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Heavy lifting is a common and important task in industrial plants. It is conducted frequently during the time of
plant construction, maintenance shutdown and new equipment installation. To find a safe and cost effective
way of lifting, a team works for weeks or even months doing site investigation, planning and evaluations. This
paper considers the lifting path planning problem for terrain cranes in complex environments. The lifting path
planning problem takes inputs such as the plant environment, crane mechanical data, crane position, start and
end lifting configurations to generate the optimal lifting path by evaluating costs and safety risks. We formulate
the crane lifting path planning as a multi-objective nonlinear integer optimization problem with implicit
constraints. It aims to optimize the energy cost, time cost and human operation conformity of the lifting path
under constraints of collision avoidance and operational limitations. To solve the optimization problem, we
design a Master–Slave Parallel Genetic Algorithm and implement the algorithm on Graphics Processing Units
using CUDA programming. In order to handle complex plants, we propose a collision detection strategy using
hybrid configuration spaces based on an image-based collision detection algorithm. The results show that the
method can efficiently generate high quality lifting paths in complex environments.
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1. Introduction

Heavy lift planning is an important job in industrial plants. To lift
large and heavy targets, capacities of cranes can reach up to thou-
sand tons. Lifting operations, however, work with potential acci-
dents. The OSHA database [1] till year 2013 reported a total 3135
crane related accidents in USA. Many of them caused human death.
Lifting safety is thus of utmost importance. Cost reduction is another
major concern in the lifting industry. According to a rental rate sur-
vey conducted by Cranes & Access in 2011 [2], the average daily rent-
al of a terrain crane with a capacity of 350 tons can cost almost US$
8400. Electric power and fuel consumptions also take up a significant
portion of the cost in lifting operations. For instance, the power con-
sumption of the terrain crane LTM 1200 from Liebherr is 370 kW per
hour [3]. Therefore, optimizing the time and energy cost in crane
usage is highly desired. Besides, manpower cost is increasingly be-
coming a critical factor in lifting. The lifting path planning involves
a complicated and sophisticated decision making process conducted
by a lifting team. The team consists typically of one lifting supervisor
or manager, one engineer, one crane operator, one or more signal-
men and riggers. Currently, lifting path planning is mostly done by
manual exercise which can be error-prone and very time-
consuming. Even with an experienced lifting team, it easily takes a
few weeks to complete the entire planning procedure.

Heavy lift planning involves multiple phases typically including
crane selection, crane location determination, and lifting path plan-
ning. For lifting projects with multiple lifts, the planningmay involve
scheduling taking into consideration the interference among multi-
ple cranes. If the plant contains dynamic objects, the planning also
requires replanning mechanisms to alter the lifting path according
to the changed environment. There are different types of commonly
used cranes: tower cranes, terrain cranes, crawler cranes and so on.
Among them, tower cranes have the least number of Degrees of Free-
dom (DOFs) and crawler cranes have most DOFs (up to 7). This paper
focuses on the lifting path planning problem for terrain cranes with
the assumption that scheduling, crane selection, crane locating and
feasibility checking are readily available. Our objective is to develop
an automatic lifting path planning system being able to output opti-
mized lifting paths in near real-time and thus improve the safety and
efficiency of heavy lifting in complex environments such as petro-
chemical and pharmaceutical plants, and construction sites.
1.1. Computer-aided lift planning

The complexity and hazards of lifting operations inspire the de-
velopment of computer-aided lift planning methods making use of
computer simulations and computations to assist the lift planning
process. Early efforts focused on the use of simulation based systems
to assist interactive lift planning. These systems helped in automated
mechanical checking, safety monitoring and evaluations for interac-
tive lifting paths. Hornaday et al. [4] proposed their conceptual de-
sign of the HeLPS simulation system. Lin and Haas [5] continued
the work and designed a system being able to perform initial setup
planning for cranes and performance measurements for user defined
paths. Varghese et al. [6] extended the HeLPS system by monitoring
safety factors during interactions. Chadalavada and Varghese [7] de-
veloped a plug-in approach for the Autodesk Inventor with their
CLPS simulation system. Their solution approach was made up of
plant modeling, interactive manipulation and comprehensive safety
monitoring.

Sub-problems of lift planning such as crane selection, feasibility
checking and crane layout have also been addressed by other re-
searches. Olearczyk et al. [8] discussed the crane selection and locating
problem concerning lifting capacities and clearances. The crane location
determination problem was solved by optimizing weighted distances
from crane locations to pick and place locations of the lifting targets
constrained by clearances of tail swing, boom and outriggers. Safouhi
et al. [9] and Lei et al. [10,11] dealt with the crane location determina-
tion problem using geometric analysis on 2D CAD drawings. In particu-
lar, Lei et al. [10] also proposed a method for feasibility checking of
multiple lifting cases. The method mapped the pick and place areas
into the configuration space (C-space) of the crane and checks the
mapped areas with the obstacle regions (C-obstacle). Lei et al. [11]
discussed the scenarios where pick and place locations are overly sepa-
rated and thus a crawler crane is required to walk (or crawl) towards
the place location. Similar to Safouhi's idea [9], The method dilated the
obstacle regions by the size of the lifting target and the tail-swing radius
of the crane. Lei's method was able to provide walking paths of crawler
cranes as 2D lines without interference with the dilated obstacles.
Sometimes, multiple cranes are required to work together. The algo-
rithm by [12] addressed the multiple tower crane layout problem in
construction sites. A hybrid particle bee algorithm was applied to
solve the layout problem and better results were reported compared
with other types of algorithms.

So far, in all previous studies and existing systems, automatic
lifting path planning is attempted mostly at theoretical level with
rare implementation reported for practical uses. This is partially be-
cause the problem itself is very challenging due to the complexity of
plant environments and cranes. The three major concerns of lifting
path planning are efficiency, solution quality and success rate. The
existing methods used combinations of different search algorithms
and collision detection strategies to fulfill the above mentioned
criteria. The first class of methods utilized global optimum search al-
gorithms together with C-spaces with precomputed collision infor-
mation to achieve high solution quality. Sivakumar et al. [13]
considered the simplified representation of cranes as planar kine-
matic chains with two rotational DOFs. Simple Genetic Algorithm
(SGA) was performed on the 2D C-space where precomputed colli-
sion results were factored in the fitness function as violation penal-
ties. Ali et al. [14] designed a two-stage fitness function and used
parameter-based reproduction operators for the Genetic Algorithm
(GA) search in a 3D C-space. Both of the GA-based methods were
able to achieve highly optimized solutions. However, these methods
were computationally forbidding due to the computational intensive
nature of GA. Ali's method also suffered from the high computational
cost for generating the 3D C-space. As a result, the methods only
managed to deal with simple CAD plants. The second class of
methods also relied on precomputed collision information. Instead
of using the global optimization algorithms, this class of methods
use fast search algorithms for finding good but not necessarily opti-
mized collision-free lifting paths. The method by Reddy and
Varghese [15] represented cranes as linked rigid bodies with three
DOFs (swinging, luffing and hoisting). Heuristic depth first search
was performed in the free space. Given a simple CAD plant environ-
ment, their planner was able to achieve good solutions as arrays of
independent configurations. The algorithm, however, still required
the substantial time and memory to generate the 3D free space.
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Research by [16] investigated the use of the probabilistic road-map
method in dealing with crane erection planning. They proposed a
useful idea that, given a 2.5D site with only the maximum height of
the plant taken into consideration, a 2D C-space is enough for the
computation. Each position of the 2D C-space stores the maximum
and minimum hoist height of the crane. Using this 2D C-space, they
were able to achieve near real-time solutions in simple environ-
ments. Olearczyk et al. [17] tried to conquer the lifting path planning
problem by constraining themovement of the lifting target into a sin-
gle horizontal plane. A* search was conducted in the precomputed 2D
ray-arc intersection map. Their algorithm was fast but relatively im-
practical because of the planar constraint of the position of the lifting
target. The algorithms by [16] and [17] could quickly generate a crane
lifting path. But the solution quality was somehow compromised
compared to the methods using GA. Another class of methods did
not rely on the precomputed free space. Instead, collision detection
was performed on the fly during the search (which is referred to as
“online collision detection” in this paper). This online collision
check strategy is less affected by the number of DOFs and thus
could be efficiently extended to high-DOF cranes. Kang et al. [18] de-
veloped an online collision check based motion planning system
using bonding sphere based collision check. The bonding spheres
were also used in the continuous collision detection (CCD) which de-
tected interference between the environment and the swept spaces
of objects between consecutive movement steps [19]. Bi-directional
expanding trees were exploited to search in the Cartesian space for
4-DOF tower cranes. Their algorithm involved three sub-phases:
path planning for the end effector (lifting target), crane trajectory co-
ordination and trajectory smoothing. The method could produce
collision-free lifting path in short time. But the success rate was re-
stricted because of the overestimated proximity information and
the multiple sub-phases. Lin et.al [20] published their impressive
work on the crawler crane lifting path planning problem. The crawler
crane was regarded as a robot with seven DOFs. The problem was
solved by the bidirectional RRT search in a 7D C-space. Their algo-
rithm reported reasonable planning time. The solution quality was
good for low-DOF lifting tasks (≤ 3) but produced more zigzagged
paths for higher-DOF lifting tasks.

1.2. The GPU based MSPGA

Graphics ProcessingUnits (GPUs), as the kernel of graphic hardware,
offer tremendous computational horsepower and high memory band-
width. The computational powers of GPUs have brought significant
speedups in various applications [21,22]. Modern General Purpose
Fig. 1. (a) DOFs of the terrain cranes, (b) bo
GPUs (GPGPUs) have the ability of handling general, complex and mas-
sive computations. A GPGPU contains several Streaming Multiproces-
sors (SMs) equipped with caches and control units. It is capable of
running hundreds of threads concurrently.

CUDA C/C++ [21] is a popular GPU accessing API designed by
nVIDIA. It performs as an extension of the standard C/C++ lan-
guage [21,23]. CUDA C/C++ provides access to the complete hier-
archy of GPU memory, from global memory to register memory
inside processors.

Unlike other robotic path planning scenarios whichmay rely on fast
algorithms to achieve reasonable but not necessarily optimal results,
crane lifting path planning is eager for global optimization capabilities.
Master–slave parallel GA is a class of parallel GAs using amaster proces-
sor to control the flow and assigning functional components intomulti-
ple processors for parallel computing [24]. It is themost popular type of
parallel GA for applications due to its predictability and preservation of
the global optimization ability of serial SGA. Among the existing re-
searches on GPU accelerated GA, GPU based MSPGA takes up a major
part.

Fitness evaluation is usually themost computationally intensive part
in GA, especially if computations like proximity computations and colli-
sion detections were involved [25]. The GPU implementation of binary-
coded and real-codedMSPGAwas discussed by [26]. In the algorithm of
[27], the GPU based steady-state MSPGA was used as a function opti-
mizer. Wang et al. [28] made use of the GPU based MSPGA in
performing daily activity planning. Moreover, researches like Fujimoto
et al. [29] emphasized the design of parallel genetic operators.

1.3. Outline of our research

The aim of this paper is to fully exploit the global optimization capa-
bility of the GAs and the scalability of online collision check strategy.
Compared to the serial GA used by [14], this paper utilizes the GPU
based MSPGA to handle the computational load of GA searches and on-
line collision detections for complex environment. Furthermore, instead
of the iterative CCD used in [18] and [20], the proposed method gener-
ates analytical swept spaces according to the features of terrain crane
operations which can be computed and checked in parallel. With the
collision detection, continuous collision detection and genetic algorithm
designed in a massively parallel manner, the overall computation time
of the optimized lifting path planning can be significantly reduced.
This paper also proposes a hybrid C-space strategy to further improve
the efficiency through an innovative combination of the online collision
detections with a 2D C-space for the two base DOFs (swinging and
luffing) of the 4-DOF terrain cranes (Fig. 1).
om clearance and (c) body clearance.



Table 3
Parameters and variables used in the fitness function design.

Symbol Expression

f(si) The fitness value of string si
si The ith string in the population
ni The collision violation number
mi The motional cost
Lp The size of population
noi The collision violation number of Oriented Bounding Boxes (OBBs) in string si
nfi The collision violation number of boom swept volumes in string si
nri The collision violation number of load swept volumes in string si
nci The collision violation number of internal clearance in string si
sci The operation switching count in string si

Table 2
Parameters and variables in the objective function.

Symbol Expression

F(s) The evaluation value of string s
sc(s) The operation switching cost in string s
d(s) The distance cost in string s
cj The jth configuration in the string
λ1 The constant scaling factor 1
λ2 The constant scaling factor 2

Table 1
Parameters and variables used in solution representation.

Symbol Expression

ci The ith configuration in the string
ej The jth edge in the string
Ls The length (number of configurations) of the string
αLF The luffing angle in degrees (angle between main boom and ground)
αSW The swinging angle in degrees (rotation angle of main boom along the z axis)
lHS The hoisting length in centimeters (extension length of the sling)
αLR The rotation angle of the load along the z axis
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2. Problem formulation

The goal of the crane lifting path planning problem is to minimize the
costs during lifting operations. These costs include the time and energy
consumption of the crane, safety risks during the operation and the diffi-
culty for human operators to follow the lifting path. We develop a math-
ematical model for the lifting problems. The solution space, objective
function and constraints of the lifting path planning problemare analyzed
in this section.

2.1. Assumptions

The mathematical model of the problem is established upon the fol-
lowing observations and assumptions:

(1) The terrain crane is not allowed to drive during lifting.
(2) Booms of the terrain cranes are strictly not allowed to extend or

retract during lifting processes.
Fig. 2. Encoding structur
(3) The lifting target can be rotated (manually by the rigging man)
near the start or end positions.

(4) It is not permitted to perform the three classes of operations
below simultaneously: boom swinging, boom luffing and sling
extension, and target rotation.

(5) The speeds of elementary operations are constant (usually very
low) and the corresponding energy cost of the crane is propor-
tional to the movement units.

(6) Components of the cranes and the lifting targets are not sup-
posed to be operated below any plant structures.

2.2. Mathematical formulation

According to observations 1, 2 and 3, a terrain crane has four DOFs
during lifting operations: boom swinging, boom luffing, hoisting (sling
extension and shortening) and target rotation (restrained in start and
end positions) (Fig. 1(a)). Parameters of the DOFs are constrained into
limits determined by the internal clearances including boom clearance
and body clearance (Fig. 1(b)). The entire set of parameters specifying
the four DOFs form a configuration of the crane. The set of all possible
configurations is defined as the C-space (denoted as C in this paper),
which can be represented as:

C ¼ SO 3ð Þ �ℝ� SO 2ð Þ:

Here SO(3) represents the group of rotational matrices that define
the two rotational DOFs (swinging and luffing) of the main boom and
ℝ related to the translational motion of the sling. The last item
SO(2) represents the rotational DOF of the lifting target along the verti-
cal axis.

Typically, a crane lifting path is defined as an array of configurations or
steps. This configuration array stands for a general polyline in C. However,
this definition of lifting path is not going to assure assumption 4. Accord-
ing to assumption4, someportions of thepolylineneed to be axis-aligned.
This constraint requires the GA to handle inter-dependent genes (config-
urations) which arise difficulties in designing crossover and mutation
operators.

Thus we propose to formulate the lifting path as a structure which
provides independent configurations for GA search and remains as
axis-aligned polylines for processing (such as collision detection) in
the meantime.

In the proposed algorithm, the lifting path is represented as a string
s={O, E}, where O is the set of nodes (configurations) and E represents
the set of edges (internal paths between independent nodes). Thus the
variables of the optimization problem can be written as (see in Table 1
for explanations of the symbols):

s ¼ cif gi¼0;1;…;Ls−1∪ ej
� �

j¼0;1;…;Ls−2
ci ¼ αLF ;αSW ; lHS;αLRð Þ: ð1Þ

The edges ej are composed by set of key frame configurations deter-
mined by its neighboring nodes cj and cj + 1 in a predefined way which
e of chromosomes.



Table 4
Parameters and variables in adaptive mutation rates.

Symbol Expression

rm(s) The mutation rate of string s
rm The basic mutation rate

f The average fitness value in the population

f(s) The fitness value of string s

Table 5
The initialization strategy.

Configuration Strategy

c1 Randomly generate sling length; Keep other parameters as the
start configuration

c2 � cLs−3 Randomly generate parameters
cLs−2 Randomly generate sling length; Keep other parameters as the end

configuration
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will be discussed in Section 3.3. This definition of inputs will be
reorganized as chromosomes in the GA search in Section 1.2. The task
of the planning algorithm is to find an optimal s∗ composed of cj⁎
which maximizes the evaluation function.

In order to design an evaluation function for the strings, we define
metric functions in C, so that C becomes a metric space. Those twomet-
rics, d1 and d2, can be defined as:

d1 a; bð Þ ¼
X3
i¼0

ri ai−bij j; d2 a; bð Þ ¼
X3
i¼0

g ai−bið Þ:

Here a and b denote two configurations in space C. ai and bi(i =
0, …, 3) are the unified representation of the four parameters of a and
b respectively (Eq. 1). Note that a scaling factor ri is applied to the abso-
lute difference value for each dimension in d1. Function g in d2 is defined
as:

g xð Þ ¼ 1 if x ≠ 0; x ∈ R
0 if x ¼ 0; x ∈ R

�
:

Here d1 measures the total number of movement units along the
four dimensions (weighted). d2 represents the number of non-
identical parameters between the two configurations. Now the evalua-
tion function of a string s in the solution space S can be expressed as (see
in Table 2 for explanations of the symbols):

F sð Þ ¼ λ1 1þ λ1

d sð Þ þ λ2 1þ sc sð Þð Þ
� �

where

d sð Þ ¼
XLs−2

i¼0

d1 ci; ciþ1ð Þ

sc sð Þ ¼
XLs−2

i¼0

d2 ci; ciþ1ð Þ
s ∈ S; ci ∈ C and i ¼ 0;…; Ls−1:
Fig. 3. Framework of the liftin
Then themaximizing optimization problem for the lifting path plan-
ning scenario can be accordingly written as:

max F sð Þ
s:t: nnode sð Þ ¼ 0; s ∈ S

nedge sð Þ ¼ 0; s ∈ S
cl sð Þ ¼ 0; s ∈ S
B≤ci≤B;
i ¼ 0;1;…; Ls−1

where nnode sð Þ ¼
XLs−1

i¼0

δ cið Þ

nedge sð Þ ¼
XLs−2

i¼0

δ eið Þ

cl sð Þ ¼
XLs−1

i¼0

σ cið Þ

δ cið Þ∈ 0;1f g; i ¼ 0;1;2…; Ls−1
δ eið Þ∈ 0;1f g; i ¼ 0;1;2…; Ls−2
σ cið Þ∈ 0;1f g; i ¼ 0;1;2…; Ls−1:

ð2Þ
g path planning system.



Table 6
The crossover strategy.

Configuration Parents Strategy

c1 Both valid
Both invalid
One valid, one invalid

Choose shorter sling length
Random choose
Choose valid

c2 � cLs−3 Both valid
Both invalid
One valid, one invalid

Random choose
Random choose
Choose valid

cLs−2 Both valid
Both invalid
One valid, one invalid

Choose longer sling length
Random choose
Choose valid

Table 7
The mutation strategy.

Configuration Case Strategy

c1&cLs−2 Valid Randomly alter sling length in smaller scale
Invalid Randomly alter sling length in larger scale

c2 � cLs−3 Valid Randomly alter all parameters in smaller scale
Invalid Randomly alter all parameters in larger scale
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Here B and B stand for the lower and upper bound values for the
configurations. δ(ci) and δ(ei) represent the collision detection results
of elements ci and ei in string s. σ(ci) stands for internal clearance
checking result for configuration ci. Accordingly, nnode(s), nedge(s) and
cl(s) represent the collision violation factors of node configurations,
edge paths and internal clearance within the crane itself. These values
are calculated from the complex geometric information in the
Euclidean space.

Feasible solutions of themaximization problem contain no violation
for collision and inter-collision. The motion cost d(s) and operation
switching cost sc(s) are minimized through maximizing function F(s),
making the optimal solution s∗ short in distance and comfortable for
human operators. The scale factors enlarge the difference between
good solutions and bad solutions, which helps the convergence of the
GA. As a result, the optimal solution s∗ of the maximization problem is
a collision-free lifting path which is optimized in energy cost and
human operation conformity.

The mathematical and algorithmic details of the computations will
be discussed in Section 4.

2.3. Fitness function

When transferring the optimization problem into the language of
GA, we add the hard constraints of the optimization problem (Eq. 2)
into the fitness function as penalties. The fitness function for a given
chromosome si in the population P is defined as (see in Table 3 for expla-
nations of the symbols):

f sið Þ ¼ λ1=ni if niN 0
λ1 1þ λ1=mið Þ if ni ¼ 0

�
ð3Þ
Fig. 4. The post proc
where

ni ¼ noi þ nf i þ nri þ nci
mi ¼ di þ λ2 1þ scið Þ
i ¼ 0;1;2;…; Lp−1:

When ni N 0, some of the nodes or edges in string si are collidingwith
the environment or the crane itself. In such case, the fitness function
focuses on the elimination of collisions. Once ni=0, it means that si be-
comes a feasible solution. The functionality of GA turns into optimiza-
tion of the objective function in the feasible space. This fitness
function is an extended version of the one utilized in our previous
work [30]. It includes the internal clearance as a hard constraint and
counts the number of operation switching into the motion cost.

3. GPU-based MSPGA solver for the lifting path planning problem

As a multi-objective non-linear integer optimization model, the
lifting path planning problem is challenging for common combinatorial
optimizationmethods. GA, as a general optimization algorithmwhich is
mathematically proved to be able to achieve global optimum, is highly
suitable for the task. It has good potentials for customization and
parallelization. Our previous work [30] presented a GPU based MSPGA
framework (which we will briefly introduce in Section 3.1 to make
this paper self-contained). GPU parallelization for the MSPGA frame-
work can be found in [30] and a simple lifting path planning problem
was investigated to test its efficiency and scalability. In this paper we
will present an in-depth discussion on designing the customized adap-
tive plan for the lifting path planning problem in complex environ-
ments. A post processing stage is also introduced to improve the
human conformity of the result path. Based on the framework, we in-
vestigate the use of multi-layered depth maps to deal with discrete
and continuous collision detection in complex environments and pro-
pose a hybrid C-space collision strategy for improving the efficiency of
the collision detection module. The collision detection module will be
further discussed in Section 4.

A chromosome (Fig. 2) in our MSPGA framework is defined as the
array of configurations (genes) taking all the node configurations
ci(i = 0, …, Ls − 1) from the solution s in Eq. 1. The population is thus
a set of chromosomes carrying different path candidates evolving in
the GA process.

3.1. MSPGA framework

The functioning of theMSPGA relies on a complete systemwith soft-
ware and hardware components. The software components provide a
simulation environment for generating necessary inputs (crane posi-
tion, boom length, destination configurations, etc.) and displaying out-
puts (paths, costs, capacities etc.). Fig. 3 is a brief denotation of the
system.

The master processor we use for the MSPGA is the CPU. The four
functional components, fitness evaluation, selection, crossover andmu-
tation, are handled by the GPU. In each iteration of GA, GPU kernels for
essing strategy.



Fig. 5. Digitization of the plant model using depth map: (a) Original scene, (b) Multi-layered depth map. Different colors stands for layers in the multi-layered depth map.
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the four components are executed in sequence. Among these compo-
nents, selection and crossover select good candidates from the popula-
tion to produce offspring. The mutation process randomly alters
genes in offspring which help GA to find better configurations in the
neighboring spaces. At the end of each iteration, fitness values of the
Fig. 6. Demonstration of the swept frontier
new population are returned to the CPU to be checked against the ter-
mination fitness value. Once the termination fitness is met, the CPU
stops the GA process and extracts the optimum chromosome from the
GPU memory. If the search exceeds a certain number of iterations, the
CPU will stop the search and report failure. As MSPGA preserves the
of the swinging and luffing operations.
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property of probabilistic completeness of SGA, the possibility of failure
will decrease to zero when the number of iterations increases.

It is difficult tofinda set of termination conditionswhich guarantee a
fully optimized result for a randomized search algorithm like GA. Thus,
apart from the basic termination criteria stated above,we seek addition-
al help from the simulation environment. The final solution, or lifting
path, with its properties is displayed as animations for real-time moni-
toring. Based on the graphical results, users can choose whether to con-
duct further searches.
Table 8
Parameters and variables in the swept frontiers.

Symbol Expression

ATG The swept frontier for the lifting target
ATG_SW The swept frontier for the lifting target during swinging
ATG_LF The swept frontier for the lifting target during luffing
ATG_LR The swept frontier for the lifting target during target rotation
ABM The swept frontier of booms
p A point on the swept frontier
p0 The center of rotation of the main boom
x0 The x coordinate value of p0
y0 The y coordinate value of p0
z0 The z coordinate value of p0
zc The height of the virtual center of rotation of the lifting target during luffing
p1 The location of load center at the first swinging angle
p2 The location of load center at the second swinging angle
pR The location at which load rotation happens
αLF The constant luffing angle during swinging in the internal path
αSW
1 The swinging angle in gene 1

αSW
2 The swinging angle in gene 2

d11 The width of the lifting target at the tangential direction in gene 1
d12 The width of the lifting target at radial direction in gene 1
d21 The width of the lifting target at the tangential direction in gene 2
d22 The width of the lifting target at radial direction in gene 2
R1 The working radius of the crane at gene1
R2 The working radius of the crane at gene2
RR The working radius at which load rotation happens
hTG The height of the target during swinging
LBM The total length of the boom
3.2. Adaptive plan

Initialization of the population is the basis of GA. It provides the ini-
tial resources and information for the GA to start the search. Our initial-
ization uses the strategy shown in Table 5. c0 and cLs−1 in the strings are
the start and end configurations of the task. For c1 andcLs−2, the hoisting
lengths are randomly generated and other values are kept as in the start
(for c1) or the end configuration (for cLs−2). Internal configurations are
generated randomly within the bound values.

Selection, crossover andmutation are referred to as the reproductive
operators in GA. They are the key components of an adaptive planwhich
are performed in the evolutionary iterations. By designing proper repro-
ductive operators, the GA can achieve higher convergence speed and, in
the meanwhile, produce high quality solutions.

The selection operator reflects the concept of “survival of the fit-
test” in Darwinian evolution. A good selection operator provides bet-
ter chance for “fitter” individual to survive and reproduce. In our
algorithm, a proportional selection scheme is used together with the
elitism strategy. Namely, the “fittest” chromosome in the population
always survives and remains in the next generation. For other chro-
mosomes, the chances of producing off-springs are proportional to
their fitness values.

Crossover happenswith a given rate rcwhen parent strings are mat-
ing. Its mathematical essence is to direct the search to “fitter” areas in
the solution space by combining information in existing solutions. In
the proposedmethod, crossover is also responsible for eliminating inva-
lid (colliding) configurations from the population. Our approach ex-
ploits a parameter based crossover strategy which is illustrated in
Table 6. For c1 and cLs−2, the off-springs inherit the higher target posi-
tions between their parents. In-between configurations inherit valid
configurations from the parents in the sense of collision avoidance and
internal clearance. The purpose of this strategy is to help GA enter the
feasible (collision-free) space through giving higher priority to genes
with better potential for collision avoidance.

The mutation operator alters bits (genes) in existing chromosomes
with a given rate rm. Chromosomes with lower fitness values can thus
perform as seeds for exploring unknown areas in the solution space.
Larger mutation rates would help the GA in finding new possibilities,
but at the same time increase the likelihood of damaging existing
good chromosomes. On the other hand, lower mutation rates help to
preserve known solutions but slow down the convergence.

This analysis leads to adaptive mutation rates. In the proposed ap-
proach, the mutation rates for chromosomes are formulated as (see in
Table 4 for the symbols):

rm sð Þ ¼ rm þ f− f sð Þ
� �

= f ; if f sð Þ b f

rm; if f sð Þ ≥ f

(

The mutation strategy used in the proposed algorithm is denoted in
Table 7. Note that for c1 and cLs−2 in each chromosome, the mutation
only alters the hoisting length (sling length). This design comes from
the observation that the first and last step of lifting operations are al-
ways hoisting or lowering the target.
3.3. Post processing

The task of post processing is to build configurations in the edges
from the node configurations returned by the GA search. As we have
mentioned in Section 2, the cranes are not allowed to perform the
three classes of operations simultaneously. Thus an edge e also contains
three segments: boom swinging, luffing, hoisting and load rotation.
With the movement units already provided by the node configurations,
the key of the edge building strategy is to define the sequence of
conducting the three classes of operations.

From our observation, when conducting boom swinging, it would be
safer for the target to be in higher positions than in lower ones. Accord-
ingly, the order of boom swinging and hoisting for a given edge e should
be decided by the target height in the two neighboring node configura-
tions c1 (left neighbor) and c2 (right neighbor). For example, if the target
is at higher position in the configuration c1, then boom swinging should
be conducted ahead of hoisting. Rotation of the target is located in-
between the other two types of operations. Fig. 4 indicates the stated
strategy of edge building which identifies the key frame configurations
(c1, c1.1, c1.2, c2) for edge e.

This strategy is also applied when performing the continuous colli-
sion detection for edge paths (Section 4.2). In this way the solution pro-
vided by the GA search will be guaranteed to be valid after the post-
processing.
4. Collision avoidance

The proposed algorithm does not rely on precomputed collision in-
formation in the C-space. The GA, therefore, needs to perform online
collision detection when running its iterations. For collision detection
of the nodes, an image-space parallel collision detection algorithm is de-
signed and implemented in GPU, which is initially discussed in Cai et al.
[22]. In this paper we present a complete and practical implementation
of the algorithm. For collision avoidance of the edges, we propose a CCD
method using analytical representations of the swept volumes of the
crane.



Fig. 7. Demonstration of variables used in the computation of internal clearance for terrain cranes. (a) Load-boom clearance, (b) load-body clearance.
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4.1. Discrete collision detection

Petrochemical and pharmaceutical plants usually have highly com-
plicated structures. According to assumption 6 in Section 2, terrain
cranes are not supposed to move or operate below any plant struc-
tures. Thus, for a crane, the frontier of contact with the plant structure
is decided by the plant structure's highest portions. As such, we can
transfer the plant model into a histogram shaped structure by simply
computing a depthmap of themodel. This representation will be used
in both the Discrete Collision Detection (DCD) and continuous colli-
sion detection algorithms. Benefiting from the highly ordered feature
of the depth maps, the collision detection can be parallelized in
three levels: pixel level, gene level and chromosome level. This
three-level parallelization enables the high efficiency of our collision
detection algorithm.

The procedure of the discrete collision detection algorithmwould be:

(1) Computing an initial oriented bounding box (OBB) hierarchy for
the crane model

(2) Generating the depth map for the plant model
(3) Updating the OBB hierarchy for the crane model before each col-

lision check in step 4, and
(4) Performing collision check between the crane OBB hierarchy and

the plant depth map
Table 9
Parameters and variables in the internal clearance inequalities.

Symbol Expression

αLF The main boom angle (luffing angle)
lHS The length of the sling (hoisting length)
lRG The distance between bottom tip of the hook and center of the target
rTG The radius of the bounding sphere of the target
hTG The height of the bottom face of the target
δBD The height of the crane body
rw The working radius of the crane
γBD The distance between head of the crane body and the rotational axis of

booms
Steps 1 and 2 in the flow are conducted in the initialization stage
while Step 3 and 4 are done in two places. For simulation purpose, it
is performed as runtime collision detection. For the GA search, it serves
as a component in the fitness evaluation process. Fig. 5 shows the result
of the generated depth map compared with the original triangular
model.

For fast generation of a GPU depth map from the original model, we
borrow the concept of OpenGL rasterization and design a GPU depth
map generator. In this GPU depth map generator, each GPU thread
block takes care of one triangle face passed from the host memory. Par-
allel threads in GPU thread blocks aremapped into the x–y ranges of the
triangle faces. The threads cast vertical rays from the ground and the in-
tersection positionswith the triangle faces are stored in the correspond-
ing positions in the depthmap. Some pixels in the depthmapmay have
intersectionswithmore than one triangle face. For generation of single-
layer depth map which only takes the highest intersection, the system
uses atomic functions [21] to prevent conflict in memory locations.
The collision detection can be scaled up from 2.5D to 3D by recording
a multi-layer depth map which is indicated in Fig. 5(b). Generation of
the 3D depth map requires a precomputed map recording the number
of intersections for each pixel.
Table 10
Inputs into Experiment 1.1.

Input Value

Crane model Terex AC700
Size of population 100
Length of string 6
Crossover rate (rc) 0.15
Mutation rate (rm) 0.75
Scale of mutation 1 0.016
Scale of mutation 2 0.16
Boom length (m) 62.4
Start configuration (67,119,4972,119)
End configuration (67,52,4972,52)
Termination iteration 400



Fig. 8. Result path generated using different fitness functions in Experiment 1.1.
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The OBB hierarchy of a terrain crane contains five OBBs. They are
OBBs of body, cockpit, counterweight, boom and load, respectively.
Bottom portions of these OBBs are the contact frontiers to the plant
depth map. As the hook and slings are always above the load for ter-
rain cranes, they are not going to affect the contact frontier. During
the GA search, each gene possesses one such set of OBBs. In each it-
eration, the set of OBBs are updated in the GPU in parallel for the
whole population. In the stage of fitness evaluation, another GPU
Fig. 9. Fitness convergence trend using differ
kernel is launched to compute the contact frontiers for the OBBs in
parallel and compares the OBB frontiers with points in the depth
map.

4.2. Continuous collision detection

In order to enable sparsely sampled paths and reduce the number of
steps in the lifting path, collision detections for the internal trajectories
ent fitness functions in Experiment 1.1.



Table 12
Solution qualities in the three plants using the fitness function in [14] and the proposed
fitness function in Experiment 1.2.

Solution quality

Plant 1 Plant 2 Plant 3

Alis fitness
function

Motion units Swinging (degree) 93 131 –
Luffing (degree) 28 25 –
Hoisting (m) 12.06 21.43 –
Target Rotation
(degree)

93 131 –

Operation steps 11 12 –
The proposed
fitness
function

Motion units Swinging (degree) 93 131 83
Luffing (degree) 0 3 29
Hoisting (m) 22.66 21.51 49.52
Target Rotation
(degree)

93 131 8

Operation steps 8 9 11

Table 13
Inputs into Experiment 2.

Input Value

Crane model Terex AC700
Size of population 100
Length of string 6

Fig. 10. Additional plants used in Experiment 1.2.
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between consecutive configurations become crucial. This goal is
achieved by exploiting the continuous collision detection technology.
We introduce the analytical estimations of the swept volumes between
consecutive configurations.

During the movements along the internal paths between neighbor-
ing genes, the booms and the lifting target have the highest possibility
to collidewith theplant structure.When the cranemoves fromone con-
figuration to another, the spaces that the booms and the load swept
through are called swept volumes. Bottom faces of these swept volumes
are denoted as swept frontiers which are used to perform contact check
with the plant depth map. By applying the predefined movement strat-
egy (Section 3.3), we can always get a unique swept frontier for each
pair of neighboring genes. Fig. 6 shows the 2D illustrations of the
swept frontiers. In the illustrated case, the crane first performs swinging
in the counter-clockwise direction, then rotate the target and lower
down the boom to reach the destination working radius. Analytically,
the swept frontiers for this case are represented as (see in Table 8 for ex-
planations of the symbols):

ATG ¼ ATG SW∪ATG LF∪ATG LR

ATG SW ¼ dxy p; p0p1ð Þ≤d11
� �

∪ dxy p; p0p2ð Þ≤d11
� �

∪ a1SW ≤a p0pð Þ≤a2SW
� �� �

∩ R1−d12≤pxy p−p0ð Þ≤R1 þ d12
n o

∩ z ¼ hTGf g
ATG L F ¼ dxy p;p0p2ð Þ≤d21

� �
∩ R2−d22≤pxy p−p0ð Þ≤R2 þ d22
n o

∩ z ¼ zc þ L2BM− x−x0ð Þ2− y−y0ð Þ2
� �1

2

� 	

ATG LR ¼ pxy p−pRð Þ≤RR

n o
∩ z ¼ hTGf g

ABM ¼ p−p0k kLBMf g∩ a1SW ≤a p0pð Þ≤a2SW
� �

∩ z ¼ z0 þ tan aLFð Þ x−x0ð Þ2 þ y−y0ð Þ2
� �n o

:

Here function dxy gets the distance between a point (the first param-
eter) and a line (the second parameter). Function pxy represents the
projection length of a vector on to the x–y plane. Function a calculates
the planar angle between a given vector and the x axis. In each loop of
fitness evaluation, these swept frontiers are compared with points in
the depth map of the plant model. The Boolean CCD results serve as
parts of the fitness function (Eq. 3).
Table 11
Comparison of the success rates in the three plants using the fitness function in [14] and
the proposed fitness function in Experiment 1.2.

Success rate

Ali's fitness function The proposed fitness function

Plant 1 8% 100%
Plant 2 88% 100%
Plant 3 0% 96%
4.3. Self-collision clearance

Apart from collision between the crane and environment objects, in-
ternal collisions, especially interferences between the lifting target and
crane components, are also crucial.

We consider two types of possible internal contacts (Fig. 7) (see in
Table 9 for the explanations of symbols). The first type is the clearance
between the target and boom segments. This type of clearance check
becomesmore important when the sling length gets shorter. Themath-
ematical representation would be:

cot αL Fð Þ lHS þ lRGð ÞNrTG
Crossover rate (rc) 0.15
Mutation rate (rm) 0.75
Scale of mutation 1 0.016
Scale of mutation 2 0.16
Weight of boon swinging 1.0
Weight of boom luffing 1.5
Weight of sling extension 0.06
Weight of target rotation 1.0
Boom length (m) 62.4
Start configuration (55,349,4212,349)
End configuration (52,72,4001,341)
Termination iteration 200



Table 14
Results of Experiment 2.

Strategy Preprocessing time
(ms)

Planning time
(ms)

Success
rate

Average success
fitness

C-space 10,535 789.33 66% 3611.06
Online 0 3998.75 93% 3943.66
Hybrid 1034 2133.79 92% 3965.83
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The second type of internal clearance is the clearance between the
target and the crane body. This type of check is significantwhen the tar-
get is moving in lower positions. The mathematical representation can
be written as:

hTGNδBD; if rw ≤γBD þ rTG

4.4. Hybrid C-space strategy

The analytical swept frontier based CCD proposed in Section 4.2 has
good potential scalability in terms of the DOFs of the cranes. However, it
will also result in longer planning time compared with the C-space
based approaches. For cranes with four DOFs, the 2D C-space with
minimum-maximumhoisting values proposed by [16] can be a good so-
lution for reducing both the preprocessing time and the planning time.
But this approach ignored the fourth DOF of the crane (load rotation).
Thus it results in over-estimated proximity information in the 2D C-
space. For lifting cases where the crane has to rotate the load into a cer-
tain angle to avoid the obstacles, this approach will have low success
rates.

We propose a hybrid C-space strategy to balance the preprocessing
time and the planning time. In this strategy, collision information for
the first two DOFs of the crane (swinging and luffing) are stored in a
2D C-space while the collision check (DCD and CCD) for the last two
DOFs (hoisting and load rotation) are conducted during the MSPGA
search. Internal clearance check is also conducted during the search.
Given the simplicity of the 2D C-space, the hybrid strategy would be
able to quickly obtain the C-space and in the meantime to reduce the
planning time.

5. Results and analysis

5.1. Comparison on the fitness function

To evaluate the fitness function proposed in our method, we com-
pare it with the fitness function used in Ali's work [14]. Their algorithm
(a) Path generated using the C-spaces trategy (b) Path generated using

Fig. 11. Trajectory of the load of the result paths using the three strategies in Experiment
is initially targeting at the dual-crane erection problem, but the fitness
function can be easily adapted to the single crane lifting problem. By
eliminating the coordination violation coefficient in their fitness func-
tion (which is not necessary in the single crane case), we obtain a
single-crane version of Ali's fitness function:

F sð Þ ¼ λ
d sð Þ 1þ Cð Þ

� �

d sð Þ ¼
XLs−1

i¼1

X4
j¼1

Li; j−Liþ1; j

 �20

@
1
A

1
2

C ¼ 1
Ls

XLs
i¼1

Ci

ð4Þ

Parameters used in Eq. 4 are identical as in the proposedfitness func-
tion. We perform Experiment 1.1 in one of the test plants in Ali's paper
and compared the success rates and solution qualities. All the runs are
performed in the same GA procedure as stated in the Section 3 with fit-
ness function differed. The inputs of Experiment 1.1 are shown in
Table 10.

Fig. 8 shows the result path using the two fitness functions. The ele-
mentary operations are displayed in different colors. The red color dot-
ted line denotes the trajectory performed by the target during the
swinging operations. The green and blue colored lines stand for the
load center trajectory for the luffing and hoisting movements accord-
ingly. The yellow fan represents the rotation of the load. In the path gen-
erated with Ali's fitness function, the crane undergoes 67° of swinging,
10° of luffing, 23.74 m of hoisting and 67° of load rotation above the
start position. The path consists of 9 configurations. In the path generat-
edwith the proposed fitness function, the terrain crane need to conduct
67° of swinging, 0° of luffing, 26.52 m of hoisting and 67° of load rota-
tion. The human operators have 2 less steps to conduct and there is no
luffing operation involved. The results show that our proposed fitness
function can produce better solution quality.

The convergence trends using the two fitness functions are shown
in Fig. 9 with the fitness value of the best candidate and the average
fitness value of the population during the iterations plotted. The con-
vergence of the GA search with Ali's fitness function shows a highly
unstable trend. This instability results in a very low success rate
(8%). The convergence with our proposed fitness function shows a
much more stable pattern. The search achieves convergence within
250 iterations in this test. The success rate reaches 100% using the pro-
posed fitness function.

Similar comparisons (Experiment 1.2) are conducted in three addi-
tional plants as shown in Fig. 10. As indicated in Table 11, the success
 the online strategy (c) Path generated using the hybrid strategy

2. Green: the C-space strategy; Red: the online strategy; Yellow: the hybrid strategy.



Fig. 12. Experiment plant models.
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rates using Ali's fitness function of lifting cases in plants 1 and 3 are very
low (8% or lower). The success rate of the lifting case in plant 2 using
Ali's fitness function is much higher (88%) than in plants 1 and 3. A pos-
sible reason is that, the place position of the lifting target in plant 2 is
higher than the obstacles, making it easy to achieve collision avoidance.
For the lifting case in plant 3 where the obstacles are much higher than
the target pick and place positions, it is more challenging to find valid
paths. Our proposed fitness function is able to achieve nearly 100% suc-
cess rate for all the cases.

Table 12 shows the movement units and number of operation steps
of the result paths using Ali's fitness function and the proposed fitness
function. Although the success rates of the lifting case in plant 2 are
both high using the two fitness functions, the solution qualities are
quite different. The path generated with the proposed fitness function
performs 21 less degrees of luffing while the hoisting height remains
similar. In both plant 1 and plant 2, the proposed fitness function can
produce paths with 3 less operation steps.

The comparisons indicate that the fitness function use by Ali et al.
may not be suitable for the MSPGA framework for single-crane lifting
path planning. The proposed fitness function can achieve significant im-
provement on the success rate of the GA search and in the meantime
better solution qualities (fewer motion units and operation steps). The
improvements are due to three major reasons in our opinion:

(1) The separation of collision avoidance and optimization of path
quality. The fitness value of collision-free paths are much higher
than invalid paths. This enables the valid paths fast conquer the
population;

(2) Taking into consideration of the human operational conformities
and easiness (fewer operation steps involved);

(3) Scaling of the fitness function. Big scaling factors in the fitness
function increase the difference between valid paths, which in-
crease the selection pressure in the population and push the GA
towards convergence.
Table 15
Probabilities of finding feasible solutions under different combinations of reproductive
rates for Experiment 3.1.

rm = 0.05 rm = 0.15 rm = 0.25 rm = 0.40 rm = 0.55 rm = 0.75

rc = 0.05 0.18 0.42 0.62 0.68 0.86 0.94
rc = 0.15 0.12 0.32 0.56 0.76 0.9 0.92
rc = 0.25 0.2 0.38 0.72 0.7 0.82 1
rc = 0.40 0.2 0.36 0.72 0.66 0.88 0.88
rc = 0.55 0.18 0.46 0.6 0.74 0.76 0.72
rc = 0.75 0.12 0.12 0.32 0.32 0.5 0.54
5.2. Validating the hybrid C-space strategy

To elaborate the benefits of our hybrid C-space strategy (hybrid
strategy in short for this section), we apply the proposed algorithm in
a complex industrial site to compare the hybrid strategy with the
other strategies: C-space and online. The C-space strategy uses the 2D
C-space described in [16] and the online strategy uses the analytical
swept frontiers to perform online CCD during the GA search as de-
scribed in Section 4.2. The hybrid strategy uses a 2D C-space to store
precomputed collision information for swinging and luffing, and applies
the analytical swept frontiers for load movements (which reflect the
other two DOFs). Experiment 2 is conducted in a complex plant con-
taining 274,108 vertices and 376,205 triangle faces. With the same set
of experiment setting (Table 13), the average computation time, suc-
cess rates and solution qualities for 100 trial runs are indicated in
Table 14. The hybrid strategy spends only half the planning time of
the online strategy and obtains similar solution qualities. The prepro-
cessing time is also reduced compared with the C-space strategy.
Fig. 11 shows sample result paths generated with the three strategies.
While both the online and hybrid strategies manage to rotate the load
in order to pass through the plant structure, the C-space strategy
needs to pass through the other direction which requires much more
movements.
5.3. Discussion on parameter design

In fact, the selection of parameters, especially the reproduction
rates, affect significantly the performance of the algorithm. Here in
Experiment 3.1 we conduct a statistical study for the reproductive
rates (rc & rm). Using the plant model as shown in Fig. 12, we take
50 samples of execution for each combination of reproductive rates.
We spread the reproduction rates from 0.05 to 0.75. The results, in
terms of fitness value of the final solution and the success rates
Table 16
Average fitness value for collision free results under different combinations of reproduc-
tive rates for Experiment 3.1.

rm = 0.05 rm = 0.15 rm = 0.25 rm = 0.40 rm = 0.55 rm = 0.75

rc = 0.05 2621.57 2641.26 2697.87 2695.51 2669.43 2687.2
rc = 0.15 2583.56 2689.6 2690.29 2695.53 2661.03 2680.24
rc = 0.25 2671.82 2691.26 2690.43 2680.13 2698.68 2695.71
rc = 0.40 2690.81 2698.15 2693.12 2683.36 2687.22 2693.53
rc = 0.55 2676.43 2688.1 2683.17 2668.07 2673.2 2678.88
rc = 0.75 2692.9 2659.97 2673 2684.72 2673.45 2677.55



Fig. 13. Topographic maps of success rates and average fitness values different combinations of reproduction rates in Experiment 3.1.
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(probability of obtaining collision free paths), are illustrated in
Tables 15–16 and Fig. 13. In this particular plant model, the best solu-
tion is achieved with rc = 0.25 and rm = 0.55. Meanwhile, the best
ability of collision avoidance is obtained with the crossover rate and
mutation rate set as 0.25 and 0.75. We come to a conclusion that,
for this particular plant, the best setting of reproduction rates is:
rc = 0.25, rm = 0.55 ~ 0.75.
Table 17
Probabilities of finding feasible solutions under different combinations of reproductive
rates for Experiment 3.2.

rm = 0.05 rm = 0.15 rm = 0.25 rm = 0.40 rm = 0.55 rm = 0.75

rc = 0.05 0.26 0.46 0.64 0.7 0.82 0.86
rc = 0.15 0.14 0.42 0.7 0.82 0.84 0.94
rc = 0.25 0.26 0.64 0.58 0.84 0.96 0.96
rc = 0.40 0.24 0.54 0.7 0.78 0.9 0.98
rc = 0.55 0.26 0.38 0.56 0.66 0.88 0.86
rc = 0.75 0.08 0.44 0.54 0.42 0.46 0.6

Table 18
Average fitness value for collision free results under different combinations of reproduc-
tive rates for Experiment 3.2.

rm = 0.05 rm = 0.15 rm = 0.25 rm = 0.40 rm = 0.55 rm = 0.75

rc = 0.05 2732.36 2816.53 2878.26 2894.7 2852.79 2898.74
rc = 0.15 2873.98 2884.97 2889.7 2912.74 2892.72 2887.05
rc = 0.25 2792.33 2876.66 2872.2 2887.83 2892.21 2888.91
rc = 0.40 2845.68 2844.28 2875.95 2885.69 2879.5 2871.27
rc = 0.55 2797.59 2748.11 2808 2870.67 2871.94 2874.16
rc = 0.75 2841.87 2839.74 2834 2846.18 2832.1 2862.73

Fig. 14. Topographic maps of success rates and average fitness values
But the result above is not necessarily suitable for other plant envi-
ronments.We conducted another experiment (Experiment 3.2).We re-
duce the height of the major obstacles in the previous plant so that the
crane does not need to raise its booms to avoid them (Fig. 12). The ex-
periment is conducted with the same set of parameters and the results
are listed in Tables 17–18 and Fig. 14. From the data we can see that, the
best collision avoidance ability for this occasion is achieved at rc =0.40
and rm = 0.75. The best solution quality is obtained at rc = 0.15 and
rm = 0.40.

In the two experiment cases, we observe similar patterns in the to-
pographic maps. Fig. 13 and Fig. 14 show that larger mutation rates
helps to avoid collisions in the MSPGA search. On the other hand, the
best solution qualities would be obtained in the center areas according
to Figs. 13 and 14. The complexity of the environment between the des-
tinations do affect the shapes of the patterns, especially on the distribu-
tion of solution qualities. It may be possible that, the statistical patterns
can be represented as functions of the complexity of the environment
between the start and end position. Although the performance of the al-
gorithm is somehow dependent on its parameter design, there is a
chance to predict the optimum parameter by the pre-analysis of the
complexity of the plant environment. This might be a future direction
of our investigation.

6. Conclusion

Automatic lifting path planning is an important and challenging pro-
cess in computer-aided lift planning systems. As prior methods are not
suitable for fast and effective lifting path planning in complex 3D envi-
ronments, we propose a new automatic lifting path planning algorithm.
We provide a comprehensive mathematical formulation of the lifting
different combinations of reproduction rates in Experiment 3.2.
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path planningproblemand a customizedMSPGA solver for the specified
optimization problem. Compared to Ali's fitness function, the proposed
fitness function shows great advantage on the success rates. In order to
deal with complex environments, a depth map representation of the
plant model which is suitable for GPU parallelization is proposed.
Based on this representation, an image-space discrete collision detec-
tion algorithmand a swept frontier based continuous collision detection
algorithm are designed and embedded into the GA search. Finally, to
balance the computation time and solution quality, we propose a hybrid
C-space strategy for collision checks. This strategy preserves the good
solution quality of the online strategy and reduces significantly the pre-
processing time of the C-space strategy taking its advantage of runtime
efficiency.

The lifting path planning algorithm is able to handle complex plant
environments and output safe lifting paths highly optimized in terms
of energy cost and human conformity. The result paths are smooth
and easier for human operators to conduct with less operation steps.
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