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a b s t r a c t 

Cellular automata have rich computational properties and provide many models in math- 

ematical and physical processes. In this paper, one of the most commonly used neighbor- 

hood types of two dimensional (2D) cellular automata which is called the Moore neigh- 

borhood in two dimensional integer lattice is considered. We study the characterization 

of 2D linear cellular automata defined by the Moore neighborhood with periodic and null 

boundary conditions over ternary fields. Furthermore, we analyze some results of 2D cel- 

lular automata defined by the rule number 9840NB and finally also present applications to 

error correcting codes and image processing field. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

A cellular automaton (plural cellular automata, abbreviated to CA) is a discrete model studied and applied in many areas

of science. Cellular automata (CAs) have rich computational properties and provide different amazing models in computa-

tion. CAs were first used for modeling various physical and biological processes and especially in computer science. The

study of CAs has received remarkable attention in the last few years [1–7] , because CAs have been widely investigated in

many disciplines with different purposes (e.g., simulation of natural phenomena, pseudo-random number generation, image

processing, analysis of universal model of computations, coding theory, cryptography). 

CAs provide a good source in parallel processing which is used in coding, cryptography and network applications in

general. For instance, CAs computations with secret key is discussed in [8] . CA is also used to design a symmetric key

cryptography system based on Vernam cipher [8] . Furthermore, CA (especially hybrid CA) is used in generating pseudo-

random numbers sequence (PNS) which are applied in the encryption processes. The quality of PNSs highly depends on the

set of applied CA rules and the system is very resistant to attempts of breaking the cryptography key. 

Most of the studies and applications for CA is done for one-dimensional (1D) CA. “The Game of Life” developed by John

H. Conway in the 1960s is an example of a two-dimensional (2D) CA. John von Neumann in the late 40’s and early 50’s

studied CA singular [9] . 2D CA with von Neumann neighborhood has found many applications and been explored in the

literature [10,11] . Recently, 2D CA have attracted much of the interest [7,10,12,13] . Some basic and precise mathematical
∗ Corresponding author. Tel.: +90 5322217013. 
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Fig. 1. 8 elements of the Moore neighborhood surround the center x ij . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

models using matrix algebra built on field Z 2 were reported for characterizing the behavior of two-dimensional nearest

neighborhood linear CAs with null or periodic boundary conditions [2–4,6,11,14,15] . 

In this paper, we investigate the characterization of 2D finite linear CA (shortly, 2D FLCA) with the Moore neighborhood

by using matrix algebra built on Z 3 = { 0 , 1 , 2 } (The set of integers modulo 3). We present and study 2D linear CA with

a new local rule called rule 9840 over ternary fields. This local rule is one of the important rules since it includes all

possible neighbors of radius one. Here, we analyze some results about the rule numbers 9840NB (null boundary) and 9840PB

(periodic boundary). We construct the rule matrix corresponding to the Moore CA. In order to compute the rank of the rule

matrix the corresponding 2D finite Moore CA, by applying elementary row and column operations to the matrix, we obtain

recurrences equations. In the present paper, the properties of two dimensional rules 9840NB and 9840PB over ternary fields

are investigated and the dimension of the kernel is established via some recurrence relations. We examine whether 2D FLCA

with the Moore neighborhood is reversible. Finally, we present two applications of this family to error correcting codes by

extending the original method from binary fields to ternary fields and image processing area. 

The present paper is organized as follows. Section 2 present basic technical details about 2D Moore CA over the ternary

field Z 3 . Reversibility of mathematical model for Moore CA with null boundary case (Rule 9840NB) is given Section 3 . In

Section 4 , an application of error correcting codes of CA is given in details. Application of 2D linear Moore CA in image

processing (for the rules 9840NB, 9840PB) is presented in Section 5 . Finally conclusions of the present study are briefly

summarized in Section 6 . 

2. Two-dimensional CA over the field Z 3 

The 2D finite CA consists of m × n cells arranged in m rows and n columns, where each cell takes one of the values

of the field Z 3 . From now on, we will denote 2D finite CA order to m × n by 2D CA m × n . A configuration of the system

is an assignment of the states to all cells. Every configuration determines a next configuration via a linear transition rule

that is local in the sense that the state of a cell at time (t + 1) depends only on the states of some of its neighbors at the

time t using modulo 3 algebra. For 2D CA nearest neighbors, there are nine cells arranged in a 3 × 3 matrix centering that

particular cell (see [2] for details). 

2.1. Moore neighborhood 

In 2D CAs theory, there are some classic types of neighborhoods, but in this paper we only restrict ourselves to the

special neighbors which is called Moore neighborhood. The Moore neighborhood comprises the eight cells surrounding the

central cell on a two-dimensional square lattice. It is one of the two most commonly used neighborhood types, the other

one is the 4-cell von Neumann neighborhood (see [11] ). The Moore neighborhood was used in the well known Conway’s

Game of Life. It is similar to the notion of 8-connected pixels in computer graphics [12,13,15] . 

In Fig. 1 , we show the Moore neighborhood which comprises eight square cells which surround the center cell x ( i, j ) . The

state x (t+1) 
(i, j) 

of the cell ( i, j )th at time (t + 1) is defined by the local rule function f : (Z 3 ) 
9 → Z 3 as follows: 

x (t+1) 
(i, j) 

= f 
(
x (t) 
(i, j) 

, x (t) 
(i +1 , j) 

, x (t) 
(i +1 , j−1) 

, x (t) 
(i, j−1) 

, x (t) 
(i −1 , j−1) 

, x (t) 
(i −1 , j) 

, x (t) 
(i −1 , j+1) 

, x (t) 
(i, j+1) 

, x (t) 
(i +1 , j+1) 

)
= a 0 x 

(t) 
(i, j) 

+ a 1 x 
(t) 
(i +1 , j) 

+ a 2 x 
(t) 
(i +1 , j−1) 

+ a 3 x 
(t) 
(i, j−1) 

+ a 4 x 
(t) 
(i −1 , j−1) 

+ a 5 x 
(t) 
(i −1 , j) 

+ a 6 x 
(t) 
(i −1 , j+1) 

+ a 7 x 
(t) 
(i, j+1) 

+ a 8 x 
(t) 
(i +1 , j+1) 

( mod 3) , (2.1) 

where a 0 , a 1 , . . . , a 8 ∈ Z 3 . The value of each cell for the next state may not depend upon all nine neighbors. Regarding the

neighborhood of the boundary cells (see [3] for details), two approaches exist: 

• If the boundary cells are connected to 0-state (see Table 1 ), then CA are called NB CA. 
•
 If the boundary cells are adjacent to each other (see Table 3 ), then CA are called PB CA. 
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Table 1 

Null boundary condition in a 2D finite CA 3 × 3 . 

0 0 0 0 0 

0 x (i −1 , j+1) x (i, j+1) x (i +1 , j+1) 0 

0 x (i −1 , j) x ( i, j ) x (i +1 , j) 0 

0 x (i −1 , j−1) x (i, j−1) x (i +1 , j−1) 0 

0 0 0 0 0 

Table 2 

Numbering of rule conventions with respect to neighbors over ternary field (i.e. modulo 3). 

a 6 = e (3 6 = 729) a 7 = a (3 7 = 2187) a 8 = f (3 8 = 6561) 

a 5 = d (3 5 = 243) a 0 (3 0 = 1) a 1 = b (3 1 = 3) 

a 4 = h (3 4 = 81) a 3 = c (3 3 = 27) a 2 = g (3 2 = 9) 

Table 3 

Periodic boundary condition in a 2D finite CA 3 × 3 . 

z (i +1 , j−1) z (i −1 , j−1) z (i, j−1) z (i +1 , j−1) z (i −1 , j−1) 

z (i +1 , j+1) z (i −1 , j+1) z (i, j+1) z (i +1 , j+1) z (i −1 , j+1) 

z (i +1 , j) z (i −1 , j) z ( i, j ) z (i +1 , j) z (i −1 , j) 

z (i +1 , j−1) z (i −1 , j−1) z (i, j−1) z (i +1 , j−1) z (i −1 , j−1) 

z (i +1 , j+1) z (i −1 , j+1) z (i, j+1) z (i +1 , j+1) z (i −1 , j+1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If the same rule is applied to all of the cells in ever evaluation, then those CA are called uniform or regular. This paper

deals with uniform CA with both null and periodic boundary conditions. 

In general, the value of each cell for the next state may not depend upon all its nine neighbors. The sum of the neigh-

boring cells on which each cell value is dependent is called the rule number of 2D CA over the field Z 3 . The conventional

method of defining a rule number for a linear rule in 2D CA can be explained by Tables 1 and 2 . 

where x (k,h ) ∈ Z 3 . We can write the following table. 

where for i = 0 , . . . , 8 , a i ∈ Z 

∗
3 = Z 3 / { 0 } , that is a, b, c, d, e, f, g, h ∈ Z 

∗
3 . In Table 2 , the center box represents the current

cell and other boxes are eight neighborhoods of that cell. While extending and developing the theory for ternary field CA,

we adopt similar notations as in binary CA in order to make the literature fluent and our paper more readable (see [3–5] ).

If the next state of a cell depends on the current state of itself and its left neighbor, it is referred to Rule 244 ( = Rule 1

+ Rule 243), since it is dependent only on two cells. If the next state depends on all its Moore neighbors, it is referred

to Rule 9840 = Rul e 3 1 + Rul e 3 2 + · · · + Rul e 3 8 as seen in Table 2 , since 9840 = 3 1 + 3 2 + · · · + 3 8 . Hence we obtain that

linear CA rule of Moore (Rule 9840) is summation of all nearest rules. All other linear rules can be obtained in the similar

way. Periodic boundary condition in a 2D finite CA 3 × 3 is obtained by means of the following table: 

Now, we can characterize the Rule 9840 null boundary condition. In order to characterize the corresponding rule, first

we represent each state matrix of size m × n as a column vector of size mn × 1. 

Hence, the problem of finding a rule matrix of the corresponding rule is taken from the space of m × n matrices to the

space of Z 

mn 
3 

. In order to accomplish this goal we define the following map 

� : M m ×n (Z 3 ) → M mn ×1 (Z 3 ) , 

which takes the tth state X 

( t ) given by ⎛ ⎜ ⎜ ⎜ ⎝ 

x (t) 
11 

x (t) 
12 

· · · x (t) 
1 n 

x (t) 
21 

x (t) 
22 

· · · x (t) 
2 n 

. . . 
. . . · · ·

. . . 

x (t) 
m 1 

x (t) 
m 2 

· · · x (t) 
mn 

⎞ ⎟ ⎟ ⎟ ⎠ 

−→ X 

(t) := 

(
x (t) 

11 
, x (t) 

12 
, . . . , x (t) 

1 n 
, . . . , x (t) 

m 1 
, . . . , x (t) 

mn 

)T 
, (2.2)

where the superscript T denotes the transpose and M m ×n (Z 3 ) is the set of matrices with entries {0, 1, 2}. 

Thus, local rules will be assumed to act on Z 

mn 
3 

rather than M m ×n (Z 3 ) . The matrix 

C (t) = 

⎛ ⎜ ⎝ 

x (t) 
11 

. . . x (t) 
1 n 

. . . 
. . . 

. . . 

x (t) 
m 1 

. . . x (t) 
mn 

⎞ ⎟ ⎠ 

, 

is called the configuration matrix (or information matrix) of the 2-D finite CA at time t and C (0) is initial information matrix

of the 2-D finite CA. Therefore, one can conclude that �(C (t) ) = X (t) . 
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Using the identification (2.2) , we can define 

(M 9840 NB ) mn ×mn X 

(t) = X 

(t+1) . 

We do not include a detailed proof of the following theorem which gives the rule matrix of CA. The proof is obtained by

determining the image of the basis elements of the space Z 

mn 
3 

under the CA. These images contribute to the columns of the

rule matrix. We illustrate this in Example 2.3 . 

2.2. Transition rule matrix for null boundary: M 9840 NB 

Let a, b, c, d, e, f, g, h ∈ Z 

∗
3 = Z 3 \ { 0 } , m ≥ 2 and n ≥ 2. Then, the rule matrix M 9840 NB corresponding to the 2D finite

Moore CA m × n with NB is given by: 

(M 9840 NB ) mn ×mn = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

S P 0 · · · · · · 0 0 

K S P · · · · · · 0 0 

0 K S · · · · · · 0 0 

· · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 K S P 
0 0 · · · · · · 0 K S 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (2.3) 

where each submatrix is of order n × n , and 

S n ×n = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 b 0 0 · · · 0 0 

d 0 b 0 · · · 0 0 

0 d 0 b · · · 0 0 

· · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 d 0 b 
0 0 · · · · · · 0 d 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

P n ×n = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

c g 0 0 · · · 0 0 

h c g 0 · · · 0 0 

0 h c g · · · 0 0 

· · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 h c g 
0 0 · · · · · · 0 h c 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

K n ×n = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

a f 0 0 · · · 0 0 

e a f 0 · · · 0 0 

0 e a f · · · 0 0 

· · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 e a f 
0 0 · · · · · · 0 e a 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (2.4) 

Remark 2.1. In M 9840 NB , if the submatrix S n × n is considered as S n × n ( b, d ), then the submatrices P and K can be written

as P n ×n = cI n ×n + S n ×n (g, h ) , K n ×n = aI n ×n + S n ×n ( f, e ) . Hence the rule matrix of M 9840 NB is expressed in terms of S n × n (., .)

type submatrices. 

Remark 2.2. If we just consider the von Neumann neighborhood CAs in Table 2 , in other words when we choose e = f =
g = h = 0 in our model, then the characterization of CA over ternary fields was given in [16] . 

Example 2.3. If we take m = 3 and n = 3 , then we get the rule matrix M NB of order 9. We consider a configuration of size

3 × 3 with null boundary: 

0 0 0 0 0 

0 x 11 x 12 x 13 0 

0 x 21 x 22 x 23 0 

0 x 31 x 32 x 33 0 

0 0 0 0 0 

. 

Now, we are going to apply rule 9840 NB . We get a new configuration under this transformation which is 

y 11 = cx 21 + bx 12 + gx 22 

y 12 = dx 11 + cx 22 + bx 13 + gx 23 + hx 21 

y 13 = dx 12 + cx 23 + hx 22 

y 21 = ax 11 + cx 31 + bx 22 + f x 12 + gx 32 

y 22 = ax 12 + dx 21 + cx 32 + bx 23 + ex 11 + f x 13 + gx 33 + hx 31 

y 23 = ax 13 + dx 22 + cx 33 + ex 12 + hx 32 

y 31 = ax 21 + bx 32 + f x 22 

y 32 = ax 22 + dx 31 + bx 33 + ex 21 + f x 23 

y 33 = ax 23 + dx 32 + ex 22 . 
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Hence, we obtain the rule matrix M NB of order 9 which is 

M 9840 NB = 

( 

S 3 (b, d) cI + S 3 (g, h ) 0 3 

aI + S 3 ( f, e ) S 3 (b, d) cI + S 3 (g, h ) 

0 3 aI + S 3 ( f, e ) S 3 (b, d) 

) 

9 ×9 

, 

where each submatrix is of order 3 × 3, and 

S 3 ×3 (b, d) = 

( 

0 b 0 

d 0 b 
0 d 0 

) 

, S 3 ×3 (g, h ) = 

( 

0 g 0 

h 0 g 
0 h 0 

) 

, S 3 ×3 ( f, e ) = 

( 

0 f 0 

e 0 f 
0 e 0 

) 

. 

2.3. Transition rule matrix for periodic boundary: M 9840 PB 

Let a, b, c, d, e, f, g, h ∈ Z 

∗
3 . For any m > 2 and n > 2 the rule matrix corresponding to the 2D finite Moore CA m × n with

periodic boundary is given by: 

(M 9840 PB ) mn ×mn = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

S ∗ P ∗ 0 · · · · · · 0 K 

∗

K 

∗ S ∗ P ∗ · · · · · · 0 0 

0 K 

∗ S ∗ · · · · · · 0 0 

· · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 K 

∗ S ∗ P ∗

P ∗ 0 · · · · · · 0 K 

∗ S ∗

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (2.5)

where each block submatrix is of order n × n , and 

S ∗n ×n = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 b 0 · · · · · · 0 d 
d 0 b · · · · · · 0 0 

0 d 0 · · · · · · 0 0 

· · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 d 0 b 
b 0 · · · · · · 0 d 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

P ∗n ×n = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

c g 0 0 · · · 0 h 

h c g 0 · · · 0 0 

0 h c g · · · 0 0 

· · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 h c g 
g 0 · · · · · · 0 h c 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

K 

∗
n ×n = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

a f 0 0 · · · 0 e 
e a f 0 · · · 0 0 

0 e a f · · · 0 0 

· · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 e a f 
f 0 · · · · · · 0 e a 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (2.6)

Furthermore, if we define the new auxiliary matrices T ∗
1 

and T ∗
2 
, respectively, as follows: 

(T ∗1 ) n ×n = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 1 0 0 · · · 0 0 

0 0 1 0 · · · 0 0 

0 0 0 1 · · · 0 0 

· · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · 0 0 1 

1 0 · · · · · · · · · 0 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (2.7)

and 

(T ∗2 ) n ×n = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 0 · · · · · · 0 1 

1 0 0 · · · · · · 0 0 

0 1 0 · · · · · · 0 0 

· · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 1 0 0 

0 0 · · · · · · 0 1 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (2.8)

then S ∗ = dT ∗
2 

+ bT ∗
1 

. 

Remark 2.4. In M 9840 PB , let us consider the submatrix S ∗n ×n as S ∗n ×n (b, d) , and then the submatrices P ∗n ×n and K 

∗
n ×n can be

written as 

P ∗n ×n = cI n ×n + S ∗n ×n (g, h ) , K 

∗
n ×n = aI n ×n + S ∗n ×n ( f, e ) . 

Hence the rule matrix of M 9840 PB can be obtained in terms of S ∗n ×n (., . ) type submatrices. 
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Example 2.5. In order to illustrate the previous theorem, we take m = 3 and n = 3 and consider a periodic boundary matrix

of size 3 × 3. 

x 33 x 31 x 32 x 33 x 31 

x 13 x 11 x 12 x 13 x 11 

x 23 x 21 x 22 x 23 x 21 

x 33 x 31 x 32 x 33 x 31 

x 13 x 11 x 12 x 13 x 11 . 

After the application of rule 9840 PB , we get a new configuration under a transformation denoted by M PB which is 

y 11 = ax 31 + dx 13 + cx 21 + bx 12 + ex 33 + f x 32 + gx 22 + hx 23 

y 12 = ax 32 + dx 11 + cx 22 + bx 13 + ex 31 + f x 33 + gx 23 + hx 21 

y 13 = ax 33 + dx 12 + cx 23 + bx 11 + ex 33 + f x 31 + gx 21 + hx 22 

y 21 = ax 11 + dx 23 + cx 31 + bx 22 + ex 13 + f x 12 + gx 32 + hx 33 

y 22 = ax 12 + dx 21 + cx 32 + bx 23 + ex 11 + f x 13 + gx 33 + hx 31 

y 23 = ax 13 + dx 22 + cx 33 + bx 21 + ex 12 + f x 11 + gx 31 + hx 32 

y 31 = ax 21 + dx 33 + cx 11 + bx 32 + ex 23 + f x 22 + gx 12 + hx 13 

y 32 = ax 22 + dx 31 + cx 12 + bx 33 + ex 21 + f x 23 + gx 13 + hx 11 

y 33 = ax 23 + dx 32 + cx 13 + bx 31 + ex 22 + f x 21 + gx 11 + hx 12 . 

Hence, we get the rule matrix M PB of order 9 as follows: 

M 9840 PB = 

( 

S ∗3 (b, d) cI + S ∗3 (g, h ) aI + S ∗3 ( f, e ) 

aI + S ∗3 ( f, e ) S ∗3 (b, d) cI + S ∗3 (g, h ) 

cI + S ∗3 (g, h ) aI + S ∗3 ( f, e ) S ∗3 (b, d) 

) 

9 ×9 

, 

where each submatrix is of order 3 × 3, and 

S ∗3 ×3 (b, d) = 

( 

0 b d 
d 0 b 
b d 0 

) 

, S ∗3 ×3 (g, h ) = 

( 

0 g h 

h 0 g 
g h 0 

) 

, S ∗3 ×3 ( f, e ) = 

( 

0 f e 
e 0 f 
f e 0 

) 

. 

A special CA not included in the previous theorem is the CA m = 2 and n = 2 which gives the rule matrix M PB of order

4. In order to determine this particular CA, we consider the following 2 × 2 matrix: 

x 22 x 21 x 22 x 21 

x 12 x 11 x 12 x 11 

x 22 x 21 x 22 x 21 

x 12 x 11 x 12 x 11 . 

By applying rule 9840 PB , we get a new configuration under a transformation denoted by M PB which is given by 

y 11 = (a + c) x 21 + (b + d) x 12 + (e + f + g + h ) x 22 

y 12 = (a + c) x 22 + (b + d) x 11 + (e + f + g + h ) x 21 

y 21 = (a + c) x 11 + (b + d) x 22 + (e + f + g + h ) x 12 

y 22 = (a + c) x 12 + (b + d) x 21 + (e + f + g + h ) x 11 . 

We get the rule matrix M PB of order 4 as follows: 

M 9840 PB = 

⎛ ⎜ ⎝ 

0 b + d a + c e + f + g + h 

b + d 0 e + f + g + h a + c 

a + c e + f + g + h 0 b + d 
e + f + g + h a + c b + d 0 

⎞ ⎟ ⎠ 

4 ×4 

= 

(
(b + d) I ∗2 (a + c) I 2 + (e + f + g + h ) I ∗2 

(a + c) I 2 + (e + f + g + h ) I ∗2 (b + d) I ∗2 

)
4 ×4 

, 

where I ∗
2 

= ( 0 1 
1 0 

) . Hence, we have the following result. 

Lemma 2.6. Assuming the settings of rule matrices 9840PB with m = 2 and n = 2 , we have 

(M 9840 PB ) 4 ×4 = 

(
(b + d) I ∗2 (a + c) I 2 + (e + f + g + h ) I ∗2 

( a + c) I 2 + (e + f + g + h ) I ∗2 ( b + d) I ∗2 

)
. 

The remaining CA not considered above are listed below as special cases. 
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Lemma 2.7. Assuming the settings of rule matrices 9840PB with m ≥ 3 and n = 2 , we have 

(M 9840 PB ) m 2 ×m 2 = 

⎛ ⎜ ⎜ ⎜ ⎝ 

(b + d) I ∗ cI + (g + h ) I ∗ · · · 0 aI + (e + f ) I ∗

aI + (e + f ) I ∗ (b + d) I ∗ · · · 0 0 

· · · · · · · · · · · · · · ·
0 · · · · · · (b + d) I ∗ cI + (g + h ) I ∗

cI + (g + h ) I ∗ 0 · · · aI + (e + f ) I ∗ (b + d) I ∗

⎞ ⎟ ⎟ ⎟ ⎠ 

, (2.9)

where I and I ∗ are matrices of size 2. 

Lemma 2.8. Assuming the settings of rule matrices 9840PB with m = 2 and n ≥ 3, we have 

(M 9840 PB ) 2 n ×2 n = 

(
S ∗(b, d) (a + c) I + S ∗( f + g, e + h ) 

( a + c) I + S ∗( f + g, e + h ) S ∗( b, d) 

)
. (2.10)

We note that having established all primary rules, by using linearity we can easily obtain the rule matrices of all other

rules in a similar way. 

3. Reversibility of Moore CA with null boundary 

In this section, we characterize 2D linear CA (LCA) with NB determined by Moore rule (i.e. Rule 9840NB). For finite CA,

in order to obtain the inverse of a 2D finite LCA many authors [3–5,16,17] have used the rule matrices. Since we already

have found the rule matrix M 9840 NB corresponding to the 2D finite CA, by using (2.3) , we can state the following relation

between the column vectors X 

( t ) and the rule matrix M 9840 NB : 

X 

(t+1) = M 9840 NB X 

(t) ( mod 3) . 

If the rule matrix M 9840 NB is non-singular, then we have 

X 

(t) = (M 9840 NB ) 
−1 X 

(t+1) ( mod 3) . 

Thus, in this paper our main aim is to study whether the rule matrix M 9840 NB in (2.3) is invertible or not. It is well known

that the 2D finite CA is reversible if and only if its rule matrix M 9840 NB is non-singular (see [3–5,16,17] for details). If the

rule matrix M 9840 NB has full rank, then it is invertible, so the 2D finite CA is reversible, otherwise it is irreversible. 

Remark 3.1. For simplicity, we let 

S n (x, y, z) = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

y x 0 · · · 0 0 

z y x · · · 0 0 

0 z y x · · · 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

0 · · · 0 0 z y 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

n ×n 

. 

Then the rule matrix becomes 

(M 9840 NB ) mn ×mn = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

S P 0 · · · · · · 0 0 

K S P · · · · · · 0 0 

0 K S · · · · · · 0 0 

· · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 K S P 
0 0 · · · · · · 0 K S 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

i.e. S = S n (b, 0 , d) , K = S n ( f, a, e ) and P = S n (g, c, h ) . 

The following theorem presents an algorithm for computing the rank of the rule matrix (2.3) which the case K =
S n ( f, a, e ) is an invertible matrix. 

Theorem 3.2. If K = S n ( f, a, e ) is an invertible matrix, then the rank of the rule matrix (2.3) equals to (m − 1) n + rank (q 2 m −2 )

where 

q 0 = S, q 1 = P 

q 2 k = −q 2 k −1 K 

−1 S + 2 e f q 2 k −2 , for k ≥ 1 

q = −q K 

−1 P, for k ≥ 1 . 
2 k +1 2 k −2 
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Proof. For m = 4 we give a sketch of the proof. Let us consider the matrix 

M 9840 NB = 

⎛ ⎜ ⎝ 

S P 0 0 

K S P 0 

0 K S P 
0 0 K S 

⎞ ⎟ ⎠ 

. 

Since the matrix K is chosen as an invertible one, we multiply the second row block by −SK 

−1 = −q 0 K 

−1 and add it to the

first row block. Then, we have 

≈

⎛ ⎜ ⎝ 

0 q 2 = −SK 

−1 S + P q 3 = −SK 

−1 P 0 

K S P 0 

0 K S P 
0 0 K S 

⎞ ⎟ ⎠ 

. 

Next, multiply the third row block by −(−SK 

−1 S + P ) SK 

−1 and add it to the first row block. Then, 

≈

⎛ ⎜ ⎝ 

0 0 q 4 = −(−SK 

−1 S + P ) K 

−1 S − SK 

−1 P q 5 = −(−SK 

−1 S + P ) K 

−1 P 

K S P 0 

0 K S P 
0 0 K S 

⎞ ⎟ ⎠ 

= 

⎛ ⎜ ⎝ 

0 0 q 4 = −q 2 K 

−1 S + q 3 q 5 = −q 2 K 

−1 P 

K S P 0 

0 K S P 
0 0 K S 

⎞ ⎟ ⎠ 

. 

Finally, multiply the last row block by −q 4 K 

−1 and add it to the first row block. Then, 

≈

⎛ ⎜ ⎝ 

0 0 0 −q 4 K 

−1 S + q 5 = q 6 
K S P 0 

0 K S P 
0 0 K S 

⎞ ⎟ ⎠ 

. 

Since we consider that the matrix K is an invertible one, the sub matrix ( 
K S P 
0 K S 
0 0 K 

) has full rank, hence the desired result is

obtained. �

Remark 3.3. Similar theorem can be written for the case P is an invertible matrix as stated in Theorem 3.2 . In other words,

if P is an invertible matrix, then by considering the transpose matrix of M 9840 NB we easily see that the formula holds as in

Theorem 3.2 . 

Now, the theorem does not say anything whenever both K and P are non-invertible. In order to determine this CA, we

are going to study the problem of invertibility of these type of trigonal matrices. 

For short we adopt K n = S n ( f, a, e ) . Let K 1 = a,K 2 = ( a f 
e a 

) , and K 3 = ( 
a f 0 
e a f 
0 e a 

) , and so on. Here we compute the determinant

of K n = S n ( f, a, e ) as follows. 

Theorem 3.4. Let us consider the following trigonal matrix K n , 

K n = S n ( f, a, e ) = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

a f 0 · · · 0 0 

e a f · · · 0 0 

0 e a f · · · 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

0 · · · 0 0 e a 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

For i ≥ 0, then we have the following determinant identities. 
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det (K 24 i +1 ) = | K 24 i +1 | = a | K 24 i +9 | = 2 e fa | K 24 i +17 | = 2 a + e fa 

| K 24 i +2 | = 1 + 2 e f | K 24 i +10 | = 2 | K 24 i +18 | = e f 

| K 24 i +3 | = a + e fa | K 24 i +11 | = 0 | K 24 i +19 | = 2 e fa + 2 a 

| K 24 i +4 | = 2 | K 24 i +12 | = e f | K 24 i +20 | = 1 + 2 e f 

| K 24 i +5 | = 2 e fa + a | K 24 i +13 | = e fa | K 24 i +21 | = 2 a 

| K 24 i +6 | = 1 | K 24 i +14 | = e f + 2 | K 24 i +22 | = 2 e f 

| K 24 i +7 | = 2 e fa + 2 a | K 24 i +15 | = a + e fa | K 24 i +23 | = 0 

| K 24 i +8 | = e f + 2 | K 24 i +16 | = 2 e f | K 24 i | = 1 . 

Proof. By observing that | K 1 | = a, | K 2 | = 1 + 2 e f, | K 3 | = a + ae f, also 

| K 4 | = 

∣∣∣∣∣∣∣
a f 0 0 

e a f 0 

0 e a f 
0 0 e a 

∣∣∣∣∣∣∣ = a 

∣∣∣∣∣a f 0 

e a f 
0 e a 

∣∣∣∣∣ − f 

∣∣∣∣∣e f 0 

0 a f 
0 e a 

∣∣∣∣∣ = a | K 3 | + 2 e f | K 2 | . 

Then in general we obtain the following identity 

| K n | = a | K n −1 | + 2 e f | K n −2 | f or n ≥ 3 . 

Thus we get the desired result iteratively using the above identity. �

Remark 3.5. In the computations above theorem, we study the CA in the ternary case Z 3 . Since a, e, f � = 0, the fact a 2 =
e 2 = f 2 = 1 is used. It is also see from the theorem that some values of a, e, f , the determinant | K n | is zero. For example, let

us choose a = 1 , e = 2 , f = 1 ; then | K 24 i +3 | = a + e fa = 0(mod 3) . The open problem is finding the rank of M R whenever K i ’s

are not invertible. So we have a partial answer so far. This will be studied later on. 

Finally we obtain the following result for the reversibility of K n over the ternary field Z 3 . 

Lemma 3.6. The trigonal matrix 

K n = S n ( f, a, e ) = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

a f 0 · · · 0 0 

e a f · · · 0 0 

0 e a f · · · 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

0 · · · 0 0 e a 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

is an invertible matrix for all values a, e, f ∈ Z 

∗
3 , if n ≡ j mod 24 , where j ∈ {0, 1, 4, 6, 9, 10, 12, 13, 16, 18, 21, 22} . 

Remark 3.7. An important note that Lemma 3.6 states that K n is an invertible matrix for some special n and any values of a,

e, f . But of course some values n not listed in Lemma 3.6 and specific a, e, f ; the trigonal matrix K n can be a invertible one.

For example, choose n = 5 and a = 1 , e = 2 , f = 1 ; then | K 24 i +5 | = a + 2 e fa = 2(mod 3) which is different from zero. This

shows that one can construct invertible K n some special a, e, f and unless n = 24 i + 11 , 24 i + 23 for i ≥ 0 (see Theorem 3.4 ).

By using the result given in Lemma 3.6 , we are able to determine the rank of the rule matrix given in (2.3) corresponding

to two dimensional ternary CAs with null boundary. Periodic boundary case can be analyzed in the same way. Here we

omitted this for giving two applications. 

4. An application to error correcting codes 

In this section, an application of this family of CAs to error correcting codes (ECC) is presented. In order to present the

coding algorithm, we first introduce some well known basics on algebraic coding theory. Next, we present the encoding

and decoding method which is a generalization of the original application over binary CA [18] . Finally, we build a bit error

correcting code from this family of CA. 

1D CAs that provide bit error correcting codes was first proposed by Chowdhury in 1994 [18] . Chowdhury et al. studied

CA based ECC over binary fields. In this study we extend CA based bit error correcting codes (CA-ECC) over ternary fields.

CA based bit error correcting codes have two main advantages if compared to standard linear coding. The first advantage is

that without listing all syndromes as in the classical CA decoding is possible only in two steps. The second advantage is that

the structure of CAs allows parallel computing which leads to faster computations and simpler hardware implementations. 

It is well-known that V = Z 

n 
3 

is a Z 3 -vector space. 

Definition 4.1. A subspace C of V is called a linear code of length n . The matrix with rows consisting of the basis of C is

called a generator matrix of the code. The elements of C are called codewords. 
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Error correcting codes are applied in digital media. An information is encoded in order to be able to detect errors or

even correct them. An information of length k is encoded to an n tuple regarded as an element (codeword) of C . After the

transmission process if a linear code can detect and correct one error then the code is called one error correcting code. The

number of nonzero entries of a vector v in V is called the Hamming weight of v . The smallest nonzero weight among all

codewords of a linear code C is called the minimum Hamming weight of C . A linear code C of length n , dimension k and

minimum Hamming weight d is represented by [ n, k, d ]. For a detailed information the reader can refer to [19] . These three

parameters play an important role in error correcting codes. Especially the minimum Hamming weight of a code is very

crucial. 

Theorem 4.2 [19] . If C is a linear code with minimum Hamming weight d, then C can correct up to 	 d−1 
2 
 errors. 

Let M R be n × n nonsingular transition matrix of 2D Moore CA. Suppose that there exists 1 ≤ k ≤ s , (k, s ∈ Z 

+ and M 

s 
R 

=
I n ) such that G = [ I n | M 

k 
R 

] ( I n , n × n identity matrix) generates a linear code that corrects at least one error. 

First we present the encoding process and the decoding process via CA of a single bit error correcting code: 

Encoding. Let I = (i 1 , i 2 , . . . , i n ) ∈ Z 

n 
3 

be information vector to be encoded, where n is the rank of nonsingular transition

matrix. 

Then the information vector is encoded as the codeword CW = (I , M 

k 
R 

[ I ]) = (i 1 , i 2 , . . . , i n , c n +1 , c n +2 , . . . , c 2 n ) . ( C = M 

k 
R 

[ I] =
(c n +1 , c n +2 , . . . , c 2 n ) is the check vector). 

Decoding. Let CW 

′ = (I ′ , M 

k 
R 

[ I]) = (i ′ 
1 
, i ′ 

2 
, . . . , i ′ n , c ′ n +1 

, c ′ 
n +2 

, . . . , c ′ 
2 n 

) be the received word, then we compute the syndrome vec-

tor as follows: 

S = 2 M 

k 
R 

[ I ′ ] � C ′ . 
Case 1. One error occurs in the information bits, then the syndrome of information part is: 

S n = 2 M 

k 
R 

[ I ′ ] � C ′ and M 

−k 
R 

[ S n ] is the error vector of information part. In this CA the syndrome vector of check part S c is

all zero vector. Then the error vector is 

E = (M 

−k 
R 

[ S n ] , S c ) = (M 

−k 
R 

[ S n ] , 00 . . . 0) . 

Case 2. If one error occurs in the check part, then the syndrome of the check part (at the same time error vector of

check part) is 

S c = M 

k 
R 

[ I ′ ] � 2 C ′ . In this case, the syndrome vector of information part S n is the all zero vector, then the error vector is 

E = (M 

−k 
R 

[ S n ] , S c ) = (00 . . . 0 , M 

k 
R 

[ I ′ ] � 2 C ′ ) . 
Now we present an example of this family CA: 

Example 4.3. Let a = c = 2 and b = d = e = g = f = 1 ∈ Z 

∗
3 
, then the rule matrix of M 9840 PB is 

M 9840 PB = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 1 1 2 1 1 2 1 1 

1 0 1 1 2 1 1 2 1 

1 1 0 1 1 2 1 1 2 

2 1 1 0 1 1 2 1 1 

1 2 1 1 0 1 1 2 1 

1 1 2 1 1 0 1 1 2 

2 1 1 2 1 1 0 1 1 

1 2 1 1 2 1 1 0 1 

1 1 2 1 1 2 1 1 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

9 ×9 

. 

For k = 2 , the matrix G = 

[
I 9 | M 

2 
R 

]
generates a [ 18 , 9 , 4 ] 3 − cod e with d ( C ) = 4 . Hence this code can correct only one error. 

I = 111111111 ⇒ C = M 

2 
R [ I ] = 111111111 ⇒ CW = 111111111111111111 . 

Case 1. One error occurs in the information bits. Let the received word be CW 

′ = 1 ̂  0 1111111111111111 = 

(
I ′ | C ′ ). Then the

syndromes are computed as: 

S = 2 M 

2 
R 

[
I ′ 
]

� C ′ = 111101101 � 111111111 = 222212212 

S 9 = S 9 � S c = 222212212 . 

Therefore, the error pattern of information part is 

I e = M 

−2 
R [ S 9 ] = 010 0 0 0 0 0 0 . 

The correct information and check bits are computed as: 

I = I ′ � I e = 101111111 � 010 0 0 0 0 0 0 = 111111111 

C = C ′ = 111111111 . 

Then, the error vector is E = 010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 
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Fig. 2. Application of Moore (Rule 9840) rule over null and periodic boundaries (NB, PB) after 9 iterations of the first image. 

 
Case 2. One error occur in the check part. Let the received word be CW 

′ = 1111111111111111 ̂  0 1 = 

(
I ′ | C ′ ). Then the syn-

dromes are computed as: 

S c = M 

2 
R 

[
I ′ 
]

� 2 C ′ = 111111111 � 222222202 = 0 0 0 0 0 0 010 

S 9 = 0 0 0 0 0 0 0 0 0 . 

The error pattern of information and check parts are 

I e = M 

2 
R [ S 9 ] = 0 0 0 0 0 0 0 0 0 

C e = S c = 0 0 0 0 0 0 010 . 



8028 S. Uguz et al. / Applied Mathematical Modelling 40 (2016) 8017–8032 

Fig. 3. Application of Moore (Rule 9840) rule over null and periodic boundaries (NB, PB) after 9 iterations of the first image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

respectively. The correct check bits are computed as: 

C = C ′ � C e = 111111101 � 0 0 0 0 0 0 010 = 111111111 . 

Hence the error vector is E = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 010 . 

5. An application to image processing area 

It is known that cellular automata (CA) can be applied to several basic image processing problems due to their impor-

tance of lattice structure [7] . It is also known that the advantage of using CA is its simplicity of structure that enables fast

implementation on various kinds of devices such as VLSI, FPGA and GPU devices. Hence it is seen that CA should be well-

suited theory for image processing areas and applications. The typical pattern generation in the sense of image processing

algorithm models using 2D CA can be shown in Figs. 2 –6 . These algorithms given as a matrix rules in the preceding section

can be used for several applications in addition to edge detection, including noise suppression, thinning, and convex hull

construction [7,12,15,20–23] . As mentioned with details in the introduction, CA provides simple discrete mathematical mod-

els for many physical, biological, and computational systems. Even though it has simple construction, CA are shown to be

capable of complicated behavior and to generate complex patterns with some universal features (see Figs. 2 –6 ). From the

simple initial configurations, it will be seen that the generated patterns could be self replicating [21] ( Figs. 2 –6 ). 

Generation of self replicating patterns are one of the interesting topics and research areas in non-linear science and tech-

nology. Pattern generation study is an important process of transforming copies of the seed image on the array (1D), plane

(2D) or space (3D) to create the complete repeating pattern model with no overlaps and blank [24–26] . These generated

patterns have some significant mathematical properties that give a way generating algorithm possible (such as 9-iteration

in Figs. 2 –6 ). Hence a cellular automaton present a good algorithmic approach used for pattern generation models in the

literature. 

Self replicating pattern programs begin with John von Neumann’s studies [27] . Though it is not apparent at the first

glance, cellular automata exhibit a wide variety of behaviors, i.e. self organization, chaotic behavior, pattern generation and

fractals. Here one can notice from the visual appearance of the figures, the cases of self organization, pattern formation, and

fractals are observed (see Rule 9840 in Figs. 2 –5 ). Automaton program devised by von Neumann is an example of trivial

self replication program. These kind of self replication procedures are easily implemented in many different programming
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Fig. 4. Application of Moore (Rule 9840) rule over null and periodic boundaries (NB, PB) after 9 iterations of the first image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

language. In mathematics fractals are typically self replicating patterns, where self replicating means they are the same from

near as from far. Let us look closely at these types of patterns in Figs. 2 –6 . 

Producing algorithmic approach for self replicating patterns of digital images is sometimes difficult procedure. However

one can face with many difficulties in producing and developing tiling algorithms, i.e. providing simple and applicable al-

gorithm to designate very complicated complex patterns model. Evolution from simple seed image in 2D cellular automata

may provide self replicating patterns with complicated boundaries (null and periodic). The approach mentioned here give

to accurate algorithm for producing many different patterns. 

5.1. Moore (9840NB and 9840PB) CA over ternary field Z 3 

In the present paper we use uniform 2D linear CA with the nearest eight neighborhoods (see Fig. 1 ) to generate self

replicating patterns of digital images. After constructing 2D linear CA rules with null and periodic boundaries in image

processing process, we take a ternary matrix of size 100 × 100. Note that the size of image matrix can be chosen to be

larger, but due to the computation limits the sizes are reasonable, we encode each element of the matrix to a unique pixel

on the screen (using MATLAB codes), and it is colored a pixel white for 0, red for 1, black for 2 for the each matrix elements.

Also we choose another initial image whose size is less than (30 × 30) for which pattern is to be generated and put it in

the center of the ternary matrix of size 100 × 100. Here we called the initial image within the first image as a seed image .

This is the way, how the image is put within the ternary area of (100 × 100) matrix pixels. To compare with respect to the

different boundary conditions, it is applied null and periodic boundary cases to the image. After then it is applied 2D linear

CA rules on (100 × 100) image matrix and each time the rule is implemented using the varied image matrix and a new

image is obtained again. In the present model, there exists three states, i.e. black, white and red, are used to represent the

state of cells. However the pattern can be seen as the developing and evolving black, red and white patterns. Hence it can

be given different colors to the patterns by using varied type graphics programme packages. From the figures, it is seen that

the rules other than the basic fundamental rules produce many alternative patterns of the given seed image. Figs. 2 –6 shows
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Fig. 5. Application of Moore (Rule 9840) rule over null and periodic boundaries (NB, PB) after 9 iterations of the first image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

some typical examples of patterns generated by the evolution of 2D linear cellular automata from initial image containing

a single nonzero seed image. 

This is the case in which the seed image is not exceeding 30 percentage of the display matrix. One can seen from the

figures that the self replicating and self similar patterns could generate only when number of repetition is t = 9 . This gives

how the image is put inside in area of (100 × 100) matrix pixels. Here we apply 2D linear CA rules with null and periodic

boundaries on (100 × 100) image matrix and every time the rule is implemented to obtain a new image. Hence we get the

Figs. 2 –6 . 

Remark 5.1. From observation of the Figs. 2 –6 , it can be seen that the boundary conditions has not enough effect (i.e. the

evolving images are all same with respect to null and periodic boundaries) for the special case seed image smaller than 30

percentage of the displayed matrix. When we take big number of iterations and big seed image larger than 30 percentage

of the display matrix should be considered for the next works. Our forthcoming efforts will be this direction. 

Remark 5.2. It is seen that Fig. 5 is quite interesting to comment about the replication of seed image. It seems as emergence

of fractal structure after some fixed iterations. An important note that the 8-fold replicated pattern at t = 9 Fig 5 can be

produced by using a seed pattern for further replication on a larger lattice, just considered for the case seed image smaller

than 30 percentage of the displayed matrix. Then we can conjecture that the same fixed number of replicates would be

achieved again in the same number of iterations (i.e. t = 9 iterations). This is an important result of the present paper and

it will need an extra research effort to reveal why only t = 3 2 = 9 times repetition of the rules produce the self replicating

8-fold fractal patterns of any arbitrary chosen seed image. This would need to be the case if a fractal-like structure were to

emerge in the limiting case of an infinite lattice. 

6. Conclusions 

The work on understanding the behavior of 2D CA over ternary fields and studying their structure presented here is an

ongoing research. Some properties of the rule numbers 9840NB and 9840PB are established in this paper. Theorem 3.2 de-

pends on computation of q 2 m −2 which is important. Hence, an easier way of computing the rank of q 2 m −2 is an important

issue. Further properties of these rules and properties of different number rules with respect to different neighboring re-

lations are still being investigated by the authors. Similar computations and explorations of CA over different rings (see
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Fig. 6. Application of Moore (Rule 9840) rule over null and periodic boundaries (NB, PB) after 9 iterations of the first image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[28] for details) remain to be of interest. The number of iterations taken for the 2D CA to create perfect non-overlapped

copies of a shape depends on the size of the seed image shape. It is provided that maximum length of the image arranged

in all directions not exceeding 30 percentage of row or column lengths (due to the rule matrix is a square matrix) of the

display matrix (present case is 100). It can be seen that extra research effort is needed to reveal why only t = 3 2 = 9 times

repetition of the rules produce the self replicating patterns of any arbitrary chosen seed image. Finally the hybrid cellular

automaton (HCA) [29] and CA with memory [24–26] are also applied for Moore and different neighborhood configurations.

In the present study, examples that connects CA with error correcting codes and image processing sample are presented.

Further applications remain to be of great interest for future studies [12,13,30–36] . 
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