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This paper presents a fast and robust three-dimensional (3D) terrain reconstruction system that uses a stereo
camera. Local feature-based dense 3D reconstruction consists of two major steps: matching correspondence
points and dense 3D reconstruction. In the matching step, the descriptor is an important component, as its prop-
erties significantly affect the precision of thematching. Furthermore, matching is themost time-consuming step.
In this paper, correspondence points are found using multi-scale descriptors (MSDs) because of their robustness
and computational efficiency. A two-stage cascade matching method suitable for MSDs is also proposed. In the
dense 3D reconstruction step, a probabilistic model is proposed for dense reconstruction that provides high pre-
cision through the use of robustly matched correspondence points and computational efficiency by narrowing
the search range using coarsely inferred disparity values from precisely calculated trianglemeshes. To collect ex-
perimental data, a prototype stereo camera system is also built that is mounted on the front of an excavator. This
paper concludes by comparing the proposed dense 3D reconstruction with different types of dense 3D recon-
structionmethods in terms of processing time and similarity to the shape of the terrain. The results from an eval-
uative experiment show that MSD-based dense 3D reconstruction is suitable for various autonomous control
applications in construction sites where computation time and precision are vital.
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1. Introduction

Even though the problem of three-dimensional (3D) terrain recon-
struction is essential for the automation of construction sites, it is still
far from completely solved because of the challenging construction en-
vironment that consists of irregularly shaped and textureless ground, as
shown in Fig. 1. Once the 3D terrain has been reconstructed, it can be
used in various applications such as path planning, navigation, and var-
ious autonomous control applications. Reconstructed terrain also plays
an important role in the areas of safety and productivity, where it is
able to significantly improve the safety and productivity of hazardous
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environments by helping operators recognize its properties more
efficiently.

In traditional terrain reconstruction techniques, there are twomajor
approaches. One is vision-based terrain reconstruction, and the other is
Light Detection And Ranging (LiDAR)-based terrain modeling [1,5]. In
many fields, such as the construction industry and especially for con-
struction site surveying, LiDAR is used to scan the real environment to
generate 3D discrete surface samples. LiDAR provides highly accurate
distance measurements of the observed surface. Because of its wide
field of view (FOV), LiDAR can acquire wide-range measurements that
cannot be obtained with vision sensors [2]. However, LiDAR-based ter-
rain reconstruction is limitedwhen applied to practical 3D construction.
Scanning construction sites with LiDAR and post-processing from
measured 3D point clouds for 3D modeling is a time-consuming task,
because of the considerable size of the point cloud (HDL-64E, over 1.3
million points) compared to a vision sensor (PointGrey Bumblebee,
under 0.3 million points). Furthermore, in order to operate LiDAR,
significant power is required, and it is difficult to supply such power
to automated construction equipment attached to the LiDAR interface.

In order to overcome the disadvantages of LiDAR-based terrain re-
construction, vision sensors are often used. Vision sensors can capture
the construction-site environment more quickly (PointGrey Bumble-
bee, over 30 Hz) than LiDAR (HDL-64E, about 15 Hz). Consequently, vi-
sion sensors reflect changes to environmental conditions more rapidly.
Furthermore, vision-based terrain reconstruction requires less compu-
tation time than LiDAR-based terrain reconstruction, owing to the use
of optimized computer vision technology. Vision-based terrain recon-
struction can thus be applied to practical 3D automated construction.
In terms of the reconstruction system, vision sensors consume less
power than LiDAR sensors, and they are also inexpensive and light-
weight. Thismakes it easy to build a reconstruction system for automat-
ed construction equipment. Therefore, various computer vision
techniques have been used for 3D modeling systems such as Simulta-
neous Localization And Mapping [3] and Structure from Motion [4].

Nevertheless, reconstructing the 3D terrain of a construction site
using a camera sensor is also problematic. The ground at a construction
site comprises textureless surfaces and repeating patterns, such as
muddy areas and dirt roads. Furthermore, the dominant plane of the
ground is highly slanted when images are captured with excavator-
mounted forward-looking cameras. Thismakes it difficult to reconstruct
3D terrain because the widely used feature-matching based techniques
implicitly assume that the surface of the ground is perpendicular to the
image plane [12]. Another major problem is the computation time. In
order to use the reconstructed 3D terrain in construction-site applica-
tions, the total computation time is required less than 1 s (more than
Fig. 1. Type of work task
1 frame/s). To ensure safety at construction sites, operators are
instructed to move the equipment at no more than 15 km/h (4.1 m/s).
Therefore, it is sufficient to provide reconstructed 3D terrain informa-
tion to the automated construction equipment each second.

In order to solve the 3D reconstruction problem in these challenging
environments, we present a novel local-feature-based dense stereo
matching algorithm suitable for use on a construction site. In practical
construction-site applications, algorithms have to run quickly and ro-
bustly. In order to achieve these requirements, we first determine the
correspondence points quickly using a multi-scale descriptor (MSD)
[13] without sacrificing matching precision. We then estimate the
dense stereo using our proposed probabilistic model. This proposed
method not only requires less computation than other robust descrip-
tors such as SIFT and SURF, but also it reconstructs highly precise
construction site terrain.

This paper is organized as follows. After discussing related work and
proposed framework in Section 2, we introduce our matching pipeline
in Section 3 and describe our dense reconstruction model in Section 4.
In Section 5, we present our results and compare our algorithm with
other dense reconstruction methods. Finally, we conclude the paper in
Section 6.
2. Related work and proposed framework

2.1. Related work

One well-known vision-based approach to 3D reconstruction is
global correspondence-based stereo matching. Global methods provide
dense and accurate matching results by imposing continuity constrains.
They determine correspondence points by minimizing an energy func-
tion. In order to optimize this energy function, various approximation
algorithms have been proposed such as graph-cuts [6] and belief prop-
agation [7]. Global methods perform well; however, these methods are
limited in practical applications because of their high computational
cost and memory requirements. In order to mitigate the disadvantages
of global methods, semi-global methods [8,9] have been proposed.
Semi-global methods estimate correspondence points from initial
correspondence points, called seeds. Once the initial correspondence
seeds are found, they are used to estimate disparity values. Semi-
global methods require less computation than global methods. Howev-
er, in these approaches, the range of disparity has to be decided before-
hand and good parameter selection is critical. Furthermore, semi-global
methods have difficulty reconstructing feature-poor slanted surfaces
such as construction site ground.
under consideration.
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Another popular approach is local correspondence point-based ste-
reo matching [24,25]. These feature-based dense 3D reconstruction
methods generally consist of four steps: interest point detection, de-
scriptor generation, feature matching, and dense 3D reconstruction. In
feature-based dense stereo matching in outdoor construction environ-
ments, the descriptor is an especially important component because
descriptor-based matching results significantly affect the precision of
the estimated 3D point cloud, and the computation of the descriptor is
the most time-consuming part of the overall dense stereo matching
process.

The neighborhood of an interest point can be represented in various
ways, for instance, by its gradient information [14] or intensity compar-
ison [15]. The simplest descriptor is the pixel intensity within a certain
region around the extracted interest point. This descriptor is not robust
because its pixel values can change according to imaging conditions
such as illumination, scale, or viewpoint. Themost widely used descrip-
tor is probably the SIFT descriptor [10]. In order to describe an interest
region, the SIFT descriptor uses local gradient histograms that are sam-
pled in a square grid around the interest point. This descriptor has been
shown to outperform others in terms of robustness of scale, rotation,
viewpoint, and illumination variation [14]. However, increased
complexity and robustness comes with an increase in computation.
Therefore, to reduce the computational effort, there have beenmany at-
tempts to develop descriptors that are faster to compute and match.
One of these descriptors is SURF, proposed by Bay et al. [11]. This de-
scriptor describes the region of interest as the sum of the Haar wavelet
responses using an integral image in order to achieve computational ef-
ficiency. SURF reduces computational effort compared to SIFT. Even so,
SURF descriptors are still too slow to apply to the dense stereomatching
task. Therefore, various evaluations have shown that the high computa-
tional cost of SIFT- and SURF-based reconstruction systems restrict their
use in real applications [23].

As mentioned, construction terrain is very ambiguous, making it dif-
ficult to find correspondence points. Hence, robustness is the key prop-
erty of a point descriptor for construction site terrain. Furthermore,
computational time is another important property for real applications.
Recently, Sung et al. [13] proposed a fast and robust descriptor called the
MSD for practical outdoor stereo camera applications. This descriptor
has already performed well in outdoor visual motion estimation tasks.
Therefore, in this paper, correspondence points are found using MSD.

Another important part of dense 3D reconstruction algorithms is the
calculation of dense stereo matches. Various methods have been pro-
posed for dense stereo matching. Many state-of-the-art methods find
correspondencepoints between stereo input images using local features
and then impose global shape constraints such as dynamic program-
ming [16] or graph-cuts [6]. In these local feature-based dense 3D
reconstructions, the results of sparsely matched points are used as an-
chors for inferring the disparities of all pixels. After finding the corre-
spondence points using local features, the disparities of the matched
points are propagated to their neighbors [17]. Alternatively, the
matched points are treated as seeds for an iterative estimation of the
depth maps [18]. These seed-and-grow algorithms show good results
and reduce the computational effort required by global approaches.
However, these methods also provide a limited disparity map and
tend to perform poorly on images that contain repeated patterns or
textureless regions.

In this paper, we propose a fast and robust 3D terrain reconstruction
algorithm suitable for construction site terrain reconstruction. In the
finding correspondence point step, we propose a matching method
that combines bucket-based fast corner detection and multi-scale,
descriptor-based robust and fast feature matching specifically to recon-
struct textureless environments with complex shapes. We also propose
a two-stage cascade matching method to improve MSD matching
efficiency. During the dense 3D reconstruction process, we infer the
important disparity value with computation efficiency by proposing a
probabilistic model.
2.2. Proposed framework

The proposed reconstruction algorithm can be divided into four
major steps: interest point detection, descriptor generation, feature
matching, and dense 3D reconstruction. To detect the interest point,
corner points are extracted at distinctive locations in the left image.
When selecting corner points, the distribution of the corner significantly
affects the result of the dense 3D reconstruction. In order to resolve this
problem, the proposed method independently extracts the same num-
ber of corner points from each sub-region to force the distribution of
corner points to be uniform. To generate the descriptor, we use MSD,
which consists of three descriptors at different scales in order to robust-
ly find correspondence points in construction site terrain.

One popular way to search for correspondence points between two
rectified images is to compare all computed descriptors in the first
image to all other calculated descriptors in the second image. This linear
search has quadratic computational complexity. Furthermore, the di-
mension of the descriptor has a direct impact on the matching time.
Therefore, lower dimensions are more desirable for fast matching [22].
However, in order to improve the distinctiveness of the descriptor,
MSD uses multi-scale information. Accordingly, this increases the di-
mension of the descriptor. Therefore, MSD requires a more efficient
matchingmethod. Thus, we propose an efficientmatchingmethod suit-
able for MSD.

The final step of feature-matching-based dense 3D reconstruction is
the generation of dense disparity maps. This process is computationally
expensive, because all pixels in the imagemust bematched to their cor-
responding points.We propose a probabilisticmodel for dense disparity
map. The proposed model has two major advantages. The first advan-
tage is that it significantly improves the computation efficiency by
narrowing the search range using coarsely inferred disparity values
from a precisely calculated triangle mesh. The second advantage to
the proposedmodel is that its disparity values aremore robust. The pro-
posed model estimates the optimal disparity values by comparing ro-
bust descriptor vectors for each pixel. It is hence possible to improve
the precision of the disparity values (Fig. 2).

3. Finding correspondence points

3.1. Corner detection

Interest points are extracted from distinctive locations in the image.
The most widely used detector is the Harris corner detector [19], which
is based on the eigenvalues of the second moment matrix. Rosten and
Drummond [20] presented a high-speed corner detector called the Fea-
tures from Accelerated Segment Test (FAST). This detector compared
the pixel value at the center of a discretized circle around a candidate
point in order to avoid costly window or filter operations. A candidate
point is identified as a corner if there exists a contiguous arc of at least
nine pixels. The FAST detector was further accelerated with machine
learning techniques. The method uses a trained decision tree to classify
whether a candidate pixel is a corner or non-corner. This FAST corner
detector has shown good performance and high computational efficien-
cy. Therefore, we also extract corners in the left image using the FAST
detector.

The proposed reconstruction algorithm utilizes a triangle mesh for
dense 3D reconstruction that is built from the closest matched point
(see Section 4). If the distribution of the matched point cloud is irregu-
lar, regions of the cloud that includemanymatched points can describe
the corresponding terrain in detail. However, the regions that contain
only a few matched points are reconstructed coarsely because of the
lower amount of ground information (see Fig. 3). This can be one of
the causes of 3D reconstruction robustness and precision problems.

In order to overcome this problem, in the proposed method, the
image plane is divided into small, regular, square sub-regions, and the
same number of corner points is independently extracted from each
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sub-region. This forces the distribution of corner points to be uniform,
and the triangle mesh is created evenly over the image.

3.2. Multi-scale descriptor (MSD)

When finding correspondence points, the descriptor is a particularly
important component because it significantly affects the precision of
local feature matching. Furthermore, the computation of the descriptor
is one of the most time-consuming matching tasks. Therefore, deter-
mining a descriptor that is suitable for challenging environments is a
crucial task. Descriptor performance is generally evaluated by precision
[14]. Popular local feature descriptors such as SIFT and SURF already
provide high precision in many practical applications. However, for
real practical tasks, computational load is another requirement to con-
sider. To achieve robust and fast 3D construction site terrain reconstruc-
tion, a different type of descriptor is needed. Recently, MSD was
developed for vision applications in challenging outdoor environments.
Fig. 3. Corner points extracted from equally divided sub-regions: (a) results of normal corner ex
corners per bucket = 140 total corners).
This descriptor combines multi-scale gradient information and integral
images for descriptor distinctiveness and low computational complexi-
ty. In our proposed algorithm, correspondence points are found using
MSD because of its good performance.

In order to keep this paper self-contained, we only briefly explain
the concept ofMSD.MSD is computed based on the sumof the gradients
over multiple scales. By describing different scales of the same corner
point, the representation of its characteristics is improved. As shown
in Fig. 4, MSD consists of three pre-defined scale descriptors (s1,s2,s3)
at each corner point. Each patch is divided regularly into smaller 3 × 3
square sub-regions around the selected interest point. The size of each
patch is defined by scale factor Δsb1 ,(sn-1= sn×Δs), where scale
index n = 1, 2, 3, and sn is the n-th scale.

Each sub-region has a 4D descriptor vector v=(∑dx,dy, |dx |, |dy |)
that is similar to the SURF descriptor because of its computational effi-
ciency and good performance. Concatenating these descriptors for all
3 × 3 sub-regions at each scale, a descriptor vector of length 108 (4
traction (150 total corners), (b) results of bucket-based corner extraction (20 buckets × 7
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descriptor vectors × 9 sub-regions × 3 scales = 108) is obtained. In
order to make it invariant to contrast, MSD is transformed to a unit
vector.

Note that eachMSD scale descriptorDs1,Ds2, andDs3 has low distinc-
tiveness. However, combining the different scale descriptors improves
the representation of the corner point characteristics, as the MSDs re-
peatedly describe the same interest points at various scales. This
makes MSD more robust than other descriptors.

BecauseMSD consists of multiple descriptors for each interest point,
the computation of MSD is a time-consuming step. In order to signifi-
cantly improve the computational speed, MSD is computed on integral
images.

Each integral image is defined as follows.

I1 xð Þ ¼ ∑
i≤width

i¼0
∑

j≤height

j¼0
dx i; jð Þ I2 xð Þ ¼ ∑

i≤width

i¼0
∑

j≤height

j¼0
dx i; jð Þj j

I3 xð Þ ¼ ∑
i≤width

i¼0
∑

j≤height

j¼0
dy i; jð Þ I4 xð Þ ¼ ∑

i≤width

i¼0
∑

j≤height

j¼0
dy i; jð Þ�� ��:

ð1Þ

The value of integral image In(x) at location x={x,y} represents the
sum of the gradient and absolute gradient within a rectangular region
formed by the origin and x. The values dx(i, j)= l(i+1, j)- l(i-1, j) and
dy(i, j)= l(i, j+1)- l(i, j-1) represent the intensity gradients at (i, j) in
Input Image

MSD
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s3
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Fig. 5.MSD, based on the sum of the gradients o
the horizontal and vertical directions, respectively. Here, l(i, j) repre-
sents the image intensity at (i, j).

Note that once the integral image has been computed, it takes three
additions to calculate the sum of the intensities over any rectangular
area. Hence, its calculation time is independent of size. This significantly
improves the computational efficiency of MSD.

After the four integral images are computed, MSD is computed from
nine sub-regions at three different scales as follows.

Dsn 4mþ k� 4ð Þ ¼ Ik snl;t mð Þ� �� Ik snl;b mð Þ� �� Ik snr;t mð Þ� �
þ Ik snr;b mð Þ� � ð2Þ

where scale index n=1, 2, 3, subregion indexm=1, 2,…, 9, and inte-
gral image index k=1, 2, 3, 4. The descriptor at the sn-th scale is denot-
ed byDsn. Here, snl ,t(m) and snr ,b(m) represent the top-left and bottom-
right coordinates of a sub-region sn(m), respectively. Therefore, each
descriptor vector v=(∑dx,∑dy,∑|dx |,∑|dy |) is calculated based
on each integral image I1, I2, I3, and I4 respectively. This overall proce-
dure is shown in Fig. 5. For further details, readers are referred to [13].

3.3. Acceleration of MSD matching

To achieve robust and fast MSD based matching, we propose a two-
stage cascade matching method that combines single-scale coarse
s2(3)
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Fig. 6. Overview of the proposed two-stage cascade matching method. Stage I is a coarse single-scale descriptor matching, and Stage II is a fine three-scale descriptor matching.
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matching andmultiple-scale finematching.We empirically determined
that a larger patch size tends to achieve a higher recognition rate for a
single-scale descriptor. We hence used the largest patch size Ds3 for
Fig. 7. Overview of dense 3D reconstruction: (a) input image, (c) sparse
the first stage. As shown in Fig. 6, in the first stage, we coarsely find
candidate correspondence points with the single scale descriptor Ds3

(36 vectors) using a Euclidean distance for fast dissimilar descriptor
3D point cloud, (c) triangle mesh, and (d) dense 3D reconstruction.
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filtering. Here, Ds3
l ,n and Ds3

r ,m represent the third scale (s3) descriptor
of the n-th interest point in the left image and m-th interest point in
the right image, respectively. The second stage then computes the
Euclidean distance between MSD vectors Ds1, Ds2, and Ds3 (108
vectors) selected from the results of the first matching stage to find cor-
respondence points precisely. After completing the two main matching
stages, if the distance of certain correspondence points is smaller than a
predefined threshold th, the correspondence points are declared to be
matched.

Note that the cascade matching method improves the matching
efficiency significantly without reducing performance. This is because
we filter correspondence point candidates quickly by using a lower
dimension descriptor (one scale, 36 vectors) instead of a higher dimen-
sion descriptor (three scales, 108 vectors) and thenfind correspondence
points precisely by comparing three different scale descriptors.

In order to eliminate mismatched points, we also check for consis-
tency. Correspondence points are kept only if left-to-right matched
points and right-to-left matched points are consistent.
4. Dense 3D terrain reconstruction

The proposed dense 3D reconstruction method consists of three
major steps. The first step is sparse 3D reconstruction using a calibrated
stereo rig, and the second step generates a triangle mesh in 3D space.
Finally, dense 3D terrain is obtained using a probabilistic 3D model.
Fig. 7 shows the steps of this process.
Fig. 9. 2D triangular using matched point
4.1. Sparse 3D point cloud and triangle mesh

In order to reconstruct 3D points from a stereo camera, it is essential
to calibrate and rectify the stereo image. Calibrating the camera involves
estimating the intrinsic and extrinsic parameters of each camera. Intrin-
sic parameters are relatedwith the optical characteristics of the camera,
such as the principle point and focal length, and extrinsic parameters
represent the location of the each camera with global coordinates,
such as its rotation and translation. After estimating the intrinsic and ex-
trinsic parameters, a point in the left image searches for its correspond-
ing point in the right image along an epipolar line. Once epipolar lines
are aligned and parallel, the corresponding point lies on the same hori-
zontal scan line. Thus, it is possible to find corresponding points more
rapidly. This process is called image rectification. In this paper, OpenCV
[21] was used to calibrate and rectify the stereo images. OpenCV is a
popular open library, and it was selected because of its superlative
performance.

We reconstruct 3D points via triangulation using the calibration
parameters of the stereo camera rig with the rectified stereo image
(see Fig. 8).

WhenOl andOr are the left and right camera centers respectively, we
can define the camera stereo geometry and parameters as follows:

• homogeneous image coordinates x=(u,v,1)T

• camera focal length f
• 3D point coordinates P=(X,Y,Z)T

• baseline B.
cloud with Delaunay triangulation.
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With these defined camera parameters, the 3D points are estimated
as follows:

Z ¼ f
B

ul � ur
¼ f

B
d
;X ¼ ul

B
d
;Y ¼ vl

B
d

ð3Þ

where d denotes the disparity, which refers to the difference between a
pair of corresponding points, ul-ur. After determining the correspond-
ing points, we can estimate the disparity value of each matched pair
using Eq. (3). Once we have calculated the sparse 3D point cloud, we
then compute the triangle mesh.

To construct the triangle mesh in 3D coordinates, as shown in Fig. 9,
we first build 2D triangles using the matched point cloud via Delaunay
triangulation. We then calculate the triangle mesh parameter Tr(xln) by

Tri xnl
� � ¼ aiun þ bivn þ ci ð4Þ

where i is the index of triangle that contains the pixel xln=(un,vn). For
each triangle with three 3D points, we can obtain the plane parameters
(ai,bi,ci) by solving a linear equation using the three 3D vertexes of the
triangle. Note that on construction sites, we can generally assume that
the ground consists of continuous surfaces. Hence, small areas of ground
can approximate a plane. Therefore, constructing 2D triangles with ro-
bustly matched near corner points represents the ground more robust-
ly, particularly for textureless ground patterns. Furthermore, the
Fig. 11. Experimenta
estimated triangle mesh provides precise initial disparity values for
our proposed dense 3D reconstructionmodel. This significantly reduces
the computational effort by narrowing the search range of each pixel in
the input image.

After building the triangle mesh with the sparse 3D point cloud, we
then estimate the dense 3D terrain using the proposed probabilistic
model.
4.2. Probabilistic model for dense 3D reconstruction

Wenowdescribe our probabilisticmodel for dense 3D terrain recon-
struction (Fig. 10).

Given the stereo images and trianglemesh formed from the three 3D
points, we can estimate the optimal disparity value of each pixel using
maximum a posteriori (MAP) estimation as follows:

d̂n ¼ argmax p dnjTr; xnl ; x1r ;…; xMr
� � ð5Þ

where xr1 ,… ,xrM indicate all pixels on the right image that are on the
epipolar line xln. The posterior is factorized with the prior and likelihood
as follows:

p dnjTr; xnl ; x1r ;…; xMr
� �

∝p dnjTr; xnl
� �

p x1r ;…; xMr jxnl ; dn
� �

: ð6Þ

We define the prior term to be a Gaussian model based on disparity
values coarsely inferred from the triangle mesh.

p dnjTr; xnl
� �

∝ exp � dn � Tr xnl
� �� �2

2σ2

 !
if

�����dn � Tr xnl
� ���b 3σ

0 otherwise

8><
>: ð7Þ

where Tr(xln) is the estimated triangle mesh containing pixel xln=
(un,vn). We take the likelihood term to be the Euclidean distance
between descriptor vectors as follows.

p xmr jxnl ;dn
� �

∝ −
1

jjDn
l −Dm

r jj
if un

l
vnl

� �
¼ um

r þ dn
vmr

� �
0 otherwise

8<
: ð8Þ

where Dl
n and Dr

m represent n-th left and m-th right point descriptor
vectors.We also use the stereo constraint that states that corresponding
points can only exist on the same epipolar line. Therefore, the if-
condition in Eq. (8) ensures that corresponding points are found on
l environment.



Table 1
Technical data for Flea3 (used in experiments).

Model specification

Readout method Global shutter
Interface USB 3.0
Frame rate 60 FPS
Resolution 1280 × 1024

Fig. 12. Stereo camera system mounted on an excavator.
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the same epipolar line. We can model the distribution of the factorized
likelihood term as follows:

p x1r ;…; xMr jxnl ;dn
� �

∝∑M
i¼1p xir jxnl ;dn

� �
: ð9Þ

Note that given the proposed prior and likelihood terms, the pro-
posed method increases not only the computational speed but also
the precision of the estimated disparity value. This can be explained
by the fact that the disparity value is estimated only if |dn-Tr(xln)|b3σ.
This reduces the computational burden dramatically by narrowing the
search range. The optimal disparity value is determined from a good ini-
tial value that is obtained from the precisely calculated triangle mesh.

5. Experiments and analysis

In this section, we compare the proposed algorithm, MSD-based
dense 3D reconstruction (MSD DR), with other state-of-the-art dense
3D reconstruction algorithms. To evaluate the algorithms in a more
practical situation,wemounted a stereo camera systemon an excavator
to obtain test images from a real construction environment (see in
Fig. 11). The camera setup on the excavator is shown in Fig. 12. We
used Flea3 USB 3.0 cameras (Point Grey), because they perform well
and offer an effective interface,making them suitable for building stereo
systems on construction equipment. The detailed model specifications
are provided in Table 1. We used four test images, each of which cap-
tured different ground shapes and materials. Image I (gravel and
slop), Image II (soil and slop), Image III (mud and hole), and Image IV
(mud and bumps) are depicted in Fig. 13. This test set was captured in
a complex environment with different solid materials to evaluate vari-
ous algorithms in more practical conditions. Therefore, we believe that
this dataset adequately reflects the variety of stereo camera-based 3D
reconstruction problems at construction sites.

In order to analyze the benefits of the proposed method, we com-
pared the proposed algorithm with three different methods: block
matching (BM), semi-global block matching (SGBM), and SURF
descriptor-based dense 3D reconstruction (SURF DR). We chose these
methods because of their good performance and similar properties to
those of MSD [26].
To fairly evaluate the performance of the SURF DR, we replaced the
MSD descriptor with a SURF descriptor while keeping the other parts
of the proposed method such as corner detection, feature matching,
and dense 3D reconstruction the same. The algorithms were imple-
mented in VC++ using the latest Open-source Computer Vision
(OpenCV) library [21]. In addition, we used the latest BM, SGBM, and
SURF implementations provided by OpenCV. All evaluations were run
on a PCwith a 2.6 GHz processor and 8 GBmemory.We only used a sin-
gle core.
5.1. Experimental results

In this subsection,we show the results of the threemajor steps of the
proposed algorithm for the four test images. As can be seen in Fig. 14,
each step of the proposed method reconstructs the actual construction
site well. The shape of the reconstructed ground at each step is similar
to the actual ground appearance. Note that, as can be seen in the second
column of Fig. 14, dense 3D reconstruction is built from the sparse 3D
points of thematched point cloud. In the proposed algorithm, the corre-
spondence points are found using MSD, and its three different scale
descriptors have robustly and precisely computed the point cloud.
This positively affects the results of the dense 3D reconstruction.

MSD DR infers the dense 3D point cloud using the triangle mesh as
the initial depth, assuming that construction site terrain consists of con-
tinuous surfaces. In order to highlight the effects of using this triangle
mesh, we show the result of dense 3D reconstruction from varying
viewpoints in Fig. 15. The results of the reconstructed 3D surfaces are
very similar to the real ground appearance. This estimated ground
surface has less noise than other methods such as BM and SGBM (see
Figs. 16 and 17).



Fig. 13. Test images, (a) Image I (gravel and slop), (b) Image II (soil and slop), (c) Image III (mud and hole) and (d) Image IV (mud and bumps).
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To objectively evaluateMSDDR,we compared it with three different
methods: BM, SGBM, and SURF DR. As can be seen in Fig. 16, the pro-
posed reconstruction method outperformed BM and SGBM for all test
Fig. 14. Results of the proposed dense 3D reconstruction method: original images (column 1),
(column 4).
images. MSD DR and SURF DR both calculated dense 3D point clouds
similar to the real ground shape. However, the results of BM and
SGBM showed very noisy 3D point clouds. This is because BM and
sparse 3D reconstruction (column 2), triangle mesh (column 3), and dense reconstruction



Fig. 15. Dense 3D reconstruction from various viewpoints for each test image using the proposed model.
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SGBM basically determine the cost value between correspondence
points by comparing pixel intensity. This kind of patch-based descriptor
is less robust than other descriptors such as SIFT, SURF, and MSD, in-
creasing correspondence point mismatches and affecting the result of
dense 3D reconstruction. However, in the proposed algorithm, the tri-
anglemesh that is computed from the result of robustlymatched points
provides good initial depth for the dense 3D reconstruction model. This
improves the robustness of the 3D point cloud compared with patch-
based dense reconstruction methods such as BM and SGBM. Note that
the results of SURF DR and MSD DR are similar, but the computation
Fig. 16. Results of various dense 3D reconstruction algorith
time of MSD DR is 31 times faster than SURF DR, as detailed in
Section 5.2.

5.2. Computation time

In practical automated construction applications, computation time
is another important property. Therefore, we also evaluated the calcula-
tion time of each method.

As expected, although their results are too noisy to use, the patch-
based dense reconstruction algorithms BM and SGBM showed faster
ms: (a) MSD DR, (b) BM, (c) SGBM, and (d) SURF DR.



Table 2
Computation time per image (ms).

Dataset MSD DR SURF DR

Image I ACET 9.2 9.8
AD & MT 349.6 17,189.3
ATPT 10.6 10.9
ADRT 398.0 7108.2
APT 767.5 24,318.3

Image II ACET 9.8 9.1
AD & MT 338.3 17,122.0
ATPT 9.2 9.4
ADRT 408.5 7402.2
APT 765.8 24,542.7

Fig. 17. Enlarged results (red rectangle) of the dense 3D reconstruction for various methods: (a) MSD DR, (b) BM, (c) SGBM, and (d) SURF DR.
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computation time than MSD DR and SURF DR. Of these two methods,
the computation time of MSD DR is 31 times faster than that of SURF
DR. The average processing time of MSD DR is about 750 ms. Note
that, for the sake of safety at construction sites, operators of equipment
such as excavators, wheel loaders, and forklifts are generally instructed
tomove equipment at under 15 km/h (4.1m/s). Furthermore, automat-
ed construction equipment works slowly, due to the complexity of the
control system. Therefore, it suffices to provide the reconstructed 3D
terrain information to automated construction equipment each second
(more than 1 frame/s). Hence, we believe that 750 ms is sufficiently
fast for autonomous control applications.

In the dense 3D reconstruction process, the descriptor creation and
matching step and the probabilistic model-based dense 3D reconstruc-
tion step are themost time-consuming tasks. Even though the proposed
method estimates a good initial depth value from the triangle mesh, it
requires high computational effort to infer a highly precise depth
value for all of the pixels in an image. In general, most parts of a con-
struction site consist of a combination of plane-like structures that
could be approximated using a triangle mesh-based 3D reconstruction.
By using triangular mesh-based DR (TM DR) for practical construction
equipment applications, the computation effort of the original MSD
DR is reduced by half. In that case, the computation time of TM DR is
even faster than that of SGBM without sacrificing much of the original
MSD DR reconstruction performance. We compare the computation
time in more detail in Tables 2 and 3.
Image III ACET 8.9 9.5
AD & MT 318.3 17,070.7
ATPT 8.5 9.5
ADRT 392.9 7586.6
APT 728.6 24,676.2

Image IV ACET 10.6 9.1
AD & MT 346.3 17,362.2
ATPT 9.9 9.5
ADRT 386.5 7130.2
APT 753.3 24,511.0

ACET: Average Corner Extraction Time.
AD & MT: Average Descriptor Computation and Matching Time.
ATPT: Average Triangular Plane Generation Time.
ADRT: Average Dense Reconstruction Time.
APT: Average Processing Time.
6. Concluding remarks

This paper presented a robust and fast dense 3D reconstruction algo-
rithm that combines a precise matching process with a proposed dense
3D reconstruction model. Results on test images collected from a con-
struction site show that the proposed algorithm provides good perfor-
mance with low computational time. Even though construction site
terrain is difficult to reconstruct because of its complicated environmen-
tal conditions, the obtained results demonstrate that MSD-based dense
3D reconstruction is suitable for various autonomous control applica-
tions where computation time and precision are essential.
In future work, we shall apply the proposed algorithm to a semi-
automatic construction equipment system. Our proposed algorithm
will provide detailed environmental conditions to the construction
equipment, in order to identify changes to its operating radius. It is pos-
sible to calculate the distance between the construction equipment and
the target ground location as the initial position information for auto-
matic ground digging or solid loading tasks. Furthermore, the proposed
algorithm canmeasure the local ground around current semi-automatic
construction equipment, making it unnecessary to use expensive sur-
veying instruments, such as total stations, to estimate the ground condi-
tions. The proposed 3D reconstruction algorithm can be utilized as a
simple and cheap attachment for local surveys of the terrain around



Table 3
Computation time per image (ms).

Dataset BM SGBM SURF DR MSD DR TM DR

Image I 198.6 429.8 24,318.3 767.5 369.4
Image II 201.7 415.2 24,542.7 765.8 357.3
Image III 201.0 423.2 24,676.2 728.6 335.7
Image IV 199.5 425.9 24,510.9 753.3 366.8
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semi-automatic equipment with various semi-automatic construction
applications.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.autcon.2015.12.022.
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