of the best, aver
sudden fluctuations in multiple constraints occur more frequently in
the first generations. Such huge value changes stabilize as a population
converges towards an optima.

5.3. Evolutionary operations
As the success of evolutionary algorithms depend largely on their

parameterization and parameter settings. We investigate the effect
of different EA parameter values (Table 13) on evaluation criteria
age and worst fitness values for E1.

Fig. 10. The raw size constraint penalty values for layout E1.

146 I.G. Dino / Automation in Construction 69 (2016) 131–150
(Table 14) using form E1, with the same constraint values presented
above. We ran EASE ten times for each parameter value and compared
the results of the fittest individual and the average fitness value. For
all simulations, we used a PC Intel Core i7-4700HQ CPU (2.40 GHz)
with a 16.0 GB RAM and 64-bit operating system.

The crossover experiments (Fig. 11A) suggest that all crossover rates
can generate acceptable layouts with similar fitness values, but on aver-
age higher crossover rates perform better.We had to limit the crossover
rate to 90%, as the elitism rate occupies the remaining 10%.Mutation ex-
periments (Fig. 11B) showed greater deviation, such that highmutation
Table 13
EA parameter values used for testing. The bold are the benchmark parameters used in the
previous section.

Parameter name EA Parameter values

Parameter
1

Parameter
2

Parameter
3

Parameter
4

Pc Crossover rate 0.50 0.65 0.80 0.90
Pm Mutation rate — to be

multiplied by the number of
non-improving generations
(%)

0.01 0.1 0.25 1

Pr Repair rate — to be
multiplied by the number of
non-improving generations
(%)

0.1 0,025 0.01 0.001

Pe Elitism rate — % fittest of
the generation

1 5 10 25

Np Population size
(individuals)

250 500 1000 2500

Nt Termination condition
(Number of non-improving
generations)

100 300 600 1000
rates became too disruptive, and too lowmutation rates fail to converge
(Fig. 12). Similarly for repair experiments, repairing an individual help
improve fitness, but the stochastic nature of repair operators allow
no more than 0.025 (Fig. 11C). For elitism (Fig. 11D), a balance
needs to be maintained between oversaturating the population
with the elites (resulting in inbreeding), and wasting away the
good genetic material.

The generation size experiments (Table 15) suggest that smaller
populations (Np=250 andNp=500) have an advantage of faster com-
putation time, but perform poorly regarding fitness. Here, insufficient
population size leads to stagnation as there remains little genetic varie-
ty. Larger populations' (Np =2500) fitness, on the other hand, perform
very similarly to the best case (Np =1000), require higher computation
time, and therefore are not preferred.

The termination condition experiments (Table 16) vary the num-
ber of non-improving generations before the algorithm terminates.
The objective is to avoid premature termination by allowing suffi-
cient convergence time. Increasing this parameter also increases
both the duration of mating and the mutation probability. However,
no significant improvement was observed after number of genera-
tions (Nt N 300). Therefore, we avoid unnecessary computation by
selecting Nt = 300. Other termination criteria can be further tested
Table 14
Criteria to test EA parameters.

Evaluation criterion Description

Fb Best fitness
Fa Average fitness
Cas Average converge time (seconds)
Cag Average converge time (no. of unimproved generations)

Fig. 11. Best and average fitness values for different values for crossover, elitism, repair andmutation rate parameters. The benchmark values used in the previous section are highlighted.

147I.G. Dino / Automation in Construction 69 (2016) 131–150
in the future, such as running mean, standard deviation, Phi, Kappa
or best-worst [14].

Having concluded the testing of the EA parameters, it must be noted
that varying one parameter at a time provides a limited view of the
situation, as these parameters are interdependent and interact with
each other non-linearly. Moreover, the large number of parameter con-
figurations and the lack of insight on their effect on fitness can challenge
such trial-and-error approaches. In the future, EA parameters can be
tuned using methods such as Meta Evolutionary Algorithm, Meta
Estimation of Distribution Algorithmor Sequential Parameter Optimiza-
tion [21].
Fig. 12. Average total number of generations for different val
5.4. Exploration of 2D layouts
We test the applicability of EASE on an L-shaped 2D building. EASE

can easily be converted into a 2D layout solver by limiting the initial
building representation (Ainit) to one level. We also use the same spatial
program (Table 3), constraint settings (Tables 4 and 5) and EA parame-
ters (Table 8) as in the previous case study. However, the 2-
dimensionality of the problem has an effect on several constraints
(Table 17). For instance, the upper limit of the number of corners
(cormax) is reduced from 20 to 12, considering that 2D geometries con-
tain fewer corners. Similarly, the neighborhood constraint penalty
(cneigh) is decreased, as 2D geometries are less probable to be adjacent
ues for crossover, elitism and mutation rate parameters.

Table 15
Results of generation size testing.

Fb Fa Cas Cag

Np=250 32.61851 36.6323 72.44 502.75737
Np=500 23.60606 28.3308 81.7 544.94
Np=1000 22.79870453 24.87724747 86.7 539.2916205
Np=2500 24.14178 26.69535 189 563.894

The selected EA parameters are indicated in bold.

Table 16
Results of termination condition testing.

Fb Fa Cas Cag

Nt=100 25.17635281 31.44453351 34.2 217.3
Nt =300 22.79870453 24.87724747 86.7 553.00
Nt=600 23.02984813 27.15810826 142.2 951.1
Nt=800 23.26611186 26.93881892 176.7 1144.1

The selected EA parameters are indicated in bold.

148 I.G. Dino / Automation in Construction 69 (2016) 131–150
to another geometry. Finally, we set the façade penalty to zero so to de-
activate its effect on fitness. We adjust the constraint weights accord-
ingly. In Fig. 13, we present the best 8 layout solutions that had the
highest score after 20 runs. The results suggest that EASE can generate
meaningful 2D layouts, and more uniform spatial forms as compared
Table 17
The fitness values and raw constraint penalties of the 2D building layouts presented in Fig. 13.

Weights 2D-1 2D-2 2D-3

csize 200 0 0 0
cdim 250 0 0 0
ccompact 10 0.186774 0.135939 0.146296
cjag 750 0 0 0
cconvex 10 0 0 0
cfacade 20 0.416667 0.666667 1
cfloor 0 0 0 0
cneigh 10 0.341667 0.354167 0.508333
csep 1 0.092593 0.12037 0.148148
Fitness 5.839965 5.623277 7.435177

Fig. 13. 2D layou
to 3D buildings. However, the satisfaction of cneigh and cfacade is harder,
due to the above mentioned reasons.

6. Future work and conclusions

In this paper, we present a design tool in support of 3D SLD based
on evolutionary algorithms. Considering that EA is an already well-
established optimization method, the main modeling effort lies in the
development of a layout construction heuristic, the mathematical
formulation of the constraints and the designation of the adequate
representational structures. Consequently, we propose a novel
heuristic method, P-LCH, that generates 3D layouts without overlapping
or empty areas, and a Constraint Checker that quantifies spatial
constraints.

EASE's effectiveness has been tested on the design process of a li-
brary building. While EASE could generate feasible layouts regarding
both the fitness values and the physical configurations for all form alter-
natives, it performs better on compact and well-connected forms as
they better satisfy topology and spatial form constraints. Moreover,
we found that some constraints may be in conflict with each other
and with the initial settings form the beginning. In this case, weights
need to be relaxed to reduce the evolutionary pressure. Eventually, we
experimented with several EA parameters, and found that a good bal-
ance between divergent and convergent search can be found with
very high elitism and mutation rates.
2D-4 2D-5 2D-6 2D-7 2D-8

0 0 0 0 0
0 0 0 0 0
0.151287 0.140585 0.163357 0.119601 0.160613
0 0 0 0 0
0 0 0 0 0
1 0.75 0.375 0.75 0.375
0 0 0 0 0
0.46875 0.4875 0.508333 0.666667 0.25
0.157407 0.101852 0.055556 0.083333 0.101852
7.144815 6.891963 7.050234 8.362681 4.717243

t solutions.

149I.G. Dino / Automation in Construction 69 (2016) 131–150
The most determinant factor that influences the fitness of the layouts
generated by EASE are the constraint weights. Currently, the constraints
are weighed manually by the designer in a trial-and-error way. Although
such an interaction can provide the designer with valuable insight about
the design problem, it nevertheless is a tedious task, especially in case of
independent constraints. The constraint weighing process can benefit
frommore systematic approaches that apply additional optimization pro-
cedures that seeks tofind thebestweights.While this process cannot fully
replace designer interaction, it can nevertheless semi-automatically guide
the user towards configurations that yield higher fitness. Therefore, our
future work include the development of such procedures that can in-
crease the efficiency and usability of the Constraint Checker.

The decision variables and constraints of creative design problems
are usually qualitative, and cannot exactly be expressed inmetricswith-
out sublimating the intrinsic qualities they carry. Therefore, the design
criteria formalized by early design tools by no means can represent
the whole complexity of design. This shortcoming inherent in automat-
ed design tools can be alleviated through exploratory and iterative in-
terfaces they provide to the designers. The designers' continuous
access to the design parameters and working mechanisms of a tool
can help her/him play a more decisive role in design. EASE currently
provides such interaction at the beginning, when the constraint settings
andweights are determined. Futurework includes thedevelopment of a
method that integrates automated optimization with continuous
human judgment to allow the designers operationalize it as a more in-
tegral component of her/his design process.
Acknowledgments

This work was supported byMiddle East Technical University BAP-1
Grant number BAP-08-11-2013-070. The author would like to express
her sincere gratitude to Prof. Göktürk Üçoluk for his support, Tarik
Kaya for the implementation, and Ekodenge A.S. for their contributions
on the case study.
References

[1] S. Abdinnour-Helm, S.W. Hadley, Tabu search based heuristics for multi-floor facility
layout, Int. J. Prod. Res. 38 (2) (2000) 365–383.

[2] R.K. Ahuja, J.B. Orlin, A. Tiwari, A greedy genetic algorithm for the quadratic assign-
ment problem, Comput. Oper. Res. 27 (10) (2000) 917–934.

[3] G. Aiello, M. Enea, G. Galante, A multi-objective approach to facility layout problem
by genetic search algorithm and Electre method, Robot. Comput. Integr. Manuf. 22
(5) (2006) 447–455.

[4] G. Aiello, G. La Scalia, M. Enea, Amulti objective genetic algorithm for the facility lay-
out problem based upon slicing structure encoding, Expert Syst. Appl. 39 (12)
(2012) 10352–10358.

[5] O. Akin, H. Moustapha, Strategic use of representation in architectural massing, Des.
Stud. 25 (1) (2004) 31–50.

[6] L. Al-Hakim, On solving facility layout problems using genetic algorithms, Int. J.
Prod. Res. 38 (11) (2000) 2573–2582.

[7] A.A. Alhusban, What Does the Architectural Creative Leap Look like through a Con-
ceptual Design Phase in the Undergraduate Architectural Design Studio?(Doctoral
Dissertation) Washington State University, Pullman, WA, 2012.

[8] F. Azadivar, J. Wang, Facility layout optimization using simulation and genetic algo-
rithms, Int. J. Prod. Res. 38 (17) (2000) 4369–4383.

[9] J. Balakrishnan, C.H. Cheng, Genetic search and the dynamic layout problem,
Comput. Oper. Res. 27 (6) (2000) 587–593.

[10] A. Banerjee, J.C. Quiroz, S.J. Louis, A Model of Creative Design Using Collaborative In-
teractive Genetic Algorithms, in: J. Gero, A. Goel (Eds.), Design Computing and Cog-
nition’08: Proceedings of the Third International Conference on Design Computing
and Cognition, Springer, Atlanta, USA 2008, pp. 397–416.

[11] R. Baušys, I. Pankrašovaite, Optimization of architectural layout by the improved ge-
netic algorithm, J. Civ. Eng. Manag. 11 (1) (2005) 13–21.

[12] A. Baykasoglu, T. Dereli, I. Sabuncu, An ant colony algorithm for solving budget
constrained and unconstrained dynamic facility layout problems, Omega 34 (4)
(2006) 385–396.

[13] A. Baykasoğlu, N.N. Gindy, A simulated annealing algorithm for dynamic layout
problem, Comput. Oper. Res. 28 (14) (2001) 1403–1426.

[14] D. Bhandari, C. Murthy, S.K. Pal, Variance as a stopping criterion for genetic algo-
rithms with elitist model, Fundamenta Informaticae 120 (2) (2012) 145–164.

[15] S.G. Boswell, TESSA—a new greedy heuristic for facilities layout planning, Int. J. Prod.
Res. 30 (8) (1992) 1957–1968.
[16] G. Bullock, M. Denham, I.C. Parmee, J. Wade, Developments in the use of the genetic
algorithm in engineering design, Des. Stud. 16 (4) (1995) 507–524.

[17] U. Buscher, B. Mayer, T. Ehrig, A Genetic Algorithm for the Unequal Area Facility Layout
Problem, in: S. Helber,M. Breitner, D. Rösch, C. Schön, J.-M. Graf von der Schulenburg, P.
Sibbertsen, M. Steinbach, S. Weber, A. Wolter (Eds.), Operations Research Proceedings
2012: Selected Papers of the International Annual Conference of the German Opera-
tions Research Society (GOR), Leibniz University of Hannover, Germany, September
5–7, 2012, Springer International Publishing, Cham 2014, pp. 109–114.

[18] W.-C. Chiang, P. Kouvelis, An improved tabu search heuristic for solving facility lay-
out design problems, Int. J. Prod. Res. 34 (9) (1996) 2565–2585.

[19] L. Chwif, M.R.P. Barretto, L.A. Moscato, A solution to the facility layout problem using
simulated annealing, Comput. Ind. 36 (1) (1998) 125–132.

[20] T. Dunker, G. Radons, E. Westkämper, A coevolutionary algorithm for a facility lay-
out problem, Int. J. Prod. Res. 41 (15) (2003) 3479–3500.

[21] A.E. Eiben, S.K. Smit, Parameter tuning for configuring and analyzing evolutionary
algorithms, Swarm Evol. Comput. 1 (1) (2011) 19–31.

[22] M.A. El-Baz, A genetic algorithm for facility layout problems of different manufactur-
ing environments, Comput. Ind. Eng. 47 (2) (2004) 233–246.

[23] R.W.J. Flack, B.J. Ross, Evolution of Architectural Floor Plans, in: C. Chio, A. Brabazon,
G.A. Caro, R. Drechsler, M. Farooq, J. Grahl, G. Greenfield, C. Prins, J. Romero, G.
Squillero, E. Tarantino, A.G.B. Tettamanzi, N. Urquhart, A.Ş. Uyar (Eds.),Applications
of Evolutionary Computation: EvoApplications 2011: EvoCOMNET, EvoFIN, EvoHOT,
EvoMUSART, EvoSTIM, and EvoTRANSLOG, Torino, Italy, April 27–29, 2011, Proceed-
ings, Part II, Springer Berlin Heidelberg, Berlin, Heidelberg 2011, pp. 313–322.

[24] U. Flemming, C.A. Baykan, R.F. Coyne, M.S. Fox, Hierarchical Generate-and-Test vs
Constraint-Directed Search, in: J.S. Gero, F. Sudweeks (Eds.), Artificial Intelligence
in Design ‘92, Springer Netherlands, Dordrecht 1992, pp. 817–838.

[25] T. Honiden, Tree structure modeling and genetic algorithm-based approach
to unequal-area facility layout problem, Ind. Eng. Manag. Syst. 3 (2) (2004)
123–128.

[26] D. Iclanzan, D. Dumitrescu, Overcoming Hierarchical Difficulty by Hill-Climbing the
Building Block Structure, in: D. Thierens (Ed.), Proceedings of the 9th Annual Con-
ference on Genetic and Evolutionary Computation (GECCO-2007), ACM, London,
England 2007, pp. 1256–1263.

[27] M. Inoue, M. Unehara, K. Yamada, M. Hiramoto, H. Takagi, Evaluation of Hybrid Op-
timization with EMO and IEC for Architectural Floor Planning, Soft Computing and
Intelligent Systems (SCIS), 2014 Joint 7th International Conference on and Ad-
vanced Intelligent Systems (ISIS), 15th International Symposium on Advanced Intel-
ligent Systems (ISIS) IEEE, Kitakyushu, Japan, 2014 54–61, http://dx.doi.org/10.
1109/SCIS-ISIS.2014.7044784.

[28] A. Islier, A genetic algorithm approach for multiple criteria facility layout design, Int.
J. Prod. Res. 36 (6) (1998) 1549–1569.

[29] J.H. Jo, J.S. Gero, Space layout planning using an evolutionary approach, Artif. Intell.
Eng. 12 (3) (1998) 149–162.

[30] J.C. Jones, Design Methods, John Wiley & Sons, 1992.
[31] J. Kim, Y. Kim, A branch and bound algorithm for locating input and output

points of departments on the block layout, J. Oper. Res. Soc. 50 (5) (1999)
517–525.

[32] J.S. Kochhar, B.T. Foster, S.S. Heragu, HOPE: a genetic algorithm for the unequal area
facility layout problem, Comput. Oper. Res. 25 (7) (1998) 583–594.

[33] R. Koenig, K. Knecht, Comparing two evolutionary algorithm based methods for lay-
out generation: dense packing versus subdivision, Art. Intell. Eng. Des. Anal. Manuf.
28 (03) (2014) 285–299.

[34] R. Koenig, S. Schneider, Hierarchical structuring of layout problems in an interactive
evolutionary layout system, Art. Intell. Eng. Des. Anal. Manuf. 26 (02) (2012)
129–142.

[35] K.-Y. Lee, M.-I. Roh, H.-S. Jeong, An improved genetic algorithm for multi-floor facil-
ity layout problems having inner structure walls and passages, Comput. Oper. Res.
32 (4) (2005) 879–899.

[36] H. Li, P.E. Love, Genetic search for solving construction site-level unequal-area facil-
ity layout problems, Autom. Constr. 9 (2) (2000) 217–226.

[37] S. Luke, Essentials of Metaheuristics, Lulu, second ed., 2013 (available at http://
cs.gmu.edu/⇠sean/book/metaheuristics/).

[38] K. Mak, Y. Wong, F. Chan, A genetic algorithm for facility layout problems, Comput.
Integr. Manuf. Syst. 11 (1) (1998) 113–127.

[39] A.R. McKendall, J. Shang, S. Kuppusamy, Simulated annealing heuristics for the dy-
namic facility layout problem, Comput. Oper. Res. 33 (8) (2006) 2431–2444.

[40] Z. Michalewicz, D.B. Fogel, How to Solve it: Modern Heuristics, Springer Science &
Business Media, 2013.

[41] M. Rajasekharan, B.A. Peters, T. Yang, A genetic algorithm for facility layout design in
flexible manufacturing systems, Int. J. Prod. Res. 36 (1) (1998) 95–110.

[42] H.W. Rittel, M.M. Webber, Dilemmas in a general theory of planning, Policy. Sci. 4
(2) (1973) 155–169.

[43] E. Rodrigues, A.R. Gaspar, Á. Gomes, An approach to the multi-level space allocation
problem in architecture using a hybrid evolutionary technique, Autom. Constr. 35
(2013) 482–498.

[44] M.J. Rosenblatt, The dynamics of plant layout, Manag. Sci. 32 (1) (1986) 76–86.
[45] M. Rosenman, J. Gero, Evolving Designs by Generating Useful Complex Gene Struc-

tures, in: P.J. Bentley (Ed.), Evolutionary Design by Computers, Morgan Kaufman,
San Francisco 1999, pp. 345–364.

[46] R. Saunders, J.S. Gero, Artificial Creativity: a Synthetic Approach to the Study of Cre-
ative Behaviour, in: J.S. Gero, M.L. Maher (Eds.), Computational and Cognitive
Models of Creative Design, Key Centre of Design Computing and Cognition, Sydney
2001, pp. 113–139.

[47] E. Shayan, A. Chittilappilly, Genetic algorithm for facilities layout problems based on
slicing tree structure, Int. J. Prod. Res. 42 (19) (2004) 4055–4067.

http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0005
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0005
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0010
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0010
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0015
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0015
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0015
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0020
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0020
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0020
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0025
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0025
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0030
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0030
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0035
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0035
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0035
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0040
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0040
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0045
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0045
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0050
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0050
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0050
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0050
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0055
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0055
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0060
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0060
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0060
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0065
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0065
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0070
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0070
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0075
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0075
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0080
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0080
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0085
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0085
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0085
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0085
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0085
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0085
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0090
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0090
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0095
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0095
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0100
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0100
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0105
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0105
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0110
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0110
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0115
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0115
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0115
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0115
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0115
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0115
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0120
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0120
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0120
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0125
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0125
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0125
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0130
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0130
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0130
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0130
http://dx.doi.org/10.1109/SCIS-ISIS.2014.7044784
http://dx.doi.org/10.1109/SCIS-ISIS.2014.7044784
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0140
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0140
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0145
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0145
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0150
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0155
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0155
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0155
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0160
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0160
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0165
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0165
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0165
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0170
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0170
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0170
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0175
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0175
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0175
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0180
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0180
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0185
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0185
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0190
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0190
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0195
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0195
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0200
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0200
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0205
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0205
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0210
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0210
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0215
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0215
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0215
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0220
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0225
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0225
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0225
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0230
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0230
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0230
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0230
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0235
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0235

150 I.G. Dino / Automation in Construction 69 (2016) 131–150
[48] H.A. Simon, Rational choice and the structure of the environment, Psychol. Rev. 63
(2) (1956) 129.

[49] W.M. Spears, K.D. De Jong, On the Virtues of Parameterized Uniform Crossover, in: R.
Belew, L. Booker (Eds.), Proceedings of the Fourth International Conference on Ge-
netic Algorithms, Morgan Kaufmann, San Mateo, CA 1991, pp. 230–236.

[50] T. Starkweather, S. McDaniel, K.E. Mathias, L.D.Whitley, C.Whitley, A Comparison of
Genetic Sequencing Operators, in: R.K. Belew, L.B. Booker (Eds.), Proceedings of the
Fourth International Conference on Genetic Algorithms, Morgan Kaufmann, San
Mateo, CA 1991, pp. 69–76.

[51] E.-G. Talbi, O. Roux, C. Fonlupt, D. Robillard, Parallel ant colonies for the quadratic as-
signment problem, Futur. Gener. Comput. Syst. 17 (4) (2001) 441–449.
[52] K. Tam, Solving facility layout problems with geometric constraints using parallel
genetic algorithms: experimentation and findings, Int. J. Prod. Res. 36 (12) (1998)
3253–3272.

[53] M.-J. Wang, M.H. Hu, M.-Y. Ku, A solution to the unequal area facilities layout prob-
lem by genetic algorithm, Comput. Ind. 56 (2) (2005) 207–220.

[54] Y. Wu, E. Appleton, The optimisation of block layout and aisle structure by a genetic
algorithm, Comput. Ind. Eng. 41 (4) (2002) 371–387.

[55] W. Xie, N.V. Sahinidis, A branch-and-bound algorithm for the continuous facility lay-
out problem, Comput. Chem. Eng. 32 (4) (2008) 1016–1028.

http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0240
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0240
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0245
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0245
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0245
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0250
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0250
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0250
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0250
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0255
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0255
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0260
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0260
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0260
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0265
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0265
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0270
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0270
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0275
http://refhub.elsevier.com/S0926-5805(16)30100-5/rf0275

	An evolutionary approach for 3D architectural space layout design exploration
	1. Introduction
	2. Concepts for sld support
	2.1. Design tools for exploration and exploitation
	2.2. Metaheuristics as design support
	2.3. The space layout design (SLD) problem
	2.3.1. Architectural form and space layout
	2.3.2. Existing computational approaches
	2.3.3. Sub-heuristics for the design of space layouts

	3. Evolutionary Architectural Space layout Explorer (EASE)
	3.1. Precedence-based layout configuration heuristics (P-LCH)
	3.2. Constraint checker
	4.1. Evolutionary engine
	4.1.1. Chromosome representation
	4.1.2. Selection
	4.1.3. Reproduction
	4.1.3.1. Crossover
	4.1.3.2. Mutation
	4.1.3.3. Repair operators

	4.1.4. Termination condition

	5. Design explorations with ease
	5.1. Form explorations
	5.2. Population convergence
	5.3. Evolutionary operations
	5.4. Exploration of 2D layouts

	6. Future work and conclusions

	Acknowledgments
	References

