Pgs, Ts. PHAN QUANG MINH (chủ biên) Gs, Ts. NGÔ THẾ PHONG – Gs, Ts. NGUYỄN ĐÌNH CỐNG

KÉT CÁU BÊTÔNG CỐT THÉP PHẦN CÁU KIỆN CƠ BẢN

NHÀ XUẤT BẢN KHOA HỌC VÀ KỸ THUẬT HÀ NÔI – 2006 Bêtông cốt thép là loại kết cấu chủ yếu trong xây dựng hiện đại. Kiến thức về kết cấu bêtông cốt thép cần thiết cho mọi kỹ sư, cán bộ kỹ thuật xây dựng.

Cuốn KẾT CẦU BÊTÔNG CỐT THÉP – phần cấu kiện cợ bản nhằm cung cấp cho bạn dọc những vấn đề cơ bản về nguyên lý làm việc của bêtông cốt thép, những nguyên tắc chung về cấu tạo và tính toán cấu kiện bêtông cốt thép, đồng thời đi sâu vào việc thiết kế các cấu kiện bêtông cốt thép theo tiêu chuẩn TCXDVN 356-2005.

Sách được dùng làm tài liệu giảng dạy cho sinh viên các ngành xây dựng cơ bản của các trường đại học. Sách cũng được dùng như tài liệu hướng dẫn cho các kỹ sư thiết kế và thi công kết cấu bêtông cốt thép theo tiêu chuẩn hiện hành.

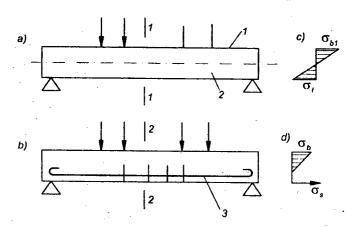
Phân công biên soạn như sau :

- Gs, Ts. Ngô Thế Phong viết các chương 4, 7, 10 và tập hợp phần phụ lục;
- Gs, Ts. Nguyễn Đình Cống viết các chương 2, 3, 5 và 6;
- Pgs, Ts. Phan Quang Minh viết các chương 1, 8, 9 đồng thời là chủ biên.

Chúng tôi xin chận thành cảm ơn các cán bộ giảng dạy trong Bộ môn công trình bêtông cốt thép – Trường dại học xây dựng đã đóng góp nhiều ý kiến trong quá trình biên soạn.

Chắc chắn sách xuất bản lần này không tránh khỏi thiếu sót, chúng tôi mong nhận được ý kiến phê bình, nhận xét của bạn đọc.

CÁC TÁC GIẢ



KHÁI NIỆM CHUNG

1.1. Thế nào là bêtông cốt thép (BTCT)

Bêtông cốt thép là một loại vật liệu xây dựng phức hợp do bêtông và cốt thép cùng cộng tác chịu lực với nhau.

Bêtông được chế tạo từ ximăng, cát, sỏi thành một thứ đá nhân tạo có khả năng chịu nén khá nhưng khả năng chịu kéo lại rất kém và là một loại vật liệu giòn. Trong khi đó cốt thép là vật liệu chịu kéo hoặc chịu nén đều tốt. Do vậy người ta đã đặt cốt thép vào trong bêtông để tăng cường khả năng chịu lực cho kết cấu, từ đó sản sinh ra bêtông cốt thép.

Hình 1.1. Dầm bêtông và bêtông cốt thép

a) Dầm bétông;
 b) Dầm bétông cốt thép;
 c) Sơ đồ ứng suất trên tiết diện 1-1;
 d) Sơ đồ ứng suất trên tiết diện 2-2;

1- vùng bêtông chịu nén; 2- vùng bêtông chịu kéo; 3- cốt thép.

Làm thí nghiệm một dầm bêtông như trên hình 1.1a ta thấy khi ứng suất kéo σ_t vượt quá cường độ chịu kéo của bêtông thì vết nứt sẽ xuất hiện, vết nứt đi dần lên phía trên và dầm bị gãy khi ứng suất σ_b còn khá nhỏ so với cường độ chịu nén của bêtông. Như thế là lãng phí khả năng chịu nén của bêtông. Nếu đem đặt cốt thép vào vùng bêtông chịu kéo, lực kéo sẽ do cốt thép chịu, nhờ đó có thể tăng tải trọng đến khi ứng suất σ_b đạt tới cường độ chịu nén của bêtông và ứng suất σ_s đạt tới cường độ chịu kéo của cốt thép. Trong dầm chịu uốn còn xuất hiện cả ứng suất tiếp và ứng suất chính. Khi ứng suất kéo chính lớn hơn cường độ chịu kéo của bêtông sẽ gây ra các vết nứt nghiêng, vì vậy cũng cần bố trí cốt thép để chịu ứng suất kéo này. Dầm bêtông cốt thép có thể chịu lực nhiều hơn dầm bêtông có cùng kích thước đến hàng chục lần.

Vì cốt thép chịu nén cũng tốt nên cốt thép cũng được đặt trong các cấu kiện chịu nén như cột, thanh nén của dàn để tăng khả năng chịu lực, giảm kích thước tiết diện và chịu các lực kéo xuất hiện do ngẫu nhiên.

Bêtông và cốt thép có thể cùng cộng tác chiu lực là do:

- Bêtông và cốt thép dính chặt với nhau, cho nên có thể truyền lực từ bêtông sang cốt thép và ngược lại. Lực dính có tầm quan trọng hàng đầu đối với bêtông cốt thép. Nhờ có lực dính mà cường độ của cốt thép mới được khai thác, bề rộng vết nứt trong vùng kéo mới được hạn chế... Do đó người ta phải tìm mọi cách để tăng cường lực dính giữa bêtông và cốt thép.
- Giữa bêtông và cốt thép không xảy ra phản ứng hóa học, đồng thời bêtông còn bao bọc cốt thép, bảo vệ cốt thép chống lại các tác dụng ăn mòn của môi trường. Vì vậy thi công kết cấu bêtông cốt thép phải rất thận trọng khi dùng các loại phụ gia hóa dẻo và đông cứng nhanh, phải đầm kỹ bêtông để đạt đến độ chặt sít cần thiết.
- Cốt thép và bêtông có hệ số giãn nở nhiệt α gần giống nhau (α của bêtông từ 0,000010 đến 0,000015; α của thép là 0,000012). Do đó khi nhiệt độ thay đổi trong phạm vị thông thường (dưới 100°C) trong cấu

kiện không xuất hiện nội ứng suất đáng kể, không làm phá hoại lực dính giữa bêtông và cốt thép.

 Bêtông giữ cho cốt thép khỏi bị ăn mòn. Lượng ximăng vì vậy cần ít nhất 250 kg/m³ và chiều dày lớn bảo vệ cốt thép phải được chọn tuỳ theo loại cấu kiện và môi trường làm việc của kết cấu.

1.2. Phân loại

Theo phương pháp thi công, có thể chia ra ba loại:

- Bêtông cốt thép toàn khối (hay bêtông cốt thép đổ tại chỗ): Người ta ghép ván khuôn, đặt cốt thép và đổ bêtông ngay tại vị trí thiết kế của kết cấu. Do các cấu kiện được dính với nhau một cách toàn khối nên kết cấu có độ cứng lớn, chịu lực động tốt. Nhược điểm là tốn vật liệu làm ván khuôn và cột chống, thi công bị ảnh hưởng của thời tiết... Trong thực tế người ta đã khắc phục được khá nhiều những nhược điểm này.
- Bêtông cốt thép lắp ghép: Người ta phân chia kết cấu thành những cấu kiện riêng biệt để có thể chế tạo chúng ở nhà máy hoặc sân bãi, vận chuyển chúng đến công trường sau đó dùng cần cẩu lắp ghép rồi nối chúng lại với nhau thành kết cấu tại vị trí thiết kế. Bêtông cốt thép lắp ghép khắc phục được một số nhược điểm nhưng lại không có đầy đủ những ưu điểm của bêtông cốt thép toàn khối. Việc ghép nối các cấu kiện thường khó khăn và khá tốn thép. Người ta thường lắp ghép những cấu kiện hoặc kết cấu được sử dụng lặp đi lặp lại nhiều lần trong các công trình khác nhau.
- Bêtông cốt thép nửa lắp ghép: Người ta lắp ghép các cấu kiện chưa được chế tạo hoàn chỉnh sau đó đặt thêm cốt thép, ghép thêm ván khuôn rồi đổ tại chỗ phần còn lại (kể cả mối nối). Uu điểm của loại này là có độ cứng cao, bớt được ván khuôn, có thể bỏ được cột chống. Tuy vậy việc tổ chức sản xuất và lắp ghép có phần phức tạp và phải chú ý xử lý tốt mặt nối giữa bêtông đã đổ trước và bêtông đổ sau.

Theo trạng thái ứng suất khi chế tạo và sử dụng có thể chia ra hai loại:

- Bêtông cốt thép thường: Khi chế tạo cấu kiện, cốt thép ở trạng thái không có ứng suất. Ngoài nội ứng suất do co ngót và giãn nở nhiệt, trong cốt thép và bêtông chỉ xuất hiện ứng suất khi có tải trọng tác dụng (kể cả trọng lượng bản thân).
- Bêtông cốt thép ứng lực trước (hay còn gọi là bêtông ứng lực trước):

 Trước khi sử dụng, người ta căng cốt thép để nén vùng chịu kéo (do tải trọng gây ra) của cấu kiện nhằm triệt tiêu ứng suất kéo do tải trọng gây ra. Nhờ có ứng lực nén trước, người ta có thể không cho xuất hiện khe nứt hay hạn chế bề rộng khe nút trong cấu kiện.

1.3. Ưu và nhược điểm của bêtông cốt thép

Bêtông cốt thép đã và đang được sử dụng rộng rãi và nó có các ưu điểm sau đây:

- Có khả năng sử dụng vật liệu địa phương (ximăng, cát, đá, sỏi), tiết kiệm thép là vật liệu quý hiếm.
- Có khả năng chịu lực lớn hơn so với kết cấu gạch đá và gỗ. Có thể chịu tốt các loại tải trọng rung động, bao gồm cả tải trọng động đất.
- Vừa bền vừa tốn ít tiền bảo dưỡng.
- Chịu lửa tốt. Bêtông bảo vệ cốt thép không bị nung nóng nhanh chóng đến nhiệt độ nguy hiểm. Ví dụ nếu lớp bảo vệ dày 2,5 cm và nhiệt độ bên ngoài là 1000°C thì sau 1 h cốt thép mới nóng tới khoảng 55°C. Nếu kết cấu thường xuyên phải làm việc ở nhiệt độ 150 250°C thì phải dùng bêtông chịu nóng.
- Vì cấu kiện đúc theo hình ván khuôn nên việc tạo các hình dáng kết cấu khác nhau để đáp ứng yêu cầu kiến trúc là có thể thực hiện được tương đối dễ dàng.

Bên cạnh đó, bêtông cốt thép còn có các nhược điểm sau đây:

- Trọng lượng bản thân lớn, do đó khó làm được những kết cấu có nhịp lớn bằng bêtông cốt thép thường. Cường độ chịu nén của bêtông chỉ bằng khoảng 5 ÷ 10% cường độ chịu nén của cốt thép, trong khi tỷ trọng của bêtông bằng 30% tỷ trọng của thép. Để khắc phục, người ta dùng bêtông nhẹ, bêtông cốt thép ứng lực trước và các loại kết cấu nhẹ như kết cấu vỏ mỏng v.v...
- Cách âm và cách nhiệt kém. Để khắc phục có thể dùng các dạng kết cấu có lỗ rỗng.
- Công tác thi công đổ tại chỗ tương đối phức tạp và chịu ảnh hưởng của thời tiết, việc kiểm tra chất lượng khó khăn. Để khắc phục người ta có thể dùng bêtông cốt thép lắp ghép hoặc công xưởng hóa các khâu làm ván khuôn, cốt thép và trộn bêtông, cơ giới hóa cao độ khâu đổ bêtông.
- Dưới tác dụng của tải trọng và các tác động khác, bêtông cốt thép dễ có khe nứt làm ảnh hưởng đến chất lượng sử dụng và tuổi thọ của kết cấu. Để khắc phục có thể sử dụng bêtông cốt thép ứng lực trước hoặc có những biện pháp tính toán và thi công hợp lý để hạn chế khe nứt làm cho sự có mặt của khe nứt không ảnh hưởng đến việc sử dụng bình thường kết cấu.

1.4. Sơ lược lịch sử phát triển

So với gạch đá và gỗ thì bếtông cốt thép là loại vật liệu xây dựng tương đối mới, lịch sử của nó mới có trên 100 năm.

Năm 1950 ở Pháp đã tổ chức long trọng kỷ niệm 100 năm ngày phát minh ra bêtông cốt thép. Cuối năm 1849 Lambot (người Pháp) đã làm một chiếc thuyền bằng lưới sắt được trát hai phía bằng vữa ximăng, chiếc thuyền này được trình bày tại triển lãm Pari năm 1855. Sau đó người ta chế tạo các bản sàn, đường ống, bể chứa nước và các cấu kiện khác bằng bêtông cốt sắt. Ở thời kỳ sơ khai, người ta làm theo cảm tính nên cốt sắt thường được đặt ở

giữa chiều cao tiết diện (vị trí trục trung hòa). Khoảng sau 1880, các nghiên cứu về cường độ của bêtông, cốt thép và lực dính giữa bêtông và cốt thép mới được tiến hành ở Pháp và ở Đức. Koenen (kỹ sư người Đức) là một trong những người đầu tiên kiến nghị đặt cốt sắt vào vùng bêtông chịu kéo và năm 1886 đã kiến nghị phương pháp tính toán cấu kiện bêtông cốt thép.

Đầu thế kỷ XX người ta bắt đầu xây dựng lý thuyết tính toán kết cấu bêtông cốt thép theo ứng suất cho phép (phương pháp cổ điển). Phương pháp này dựa trên cơ sở các công thức tính toán ứng suất của môn sức bền vật liệu.

Giáo sư Loleit người Nga cùng với nhiều người khác đã nghiên cứu tính không đồng chất và đẳng hướng, tính biến dạng đàn hồi dẻo của bêtông và kiến nghị phương pháp tính toán theo giai đoạn phá hoại (1939). Đến năm 1955 ở Liên Xô (cũ) đã bắt đầu tính toán theo phương pháp mới hơn có tên gọi là phương pháp tính theo trạng thái giới hạn. Phương pháp đó ngày càng được hoàn thiện và đang được nhiều nước trên thế giới kể cả nước ta sử dụng trong thiết kế kết cấu bêtông cốt thép.

Cho đến nay, kết cấu bêtông cốt thép đã chiếm một vị trí quan trọng trong các ngành xây dựng cơ bản, đã đạt được những thành tựu đáng chú ý. Người ta đã xây dựng cầu vòm có nhịp 260 m (Thụy Điển), mái nhà có nhịp trên 200 m (Pháp) và hàng loạt nhà chọc trời ở khắp thế giới. Nhiều công trình đường hầm xuyên sông, xuyên biển cũng đã và đang được xây dựng. Nhiều tháp vô tuyến điện có độ cao trên 500 m (Liên Xô (cũ), Canađa) đang đua nhau ra đời.

Ở Việt Nam, bêtông cốt thép cũng đã được du nhập vào từ khoảng dấu tế kỷ XX để làm cầu. đập nước, cống và nhà cửa dân dụng công nghiệp Khu liên hợp gang thép Thái Nguyên. Nhà máy công cụ số 1 Hà Nội là những công trình lớn bằng bêtông cốt thép đầu tiên được xây dựng. Sau đó nhiều công trình lớn lần lượt ra đời. Nhà máy thủy điện Thác Bà, cầu Thăng Long, nhà máy thủy điện Trị An; ống khói nhà máy nhiệt điện Phả Lại có chiều cao 200 m là những công trình đáng được lưu ý. Nhiều khu nhà bêtông cốt thép lấp ghép đã ra đời ở Hà Nội và khắp các địa phương. Hiện

nay hầu hết các nhà nhiều tầng được xây dựng ở Việt Nam là kết cấu bêtông cốt thép.

Bêtông cốt thép là vật liệu không thể thiếu cho các công trình quốc phòng. Kết cấu bêtông cốt thép được sử dụng để xây dựng công sự chiến đấu, hầm chống bom và nhiều công trình đặc biệt khác.

Bêtông ứng lực trước được Freyssinet (kỹ sư người Pháp) nghiên cứu thành công từ năm 1928 và nhanh chóng được ứng dụng một cách có hiệu quả cho các kết cấu nhịp lớn. Bêtông ứng lực trước được ứng dụng trước tiên tại Việt Nam là cầu Phủ Lỗ (nhịp 18 m, xây dựng năm 1961). Ngày nay các dầm cầu định hình bằng bêtông cốt thép ứng lực trước nhịp 33 m đã được lắp đặt ở cầu Thăng Long và nhiều địa phương khác. Trong xây dựng dân dụng, bêtông ứng lực trước ngày càng được ứng dụng rộng rãi, chủ yếu cho các dầm hoặc sàn không dầm nhịp lớn.

Bêtông cốt thép đang còn là một loại vật liệu xây dựng chủ yếu của nước ta, nó cần phải được nghiên cứu từ lý thuyết cơ bản, lý thuyết tính toán thiết kế và đầu tư kỹ thuật cho việc hiện đại hóa công tác chế tạo cấu kiện trong nhà máy cũng như thi công toàn khối tại hiện trường.

.

TÍNH CHẤT CƠ LÝ CỦA VẬT LIỆU

A. BÊTÔNG

2.1. THÀNH PHẦN, CẤU TRÚC VÀ CÁC LOẠI BỆTÔNG

2.1.1. Vật liệu, thành phần của bêtông

Bêtông là một loại đá nhân tạo được chế từ các vật liệu rời (cát, đá, sỏi) và chất kết dính. Vật liệu rời được gọi là cốt liệu, gồm các cỡ hạt khác nhau, loại bé là cát có kích thước 1 – 5 mm, loại lớn là sỏi hoặc đá dăm có kích thước 5 – 40 mm hoặc lớn hơn. Chất kết dính thường là ximăng trộn với nước hoặc các chất dẻo khác.

Ngoài các thành phần chính như trên, người ta còn có thể thêm các phụ gia để cải thiện một số tính chất của bêtông trong lúc thi công cũng như trong quá trình sử dụng. Phụ gia có nhiều loại khác nhau, có loại để nâng cao độ dẻo của hỗn hợp bêtông, có loại dùng để tăng nhanh hoặc kéo dài thời gian đông kết của ximăng, có loại để nâng cao cường độ bêtông trong thời gian đầu, có loại để tăng khả năng chống thấm v.v...

Nước để trộn bêtông gồm hai phần. Một phần để hóa hợp với ximăng, một phần nữa như là phụ gia làm cho hỗn hợp bêtông có được độ dẻo (nhão) cần thiết lúc trộn, đổ khuôn và đầm chắc. Lượng nước tham gia phản ứng hóa hợp chỉ chiếm khoảng một phần năm trọng lượng ximăng và là cần thiết. Lượng nước thêm vào để trộn bêtông, về sau khi bêtông đã khô

cứng, sẽ trở thành nước thừa, một phần bốc hơi để lại các lỗ rỗng li ti trong cấu trúc của bêtông, làm giảm độ đặc chắc và cường độ của nó.

Nguyên lí tạo nên bêtông là dùng các cốt liệu lớn làm thành bộ xương, cốt liệu nhỏ lắp đầy khoảng trống và dùng chất dính kết để liên kết chúng lại thành một thể đặc chắc có khả năng chịu lực và chống lại các biến dạng.

2.1.2. Cấu trúc của bêtông

Bêtông có cấu trúc không đồng nhất vì hình dáng, kích thước các hạt cốt liệu khác nhau, sự phân bố của cốt liệu và chất kết dính không thật đồng đều, trong bêtông vẫn còn lại một ít nước thừa và những lỗ rỗng li ti (do nước thừa bốc hơi).

Quá trình khô cứng của bêtông xảy ra lâu dài, đó là quá trình thủy hóa ximăng, quá trình thay đổi sự cân bằng nước, sự giảm chất keo nhớt, sự tăng mạng tinh thể của đá ximăng. Quá trình đó làm cho bêtông trở thành vật liệu vừa có tính đàn hồi vừa có tính dẻo, thể hiện ra ở đặc tính biến dạng khi chịu lực và chịu tác động nhiệt ẩm của môi trường.

2.1.3. Các loại bêtông

Tùy theo thành phần và cấu trúc của bêtông mà người ta phân loại chúng theo nhiều cách khác nhau.

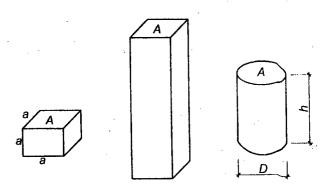
- a) Theo cấu trúc có các loại: bêtông đặc chắc, bêtông có lỗ rỗng (dùng ít cát); bêtông tổ ong.
- b) Theo khối lượng riêng phân thành: bêtông nặng thông thường có khối lượng riêng $\gamma = 2200 \div 2500 \text{ kG/m}^3$; bêtông nặng cốt liệu bé $\gamma = 1800 \div 2200$; bêtông nhẹ $\gamma < 1800$; bêtông đặc biệt nặng $\gamma > 2500$.
- c) Theo thành phần có: bêtông thông thường, bêtông cốt liệu bé, bêtông chèn đá hộc.
- d) Theo phạm vi sử dụng: bêtông làm kết cấu chịu lực, bêtông chịu nóng, bêtông cách nhiệt, bêtông chống xâm thực v.v...

Trong giáo trình này trình bày chủ yếu về bêtông nặng thông thường, đặc chắc, dùng chất kết dính ximăng và dùng cho kết cấu chiu lưc.

2.2. CƯỜNG ĐỘ CỦA BÊTÔNG

Cường độ là chỉ tiêu quan trọng thể hiện khả năng chịu lực của vật liệu. Cường độ của bêtông phụ thuộc vào thành phần và cấu trúc của nó. Để xác định cường độ của bêtông người ta dùng thí nghiệm mẫu.

Thông thường là chế tạo ra các mẫu thử và thí nghiệm phá hoại các mẫu đó. Một cách khác là thí nghiệm không phá hoại, xác định cường độ một cách gián tiếp bằng cách dùng sóng siêu âm, dùng cách ép lõm viên bi lên bề mặt bêtông.


Với bêtông cần xác định cường độ chịu nén và cường độ chịu kéo.

2.2.1. Thí nghiệm mẫu xác định cường độ chịu nén

a. Chuẩn bị mẫu thử

Mẫu có thể chế tạo bằng các cách khác nhau: lấy hỗn hợp bêtông đã được nhào trộn để đúc mẫu hoặc dùng thiết bị chuyên dùng khoan lấy mẫu từ kết cấu có sẵn.

Mẫu đúc từ hỗn hợp bêtông có hình dáng là khối vuông cạnh a (a = 100; 150; 200 mm), khối hình trụ có đáy vuông hoặc tròn (h.2.1).

Hình 2.1. Mẫu để thí nghiệm cường độ chiu nén

Với khối trụ tròn thường có diện tích đáy $A = 200 \text{ cm}^2$; chiều cao h = 2D = 320 mm.

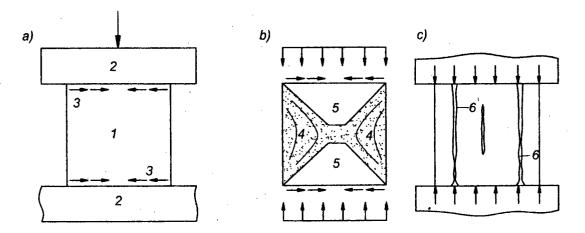
Khi khoan mẫu từ kết cấu có sẵn thường lấy mẫu trụ tròn có đường kính $D=50\div150$ mm; chiều cao $h=(1\div1,5)$ D.

b. Thí nghiệm mẫu

Thí nghiệm bằng máy nén. Tăng lực nén từ từ cho đến khi mẫu bị phá hoại. Gọi lực phá hoại là P thì cường độ của mẫu là R được xác định như sau:

$$R = \frac{P}{A} , \qquad (2.1)$$

A – diện tích tiết diện ngang của mẫu.


Đơn vị của R thường dùng là MPa (Mêga Pascan) hoặc k G/cm^2 .

$$1\text{MPa} = 10^6 \text{Pa} = 10^6 \frac{\text{Niuton}}{\text{m}^2} = \frac{\text{Niuton}}{\text{mm}^2} = 9.81 \text{ kG/cm}^2$$

Bêtông thông thường có $R=5\div 30$ MPa. Bêtông có R>40 MPa là loại cường độ cao. Hiện nay người ta đã chế tạo được các loại bêtông đặc biệt có $R\ge 80$ MPa.

c. Sự phá hoại của mẫu thử

Khi bị nén, ngoài biến dạng co ngắn theo phương tác dụng của lực, bêtông còn bị nở ngang. Thông thường chính sự nở ngang quá mức làm cho bêtông bị nứt và bị phá vỡ. Nếu hạn chế được mức độ nở ngang của bêtông có thể làm tăng khả năng chịu nén của nó. Trong thí nghiệm nếu không bôi trơn mặt tiếp xúc giữa mẫu thử và bàn máy nén thì tại đó sẽ xuất hiện lực ma sát có tác dụng cản trở sự nở ngang, kết quả mẫu bị phá hoại theo hai hình tháp đối đỉnh như trên hình 2.2b. Nếu bôi trơn mặt tiếp xúc để bêtông tự do nở ngang thì khi biến dạng ngang quá mức trong mẫu sẽ xuất hiện các vết nứt dọc và sự phá hoại xảy ra như trên hình 2.2c. Cường độ của mẫu được bôi trơn thấp hơn cường độ của mẫu khối vuông có ma sát.

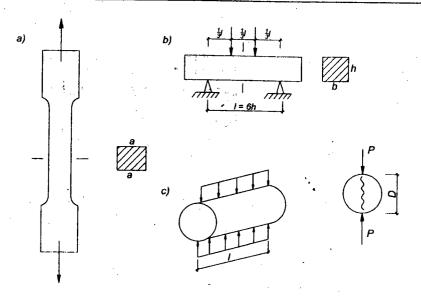
Hình 2.2. Sự phá hoại mẫu thử khối vuông 1- mẫu; 2- bàn máy nén; 3- ma sát; 4- bêtông bị ép vụn; 5- hình tháp phá hoại; 6- vết nứt dọc trong mẫu.

Cũng chính vì ảnh hưởng của ma sát làm cản trở biến dạng ngang mà với mẫu khối vuông khi tăng cạnh a thì R giảm và cường độ của mẫu hình trụ thấp hơn cường độ của mẫu khối vuông.

2.2.2. Cường độ chịu kéo

a. Thí nghiệm xác định cường độ chịu kéo

Thông thường người ta làm mẫu chịu kéo có tiết diện vuông cạnh a hoặc mẫu chịu uốn tiết diện chữ nhật cạnh $b \times h$. (h.2.3a, b). Cũng có thể tìm cường độ chịu kéo của bêtông bằng cách nén chẻ mẫu trụ tròn như trên hình 2.3c. Lúc này cường độ chịu kéo của bêtông $R_{(t)}$ xác định theo công thức (2.2).


$$R_{(t)} = \frac{2P}{\pi l D}. \tag{2.2}$$

trong đó: P- tải trong tác dụng làm chẻ mẫu;

l - chiều dài mẫu;

D – đường kính.

Hình 2.3. Thí nghiệm xác định $R_{(t)}$

b. Quan hệ giữa cường độ chịu kéo $R_{(t)}$ và cường độ chịu nén R

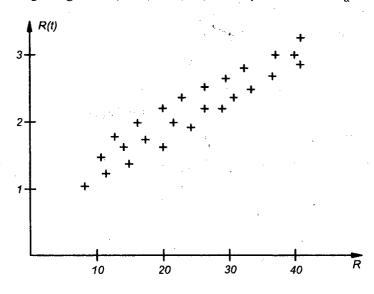
Như sẽ phân tích ở mục 3 tiếp theo, cường độ R và $R_{(t)}$ đều phụ thuộc vào thành phần của bêtông nhưng mức độ có khác nhau. Giữa R và $R_{(t)}$ có quan hệ đồng biến như các kết quả thí nghiệm đã chỉ ra trên hình 2.4. Trong phần lớn trường hợp khi không cần làm thí nghiệm để xác định $R_{(t)}$ người ta có thể lấy giá trị $R_{(t)}$ phụ thuộc vào R theo cách tra các bảng lập sẵn hoặc tính toán theo công thức thực nghiệm. Có nhiều công thức thực nghiệm mô tả quan hệ giữa R và $R_{(t)}$.

Công thức (2.3a) dùng quan hệ đường cong:

$$R_{(t)} = \theta_t \sqrt{R} . \tag{2.3a}$$

Giá trị của θ_t được lấy phụ thuộc vào loại bêtông và đơn vị của R. Với bêtông nặng thông thường và đơn vị của R là MPa thì θ_t = 0,28 ÷ 0,30.

Công thức (2.3b) dùng quan hệ đường thẳng


$$R_{(t)} = 0.6 + 0.06R.$$
 (2.3b)

Công thức (2.3c) dùng quan hệ đường cong theo hệ số C_t

$$R_{(t)} = C_t R, \tag{2.3c}$$

$$C_t = \frac{R + 150}{60R + 1300}. (2.4)$$

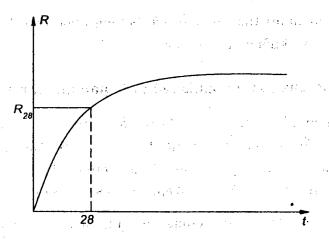
Trong công thức (2.3b) và (2.4) đơn vị của R là MP_a .

Hình 2.4. Quan hệ giữa R và $R_{(t)}$ theo thực nghiệm

2.2.3. Nhân tố quyết định cường độ của bêtông

Cường độ của bêtông lớn hay bé là do thành phần và công nghệ chế tạo quyết định. Khi thiết kế công trình người ta thường phải dự kiến cường độ cần thiết của bêtông (chọn mác hoặc cấp độ bền thiết kế), dùng cường độ đó để đem vào trong tính toán. Khi thi công cần chọn thành phần, cấp phối vật liệu và biện pháp chế tạo để bêtông đạt cường độ yêu cầu. Muốn biết bêtông có đạt hay không lại cần phải đúc các mẫu thử để thí nghiệm (hoặc khoan lấy mẫu) hoặc kiểm tra bằng các thí nghiệm không phá hoại. Việc chọn thành phần và cách chế tạo bêtông được trình bày trong giáo trình vật liệu xây dựng. Dưới đây trình bày tóm tắt một vài yếu tố cơ bản ảnh hưởng đến cường độ bêtông.

Chất lượng và số lượng ximăng. Thông thường để chế tạo 1 m³
 bêtông cần dùng khoảng 250 - 500 kg ximăng. Với cường độ bêtông


đã dự kiến, khi dùng ximăng chất lượng cao hơn thì số lượng sẽ ít hơn. Trong một giới hạn nào đó khi tăng lượng ximăng cũng sẽ tăng cường độ bêtông nhưng nói chung hiệu quả không cao và thường làm tăng biến dạng co ngót gây hậu quả xấu. Khi cần có bêtông cường độ cao nên dùng ximăng mác cao với số lượng hợp lý.

- Độ cứng, độ sạch và tỉ lệ thành phần của cốt liệu (cấp phối). Các yếu tố này đóng vai trò quan trọng trong việc chế tạo bêtông. Khi chọn được cấp phối hợp lí không những tăng được cường độ bêtông mà còn sử dụng ximăng một cách tiết kiệm.
- Tỉ lệ nước ximăng. Đây là yếu tố ảnh hưởng lớn đến cường độ và tính chất biến dạng của bêtông. Khi tỉ lệ này tăng lên thì cường độ và độ đặc chắc của bêtông đều bị giảm và biến dạng do co ngót tăng.
- Chất lượng của việc nhào trộn vữa bêtông, độ đầm chắc của bêtông khi đổ khuôn và điều kiện bảo dưỡng. Các yếu tố này đều ảnh hưởng lớn đến cường độ bêtông.

Các yếu tố nêu trên đều ảnh hưởng đến R và $R_{(t)}$ nhưng mức độ có khác nhau, ví dụ tỷ lệ nước — ximăng ảnh hưởng rất lớn đến R và có phần ít hơn đối với $R_{(t)}$ còn độ sạch của cốt liệu ảnh hưởng lớn đến R và rất lớn đến $R_{(t)}$, bêtông dùng đá dăm và sỏi có R gần như nhau nhưng $R_{(t)}$ của chúng khác nhau đến 20%...

2.2.4. Sự tăng cường độ theo thời gian

Gọi tuổi của bêtông là thời gian t (tính bằng ngày) kể từ khi chế tạo đến khi thí nghiệm mẫu. Kết quả thí nghiệm cho biết quan hệ giữa R và t của bêtông được dưỡng họ trong điều kiện bình thường thể hiện trên hình 2.5. Lúc mới nhào trộn và đổ khuôn (t=0) bêtông còn ở thể nhão, chưa có cường độ (R=0). Trong quá trình khô cứng cường độ tăng dần lên, thời gian đầu tăng nhanh, sau tăng chậm dần. Với bêtông dùng ximăng Pooclăng chế tạo và bảo dưỡng bình thường cường độ tăng nhanh trong 28 ngày đầu.

Hình 2.5. Đổ thị tăng cường độ theo thời gian

Để biểu diễn sự tăng của R theo t có thể dùng một số công thức thực nghiệm sau đây.

Công thức của B. G. Xkramtaep theo quy luật lôgarit, dùng được khi $t = 7 \div 300$ ngày

$$R = 0.7 R_{28} lgt. (2.5a)$$

Công thức của Viện nghiên cứu bêtông Mỹ ACI theo quy luật hyperbôn

$$R = R_{28} \frac{t}{a + bt}. \tag{2.5b}$$

Hệ số a và b phụ thuộc loại ximăng. Thông thường a = 4; b = 0.85. Với ximăng đông cứng nhanh a = 2.3; b = 0.92.

Với cường độ chịu kéo, sự tăng cường độ theo thời gian có nhanh hơn sọ với cường độ chịu nén.

Trong môi trường thuận lợi (nhiệt độ dương, độ ẩm cao) sự tăng cường độ có thể kéo dài trong nhiều năm còn trong điều kiện khô hanh hoặc nhiệt độ thấp sự tăng cường độ trong thời gian sau này là không đáng kể.

Dùng hơi nước nóng để bảo dưỡng bêtông cũng như dùng phụ gia tăng cường độ có thể làm cường độ bêtông tặng rất nhanh trong thời gian vài ngày đầu nhưng sẽ làm cho bêtông trở nên giòn hơn và có cường độ cuối

cùng (sau vài năm) thấp hơn so với bêtông được bảo dưỡng trong điều kiện tự nhiên và không dùng phụ gia.

2.2.5. Ảnh hưởng của tốc độ gia tải và thời gian tác dụng của tải trọng

Khi thí nghiệm các mẫu thử, tốc độ gia tải có ảnh hưởng đến giá trị cường độ thu được. Tốc độ gia tải quy định là 0.2 MPa/giây và cường độ đạt được là R. Khi gia tải rất nhanh cường độ của bêtông có thể đạt $(1.15 \div 1.2) R$ còn khi gia tải rất chậm cường độ chỉ đạt $(0.85 \div 0.9) R$.

Thí nghiệm nén một mẫu bêtông đến ứng suất vượt quá 0.9R (nhưng cũng chưa vượt quá 0.95R) rồi giữ nguyên lực nén trong thời gian dài thì đến một lúc nào đó mẫu sẽ bị phá hoại. Đó là hiện tượng bêtông bị giảm cường độ khi tải trọng tác dụng lâu dài.

2.3. GIÁ TRỊ TRUNG BÌNH VÀ GIÁ TRỊ TIÊU CHUẨN CỦA CƯỜNG ĐỘ

2.3.1. Giá trị trung bình

Khi thí nghiệm n mẫu thử của cùng một loại bêtông thu được các giá trị cường độ của mẫu thử là R_1 , R_2 , ..., R_n . Các giá trị đó có thể giống hoặc khác nhau. Giá trị trung bình cường độ của các mẫu thử kí hiệu là R_m , gọi tắt là cường độ trung bình được tính theo công thức sau:

$$R_m = \frac{\sum R_i}{r} \,. \tag{2.6}$$

2.3.2. Độ lệch quân phương, hệ số biến động

Đặt $\Delta_i = |R_i - R_m|$ và gọi là độ lệch. Kết quả thống kệ nhiều thí nghiệm cho thấy số lượng mẫu có Δ bé nhiều hơn số lượng mẫu có Δ lớn. Với số lượng mẫu n đủ lớn ($n \geq 15$) tính độ lệch quân phương σ theo công thức:

$$\sigma = \sqrt{\frac{\sum (R_i - R_m)^2}{n - 1}} \,. \tag{2.7}$$

Hệ số biến động v được tính theo công thức:

$$v = \frac{\sigma}{R_m} \,. \tag{2.8}$$

Dùng hệ số v để đánh giá mức độ đồng chất của bêtông. Giá trị v càng bé bêtông có độ đồng chất cao và ngược lại. Quy trình công nghệ, điều kiện chế tạo bêtông có ảnh hưởng quyết định đến v. Với công nghệ ổn định, có kiểm tra chặt chẽ về thành phần của bêtông và chất lượng thi công có thể lấy v=0,135. Với điều kiện thi công bình thường mà thiếu số liệu thống kê có thể lấy v=0,15.

2.3.3. Giá trị đặc trưng

Giá trị đặc trưng của cường độ (gọi tắt là cường độ đặc trưng) được xác định theo xác suất bảo đảm 95% và được tính toán theo công thức:

$$R_{ch} = R_m(1 - Sv) , \qquad (2.9)$$

trong đó: S – hệ số lấy phụ thuộc vào xác suất bảo đảm. Với xác suất bảo đảm 95% thì S = 1,64.

2.3.4. Giá trị tiêu chuẩn

Giá trị tiêu chuẩn của cường độ của bêtông, gọi tắt là *cường độ tiêu chuẩn*, được lấy bằng cường độ đặc trưng của mẫu thử R_{ch} nhân với hệ số kết cấu γ_{KC} . Hệ số này kể đến sự làm việc của bêtông thực tế trong kết cấu có khác với sự làm việc của mẫu thử.

Cường độ tiêu chuẩn về nén R_{bn} , về kéo R_{btn}

$$R_{bn} = \gamma_{KC} R_{ch}$$
.

Hệ số $\gamma_{\rm KC}$ được lấy bằng 0.7-0.8 tùy thuộc vào R_{ch} . Giá trị của R_{bn} và R_{btn} được cho ở phụ lục.

Cường độ tiêu chuẩn về nén R_{bn} có thể lấy bằng cường độ đặc trưng của mẫu hình trụ với h=4a và thường được gọi là cường độ lăng trụ.

2.4. CẤP ĐỘ BỀN VÀ MÁC CỦA BỆTÔNG

Để biểu thị chất lượng của bêtông về một tính chất nào đó người ta dùng khái niệm *mác* hoặc *cấp độ bền*.

2.4.1. Mác theo cường độ chịu nén

Đây là khái niệm theo tiêu chuẩn cũ TCVN 5574–1991. Mác bêtông, kí hiệu bằng chữ M, là con số lấy bằng cường độ trung bình của mẫu thử chuẩn, tính theo đơn vị k G/cm^2 . Mẫu thử chuẩn là khối vuông cạnh a=15 cm, tuổi 28 ngày. Theo tiêu chuẩn TCVN 5574–91 bêtông có các mác M50; M75; M100; M150; M200; M250; M300; M350; M400; M450; M500; M600.

2.4.2. Cấp độ bền chịu nén B

Tiêu chuẩn thiết kế kết cấu bêtông cốt thép TCXDVN356-2005 cũng như tiêu chuẩn Nhà nước TCVN 6025-1995 (Bêtông – Phân mác theo cường độ chịu nén) quy định phân biệt chất lượng bêtông theo cấp độ bền chịu nén, kí hiệu B. Đó là con số lấy bằng cường độ đặc trưng của mẫu thử chuẩn, tính theo đơn vị MPa. Mẫu thử chuẩn là khối vuông cạnh a=15 cm. Theo TCXDVN356-2005 bêtông có các cấp độ bền B3,5; B5; B7,5; B10; B12,5; B15; B20; B25; B30; B35; B40; B45; B50; B55; B60.

Như vậy tương quan giữa mác M và cấp độ bền B của cùng một loại bêtông thể hiện bằng biểu thức (2.10)

$$B = \alpha \beta M , \qquad (2.10)$$

trong đó: α – hệ số đổi đơn vị từ k G/cm^2 sang MPa; có thể lấy $\alpha=0,1$; β – hệ số chuyển đổi từ cường độ trung bình sang cường độ đặc trưng, với v=0,135 thì $\beta=(1-Sv)=0,778$.

2.4.3. Cấp độ bền chịu kéo B,

Khi mà sự chịu lực của kết cấu được quyết định chủ yếu bởi khả năng chịu kéo của bêtông thì ngoài cấp độ bền B còn cần quy định thêm cấp độ

bền chịu kéo B_t . Đó là con số lấy bằng cường độ đặc trưng về kéo của bêtông theo đơn vị MPa. Theo tiêu chuẩn TCXDVN 356 – 2005 bêtông có các cấp độ bền chịu kéo như sau: $B_t0,5$; $B_t0,8$; $B_t1,2$; $B_t1,6$; $B_t2,0$; $B_t2,4$; $B_t2,8$; $B_t3,2$; $B_t3,6$; $B_t4,0$.

2.4.4. Mác theo khả năng chống thấm và theo khối lượng riêng

Đối với các kết cấu có yêu cầu hạn chế thấm cần quy định mác theo khả năng chống thấm W, lấy bằng áp suất lớn nhất (atm) mà mẫu chịu được để nước không thấm qua.

Đối với kết cấu có yêu cầu về cách nhiệt cần quy định mác theo khối lượng riêng trung bình D.

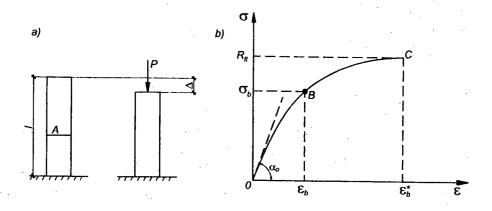
2.5. BIẾN DẠNG CỦA BỆTÔNG

Biến dạng của bêtông xảy ra khá phức tạp gồm biến dạng ban đầu do co ngót, biến dạng do tải trọng gây ra (biến dạng đàn hồi và biến dạng dẻo), sự tăng biến dạng theo thời gian.

2.5.1. Biến dạng do co ngót

Co ngót là hiện tượng bêtông giảm thể tích khi khô cứng trong không khí. Hiện tượng co ngót liên quan đến quá trình thủy hóa ximăng, đến sự bốc hơi lượng nước thừa khi bêtông khô cứng. Co ngót xảy ra chủ yếu trong giai đoạn khô cứng đầu tiên của bêtông. Trong điều kiện bình thường sau vài năm bêtông sẽ hết co và biến dạng tỉ đối do co ngót có thể đạt đến $(3 \div 5) \ 10^{-4}$. Biến dạng co ngót của bêtông đổ tại chỗ với độ sụt $12 \div 18$ cm có giá trị lớn hơn nhiều.

Sự co của mạng tinh thể ximăng bị cốt liệu cản trở gây ra ứng suất kéo ban đầu trong đá ximăng. Sự co không đều trong khối bêtông hoặc co ngót bị ngăn trở làm phát sinh ứng suất kéo và có thể làm bêtông bị nứt.


Co ngót là hiện tượng có hại, trong thiết kế và thi công cần có biện pháp làm giảm co ngót hoặc giảm ảnh hưởng của nó. Sau đây là một vài nhân tố chính liên quan đến co ngót.

- Trong môi trường khô co ngót lớn hơn trong môi trường ẩm ướt.
- Độ co ngót tăng lên khi dùng nhiều ximăng, dùng ximăng hoạt tính cao, khi tăng tỉ lệ nước ximăng, khi dùng cốt liệu có độ rỗng, cát min, dùng chất phụ gia (trừ việc dùng phụ gia trương nở).

Để giảm co ngót cần chọn thành phần thích hợp, hạn chế lượng nước trộn, đầm chặt bêtông, giữ cho bêtông thường xuyên ẩm trong giai đoạn đầu (dưỡng hộ). Để khắc phục ảnh hưởng xấu của co ngót cần dùng những biện pháp cấu tạo thích hợp, đặt cốt thép ở những nơi cần thiết, làm các khe co dãn trong kết cấu và tạo mạch ngừng khi thi công.

Khi bêtông khô cứng trong nước thể tích của nó tăng lên. Mức độ trương nở của bêtông tối đa bằng khoảng $(6 \div 15)10^{-5}$.

2.5.2. Biến dạng do tải trọng tác dụng ngắn han

Hình 2.6. Thí nghiệm và đồ thị ứng suất - biến dạng của bêtông

Làm thí nghiệm nén mẫu hình trụ có chiều dài l, diện tích tiết diện A. Tác dụng lên mẫu lực nén P, đo được độ co ngắn Δ . Tính được biến dạng tỉ đối $\varepsilon_b = \frac{\Delta}{l}$ và ứng suất $\sigma_b = \frac{P}{A}$ (h.2.6a). Với mỗi giá trị của P có được một cặp giá trị ε_b , σ_b và có được một điểm B của đồ thị (h.2.6b). Thay đổi (tăng dần) lực nén P có được đồ thị quan hệ giữa σ_b và ε_b . Kết quả thực nghiệm cho thấy đồ thị là một đường cong OBC. Điểm C ứng với lúc mẫu bị phá

hoại, lúc này $\sigma_b = R_{lt}$ là cường độ của mẫu thử hình trụ và ϵ_b đạt đến biến dạng cực hạn của bêtông là ϵ_b^* .

Với mẫu hình trụ chịu nén đúng tâm ϵ_b^* đạt giá trị trung bình khoảng 2×10^{-3} . Trong các cấu kiện bêtông cốt thép chịu uốn, giá trị ϵ_b^* ở mép chịu nén có thể đạt giá trị lớn hơn 3.5×10^{-3} .

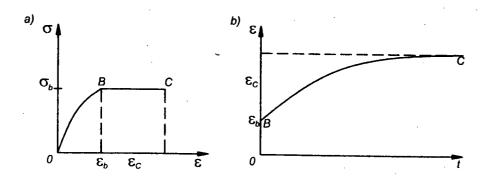
2.5.3. Biến dạng đàn hồi và biến dạng dẻo

Làm thí nghiệm mẫu hình trụ với lực P có biến dạng Δ . Cắt bỏ lực P mẫu sẽ khôi phục biến dạng nhưng không đạt đến kích thước ban đầu mà còn bị hụt một lượng Δ_2 . Phần biến dạng hồi phục được Δ_1 là biến dạng đần hồi, phần Δ_2 không hồi phục được là biến dạng dẻo. Tương ứng có biến dạng tỉ đối đàn hồi $\varepsilon_{el} = \frac{\Delta_1}{l}$ và biến dạng dẻo $\varepsilon_{pl} = \frac{\Delta_2}{l}$.

Hình 2.7. Thí nghiệm và biểu đồ thể hiện biến dạng đàn hồi - dẻo của bêtông

Như vậy bêtông là vật liệu đàn hồi – dẻo. Đồ thị biểu diễn quan hệ σ – ϵ khi tăng và giảm tải trọng thể hiện trên hình 2.7b. Đường OB ứng với quá trình tăng tải, BD – quá trình giảm tải.

$$\varepsilon_b = \varepsilon_{el} + \varepsilon_{pl} \,. \tag{2.11}$$


Đặt $v = \frac{\varepsilon_{el}}{\varepsilon_b}$ gọi là hệ số đàn hồi.

Khi σ_b còn bé biến dạng chủ yếu là đàn hồi, quan hệ $\sigma - \epsilon$ gần như đường thẳng, hệ số v gần bằng 1. Với ứng suất lớn biến dạng dẻo tăng lên, hệ số v giảm dần. Ở giai đoạn phá hoại biến dạng dẻo chiếm phần lớn.

2.5.4. Từ biến

Từ biến là hiện tượng biến dạng tăng theo thời gian.

Thí nghiệm nén mẫu với lực P có biến dạng ban đầu là Δ . Giữ cho lực P tác dụng trong thời gian lâu dài thì biến dạng còn tăng thêm một lượng Δ_c . Kí hiệu $\varepsilon_c = \frac{\Delta_c}{l}$ và gọi là biến dạng từ biến, được thể hiện bằng đoạn BC trên hình 2.8.

Hình 2.8. Đổ thị biểu diễn từ biến của bêtông

Hình 2.8a thể hiện sự tăng biến dạng khi σ_b không đổi, tác dụng lâu dài. Hình 2.8b thể hiện sự tăng biến dạng theo thời gian t.

Khi ứng suất σ_b tương đối bé (chưa vượt quá 0.7R) thì từ biến là có giới hạn, đường cong BC ở hình 2.8b có tiệm cận nằm ngang.

Khi σ_b là khá lớn ($\sigma_b > 0.85R$) thì từ biến phát triển không ngừng và dẫn mẫu thử đến phá hoại. Đó là sự giảm cường độ của bêtông khi tải trọng tác dụng lâu dài.

Từ biến phụ thuộc vào nhiều yếu tố. Có thể kể ra vài yếu tố cơ bản như sau:

- Đặt $r = \frac{\sigma_b}{R}$ là ứng suất tỉ đối. Khi r tăng thì ε_{tb} tăng.
- Tuổi của bêtông khi bắt đầu chịu tải càng lớn (bêtông càng già) thì từ biến giảm.
- Trong môi trường ẩm ướt từ biến ít hơn trong môi trường khô.
- Trong thành phần bêtông khi tỉ lệ nước ximăng càng lớn và độ cứng cốt liệu bé thì từ biến tăng.

Từ biến là hiện tượng phức tạp và đã có nhiều lý thuyết nghiên cứu. Có thể biểu diễn từ biến qua một trong hai chỉ tiêu:

- Đặc trung từ biến $\varphi = \frac{\epsilon_c}{\epsilon_{el}}$, không thứ nguyên.
- Suất từ biến $C = \frac{\varepsilon_c}{\sigma_b}$ có đơn vị MPa⁻¹ (hoặc cm²/kG).

Cả hai chỉ tiêu φ và C đều tăng theo thời gian. Các lý thuyết về từ biến thường quan tâm vào việc biểu diễn hàm của φ và C theo thời gian trên cơ sở các số liêu thực nghiệm.

Khi thời gian khá dài φ và C đạt dến giới hạn φ_0 và C_0 . Với bêtông nặng thông thường $\varphi_0=1.8\div3.5$, suất từ biến C_0 có thể tham khảo bảng dưới đây.

Tuổi của bêtông lúc chịu tải, ngày	7	14	28	60	trên 90
C _o x 10 ⁶ , cm ² /kG	15	12	9	6	5

2.5.5. Biến dạng nhiệt

Đây là loại biến dạng thể tích khi nhiệt độ thay đổi, phụ thuộc vào hệ số nở vì nhiệt của bêtông α_t . Hệ số này phụ thuộc vào loại ximăng, cốt liệu, trạng thái ẩm của bêtông và bằng khoảng $(0,7\div 1,5)$ $\frac{10^{-5}}{\text{độ}}$. Thông thường

khi nhiệt độ thay đổi trong khoảng 0 – 100°C lấy $\alpha_t = 1 \times 10^{-5}$ để tính toán.

2.5.6. Môđun đàn hồi

Khi chịu nén mô
đun đàn hồi ban đầu của bêtông E_b được định nghĩa từ biểu thức:

$$E_b = \frac{\sigma_b}{\varepsilon_{el}} = tg\alpha_0, \qquad (2.12)$$

 α_o – góc lập bởi tiếp tuyến tại gốc của biểu đồ σ – ϵ với trục ϵ (xem h.2.6b).

Theo TCXDVN 356 – 2005 giá trị của E_b phụ thuộc cấp độ bền và loại bêtông, được cho ở phụ lục 2.

Với bêtông nặng thông thường $E_b = (18 \div 40)10^3 \text{ MPa}$.

Bêtông là vật liệu đàn hồi – dẻo, vì vậy ngoài E_b người ta còn định nghĩa môđun đàn hồi – dẻo E_b (còn gọi là môđun biến dạng) theo biểu thức:

$$E'_b = \frac{\sigma_b}{\varepsilon_b} = \text{tg}\alpha$$
, (2.13)

 α – góc lập bởi cát tuyến OB của biểu đồ σ – ϵ với trực ϵ (xem h.2.7b).

Với $\varepsilon_{el} = v\varepsilon_b$ rút ra quan hệ giữa E_b và E_b :

$$E'_b = vE_b , \qquad (2.14)$$

ν - hệ số đàn hồi.

- Hệ số nở ngang (hệ số Poát xông) của bêtông μ_b lấy bằng 0,2. Môdun chống cắt của bêtông $G_b=0.4E_b$.
- Khi chiu kéo, môđun đàn hồi của bêtông giống như khi chịu nén. Môđun biến dạng khi kéo có giá trị là: $E_{bt} = v_t E_b$, trong đó v_t hệ số đàn hồi khi kéo. Thí nghiệm cho biết khi ứng suất kéo của bêtông đạt đến cường độ chịu kéo R(t) thì v_t có giá trị trung bình là 0,5.

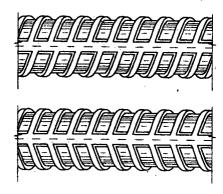
B. CỐT THÉP

2.6. CÁC LOẠI CỐT THÉP

Thép có nhiều loại. Dựa vào thành phần hóa học và phương pháp luyện người ta định ra *mác thép*. Để làm cốt cho bêtông thường chỉ dùng một số mác thép các bon thấp và thép hợp kim thấp. Thép các bon thường được dùng là CT3 và CT5 với tỉ lệ các bon là 3 và 5 phần nghìn. Khi tăng tỉ lệ các bon cường độ của thép tăng, độ dẻo giảm và thép trở nên khó hàn.

Thép hợp kim thấp có thêm một số nguyên tố như măng gan, crôm, silic, titan... nhằm nâng cao cường độ, cải thiện một số tính chất của thép.

Lò luyện thép sản xuất ra các phôi thép. Nhà máy thép nung nóng phôi thép và cán thành các thanh cốt thép. Hiện nay các nhà máy cán thép ở Việt Nam dùng các phôi thép được luyện từ trong nước hoặc nhập của nước ngoài.


Cốt thép có đường kính từ 10 mm trở lên được sản xuất thành từng thanh có chiều dài thường không quá 13 m. (chiều dài các thanh cốt thép thường là 11,7m). Cốt thép có đường kính dưới 10mm được sản xuất thành cuộn, mỗi cuộn có trọng lượng dưới 500 kG.

Sau khi sản xuất bằng phương pháp cán nóng cốt thép được đem dùng để xây dựng công trình. Một số cốt thép còn có thể được gia công nguội (kéo nguội, dập nguội) hoặc gia công nhiệt (tôi).

Thép kéo nguội được thực hiện bằng cách kéo tạm thời các cốt thép với ứng suất vượt quá giới hạn chảy của nó, làm như vậy sẽ tăng cường độ của thép nhưng làm giảm dộ dẻo. Dây thép kéo nguội còn có thể được chuốt qua các khuôn có đường kính nhỏ dần để nâng cường độ lên cao hơn nữa. Dây thép kéo nguội thường có đường kính 3 – 8 mm.

Gia công nhiệt cốt thép bằng cách nung nóng đến nhiệt độ 950°C trong khoảng một phút rồi tôi nhanh vào nước hoặc dầu, sau đó nung trở lại đến 400°C và để nguội từ từ. Làm như vậy nâng cao cường độ của thép và giữ được độ dẻo cần thiết.

Về hình thức cốt thép được sản xuất thành các thanh tiết diện tròn mặt ngoài nhẵn (cốt thép tròn trơn) hoặc mặt ngoài có gờ (cốt thép có gờ hoặc cốt thép vằn). Các gờ trên bề mặt cốt thép có tác dụng nâng cao khả năng dính bám của nó với bêtông (h.2.9).

Hình 2.9. Một số loại cốt thép có gờ

Để làm cốt cho bêtông cũng có thể dùng các thanh thép hình như thép góc, thép chữ U, chữ I. Đó là cốt thép cứng có khả năng chịu lực khi thi công.

2.7. MỘT SỐ TÍNH NĂNG CƠ HỌC CỦA CỐT THÉP

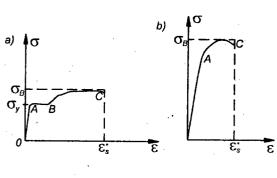
2.7.1. Biểu đồ ứng suất biến dạng, cốt thép dẻo, cốt thép rắn

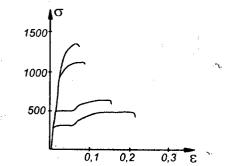
Tính năng cơ học của cốt thép phụ thuộc vào thành phần hóa học và công nghệ chế tạo. Để biết được tính năng đó người ta thí nghiệm kéo mẫu thép và vẽ biểu đồ quan hệ ứng suất σ và biến dạng ϵ . Dựa vào biểu đồ này phân biệt hai loại: thép dẻo và thép rắn.

a. Thép dẻo

Biểu đồ $\sigma - \varepsilon$ của thép dẻo được thể hiện trên hình 2.10a. Nó gồm một đoạn thẳng xiên OA, đoạn nằm ngang AB và đoạn cong BC. Đoạn OA ứng với giai đoạn làm việc đàn hồi, quan hệ giữa σ và ε theo luật bậc nhất. Đoạn AB ứng với trạng thái chảy dẻo, biến dạng tăng trong khi

ứng suất không tăng, được gọi là thềm chảy. Lúc này xác định được giới hạn chảy của cốt thép σ_y . Đoạn BC ứng với giai đoạn củng cố sau khi chảy dẻo, ứng suất và biến dạng tiếp tục tăng lên cho đến khi thép bị kéo đứt. Lúc này xác định được giới hạn bền σ_B và biến dạng cực hạn ε_S^* .


Các loại thép cacbon thấp và hợp kim thấp cán nóng thuộc loại thép dẻo, chúng có giới hạn chảy trong khoảng 200 - 500 MPa, có biến dạng cực hạn


$$\varepsilon_S^* = 0.15 \div 0.25.$$

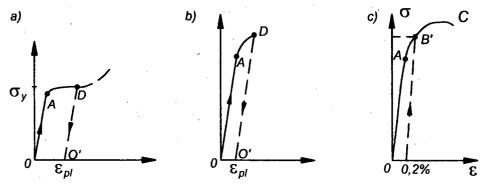
Gới hạn bền σ_B lớn hơn giới hạn chảy khoảng 20 - 40%.

b. Thép rắn

Biểu đồ $\sigma - \varepsilon$ thể hiện trên hình 2.10b, gồm đoạn thẳng OA và đoạn cong AC. Đoạn OA ứng với trạng thái làm việc đàn hồi. Đoạn

Hình 2.10. Biểu đồ σ – ε của các loại thép

cong AC ứng với giai đoạn cốt thép có biến dạng dẻo. Khi bị kéo đứt xác định được giới hạn bền σ_B và biến dạng cực hạn ε_S^* . Cốt thép qua gia công nguội và gia công nhiệt thường thuộc loại này. Giới hạn bền của thép rắn vào khoảng 500-2000 MPa và biến dạng cực hạn tương đối bé, $\varepsilon_S^*=0.05 \div 0.1$.


Cốt thép rắn không có giới hạn chảy rõ ràng, người ta xác định giới hạn chảy quy ước.

Hình 2.10c thể hiện chung một số đồ thị của thép dẻo và thép rắn.

2.7.2. Biến dạng đàn hồi và biến dạng dẻo

Khi kéo thép trong giới hạn đàn hồi (chưa đến điểm A) rồi giảm lực thì toàn bộ biến dạng được khôi phục, đường biểu diễn σ – ϵ khi giảm lực trở về điểm O, gốc tọa độ.

Khi kéo thép đến điểm D nào đó vượt quá điểm A (quá giới hạn đàn hồi) rồi giảm lực thì đồ thị σ – ϵ ứng với giảm lực là đường thẳng DO' song song với OA, không trở về gốc mà vẫn còn một phần biến dạng không hồi phục, đó là biến dạng dẻo ϵ_{pl} (hoặc biến dạng dư - xem hình 2.11). Khi điểm D càng xa điểm A thì ϵ_{pl} càng lớn.

Hình 2.11. Biến dạng dẻo của cốt thép

2.7.3. Cường độ giới hạn chảy σ_y

Các loại thép dẻo có giới hạn chảy rõ ràng và từ biểu đồ $\sigma-\epsilon$ dễ dàng xác định được.

Các loại thép rắn không có giới hạn chảy rõ ràng, người ta xác định σ_y quy ước, lấy bằng ứng suất khi thép có $\epsilon_{pl}=0.2\%$. Xác định σ_y quy ước như trên hình 2.11c. Có biểu đồ kéo thép OAC. Lấy biến dạng 0.2%, kẻ đường song song với OA cắt biểu đồ tại điểm B', từ đó xác định σ_y . Giới hạn đàn hồi quy ước là giá trị ứng suất ứng với biến dạng dư tỉ đối là 0.02%.

2.7.4. Sự cứng nguội

Đó là hiện tượng tăng σ_y khi gia công nguội cốt thép. Lấy cốt thép dẻo đem kéo nguội cho quá giới hạn chảy rồi giảm lực sẽ được cốt thép kéo

nguội. Cốt kéo nguội này có giới hạn chảy cao hơn cốt thép ban đầu. Sau một vài lần kéo hoặc chuốt, thềm chảy AB sẽ biến mất, cốt thép trở thành rắn với cường độ được tăng cao và biến dạng cực hạn giảm.

2.7.5. Cường độ tiêu chuẩn của cốt thép R_{sn}

Giá trị tiêu chuẩn về cường độ của thép được gọi tắt là cường độ tiêu chuẩn, kí hiệu R_{sn} được lấy bằng cường độ giới hạn chảy (thực tế hoặc quy ước) với xác suất bảo đảm không dưới 95%.

Đặt σ_y^m là giá trị trung bình của giới hạn chảy khi thí nghiệm một số mẫu thép thì:

$$R_{sn} = \sigma_{\gamma}^{m} \left(1 - Sv \right), \tag{2.15}$$

trong đó: v – hệ số biến động. Với cốt thép được sản xuất bằng các phôi đạt tiêu chuẩn, trong các nhà máy có công nghệ hiện đại và được kiểm tra chặt chẽ thì độ đồng nhất của thép là tương đối cao, hệ số $v = 0.05 \div 0.08$ (*);

S = 1,64 ứng với xác suất bảo đảm 95%.

Cường độ tiêu chuẩn của một số loại thép được cho ở phụ lục.

2.7.6. Môdun đàn hồi của cốt thép E_s

Mô
đun đàn hồi của cốt thép, kí hiệu là E_s được lấy bằng độ dốc của đoạn
 OA trên biểu đồ σ – ϵ . Giá trị của E_s vào khoảng 180 000 – 210 000 MP
a phụ thuộc vào loại thép và được cho ở phụ lục 7.

2.7.7. Độ dẻo của cốt thép

Độ dẻo của cốt thép được đánh giá bằng biến dạng dẻo toàn phần của mẫu thí nghiệm hoặc được đánh giá bằng cách uốn nguội cốt thép quanh một

^(*) Ở Việt Nam hiện tồn tại một số lò thủ công, sản xuất cốt thép từ các phế liệu, sản phẩm có độ đồng nhất thấp, hệ số v khá lớn, trên thị trường thường gọi là cốt thép dởm, cốt thép lậu.

trục có đường kính bằng 3 - 5 lần đường kính của nó. Đối với dây thép dùng cách bẻ gập nhiều lần.

Độ dẻo của cốt thép ảnh hưởng lớn đến việc gia công (uốn gập, uốn móc...) và có ý nghĩa đối với sự làm việc của bêtông cốt thép. Cốt thép có độ dẻo thấp có thể bị đứt hoặc gãy một cách đột ngột.

2.7.8. Tính hàn được

Tính hàn được của cốt thép biểu thị bởi sự đảm bảo liên kết chắc chắn khi hàn nối, không có vết nứt, không có khuyết tật của kim loại ở mối hàn và xung quanh. Tính hàn được phụ thuộc vào thành phần của thép và cách chế tạo. Các thép cán nóng bằng thép chứa ít các bon và thép hợp kim thấp có tính hàn được khá tốt. Không được phép hàn các cốt thép đã qua gia công nguội hoặc gia công nhiệt vì nhiệt độ cao ở mối hàn làm giảm cường độ của thép.

2.7.9. Ảnh hưởng của nhiệt độ

Cốt thép bị nung nóng ở nhiệt độ cao sẽ bị thay đổi về cấu trúc kim loại, cường độ và môđun đàn hồi đều giảm xuống, sau khi để nguội trở lại cường độ được hồi phục không hoàn toàn.

Khi chịu lạnh quá mức (dưới -30° C) một số thép cán nóng trở nên giòn, đó là hiện tượng giòn nguội. Thép kéo nguội và gia công nhiệt cũng bị giòn nguội nhưng ở nhiệt độ thấp hơn so với thép cán nóng.

Hệ số dẫn nở vì nhiệt của thép vào khoẳng 1×10^{-5} .

2.8. PHÂN LOẠI (NHÓM) CỐT THÉP

2.8.1. Phân theo TCVN 1651 - 1985

Tiêu chuẩn Nhà nước TCVN 1651 – 1985 về "Thép cán nóng, thép cốt bêtông" phân cốt thép thành bốn nhóm dựa vào tính chất cơ học. Đặt tên các nhóm là CI, CII, CIII, CIV. Cốt thép nhóm CI được sản xuất thành

loại tròn, trơn. Cốt thép nhóm CII có gờ xoắn vít theo một chiều, cốt thép nhóm CIII, CIV có gờ xiên theo hai chiều, kiểu xương cá (h.2.9). Cốt thép nhóm CI, CII là loại dễ hàn, nhóm CIII khó hàn còn nhóm CIV không hàn được bằng hồ quang.

2.8.2. Phân theo TCVN 6285 - 1997

Tiêu chuẩn TCVN 6285 – 1997 về "Thép cốt bêtông – thép thanh vằn" phân định cốt thép thành năm loại sau: RB300; RB400; RB500; RB400W; RB500W. Con số ghi ở mỗi loại thép bằng giới hạn chảy trung bình tính theo đơn vị MPa. Ba loại thép RB300; RB400; RB500 là thép khó hàn. Hai loại RB400W; RB500W là dễ hàn.

2.8.3. Một số cách phân loại khác

Mỗi nước sản xuất cốt thép có cách phân loại theo tiêu chuẩn riêng. Nước Nga phân cốt thép thành các nhóm:

- Cốt thép cán nóng, tròn tron, nhóm A-I.
- Cốt thép cán nóng, có gờ nhóm A-II; A-III; A-IV; A-V; A-VI.
- Cốt thép gia công nhiệt A_T –IIIC; A_T –IV; A_T –V; A_T –VI; A_T –VII.
- Sợi thép kéo nguội loại thường $B_{\text{p}}I$.
- Sợi thép kéo nguội cường độ cao BII (tròn trơn); $B_{\rm p} II$ (có gờ).
- Thép cáp: loại 7 sợi K7; loại 19 sợi K19.

Cốt thép của Trung Quốc chia thành các cấp I, II, III, IV và các loại sợi kéo nguội.

Cốt thép của Pháp được ghi theo giới hạn chảy như FeE230; FeE400; FeE500.

2.8.4. Tương quan giữa mác thép và nhóm (loại) cốt thép

Mác thép được định ra và kí hiệu chủ yếu dựa vào thành phần hóa học và cách luyện, ví dụ thép CT3, CT5, 18F2C, 25X2C... Nhóm hoặc loại cốt thép

được phân chia theo tính năng cơ học. Hai cách phân chia này là khác nhau nhưng liên quan với nhau vì tính năng của thép là do thành phần quyết định. Thông thường cốt thép nhóm CI, A-I chế tạo từ thép cacbon thấp mác CT3; cốt thép nhóm CII, A-II chế tạo từ thép cacbon thấp mác CT5 hoặc từ thép hợp kim thấp 10 CT, 18 C2C; cốt thép nhóm CIII, A-III chế tạo từ thép hợp kim thấp mác 25 C2C, 35 CC...

Để nhận dạng các nhóm cốt thép, ngoài cách dùng hình thức gờ trên bề mặt khác nhau người ta có thể đánh dấu đầu mút cốt thép bằng sơn các mầu khác nhau. Một số hãng sản xuất còn có kí hiệu của hãng trên bề mặt các thanh cốt thép.

C. BÊTÔNG CỐT THÉP

2.9. LỰC DÍNH GIỮA BÊTÔNG VÀ CỐT THÉP

Lực dính bám giữa cốt thép và bêtông là yếu tố cơ bản bảo đảm sự làm việc chung của hai loại vật liệu, làm cho cốt thép và bêtông cùng biến dạng với nhau và có sự truyền lực qua lại giữa chúng.

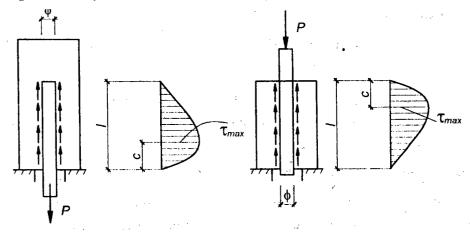
2.9.1. Thí nghiệm xác định lực dính

Chế tạo mẫu bằng cách đổ bêtông ôm lấy đoạn cốt thép. Thí nghiệm bằng cách kéo hoặc nén cho cốt thép tụt khỏi bêtông (h.2.12). Cường độ trung bình của lực dính τ được xác định theo biểu thức:

$$\tau = \frac{P}{\pi \phi l} , \qquad (2.16)$$

trong đó: P - lực kéo (hoặc nén) làm cốt thép tụt khỏi bêtông;

duờng kính cốt thép;


l - chiều dài đoạn cốt thép chôn trong bêtông.

Để thí nghiệm làm cốt thép tụt khỏi bêtông thì chiều dài đoạn l phải được hạn chế trong một phạm vi nào đó. Nếu l quá lớn thì khi thí nghiệm cốt thép có thể bị kéo hoặc nén quá giới hạn chảy (thậm chí có thể bị kéo đứt) mà không bị tụt. Kết quả thí nghiệm cho thấy sự phân bố lực dính dọc theo đoạn cốt thép là không đều, nó bằng không ở hai đầu mút và đạt giá trị $\tau_{\rm max}$ ở nơi cách tiết diện đầu tiên một khoảng C

$$C = \left(\frac{1}{4} \div \frac{1}{3}\right)l,$$

$$\tau = \omega \tau_{\text{max}} \text{ hoặc } \tau_{\text{max}} = \frac{P}{\omega \pi \phi l},$$
(2.17)

trong đó: ω - hệ số hoàn chỉnh biểu đồ lực dính, ω < 1.

Hình 2.12. Thi nghiệm xác định lực dính

2.9.2. Các nhân tố tạo nên lực dính bám

Thông qua việc suy luận bằng lý thuyết cũng như thông qua việc phân tích các kết quả thực nghiệm thấy rằng lực dính bảm giữa bêtông và cốt thép được tạo nên bởi các nhân tố chủ yếu sau đây:

a. Luc ma sát

Khi bêtông khô cứng, do ảnh hưởng của co ngót mà bêtông ôm chặt lấy cốt thép, tạo nên lực ma sát giữa chúng.

and by Su bam and a state of the control of an artist of the artist.

Với cốt thép cỡ gờ, phần bệtông nằm dưới các gờ chống lại sự trượt của

c. Lực dán

Keo ximăng có tác dụng như một thứ hồ dán cốt thép vào bêtông. Với cốt thép tròn trơn nhân tố lực ma sát là chủ yếu. Với cốt thép có gờ nhân tố bám là quan trọng. Lực dán chỉ chiếm một phần nhỏ trong giá trị của τ.

2.9.3. Các nhân tố ảnh hưởng

Giá trị của lực dính bám chịu ảnh hưởng của những nhân tố sau:

a. Trạng thái chịu lực

Với cốt thép chịu nén lực dính bám lớn hơn so với khi cốt thép chịu kéo.

b. Chiều dài đoạn l

Khi thay đổi chiều dài đoạn l thì giá trị $\tau_{\rm max}$ không thay đổi nhưng giá trị trung bình τ có thay đổi chút ít vì khi tăng l thì hệ số hoàn chỉnh biểu đồ ω giảm xuống.

c. Biện pháp nhằm cản trở biến dạng

Khi dùng những biện pháp nhằm cản trở biến dạng ngang của bêtông (lưới thép hàn, cốt thép lò xo...) có thể làm tăng lực dính bám.

2.9.4. Trị số lực dính bám

Phân tích và xử lí các kết quả thí nghiệm đã lập được công thức thực nghiệm xác định lực dính bám phụ thuộc vào chất lượng bêtông, bề mặt cốt thép và trạng thái chịu lực.

Trường phái Nga biểu diễn τ_{\max} theo cường độ chịu nén tiêu chuẩn của bêtông R_{bn}

$$\tau_{\text{max}} = \frac{\alpha R_{bn}}{m}, \qquad (2.18)$$

trong đó: m - hệ số phụ thuộc bề mặt cốt thép. Với cốt thép tròn trơn $m=5\div 6$; thép có gờ $m=3\div 3,5$;

 α – hệ số phụ thuộc trạng thái chịu lực. Khi cốt thép chịu kéo α = 1; cốt thép chịu nén α = 1,5.

Trường phái Pháp biểu diễn giá trị lực dính trung bình τ theo cường độ chịu kéo tiêu chuẩn của bêtông R_{tn}

$$\tau = \beta \gamma R_{tn} . \tag{2.18a}$$

Với cốt thép chịu kéo $\beta = 0.6$; cốt thép chịu nén $\beta = 1$.

Với cốt thép tròn tron $\gamma = 1 \div 1,2$; cốt thép có gờ $\gamma = 1,8 \div 2$.

2.10. SỰ LÀM VIỆC CHUNG GIỮA BÊTÔNG VÀ CỐT THÉP

2.10.1. Ứng suất ban đầu do bêtông co ngót

Khảo sát một thanh bêtông có đặt cốt thép dọc theo trục. Khi thanh bêtông được co ngót tự do nó sẽ có biến dạng do co ngót là ϵ_0 . Nhưng vì bêtông dính bám với cốt thép mà cốt thép không co nên nó cản trở sự co của bêtông. Kết quả là thanh bêtông cốt thép có biến dạng do co ngót là ϵ_1 mà $\epsilon_1 < \epsilon_0$.

Xét một cách tương đối thấy rằng cốt thép đã bị bêtông tạo ra một biến dạng nén ϵ_1 , trong cốt thép phát sinh ứng suất nén $\sigma_s = \epsilon_1 E_s$. Ngược lại, bêtông bị cốt thép chống lại sự co và chịu một biến dạng kéo $\epsilon_2 = \epsilon_0 - \epsilon_1$. Trong bêtông xuất biện ứng suất kéo $\sigma_t = \nu_t \epsilon_2 E_b$.

Sự co ngót diễn ra theo thời gian vì vậy σ_s và σ_k biến thiên theo thời gian. Hợp lực của σ_s và σ_t là những lực nội tại, chúng tự cân bằng.

Nếu σ_t vượt quá giới hạn chịu kéo, bêt
ông sẽ bị nứt. Đó là nứt do co ngót của bêtông bị cản trở.

2.10.2. Ứng suất do ngoại lực

Xét trường hợp đơn giản là thanh bêtông cốt thép chịu nén hoặc chịu kéo mà bêtông chưa bị nứt, bêtông và cốt thép cùng làm việc chung, có cùng biến dạng là ε.

• Úng suất trong bêtông:

$$\sigma_b = v \varepsilon E_b \text{ do dó } \varepsilon = \frac{\sigma_b}{v E_b}.$$

• Úng suất trong cốt thép:

$$\sigma_s = \varepsilon E_s = \frac{\sigma_b}{\nu E_b} \cdot E_s.$$

Đặt
$$n_s = \frac{E_s}{vE_b}$$
, rút ra

$$\sigma_s = n_s \sigma_b \tag{2.19}$$

Giá trị hệ số tương đương n_s thay đổi trong khoảng 8-20.

Kí hiệu: N - lực dọc (nén hoặc kéo)

 A_b ; A_s – diện tích tiết diện của bêtông và của cốt thép.

Từ điều kiện cân bằng lực viết được phương trình :

$$N = \sigma_b A_b + \sigma_s A_s = \sigma_b (A_b + n_s A_s). \tag{2.20}$$

Đặt $A_{red} = A_b + n_s A_s$ và gọi là diện tích của tiết diện tương đương.

Trong cấu kiện chịu kéo hoặc ở vùng kéo của cấu kiện chịu uốn, sau khi bêtông bị nứt, phần nội lực do bêtông chịu được truyền sang cho cốt thép và cốt thép chịu toàn bộ nội lực kéo.

2.10.3. Sự phân bố lại ứng suất do từ biến

Khi chịu lực tác dụng lâu dài bêtông bị từ biến. Cốt thép không từ biến và vì có lực dính bám mà cốt thép cần trở từ biến của bêtông. Kết quả là ứng suất trong cốt thép σ_s tăng lên và ứng suất trong bêtông σ_b giảm xuống. Đó là sự phân phối lại ứng suất do từ biến của bêtông. Sự phân phối lại này xảy ra theo thời gian, được thể hiện bằng việc giảm hệ số dàn hồi ν , làm tăng hệ số tương dương n_s . Khi xảy ra sự phân phối lại ứng suất, giá trị σ_b giảm xuống trong lúc phương trình cân bằng (2.20) vẫn giữ nguyên.

Phân phối lại ứng suất thường là có lợi cho sự làm việc chung của bêtông và cốt thép.

2.11. SỰ PHÁ HOẠI VÀ HƯ HỎNG CỦA BỆTÔNG CỐT THÉP

Bêtông cốt thép có thể bị phá hoại, bị hư hỏng do tác dụng của ngoại lực, do biến dạng cưỡng bức hoặc do tác động bất lợi của môi trường.

2.11.1. Sự phá hoại do chịu lực

Bêtông và cốt thép làm việc chung với nhau cho đến khi bị phá hoại. Với thanh chịu kéo, sau khi bêtông bị nứt cốt thép chịu toàn bộ lực kéo và nó bị xem là bắt đầu phá hoại khi ứng suất trong cốt thép đạt đến giới hạn chảy. Với cột chịu nén sự phá hoại bắt đầu khi ứng suất nén trong bêtông đạt đến giới hạn cường độ chịu nén, bêtông bị nén võ. Sự phá hoại của cấu kiện chịu uốn có thể bắt đầu từ vùng chịu kéo hoặc từ vùng chịu nén. Khi cốt thép chịu kéo là vừa phải thì sự phá hoại bắt đầu từ vùng chịu kéo với việc cốt thép chịu kéo đạt giới hạn chảy, có biến dạng lớn, vết nứt mở rộng. Khi cốt thép là khá nhiều thì sự phá hoại bắt đầu từ vùng nén với việc ứng suất trong bêtông đạt đến giới hạn cường độ, vùng nén bị phá võ.

2.11.2. Sự hư hỏng hoặc phá hoại do biến dạng cưỡng bức

Biến dạng cưỡng bức gây ra do chuyển vị của các liên kết (gối tựa), do thay đổi nhiệt độ, do co ngót của bêtông v.v... Trong kết cấu tĩnh định biến dạng cưỡng bức không gây ra nội lực. Trong kết cấu siêu tĩnh biến dạng cưỡng bức thường bị ngăn cản, làm phát sinh nội lực và có thể làm kết cấu bị hư hỏng hoặc phá hoại. Sự hư hỏng thể hiện ở chỗ bêtông bị nứt, vỡ. Sự phá hoại xảy ra giống như khi phá hoại do chịu lực.

2.11.3. Sự hư hỏng do tác dụng của môi trường

Trong sự tác động của môi trường bêtông cốt thép có thể bị hư hỏng do tác dụng cơ. lý, hóa, sinh vật.

Về cơ học và vật lý, bêtông có thể bị bào mòn do mưa, dòng chảy, bị hun nóng do mặt trời hoặc các nguồn nhiệt. Đối với các công trình chịu lạnh, sự đóng và tan băng có thể gây hư hỏng cấu trúc của bêtông.

Về hóa học, bêtông bị xâm thực do các chất hóa học (axit, bado, muối) có trong môi trường. Các chất này có phản ứng hóa học với các thành phần của đá ximăng tạo ra các chất hòa tan hoặc làm giảm cường độ, phá hỏng sự liên kết (bêtông bị mủn).

Cốt thép có thể bị xâm thực do tác dụng hóa học và điện phân của môi trường. Khi cốt thép bị gỉ thể tích lớp gỉ tăng lên nhiều lần so với thể tích kim loại ban đầu, nó chèn ép vào bêtông làm cho lớp bêtông bên ngoài bị nút, vỡ. Sự mở rộng vết nút trong bêtông làm cho cốt thép dễ bị gỉ hơn. Trong môi trường có hơi nước mặn, môi trường có nhiệt độ và độ ẩm cao cốt thép bị gỉ nhiều hơn. Ứng suất trong cốt thép càng cao và sự gia công nguội cốt thép cũng làm cho thép dễ bị gỉ hơn.

Về sinh vật, các loại rong rêu, hà, những vi khuẩn ở sông biển cũng gây tác dụng làm hư hỏng bề mặt bêtông do tác dụng của những chất hóa học chúng tiết ra.

Về tác dụng của thời gian, trong vài năm đầu bêtông có tăng cường độ (trong môi trường thuận lợi). Tuy vậy sau vài chục năn bêtông sẽ bị già lão và cường độ có thể bị giảm dần.

NGUYÊN LÝ TÍNH TOÁN VÀ CẤU TẠO

3.1. NỘI DUNG VÀ CÁC BƯỚC THIẾT KẾ KẾT CẦU BỆTÔNG CỐT THÉP

3.1.1. Nội dung, sản phẩm của thiết kế

Thiết kế kết cấu là việc làm bắt đầu từ các ý tưởng về nó, tiến hành phân tích, tính toán rồi thể hiện kết quả bằng ngôn ngữ và hình ảnh. Sản phẩm của thiết kế kết cấu bêtông cốt thép (BTCT) thường là các hình vẽ trình bày hình dáng, kích thước của kết cấu, các chỉ định về vật liệu, những cấu tạo chi tiết của các bộ phận. Ngoài các hình vẽ thì hồ sơ thiết kế còn có bản thuyết minh trình bày các cơ sở của thiết kế, các lập luận và tính toán, các kết quả.

Yêu cầu cơ bản đối với thiết kế kết cấu là thỏa mãn các điều kiện về sử dụng công trình, bảo đảm độ bền vững, dùng vật liệu một cách hợp lý, thuận tiện cho thi công và tính kinh tế.

Yêu cầu về độ bền vững là quan trọng nhất. Cần có những phân tích, tính toán đủ tin cậy để bảo đảm kết cấu có đủ khả năng chịu lực trong mọi giai đoạn xây dựng, sử dụng và sửa chữa công trình.

Yêu cầu về sử dụng và về thi công đòi hỏi việc thiết kế kết cấu cần được phối hợp với thiết kế kiến trúc và gắn với công nghệ xây dựng.

3.1.2. Các bước thiết kế

Thiết kế kết cấu BTCT gồm hai việc chính: tính toán và cấu tạo. Quy trình thiết kế thường theo thứ tự bảy bước như sau:

Bước I. Mô tả, giới thiệu về kết cấu

Trình bày về vị trí, nhiệm vụ, đặc điểm (nếu có) của kết cấu. Trình bày về việc lựa chọn phương án kết cấu, thể hiện mặt bằng kết cấu, hình dáng và các kích thước cơ bản của kết cấu.

Bước 2. Chọn kích thước sơ bộ các bộ phận (chiều dày của bản, của tường, kích thước tiết diện của dầm, của cột...) và vật liệu.

Việc chọn vật liệu (cấp độ bền, loại bêtông, nhóm, loại cốt thép) cần căn cứ vào nhiệm vụ, đặc điểm của kết cấu và điều kiện cung cấp cốt thép, điều kiện, công nghệ chế tạo bêtông.

Bước 3. Lập sơ đồ tính toán

Xác định các gối tựa, các liên kết, nhịp tính toán của bản và dầm, chiều dài tính toán của cột. Liên kết lí thuyết dùng trong tính toán có các loại như gối kê tự do, gối khớp, liên kết cứng, liên kết ngàm... Việc chuyển từ liên kết thực tế thành các liên kết để tính toán đòi hỏi sự phân tích về khả năng ngăn cản chuyển vị thẳng và chuyển vị xoay của liên kết chứ không thể chỉ dựa vào hình thức bên ngoài của chúng.

Bước 4. Xác định các loại tải trọng tác dụng lên kết cấu

Với mỗi loại tải trọng cần xác định giá trị, phương chiều tác dụng, các trường hợp bất lợi có thể xảy ra.

Bước 5. Tính toán, vẽ biểu đồ nội lực, tổ hợp nội lực

Cần tính toán và vẽ biểu đồ nội lực cho từng trường hợp tải trọng. Sau đó sẽ lựa chọn các giá trị từ các biểu đồ, tổ hợp lại để chọn ra những giá trị bất lợi để tính toán tiếp.

Bước 6. Tính toán về bêtông cốt thép

Với nội lực đã có cần tiến hành tính toán về bêtông cốt thép nhằm xác định hoặc kiểm tra kích thước tiết diện và các loại cốt thép,

bảo đảm cho kết cấu chịu lực được an toàn. Tính toán về bêtông cốt thép là nội dung cơ bản của giáo trình này, được trình bày trong các chương tiếp theo.

Bước 7. Thiết kế chi tiết và thể hiện

Tiến hành chọn và bố trí cốt thép theo các yêu cầu về chịu lực và cấu tạo, thiết kế chi tiết các bộ phận, các thanh cốt thép, thể hiện lên bản vẽ các kết quả của thiết kế để dùng cho việc nhận biết chính xác kết cấu và để thi công.

3.2. TẢI TRỌNG

Tải trọng là các lực tác dụng lên kết cấu. Khi thiết kế kết cấu cần xác định tải trọng theo các tiêu chuẩn tương ứng. Với các kết cấu nhà và công trình dân dụng, công nghiệp cần dùng tiêu chuẩn tải trọng và tác động TCVN 2737 – 1995.

3.2.1. Phân loại tải trọng

Dựa vào tính chất tác dụng phân tải trọng thành ba loại: tải trọng thường xuyên, tải trọng tạm thời và tải trọng đặc biệt.

Tải trọng thường xuyên (tĩnh tải) là tải trọng có tác dụng không thay đổi trong suốt quá trình sử dụng kết cấu như trọng lượng bản thân kết cấu, các vách ngăn cố định v.v... Để xác định tải trọng thường xuyên cần dựa vào cấu tạo cụ thể của các bộ phận.

Tải trọng tạm thời (hoạt tải) là các tải trọng có thể thay đổi về điểm đặt, giá trị, phương chiều. Đó là tải trọng do người và các đồ vật ở trên sàn nhà (tải trọng sử dụng trên sàn), tải trọng do gió, do các phương tiện giao thông v.v... Để xác định tải trọng tạm thời cần dựa vào các tiêu chuẩn về tải trọng dựa vào các số liệu thống kê.

Tải trọng đặc biệt là tải trọng rất ít khi xảy ra như động đất, cháy nổ, bom đạn...

Về thời hạn tác dụng phân chia thành: tác dụng dài hạn, tác dụng ngắn hạn và tác dụng trùng lặp.

Tải trọng tác dụng dài hạn gồm tải trọng thường xuyên và một phần nào đó của tải trọng tạm thời. Tải trọng tác dụng ngắn hạn gồm phần còn lại của tải trọng tạm thời. Tải trọng trùng lặp là tải trọng có trị số thay đổi nhanh, thường theo chu kì (tải trọng rung động).

3.2.2. Trị số tiêu chuẩn và tính toán của tải trọng

Trong khi tính toán kết cấu cần phân biệt hai trị số của tải trọng: trị số tiêu chuẩn và trị số tính toán.

Trị số tiêu chuẩn của tải trọng (kí hiệu q_{TC} , gọi tắt là tải trọng tiêu chuẩn) lấy bằng các giá trị thường gặp trong quá trình sử dụng công trình. Trị số này được xác định theo các số liệu thực tế, theo thống kê.

Trị số tính toán của tải trọng (kí hiệu q, gọi tắt là tải trọng tính toán) lấy bằng trị số tiêu chuẩn nhân với hệ số độ tin cậy n

$$q = nq_{TC}. (3.1)$$

Dùng hệ số độ tin cậy (còn gọi là hệ số vượt tải) để kể đến các trường hợp đột xuất, tải trọng vượt quá trị số tiêu chuẩn gây bất lợi cho kết cấu. Theo tiêu chuẩn TCVN 2737 - 1995 lấy $n = 1, 1 \div 1, 3$ với tải trọng thường xuyên và $n = 1, 2 \div 1, 4$ với tải trọng tạm thời.

Với tải trọng thường xuyên khi tải trọng giảm mà làm cho kết cấu bị bất lợi hơn thì phải lấy n < 1.

3.3. NỘI LỰC.

3.3.1. Xác định nội lực

Nội lực trong kết cấu bao gồm: mômen uốn M, lực cắt Q, lực dọc N, mômen xoắn M_t . Nội lực trong kết cấu là do tải trọng gây ra hoặc do biến dạng cưỡng bức. Khi xác định nội lực cần quan niệm vật liệu đang làm

việc trong trạng thái đàn hồi hoặc đã có biến dạng dẻo để dùng sơ đồ tính toán phù hợp. Muốn vậy trước hết cần phân biệt kết cấu là tĩnh định hay siêu tĩnh.

Với kết cấu tĩnh định chỉ dùng một sơ đồ duy nhất để xác định nội lực, đó là các sơ đồ đã được dùng trong môn học sức bền vật liệu hoặc cơ học kết cấu. Thông thường dùng trực tiếp các công thức, các biểu đồ lập sẵn cho các trường hợp tải trọng.

Với kết cấu siêu tĩnh hiện tồn tại hai sơ đồ tính: sơ đồ đàn hồi và sơ đồ dẻo.

Trong sơ đồ đàn hồi, bêtông cốt thép được xem là vật liệu đàn hồi, đồng chất, dùng các phương pháp của cơ học kết cấu, của lý thuyết đàn hồi để xác định nội lực. Tính toán theo phương pháp này, mặc dù dựa trên những chứng minh chặt chẽ về toán học, cũng chỉ nên xem là gần đúng vì vật liệu BTCT không hoàn toàn đàn hồi mà còn có biến dạng dẻo, không hoàn toàn đồng chất.

Trong sơ đồ dẻo người ta xét đến biến dạng dẻo của cốt thép và của bêtông, xét đến sự hình thành khớp dẻo, sự phân phối lại nội lực. Tính toán theo sơ đồ dẻo tuy có xét đến sự làm việc thực tế của vật liệu và kết cấu nhưng kết quả cũng chỉ là gần đúng vì rất khó đánh giá chính xác mức độ dẻo. Cho đến nay việc tính theo sơ đồ dẻo cũng mới chỉ dùng được cho một số kết cấu dầm và bản thông thường (liên tục, siêu tĩnh).

3.3.2. Tổ hợp nội lực, hình bao nội lực

Cần tính toán và vẽ biểu đồ nội lực cho trường hợp tĩnh tải và các trường hợp có thể xảy ra của các hoạt tải. Tổ hợp các nội lực để tìm ra giá trị bất lợi của nó là S

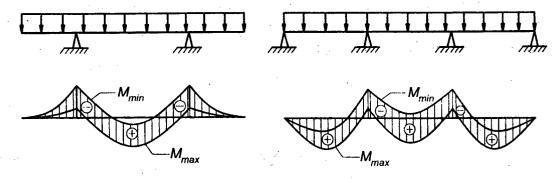
$$S = S_g + \gamma \sum S_{ij} \tag{3.2}$$

trong đó: S_g – nội lực do tĩnh tải;

 S_{ij} – nội lực do trường hợp thứ i (i = 1, 2, 3,...) của họa tải j (khi có một số hoạt tải có thể tác dụng đồng thời); j = 1, 2, 3...

Tại mỗi tiết diện S_g là hằng số còn S_{ij} thay đổi (cả trị số và dấu). Để có được giá trị bất lợi S thì phải lựa chọn S_{ij} để đưa vào tính toán. Như vậy tổ hợp nội lực là một phép cộng có lựa chọn (các giá trị S_{ij}) nhằm tìm ra giá trị nội lực bất lợi;

 γ - hệ số tổ hợp. Theo TCVN 2737 - 95 lấy γ = 1 khi chỉ xét một hoạt tải, γ = 0,9 khi lấy từ hai hoạt tải trở lên.


Xét mômen uốn trong dầm. Tại mỗi tiết diện tìm được hai giá trị bất lợi của mômen M là M_{\max} ứng với giá trị max của $\sum M_{ij}$ và M_{\min} ứng với giá trị min của $\sum M_{ij}$

$$\mathbf{M} - \mathbf{M}_{\max} = \mathbf{M}_{g} + \max_{\mathbf{X}} \sum_{i,j} \mathbf{M}_{ij};$$

$$\mathbf{M}_{\min} = \mathbf{M}_{g} + \min_{\mathbf{X}} \sum_{i,j} \mathbf{M}_{ij}.$$

Tại mỗi tiết diện M_{max} và M_{min} có thể khác dấu hay cùng dấu.

Tập hợp tất cả các giá trị $M_{\rm max}$ và $M_{\rm min}$ theo mọi tiết diện (dọc theo trục dầm) sẽ có được hai nhánh của hình bao mômen. Hình 3.1 thể hiện hình bao mômen của dầm tĩnh định có hai mút thừa và của dầm liên tục ba nhịp chiu tĩnh tải và hoạt tải phân bố đều.

Hình 3.1. Hình bao mômen của dâm

Việc tổ hợp nội lực cho các kết cấu chịu nhiều loại hoạt tải được trình bày chi tiết hơn ở trong phần giáo trình về kết cấu nhà.

3.4. PHƯƠNG PHÁP TÍNH TOÁN VỀ BỆTÔNG CỐT THÉP

3.4.1. Đại cương về các phương pháp

Sau khi có nội lực, tiến hành tính toán về BTCT theo một trong hai loại bài toán: kiểm tra hoặc tính cốt thép.

Trong bài toán kiểm tra đã biết kích thước tiết diện và bố trí cốt thép, cần kiểm tra xem kết cấu có đủ độ an toàn hay không.

Trong bài toán tính cốt thép, xuất phát từ yêu cầu an toàn của kết cấu để xác định lượng cốt thép cần thiết.

Phương pháp tính toán về BTCT đã trải qua nhiều giai đoạn. Khoảng đầu thế kỷ 20 người ta dùng rộng rãi phương pháp ứng suất cho phép mà điều kiện an toàn là:

$$\sigma \le \sigma_{cp} \tag{3.3}$$

trong đố: σ – ứng suất do nội lực gây ra;

 σ_{cp} – ứng suất cho phép của vật liệu.

Để xác định ứng suất ơ người ta giả thiết vật liệu bêtông cốt thép làm việc hoàn toàn đàn hồi. Tính toán như vậy có thể dùng được một số công thức đã lập của môn sức bền vật liệu. Tuy vậy xem bêtông là vật liệu hoàn toàn đàn hồi chưa phản ảnh đúng sự làm việc thực tế của nó.

Vào khoảng giữa thế kỷ XX một số nước đã chuyển sang dùng phương pháp nội lực phá hoại, điều kiện an toàn là:

$$kS_c \le S_{ph}, \tag{3.4}$$

trong đó: $S_{\rm c}$ – nội lực do tải trọng tiêu chuẩn gây ra;

 S_{ph} – nội lực làm phá hoại kết cấu;

k – hệ số an toàn, thường lấy $k=1.5 \div 2.5.$

Để xác định S_{ph} người ta đã dựa vào nhiều kết quả thí nghiệm, xét sự làm việc thực tế có biến dạng dẻo của bêtông và của cốt thép, lập ra công thức tính toán cho các trường hợp chịu lực khác nhau.

Phương pháp nội lực phá hoại có tiến bộ hơn phương pháp ứng suất cho phép nhưng việc dùng một hệ số an toàn chung k chưa phản ảnh đầy đủ các yếu tố ảnh hưởng đến độ tin cậy (độ an toàn) của kết cấu.

Hiện nay trên toàn thế giới dùng phổ biến phương pháp trạng thái giới hạn (TTGH). Trạng thái giới hạn là trạng thái mà từ đó trở đi kết cấu không thể thỏa mãn yêu cầu đề ra cho nó. Kết cấu BTCT được tính toán theo hai nhóm: TTGH thứ nhất và TTGH thứ hai.

3.4.2. Trạng thái giới hạn thứ nhất

Đó là TTGH về độ bền (độ an toàn). Tính toán theo TTGH này nhằm đảm bảo cho kết cấu không bị phá hoại, không bị mất ổn định, không bị hư hỏng vì mỏi (với kết cấu chịu tải trọng trùng lặp, rung động) hoặc chịu tác dụng đồng thời các yếu tố về lực và ảnh hưởng bất lợi của môi trường.

Tính toán về khả năng chịu lực theo điều kiện:

$$S \le S_{gh} , \qquad (3.5)$$

trong đó: S – nội lực bất lợi do tải trọng tính toán gây ra;

 S_{gh} – khả năng chịu lực của kết cấu khi nó làm việc ở TTGH. Khả năng này phụ thuộc vào kích thước tiết diện, số lượng cốt thép, cường độ tính toán của bêtông và của cốt thép.

Biểu thức cụ thể của S_{gh} ứng với các trường hợp chịu lực khác nhau (uốn, cắt, nén, kéo, xoắn...) được thành lập trong các chương 4, 5, 6. Đồng thời trong các chương đó cũng trình bày cách vận dụng điều kiện (3.5) cho các loại bài toán khác nhau.

3.4.3. Trạng thái giới hạn thứ hai

Đó là TTGH về điều kiện làm việc bình thường. Tính toán theo TTGH này nhằm đảm bảo cho kết cấu không có những khe nứt hoặc những biến dạng quá mức cho phép theo các điều kiện:

$$a_{crc} \le a_{gh}$$
; (3.6a)

$$f \le f_{gh} , \qquad (3.6b)$$

trong đó: a_{crc} , f – Bề rộng khe nứt và biến dạng của kết cấu do tải trọng tiêu chuẩn gây ra;

 a_{gh} , f_{gh} – Giới hạn cho phép của bề rộng khe nứt và của biến dạng để đảm bảo điều kiện làm việc bình thường. Lấy a_{gh} và f_{gh} theo quy định của tiêu chuẩn thiết kế. Thông thường $a_{gh} = 0.05 \div 0.4$ mm; độ võng giới hạn của dầm bằng $\left(\frac{1}{200} \div \frac{1}{600}\right)$ nhịp dầm.

Việc thành lập các công thức để xác định a_{crc} , f cũng như các quy định chi tiết về a_{gh} , f_{gh} được trình bày trong chương 7.

3.4.4. Cường độ tính toán của vật liệu

 \rotangle mục 2.3 và 2.7 đã trình bày về cường độ tiêu chuẩn của bêtông R_{bn} , R_{btn} và cường độ tiêu chuẩn của cốt thép R_{sn} .

Khi tính toán theo TTGH, để xác định S_{gh} cần dùng giá trị tính toán của cường độ, gọi tắt là cường độ tính toán.

Cường độ tính toán của bêtông về nén R_b và về kéo R_{bt} được xác định như sau:

$$R_b = \frac{\gamma_{bi} R_{bn}}{\gamma_{bc}}; R_{bt} = \frac{\gamma_{bi} R_{btn}}{\gamma_{bt}}, \qquad (3.7)$$

trong đó: γ_{bc} , γ_{bt} – hệ số độ tin cậy của bêtông tương ứng khi nén và khi kéo. Khi tính toán theo TTGH thứ nhất lấy $\gamma_{bc}=1,3\div1,5$ và $\gamma_{bt}=1,3\div2,3$ tùy loại bêtông;

 γ_{bi} – hệ số điều kiện làm việc của bêtông ($i=1,\,2,\,...\,10$), kể đến tính chất của tải trọng, giai đoạn làm việc của kết cấu, kích thước của tiết diện v.v... (phụ lục 4).

Giá trị của R_b và R_{bt} khi chưa kể đến γ_{bi} gọi là cường độ tính toán gốc và hệ số γ_{bi} được cho ở phụ lục 3.

Cường độ tính toán của cốt thép về kéo R_s được xác định như sau:

$$R_s = \frac{\gamma_{si} R_{sn}}{\gamma_s} , \qquad (3.8)$$

trong đó: γ_s – hệ số độ tin cậy của cốt thép. Khi tính toán theo TTGH thứ nhất lấy $\gamma_s=1,05\div1,2$ tùy loại thép;

 γ_{si} – hệ số điều kiện làm việc của cốt thép (i=1, 2, ... 9), kể đến sự mỏi do chịu tải trọng trùng lặp, sự phân bố ứng suất không đều, cường độ của bêtông bao quanh cốt thép v.v...

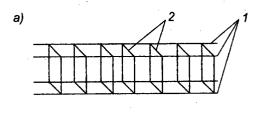
Giá trị R_s khi chưa kể đến γ_{si} gọi là cường độ tính toán gốc và giá trị γ_{si} được cho ở phụ lục 5.

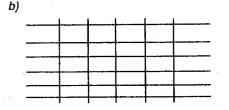
Cường độ tính toán gốc về n
én của cốt thép R_{sc} (chưa kể đến γ_{si}) được cho cùng với
 R_s .

Khi tính toán theo TTGH thứ hai các cường độ tính toán kí hiệu là $R_{b,ser}$; $R_{s,ser}$ được xác định với các hệ số γ đều bằng 1 (trừ trường hợp đặc biệt khi tính kết cấu chịu tải trọng trùng lặp).

3.5. NGUYÊN LÝ CẤU TẠO

3.5.1. Chọn kích thước tiết diện


Kích thước tiết diện thường được chọn sơ bộ để xác định tải trọng, nội lực và cốt thép. Sau khi có được cốt thép cần tính toán tỉ lệ cốt thép $\mu = \frac{A_s}{A}$ để đánh giá sự hợp lí của kích thước tiết diện đã chọn $(A_s$ – diện tích cốt thép, A – diện tích tiết diện). Với mỗi loại cấu kiện có một khoảng hợp lí của μ , kích thước tiết diện được xem là hợp lí khi μ nằm trong khoảng đó. Nếu tính được μ quá bé chứng tỏ kích thước tiết diện là quá lớn so với yêu


cầu về khả năng chịu lực và ngược lại. Khi kết quả tính toán cho thấy kích thước tiết diện đã chọn là bất hợp lí thì nên chọn lại và tính toán lại.

Chọn kích thước tiết diện, ngoài yêu cầu về khả năng chịu lực còn phải quan tâm đến vấn đề thẩm mĩ và điều kiện thi công. Về thẩm mĩ cần kết hợp thiết kế kết cấu với thiết kế kiến trúc. Về thi công cần chọn kích thước thuận tiện cho việc chế tạo và thống nhất hóa ván khuôn, thuận tiện cho việc đặt cốt thép và đổ bêtông. Thông thường chọn chiều dày của bản và tường theo bội số của 1 hoặc 2 cm, kích thước tiết diện dầm và cột theo bôi số của 2; 5 hoặc 10 cm.

3.5.2. Khung và lưới cốt thép

Cốt thép đặt vào trong kết cấu không để rời từng thanh mà phải liên kết chúng lại thành khung hoặc lưới (h.3.2). Khung gồm các cốt thép dọc và cốt thép ngang, được dùng trong các dâm và cột. Lưới gồm các cốt thép đặt theo hai phương vuông góc với nhau, được dùng trong bản, tường.

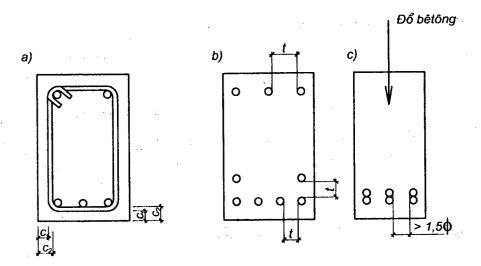
Hinh 3.2. Khung và lưới cốt thép a) Khung ; b) Lưới

Tại chỗ giao nhau giữa các cốt thép trong khung và lưới có thể được liên kết bằng buộc hoặc hàn. Khung và lưới buộc tạo nên bằng các thanh rời, dùng dây thép mềm ($\phi 0.8 \div \phi 1$) buộc chặt các nút. Dùng khung và lưới buộc có thể bố trí cốt thép một cách linh hoạt, phù hợp với sự chịu lực của kết cấu do đó mà sử dụng cốt thép một cách hợp lí, tiết kiệm, nhưng thi công chậm.

Khung và lưới hàn được chế tạo trong các cơ sở chuyên dụng bằng cách hàn điểm tiếp xúc chỗ cốt thép giao nhau. Dùng khung và lưới hàn có thể đẩy nhanh tốc độ thi công.

3.5.3. Cốt thép chịu lực và cốt thép cấu tạo

Các thanh cốt thép trong khung và lưới có vai trò, nhiệm vụ khác nhau. Tùy theo quan niệm về vai trò và nhiệm vụ của nó, cốt thép được phân thành cốt chịu lực và cốt cấu tạo.


Cốt thép chịu lực dùng để chịu các ứng lực phát sinh do tác dụng của tải trọng, chúng được xác định hoặc được kiểm tra bằng tính toán (còn gọi là cốt thép tính toán).

Cốt thép cấu tạo được đặt vào kết cấu với nhiều tác dụng khác nhau: để liên kết cốt chịu lực thành khung hoặc lưới, để giữ vị trí cốt thép chịu lực khi thi công, để làm giảm co ngót không đều của bêtông, để chịu ứng suất do nhiệt độ thay đổi, để ngăn cản sự mở rộng các vết nứt, để làm phân bố tác dụng của tải trọng tập trung v.v... Thực tế thì cốt thép cấu tạo cũng chịu lực nhưng chúng không được tính toán mà được đặt theo các quy định, theo kinh nghiệm. Tuy được gọi là cốt thép cấu tạo nhưng trong một số trường hợp nó đóng vai trò quan trọng. Nếu thiếu cốt thép cấu tạo kết cấu có thể không phát huy hết khả năng chịu lực, bị nứt hoặc bị hư hỏng cục bộ.

3.5.4. Lớp bảo vệ cốt thép

Lớp bêtông bảo vệ được tính từ mép ngoài bêtông đến mép ngoài gần nhất của cốt thép. Lớp bảo vệ cần để bảo đảm sự làm việc đồng thời của cốt thép và bêtông trong mọi giai đoạn, cũng như bảo vệ cốt thép khỏi tác động của không khí, nhiệt độ và các tác động tương tự.

Phân biệt lớp bảo vệ của cốt thép dọc chịu lực C_1 và lớp bảo vệ của cốt thép cấu tạo, cốt thép đai C_2 (h.3.3a).

Hình 3.3. Lớp bảo vệ và khoảng hở của cốt thép

Trong mọi trường hợp chiều dày bảo vệ không được bé hơn đường kính cốt thép tương ứng, ngoài ra còn không được bé hơn trị số $C_{\rm o}$ quy định như sau:

a. Với cốt thép chịu lực

Trong bản và tường có chiều dày:

+ Từ 100 mm trở xuống, $C_o = 10$ mm (15 mm) + Trên 100 mm, $C_o = 15$ mm (20 mm)

• Trong dầm và sườn có chiều cao:

+ Nhỏ hơn 250 mm, $C_o = 15$ mm (20 mm) + Lớn hơn hoặc bằng 250 mm, $C_o = 20$ mm (25 mm)

• Trong côt, $C_o = 20 \text{ mm} (25 \text{ mm})$

• Trong dầm móng, $C_o = 30 \text{ mm}$

• Trong móng:

+ Lắp ghép, $C_o = 30 \text{ mm}$ + Toàn khối khi có bêtông lót, $C_o = 35 \text{ mm}$

+ Toàn khối khi không có bêtông lót, $C_o = 70$ mm.

b. Với cốt thép cấu tạo, cốt thép đai

- Khi chiều cao tiết diện nhỏ hơn 250 mm, $C_{\rm o}$ = 10 mm (15 mm)
- Khi chiều cao tiết diện từ 250 mm trở lên, C_o = 15 mm (20 mm)

Chú thích: Giá trị trong ngoặc (...) áp dụng cho kết cấu ngoài trời hoặc những nơi ẩm ướt.

Đối với những kết cấu trong vùng chịu ảnh hưởng của môi trường biển (nước mặn) cần lấy tăng chiều dày của lớp bảo vệ, theo quy định của tiêu chuẩn TCXDVN 327 – 2004.

Đối với những kết cấu trong môi trường xâm thực mạnh cần phải có thêm lớp ốp hoặc các biện pháp bảo vệ đặc biệt.

3.5.5. Khoảng hở của cốt thép

Cốt thép được đặt với khoảng hở t đủ rộng để vữa bêtông có thể dễ dàng lọt qua và để cho xung quanh mỗi cốt thép có được một lớp bêtông đủ đảm bảo điều kiện về lực dính bám. Tiêu chuẩn TCXDVN 356 – 2005 quy định khoảng hở t (khoảng cách thông thủy) cần lớn hơn hoặc bằng đường kính cốt thép lớn nhất $\phi_{\rm max}$ và giá trị $t_{\rm o}$

$$t \ge (\phi_{\text{max}}; t_{\text{o}}). \tag{3.9}$$

a. Khi cốt thép có vị trí nằm ngang hoặc xiên lúc đổ bêtông

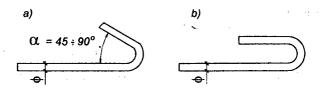
- Với cốt thép đặt dưới: $t_0 = 25$ mm.
- Với cốt thép đặt trên: $t_0 = 30 \text{ mm}$.
- Khi cốt thép được đặt nhiều hơn hai lớp thì với các lớp phía trên $t_{\rm o} = 50~{\rm mm}$ (trừ hai lớp dưới cùng).

Trường hợp dùng đầm đùi để đầm chắc bêtông thì khoảng hở t ở lớp bên trên cần bảo đảm để đầm lọt qua được.

b. Khi cốt thép đặt thẳng đứng lúc đổ bêtông

Trong trường hợp này $t_{\rm o}=50$ mm. Nếu có kiểm soát một cách hệ thống kích thước cốt liệu thì có thể giảm $t_{\rm o}$ đến 35 mm nhưng không được nhỏ hơn 1,5 lần kích thước lớn nhất của cốt liệu thô.

c. Trường hợp đặc biệt


Trong điều kiện chật hẹp cho phép bố trí các thanh cốt thép theo cặp, không có khe hở giữa chúng. Phương ghép cặp phải theo phương chuyển động của vữa bêtông (h.3.3c) và khoảng hở $t \ge 1,5\phi$.

3.5.6. Neo cốt thép

Để cốt thép phát huy được khả năng chịu lực cần neo chắc đầu mút của nó vào bêtông ở vùng liên kết, gối tựa.

Đoạn neo cốt thép có thể để thẳng (neo thẳng), uốn móc gập với góc $\alpha=45 \div 90^{\circ}$ (neo gập h.3.4a) hoặc móc neo tiêu chuẩn (h.3.4b) (móc hình chữ U).

Đối với cốt thép trong khung và lưới hàn cũng như cốt thép chịu nén trong cột thì đầu mút để thẳng. Cốt thép tròn tron chịu kéo trong khung và lưới buộc được uốn móc. Cốt thép có gờ trong khung và lưới buộc có thể thẳng hoặc dùng neo gập.

Hình 3.4. Móc neo cốt thép a) Neo gập; b) Móc vòng.

Đoạn neo cốt thép kể từ mút thanh đến tiết diện vuông góc với trục dọc cấu kiện mà ở đó nó được sử dụng toàn bộ khả năng chịu lực (tính với toàn bộ cường độ tính toán) không được nhỏ hơn giá trị l_{an} xác định theo công thức:

$$l_{an} = \left(\omega_{an} \frac{R_s}{R_b} + \Delta_{an}\right) \phi. \tag{3.10}$$

Đồng thời đoạn neo cũng không được nhỏ hơn giá trị $l_{an}^*=\lambda_{an}\phi$ và l_{\min} . Các trị số của ω_{an} , Δ_{an} , λ_{an} và l_{\min} cho trong bảng và ϕ là đường kính của cốt thép.

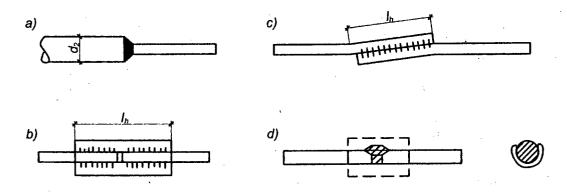
Điều kiện làm việc của cốt thép	Hệ số ω _{an} và λ _{an}					
	Cốt thép có gờ		Cốt thép tron trơn		Hệ số ⊿ _{an}	I _{min} (mm)
	^ω an	λ _{an}	[©] an	λ _{an}	u ''	
1. Đoạn neo cốt thép				÷		
a- Chịu kéo trong bêtông chịu kéo	0,7	20	1,2	20	11	250
b- Chịu nén hoặc kéo trong vùng bêtông chịu nén	0,5	12	8,0	15	8	200
2. Nối chồng cốt thép		\$				
a- Trong bêtông chịu kéo	0,9	20	1,55	20	11	-: 250
b- Trong bêtông chịu nén	0,65	15	1	15	8	200

Trong trường hợp thanh cần neo có diện tích tiết diện lớn hơn diện tích yêu cầu theo tính toán (chưa sử dụng hết khả năng chịu lực) thì giá trị $l_{\rm an}$ tính theo công thức (3.10) được phép giảm xuống bằng cách nhân với tỉ số diện tích yêu cầu và diện tích thực có.

Trong trường hợp vùng để neo cốt thép không đủ để đặt đoạn neo theo yêu cầu trên đây thì có thể dùng các biện pháp neo bổ trợ như hàn vào đầu mút thanh các bản neo. Lúc này cần tính toán bản neo theo sự chịu lực cục bộ và chiều dài đoạn neo cũng không được nhỏ hơn 10¢.

Neo cốt thép dọc tại gối biên kê tự do của cấu kiện chịu uốn (nơi có lực cắt lớn và M=0) cần tuân theo các chỉ dẫn về cấu tạo cốt thép dọc chịu uốn trên tiết diện nghiêng.

3.5.7. Nối cốt thép


Cần phải nối cốt thép khi chiều dài thanh thép không đủ hoặc nếu dùng thanh thép dài quá sẽ trở ngại cho thi công (khi phải dựng đứng thanh thép).

Có thể dùng cách nối hàn, nối buộc hoặc nối bằng ống lồng.

a. Nối hàn

Có thể dùng cách hàn tiếp xúc hoặc hàn hồ quang. Hàn tiếp xúc (đối đầu) được thực hiện bằng các máy hàn chuyên dụng, dùng để nối dài các thanh có đường kính trên 10 mm và tỉ lệ đường kính của hai thanh nối không nhỏ hơn 0,85 (h.3.5a).

Hàn hồ quang bằng cách dùng dòng điện cường độ lớn nung chảy kim loại của que hàn và thép cần hàn để chúng liên kết với nhau. Có thể hàn bằng cách dùng hoặc không dùng thanh kẹp, hàn đối đầu trong máng.

Hình 3.5. Nối hàn cốt thép

Hàn hồ quang dùng thanh kẹp (h.3.5b) có thể thực hiện với bốn đường hàn ở hai bên hoặc hai đường hàn ở một bên. Khi không dùng thanh kẹp cần uốn đầu cốt thép rồi ghép chồng lên nhau sao cho trục hai thanh được nối thẳng hàng (h.3.5c). Bằng cách này cũng có thể hàn hai bên hoặc hàn một bên.

Kích thước đường hàn quy định như sau: chiều dày (chiều cao h_h) lấy bằng $\frac{1}{4}$ đường kính cốt thép nhưng không dưới 4 mm, bề rộng bằng

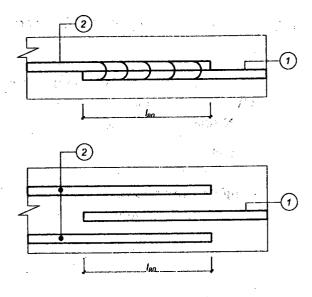
nửa đường kính cốt thép nhưng không dưới 10 mm. Chiều dài đường hàn $l_{\rm h}$ được xác định bằng tính toán hoặc bằng thực nghiệm để đảm bảo khả năng chịu lực (theo phương pháp tính toán liên kết hàn) nhưng cũng không được nhỏ hơn $l_{\rm min}$. Lấy $l_{\rm min}=4\phi$ khi dùng thanh kẹp, hàn hai bên, $l_{\rm min}=5\phi$ khi không dùng thanh kẹp, hàn hai bên. Trường hợp chỉ hàn một bên thì $l_{\rm min}$ tăng gấp đôi, thành 8ϕ hoặc 10ϕ .

Hàn hồ quang đối đầu thường dùng cho những thanh thép đường kính lớn và cần dùng một máng để lót (h.3.5d).

Việc hàn cốt thép cần tuân theo tiêu chuẩn về hàn hồ quang. Yêu cầu của mối hàn là khi thí nghiệm kéo cốt thép bị đứt ở ngoài phạm vi mối hàn.

Đối với cốt thép nhóm CIV, A-IV cũng như cốt thép được gia cường bằng cơ nhiệt chỉ được phép hàn theo những quy định đã được nêu trong tiêu chuẩn kỹ thuật. Không cho phép sử dụng phương pháp hàn đính bằng hồ quang trong liên kết dạng chữ thập có các thanh cốt thép chịu lực nhóm CIII, A-III. Liên kết đối đầu của các thanh cốt thép kéo nguội loại A-IIIB phải được hàn trước khi kéo nguồi.

b. Nối chồng (nối buộc)


Nối chồng là cách đặt hai đầu cốt thép chập vào nhau một đoạn $l_{\rm an}$ (h.3.6). Thông thường đặt mép của hai thanh sát vào nhau và dùng dây thép mềm buộc lại. Trường hợp nối một thanh với hai thanh khác (h.3.6b) thì giữa mép của các thanh có thể có một khoảng hở nào đó.

Trong phạm vi mối nối chồng, lực từ thanh thép ① được truyền vào bêtông nhờ lực dính bám rồi lại từ bêtông truyền vào thanh thép ②. Như vậy trong phạm vi nối chồng cốt thép, bêtông phải làm việc nhiều hơn và phức tạp hơn ở những nơi khác, chính vì vậy trong phạm vi đó phải tăng cường cốt thép đai và khi thi công phải chú ý bảo đảm chất lượng của bêtông.

Không nên nối chồng các thanh có đường kính $\phi > 30$ mm. Không được nối chồng các thanh $\phi > 36$ mm.

Không nên nối chồng trong vùng chịu kéo của cấu kiện chịu uốn và nén, kéo lệch tâm tại những nơi cốt thép được dùng hết khả năng chịu lực.

Không được nối chồng trong những cấu kiện

Hình 3.6. Nối chồng cốt thép

thẳng mà toàn bộ tiết diện chịu kéo cũng như trong mọi trường hợp sử dụng cốt thép nhóm CIV trở lên.

Chiều dài đoạn chập lên nhau của mối nối chồng là $l_{\rm an}$ lấy theo công thức (3.10). Đầu mút của cốt thép tròn, trơn, chịu kéo trong khung và lưới buộc nên được uốn móc.

c. Nối bằng ống lồng

Đút đầu hai thanh thép cần nối vào một ống bằng thép. Liên kết giữa thanh cốt thép và ống lồng có thể bằng cách dùng máy ép bóp chặt ống vào cốt thép để tạo ma sát, dùng liên kết ren hoặc keo. Lực từ thanh cốt thép này truyền vào ống lồng rồi từ ống lồng truyền vào thanh cốt thép kia. Cần tính toán và chọn lựa ống lồng để nó đủ khả năng chịu lực và truyền lực.

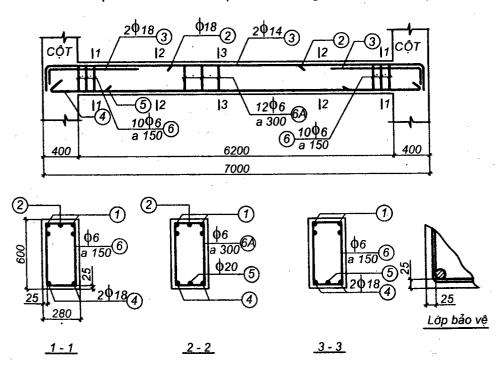
Tiêu chuẩn xây dựng TCXD 234 – 1999 về nối cốt thép có gờ bằng phương pháp dập ép ống nối là tiêu chuẩn đầu tiên của Việt Nam về kiểu nối này.

3.6. THỂ HIỆN BẢN VỀ KẾT CẤU BTCT

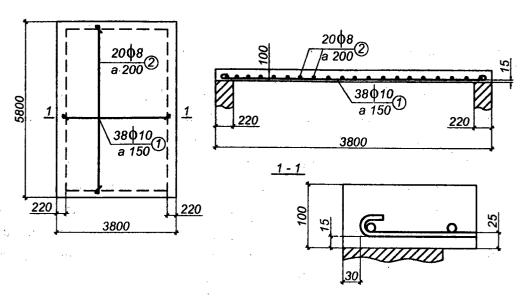
Thể hiện bản vẽ kết cấu BTCT cần tuân theo những tiêu chuẩn hiện hành, trong đó có TCVN 5572 – 1991 – Bản vẽ thi công kết cấu BTCT; TCVN 4612 – 1998 – Ký hiệu quy ước và thể hiện bản vẽ kết cấu BTCT; TCVN 6048 – 1995 – Ký hiệu cho cốt thép bêtông.

Theo các tiêu chuẩn đã nêu khi thể hiện bản vẽ, quy ước bêtông là trong suốt để có thể nhìn thấy cốt thép ở bên trong. Với bêtông chỉ cần thể hiện đường bao xung quanh với nét vẽ 0,5b (b- chiều dày nét vẽ cơ bản). Để thể hiện cốt thép cần vẽ mặt chính và các mặt cắt của cấu kiện.

Với dầm, cột, mặt chính là hình chiếu đứng, trong đó thể hiện tất cả các cốt thép dọc. Khi hình chiếu của một số thanh thép bị lẫn vào nhau (do đặt trên cùng một lớp) cần thể hiện rõ mút của các thanh bằng móc neo (nếu đầu thanh có uốn móc) hoặc bằng kí hiệu quy ước là một móc nhọn nếu đầu thanh để thẳng. Cốt thép đai trong dầm và cột có thể được vẽ toàn bộ (khi đặt với khoảng cách không đều) hoặc được vẽ một vài đai đại diện nếu cốt thép đai được đặt đều nhau trên một đoạn khá dài.


Với tường mặt chính là hình chiếu đứng, với bản mặt chính là hình chiếu bằng. Trong tường và bản phần lớn cốt thép được đặt thành lưới. Với cốt thép của lưới, nếu khoảng cách giữa các thanh thép là đều nhau theo mỗi phương thì có thể không cần thể hiện toàn bộ các thanh thép mà chỉ cần thể hiện một số thanh đại diện.

Để thể hiện một thanh thép có thể dùng nét vẽ đậm hoặc bằng hai nét vẽ song song. Khi dùng nét đậm, bề dày nét vẽ không cần tỉ lệ với đường kính, thường lấy bằng 1,5b đối với cốt thép dọc trong cột và dầm, bằng b với cốt thép đai hoặc cốt thép trong các lưới của bản và tường. Khi dùng hai nét vẽ song song chiều dày nét vẽ là 0,5b và khoảng cách giữa hai nét tỉ lệ với đường kính thanh thép.


Các mặt cắt thường lấy vuông góc với mặt chính. Trên mỗi mặt cắt chỉ thể hiện cốt thép có ở mặt cắt đó. Khi trong cấu kiện có nhiều đoạn bố trí cốt thép khác nhau thì trong mỗi đoạn nên có một mặt cắt. Tỷ lệ kích thước của các mặt cắt ngang phải giống nhau cho từng cấu kiện và phải ghi đủ kích thước cho các mặt cắt.

Để kí hiệu cốt thép, thường dùng các con số đặt trong vòng tròn, mỗi con số dùng để chỉ một hoặc nhiều thanh thép giống nhau (cùng đường kính, cùng loại thép, cùng hình dáng và chiều dài). Bên cạnh vòng tròn nên ghi thêm đường kính, số thanh trong tiết diện (hoặc khoảng cách giữa các cốt thép đai, của thanh thép trong lưới). Ghi như vậy cho mỗi thanh thép thường chỉ làm một lần, ghi ở nơi dễ thấy nhất hoặc ở nơi thanh thép đó được thể hiện lần đầu. Trên mặt chính của cấu kiện khi mà đầu mút của một thanh thép nào đó bị lẫn vào hình chiếu của thanh khác thì tại đầu mút đó cần có kí hiệu và đánh số thanh. Các thanh thép có thể là thẳng hoặc có uốn móc, uốn lượn. Khi hình dáng của các thanh thép là tương đối đơn giản thì nó được thể hiện ở bảng thống kê cốt thép trong đó có ghi chiều dài các đoạn thẳng, chiều dài các móc neo. Khi hình dáng cốt thép là phức tạp, nó cần được vẽ triển khai với các kích thước cụ thể để có thể thi công được chính xác (các chỗ uốn cần ghi rõ bán kính cong).

Hình 3.7 ví du về bản vẽ của một dầm khung, hình 3.8 vẽ một ô bản.

Hình 3.7. Bản vẽ dầm BTCT

Hình 3.8. Bản vẽ một ô bản kê lên tường

Trên bản vẽ, ngoài các hình vẽ còn có thêm bảng thống kê cốt thép và các chú thích cần thiết.

Trong bảng thống kê ghi rõ hình dáng, kích thước, số lượng các cốt thép.

Trong phần chú thích cần ghi những thông tin liên quan đến vật liệu, đến biện pháp thi công mà trên hình vẽ chưa thể hiện được. Thông thường ghi cấp độ bền và loại bêtông, các yêu cầu đối với bêtông, loại, nhóm cốt thép, các yêu cầu cần thiết đối với cốt thép, phương pháp và quy định về neo và nối cốt thép, bề dày lớp bảo vệ (nếu trên hình vẽ chưa thể hiện rõ), các biện pháp nhằm bảo đảm vị trí thiết kế của cốt thép và các chú ý khác khi sử dụng vật liệu và thi công.

CẤU KIỆN CHỊU ƯỚN (TÍNH TOÁN THEO CƯỜNG ĐỘ)

Các thành phần nội lực xuất hiện trong cấu kiện chịu uốn gồm có mômen uốn và lực cắt. Cấu kiện chịu uốn là cấu kiện cơ bản rất hay gặp trong thực tế. Đó là các dầm, bản của sàn gác, mặt cầu, cầu thang, là các lanh tô, ô văng, là các xà ngang của khung v.v... Về mặt hình dáng có thể chia cấu kiên chiu uốn ra hai loại: bản và dầm.

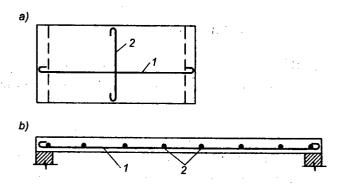
4.1. ĐẶC ĐIỂM CẤU TẠO

4.1.1. Cấu tạo của bản

Bản là kết cấu phẳng có chiều dày khá bé so với chiều dài và chiều rộng. Trong kết cấu nhà cửa, các bản sàn thường có kích thước trên mặt bằng vào khoảng 2 đến 6 m trong khi chiều dày bản chỉ biến động trong khoảng 6 đến 20 cm. Trong các kết cấu khác, bản có thể có kích thước và chiều dày lớn hơn hoặc bé hơn nữa. Bêtông của bản thường có cấp độ bền chịu nén khoảng từ B12,5 đến B25. Đối với cấu kiện chịu uốn bằng bêtông cốt thép thường, sử dụng bêtông có cấp độ bền cao có lợi một ít về hạn chế độ võng và bề rộng khe nứt nhưng hiệu quả kinh tế sẽ thấp.

Cốt thép trong bản gồm có cốt chịu lực và cốt phân bố bằng thép CI hoặc CII, đôi khi là thép CIII (h.4.1a,b). Cốt chịu lực đặt trong vùng chịu kéo do mômen gây ra. Trong các bản thông thường, đường kính cốt chịu lực từ 6 đến 12 mm. Số lượng cốt chịu lực được xác định theo tính toán và được

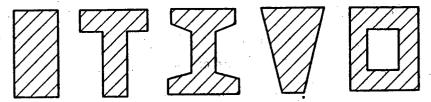
thể hiện qua đường kính và khoảng cách giữa hai cốt cạnh nhau. Khoảng cách giữa trục hai cốt thép chịu lực đặt trong vùng có mômen lớn không được vượt quá:


20 cm khi chiều dày bản h < 15 cm;

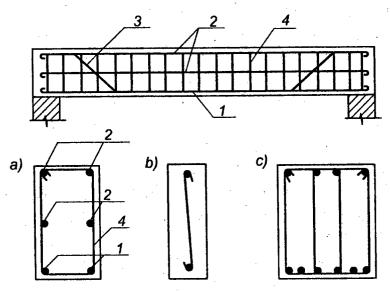
 $1.5 h \text{ khi } h \geq 15 \text{ cm}.$

Để dễ đổ bêtông, khoảng cách cốt thép không được nhỏ hơn 7 cm. Cốt phân bố đặt thẳng góc với cốt chịu lực, nhiệm vụ của chúng là giữ vị trí của cốt chịu lực khi đổ bêtông, phân phối ảnh hưởng của lực tập trung cho các cốt chịu lực ở lân cận, đồng thời cũng chịu các ứng suất do co ngót và nhiệt độ gây ra. Đường kính cốt phân bố thường từ 4 đến 8 mm, số lượng của chúng không ít hơn 10% số lượng cốt chịu lực tại tiết diện có mômen uốn lớn nhất. Khoảng cách giữa các cốt phân bố thường từ 25 đến 30 cm và không lớn quá 35 cm. Cốt chịu lực và cốt phân bố được buộc hoặc hàn với nhau thành lưới.

4.1.2. Cấu tạo của dầm


Dầm là cấu kiện mà chiều cao và chiều rộng của tiết diện ngang khá nhỏ so với chiều dài của nó. Tiết diện ngang của dầm có thể là chữ nhật, chữ T, chữ I, hình thang, hình hộp v.v... (h.4.2). Thường gặp nhất là tiết diện chữ nhật và chữ T.

Hình 4.1. Sơ đổ bố trí cốt thép trong bản
a) Mặt bằng; b) Mặt cắt;
1- cốt chịu lực; 2- cốt phân bố.


Gọi chiều cao h của tiết diện là cạnh nằm theo phương của mặt phẳng uốn thì tiết diện hợp lý là tiết diện có tỉ số $h/b=2\div 4$. Chiều cao h thường được chọn trong khoảng 1/8 đến 1/20 của nhịp dầm. Khi chọn kích thước b

và h cần phải xem xét đến yêu cầu kiến trúc và việc định hình hóa ván khuôn.

Hình 4.2. Các dạng tiết diện dầm

Cốt thép trong dầm gồm có cốt dọc chịu lực, cốt dọc cấu tạo, cốt đai và cốt xiên (h.4.3).

Hình 4.3. Các loại cốt thép trong dầm

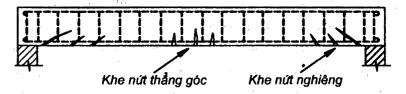
a) Cốt đai hai nhánh; b) Cốt đai một nhánh; c) Cốt đai bốn nhánh;
1- cốt dọc chiu lực; 2- cốt cấu tạo; 3- cốt xiên; 4- cốt đai.

Cốt dọc chịu lực đặt ở vùng kéo của dầm, đôi khi cũng có cốt dọc chịu lực đặt tại vùng nén. Diện tích tiết diện ngang của chúng được xác định theo trị số mômen uốn. Đường kính cốt dọc chịu lực thường từ 10 đến 30 mm. Số thanh trong tiết diện phụ thuộc vào diện tích yêu cầu và chiều rộng tiết diện. Trong dầm có chiều rộng từ 15 cm trở lên cần phải có ít nhất hai cốt dọc, khi bề rộng nhỏ hơn có thể đặt một cốt. Cốt dọc chịu lực có thể đặt

thành một hoặc nhiều lớp và phải tuân theo các nguyên tắc cấu tạo trình bày trong chương 3.

Cốt dọc cấu tạo có thể là:

- Cốt giá dùng để giữ vị trí của cốt đai trong lúc thi công (đối với dầm mà theo tính toán chỉ cần cốt dọc chịu kéo) và chịu các ứng suất do co ngót và nhiệt độ. Khi đó thường dùng cốt thép đường kính 10 – 12 mm.
- Cốt thép phụ đặt thêm vào mặt bên của tiết diện dầm khi chiều cao tiết diện vượt 70 cm. Các cốt này chịu các ứng suất do co ngót và nhiệt độ và giữ cho khung cốt thép khỏi bị lệch khi đổ bêtông.


Tổng diện tích của cốt cấu tạo nên lấy khoảng 0.1% đến 0.2% diện tích của sườn dầm.

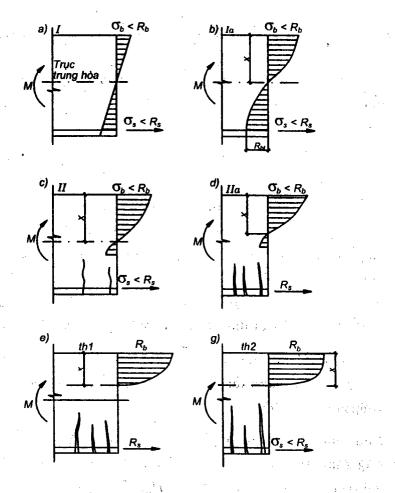
Cốt xiên và cốt đai dùng để chịu nội lực cắt Q, cốt đai gắn vùng bêtông chịu nén với vùng bêtông chịu kéo để đảm bảo cho tiết diện chịu được mômen. Góc nghiêng α của cốt xiên thường là 45° . Đối với dầm có chiều cao trên 80 cm thì $\alpha = 60^{\circ}$; đối với dầm thấp và bản thì $\alpha = 30^{\circ}$. Đường kính cốt đai thường lấy từ 6 đến 10 mm. Khi h dầm đạt 80 cm trở lên phải dùng đai ϕ 8, hoặc lớn hơn. Cốt đai có thể có hai nhánh nhưng cũng có thể có một nhánh hoặc nhiều nhánh như trên hình 4.3. Khoảng cách, diện tích cốt xiên và cốt đai được xác định theo tính toán.

4.2. SỰ LÀM VIỆC CỦA DẦM

Đem thí nghiệm một dầm đơn giản với tải trọng tăng dần, ta thấy khi tải trọng nhỏ, dầm còn nguyên vẹn, chưa có khe nứt. Khi tải trọng đủ lớn sẽ thấy xuất hiện những khe nứt thẳng góc với trục dầm tại khu vực có mômen lớn và những khe nứt nghiêng ở khu vực gần gối tựa là chỗ có lực cắt lớn (h.4.4). Khi tải trọng khá lớn thì dầm có thể bị phá hoại tại tiết diện có khe nứt nghiêng.

Việc tính toán dầm theo cường độ chính là bảo đảm cho dầm không bị phá hoại trên tiết diện thẳng góc – tính toán cường độ trên tiết diện thẳng góc, và không bị phá hoại trên tiết diện nghiêng – tính toán cường độ trên tiết diện nghiêng.

Hình 4.4. Các dạng khe nút trong dẫm đơn giản


4.3. TRẠNG THÁI ỨNG SUẤT BIỂN DẠNG CỦA TIẾT DIỆN THẮNG GÓC

Theo dõi sự phát triển của ứng suất và biến dạng trên tiết diện thẳng góc của dầm trong quá trình thí nghiệm, ta thấy có thể chia thành các giai đoạn sau:

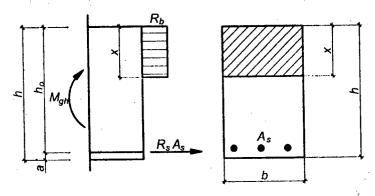
- Giai đoạn I. Khi mômen còn bé (tải trọng nhỏ), có thể xem như vật liệu làm việc đàn hồi, quan hệ ứng suất biến dạng là đường thẳng, sơ đồ ứng suất pháp có dạng hình tam giác (h.4.5a). Khi mômen tăng lên, biến dạng đẻo trong bêtông phát triển, sơ đồ ứng suất pháp có dạng đường cong. Khi sắp sửa nứt, ứng suất kéo trong bêtông đạt tới giới hạn cường độ chịu kéo R_{bt} (h.4.5b), ta gọi trạng thái ứng suất biến dạng này là trạng thái I_a . Muốn cho dầm không nứt thì ứng suất pháp trên tiết diện không được vượt quá trạng thái I_a .
- Giai đoạn II. Khi mômen tăng lên, miền bêtông chịu kéo bị nứt, khe nứt phát triển dần lên phía trên, hầu như toàn bộ lực kéo là do cốt thép chịu (h.4.5c).

Nếu lượng cốt thép chịu kéo không nhiều lắm thì mômen tăng lên, ứng suất trong cốt thép có thể đạt đến giới hạn chảy R_s (h.4.5d). Ta gọi trạng thái này là trạng thái II_a .

• Giai đoạn III – giai đoạn phá hoại. Khi mômen tiếp tục tăng lên, khe nứt tiếp tục phát triển lên phía trên, vùng bêtông chịu nén thu hẹp lại, ứng suất trong vùng chịu nén tặng lên trong khi ứng suất trong cốt thép không tặng nữa (vì cốt thép chảy). Khi ứng suất pháp trong vùng nén đạt đến giới hạn cường độ chịu nén R_b thì dầm bị phá hoại (h.4.5e). Sự phá hoại khi ứng suất trong cốt thép đạt đến giới hạn chảy (và ứng suất trong bêtông đạt đến R_b) gọi là sự phá hoại dẻo. Trường hợp phá hoại này gọi là trường hợp phá hoại thứ nhất. Đó là trường hợp phá hoại mà ta đã tận dụng được hết khả năng chịu lực của cốt thép và của bêtông.

Hình 4.5. Các giai đoạn của trạng thái ứng suất biến dạng trên tiết diện thẳng góc

Nếu cốt thép chịu kéo quá nhiều, ứng suất trong cốt thép chưa đạt đến giới hạn chảy mà bêtông vùng nén đã bị phá hoại thì dầm cũng bị phá hoại (h.4.5g). Khi đó không xảy ra trạng thái ${\rm II_a}$. Đây là sự phá hoại giòn, phá hoại đột ngột vì sự phá hoại bắt đầu từ vùng bêtông chịu nén, mà bêtông là vật liệu giòn, cốt thép chưa chảy dẻo. Trường hợp phá hoại này gọi là trường hợp phá hoại thứ hai, trường hợp cần phải tránh vì không tận dụng được hết khả năng chịu lực của cốt thép và cũng nguy hiểm vì dầm bị phá hoại khi biến dạng còn nhỏ nên khó đề phòng.


4.4. TÍNH TOÁN CẤU KIỆN CHỊU UỐN CÓ TIẾT DIỆN CHỮ NHẬT THEO CƯỜNG ĐỘ TRÊN TIẾT DIỆN THẨNG GÓC

Trước hết cần phân biệt hai trường hợp đặt cốt thép

- Trường hợp cốt đơn, khi chỉ có cốt thép A_s (theo tính toán) đặt trong vùng chịu kéo.
- Trường hợp cốt kép, khi có cả cốt thép A_s đặt trong vùng kéo và A_s đặt trong vùng nén.

4.4.1. Cấu kiện có tiết diện chữ nhật đặt cốt đơn

a. Sơ đồ ứng suất

Hình 4.6. Sơ đổ ứng suất của tiết diện có cốt đơn

Lấy trường hợp phá hoại thứ nhất (phá hoại dẻo) làm cơ sở để tính toán. Sơ đồ ứng suất dùng để tính toán tiết diện theo trạng thái giới hạn lấy như sau: ứng suất trong cốt thép chịu kéo A_s đạt tới cường độ chịu kéo tính toán R_s , ứng suất trong vùng bêtông chịu nén đạt đến cường độ chịu nén tính toán R_b và sơ đồ ứng suất có dạng hình chữ nhật, vùng bêtông chịu kéo không được tính cho chịu lực vì đã nứt.

b. Các công thức cơ bản

Vì hệ lực gồm có các lực song song nên chỉ có hai phương trình cân bằng có ý nghĩa độc lập.

 Tổng hình chiếu của các lực lên phương của trục dầm phải bằng không, do đó:

$$R_b b x = A_s R_s. (4.1)$$

 Tổng mômen của các lực đối với trục đi qua điểm đặt hợp lực của cốt thép chịu kéo và thẳng góc với mặt phẳng uốn phải bằng không, do đó:

$$M_{gh} = R_b bx \left(h_o - \frac{x}{2} \right). \tag{4.2}$$

Điều kiện cường độ khi tính toán theo trạng thái giới hạn (tức là điều kiện đảm bảo cho tiết diện không vượt quá trạng thái giới hạn về cường độ) như sau:

$$M \leq M_{\varrho h}$$
.

Từ (4.2) ta có

$$M \le R_b bx \left(h_o - \frac{x}{2}\right). \tag{4.3}$$

Kết hợp (4.1) và (4.3) ta có:

$$M \le R_s A_s \left(h_o - \frac{x}{2} \right), \tag{4.3a}$$

(4.1) và (4.3) là các công thức cơ bản để tính cấu kiện chịu uốn có tiết diện chữ nhật đặt cốt đơn.

Trong các công thức trên:

M – mômen uốn lớn nhất mà cấu kiện phải chịu, do tải trọng tính toán gây ra;

 R_b , R_s – cường độ chịu nén tính toán của bêtông và cường độ chịu kéo tính toán của cốt thép;

x – chiều cao của vùng bêtông chịu nén;

b – bề rộng của tiết diện;

 h_o - chiều cao làm việc của tiết diện, $h_o = h - a$;

h - chiều cao của tiết diện;

 khoảng cách từ mép chịu kéo của tiết diện đến trọng tâm của cốt thép chịu kéo;

 A_s – diện tích tiết diện ngang của cốt thép chịu kéo.

c. Điều kiện hạn chế

Để đảm bảo xảy ra phá hoại dẻo thì cốt thép A_s phải không được quá nhiều, tức là phải hạn chế A_s và tương ứng với nó là hạn chế chiều cao vùng nén x (xem công thức 4.1). Các nghiên cứu thực nghiệm cho biết trường hợp phá hoại dẻo sẽ xảy ra khi:

$$\xi = \frac{x}{h_o} \le \xi_R = \frac{x_R}{h_o} = \frac{\omega}{1 + \frac{R_s}{\sigma_{sc,u}} \left(1 - \frac{\omega}{1,1}\right)}$$
(4.4)

trong đó: ω – đặc trưng tính chất biến dạng của vùng bêtông chịu nén,

$$\omega = \alpha - 0.008R_b,\tag{4.5}$$

ở đây: $\alpha=0.85$ đối với bêtông nặng, α sẽ có giá trị khác đối với bêtông nhẹ và bêtông hạt nhỏ; R_b – tính bằng MPa; R_s – cường độ chịu kéo tính toán của cốt thép (MPa);

 $\sigma_{sc,u}$ – ứng suất giới hạn của cốt thép trong vùng bêtông chịu

nén (khi bêtông đạt tới biến dạng cực hạn), $\sigma_{sc,u} = 500$ MPa đối với tải trọng thường xuyên, tải trọng tạm thời dài hạn và ngắn hạn; $\sigma_{sc,u} = 400$ MPa đối với tải trọng tác dụng ngắn hạn và tải trọng đặc biệt.

Các giá trị ξ_R đối với một số trường hợp cụ thể được cho trong phụ lục 8.

Thay (4.4) vào (4.1) ta có:

$$A_s = \frac{R_b bx}{R_s} \le \frac{\xi_R R_b bh_o}{R_s} = A_{s,\text{max}}. \tag{4.6}$$

Gọi $\mu = \frac{A_s}{bh_o}$ là hàm lượng cốt thép thì hàm lượng cốt thép cực đại của tiết

diện sẽ là:

$$\mu_{\max} = \xi_R \frac{R_b}{R_s}. \tag{4.7}$$

Song nếu cốt thép ít quá sẽ xảy ra sự phá hoại đột ngột (phá hoại giòn) ngay sau khi bêtông bị nứt (toàn bộ lực kéo do cốt thép chịu). Để tránh điều đó cần phải đảm bảo:

$$\mu \geq \mu_{\min}$$

Giá trị μ_{min} được xác định từ điều kiện khả năng chịu mômen của dầm bêtông cốt thép không nhỏ hơn khả năng chịu mômen của dầm bêtông không có cốt thép. Thông thường lấy $\mu_{min}=0.05\%$ đối với cấu kiện chịu uốn.

d. Tính toán tiết diên

Có thể sử dụng trực tiếp các công thức cơ bản (4.1) và (4.3) để tính cốt thép, tính tiết diện bêtông hay tính khả năng chịu lực M_{gh} của tiết diện. Tuy vậy để tiện cho việc tính toán bằng công cụ thô sơ người ta thường đổi biến số và thành lập các bảng tính như sau.

Đặt $\xi = \frac{x}{h_o}$ các công thức cơ bản sẽ có dạng:

$$R_s A_s = \xi R_b b h_o; \tag{4.8}$$

$$M \le R_b b h_o^2 \xi(1 - 0.5\xi) = \alpha_m R_b b h_o^2;$$
 (4.9)

$$M \le R_s A_s h_o (1 - 0.5\xi) = R_s A_s \zeta h_o,$$
 (4.10)

trong đó:

$$\alpha_{\rm m} = \xi(1-0.5\xi) \; ; \; \zeta = (1-0.5\xi)$$

Trong phụ lục 9 cho sự liên hệ giữa các hệ số ξ , ζ và α_m .

Điều kiện hạn chế có thể viết thành:

$$\alpha_{\rm m} \le \alpha_{\rm R} = \xi_{\rm R} (1 - 0.5 \xi_{\rm R}).$$
 (4.11)

Trong khi thiết kế thường gặp phải những bài toán sau:

• Bài toán tính cốt thép. Biết mômen M, kích thước tiết diện b, h, cấp độ bền chịu nén của bêtông và nhóm cốt thép. Yêu cầu tính diện tích cốt thép A_s .

Căn cứ vào cấp độ bền của bêtông và nhóm cốt thép, tra bảng trong phụ lục ra R_b và R_s ; theo các công thức (4.4) và (4.7) tính được ξ_R và α_R . Tính $h_o = h - a$, trong đó a được giả thiết: $a = 1.5 \div 2$ cm đối với bản có chiều dày 6 - 12 cm, $a = 3 \div 6$ cm (hoặc lớn hơn) đối với dầm.

Đây là bài toán với hai phương trình (hai công thức cơ bản (4.1) và (4.3)) và hai ẩn số là x và A_s . Có thể giải trực tiếp x và A_s từ hai phương trình đó. Nếu dùng các bảng lập sẵn để tính thì từ (4.9) tính

$$\alpha_{\rm m} = \frac{M}{R_b b h_o^2} \,. \tag{4.12}$$

Nếu $\alpha_m \le \alpha_R$ (tức là $\xi \le \xi_R$) thì từ α_m tra bảng của phụ lục 9 ra ζ . Diện tích cốt thép được tính theo (4.10):

$$A_s = \frac{M}{R_s \zeta h_o} \tag{4.13}$$

Tính $\mu = \frac{A_s}{bh_o}$ và phải bảo đảm $\mu \ge \mu_{\min}$.

Sau khi chọn và bố trí cốt thép cần phải kiểm tra lại giá trị thực tế của a, nếu nó sai lệch nhiều so với giá trị giả thiết thì phải tính lại.

Nếu $\alpha_m > \alpha_R$ thì phải tăng kích thước tiết diện hoặc tăng cấp độ bền của bêtông để bảo đảm điều kiện hạn chế $\alpha_m \le \alpha_R$. Cũng có thể đặt cốt thép vào vùng nén để giảm α_m (điều này sẽ được trình bày trong điểm 2 dưới đây).

• Bài toán chọn kích thước tiết diện. Biết M, cấp độ bền của bêtông và nhóm cốt thép, yêu cầu tính b, h và A_s .

Đây là bài toán với hai phương trình (4.8 và 4.9) và bốn ẩn số là b, h, A_s và ξ . Cần phải giả thiết b và ξ để tính h và A_s . Giả thiết b căn cứ vào kinh nghiệm, yêu cầu cấu tạo và yêu cầu kiến trúc, còn giả thiết ξ trong khoảng 0.1-0.25 đối với bản và trong khoảng 0.25-0.35 đối với dầm. Có ξ sẽ tra bảng ra α_m và từ (4.9) tính được:

$$h_o = \frac{1}{\sqrt{\alpha_m}} \sqrt{\frac{M}{R_b b}} \,. \tag{4.14}$$

Chiều cao tiết diện $h = h_o + a$ phải được chọn cho phù hợp với các yêu cầu cấu tạo của dầm. Sau khi tính được h, nếu thấy bất hợp lý thì có thể giả thiết lại b và tính lại h.

Sau khi chọn được h, việc tính A_s sẽ giống như bài toán trước.

• Bài toán kiểm tra cường độ. Biết kích thước tiết diện, diện tích cốt thép A_s , cấp cường độ chịu nén của bêtông và nhóm cốt thép. Yêu cầu tính khả năng chịu lực (tính M_{gh} trong công thức (4.2)).

Đây là bài toán với hai phương trình và hai ẩn số là x và M_{gh} . Có thể giải trực tiếp từ (4.1) và (4.2). Nếu sử dụng các bảng tính sẵn thì từ (4.8) tính

$$\xi = \frac{R_s A_s}{R_b b h_o}.$$

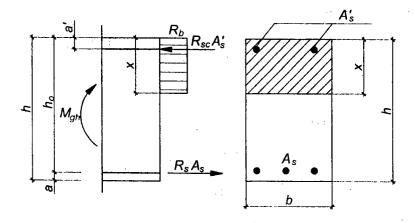
Nếu $\xi \leq \xi_R$ thì tra bảng ra α_m và tính được:

$$M_{gh} = \alpha_m R_b h_o^2.$$

Nếu $\xi > \xi_{\rm R}$ tức là cốt thép quá nhiều, bêtông vùng nén bị phá hoại khi ứng suất trong cốt thép còn nhỏ hơn cường độ tính toán R_s . Khả năng chịu lực M_{gh} được tính theo cường độ của bêtông vùng nén, tức là lấy $\xi = \xi_{\rm R}$ hay $\alpha_{\rm m} = \alpha_{\rm R}$

$$M_{gh} = \alpha_R R_b b h_o^2.$$

4.4.2. Cấu kiện có tiết diện chữ nhật đặt cốt kép


Trong khi tính toán cốt thép đơn, nếu $\alpha_{\rm m}=\frac{M}{R_bbh_o}>\alpha_{\rm R}$ tức là điều kiện

hạn chế (4.4) không được bảo đảm thì có thể đặt cốt thép A'_s vào vùng bêtông chịu nén. Trong tiết diện vừa có cốt thép chịu kéo A_s vừa có cốt thép chịu nén A'_s nên gọi là tiết diện có đặt cốt kép.

Tuy vậy không đặt quá nhiều cốt thép A_s vì lý do kinh tế. Người ta khuyên rằng khi $\alpha_{\rm m}=\frac{M}{R_bbh_o^2}>0.5$ thì nên tăng kích thước tiết diện hoặc

tăng cấp độ bền của bêtông để cho $\alpha_{\rm m} \leq 0.5$ rồi mới tính cốt thép chịu nén.

a. Sơ đồ ứng suất

Hình 4.7. Sơ đồ ứng suất của tiết diện có cốt kép

Sơ đồ ứng suất dùng để tính toán cấu kiện chịu uốn có tiết diện chữ nhật đặt cốt kép được thể hiện trên hình (4.7). Nội dung chính của nó là: ứng suất trong cốt thép chịu kéo A_s đạt đến cường độ chịu kéo tính toán R_s , ứng suất trong cốt thép chịu nén A_s đạt đến cường độ chịu nén tính toán R_{sc} , ứng suất trong bêtông chịu nén đạt đến cường độ chịu nén tính toán R_b và sơ đồ phân bố ứng suất trong vùng bêtông chịu nén lấy là hình chữ nhật.

Cường độ chịu nén tính toán R_{sc} lấy theo phụ lục 5.

b. Các công thức cơ bản

Trên cơ sở của sơ đồ ứng suất, ta viết được hai phương trình cân bằng sau đây:

$$R_s A_s = R_b b x + R_{sc} A'_s ; \qquad (4.15)$$

$$M_{gh} = R_b bx \left(h_o - \frac{x}{2} \right) + R_{sc} A'_s (h_o - a').$$
 (4.16)

Điều kiện cường độ sẽ như sau:

$$M \le R_b bx \left(h_o - \frac{x}{2}\right) + R_{sc} A'_s (h_o - a').$$
 (4.17)

Nếu dùng các ký hiệu

$$\xi = \frac{x}{h_o}$$
; $\alpha_m = \xi(1 - 0.5\xi)$ thì (4.15) và (4.17) sẽ có dạng:

$$R_s A_s = \xi R_b b h_o + R_{sc} A_s'; \tag{4.18}$$

$$M \le \alpha_{\rm m} R_b b h_o^2 + R_{sc} A'_s (h_o - a').$$
 (4.19)

c. Điều kiện han chế

Để không xảy ra phá hoại giòn từ phía vùng chịu nén, phải thỏa mãn điều kiên:

$$x \le \xi_R h_o$$
 hoặc $\xi \le \xi_R$ hoặc $\alpha_m \le \alpha_R$. (4.20)

Để cho ứng suất trong cốt thép chịu nén đạt tới trị số $R_{\rm sc}$ phải thỏa mãn điều kiện:

$$x \ge 2a'. \tag{4.21}$$

d. Tính toán tiết diện

• Bài toán tính cốt thép A_s và A_s (biết các yếu tố khác: M, b, h, R_b , R_s và R_{sc}).

Đầu tiên phải kiểm tra sự cần thiết phải đặt cốt thép kép

$$\alpha_{\rm R} < \alpha_{\rm m} = \frac{M}{R_b b h_o^2} \,. \tag{4.22}$$

Hai phương trình (4.18) và (4.19) có chứa ba ẩn số là ξ , A_s và A'_s vì vậy phải chọn trước giá trị của một ẩn số để tính hai ẩn số còn lại. Để lợi dụng hết khả năng chịu nén của bêtông ta có thể chọn $\xi = \xi_R$, tức là $\alpha_m = \alpha_R$. Thay vào (4.18) ta được:

$$A'_{s} = \frac{M - \alpha_{R} R_{b} b h_{o}^{2}}{R_{sc}(h_{o} - a')}.$$
 (4.23)

Từ (4.19) ta tính được

$$A_s = \frac{\xi_R R_b b h_o}{R_s} + \frac{R_{sc}}{R_s} A'_s. \tag{4.24}$$

• Bài toán cho A'_s tính A_s

Trong trường hợp này, hai phương trình (4.18) và (4.19) chỉ chứa hai ẩn số là ξ và A_s . Từ (4.18) tính được

$$\alpha_m = \frac{M - R_{sc} A'_s (h_o - a')}{R_b b h_o^2}.$$
 (4.25)

Có thể xảy ra các trường hợp sau:

+ Nếu theo (4.25) có $\alpha_m > \alpha_R$ thì chứng tỏ cốt A'_s đã cho là chưa đủ để bảo đảm cường độ của vùng nén. Khi đó phải xem A'_s là chưa biết rồi tính lại như bài toán trên.

+ Nếu theo (4.25) có $\alpha_m \leq \alpha_R$ thì tính hoặc tra bảng ra ξ . Nếu $x = \xi h_o \geq 2a'$ (nghĩa là các điều kiện hạn chế đều thỏa mãn) thì từ (4.18) tính được:

$$A_{s} = \frac{\xi R_{b} b h_{o}}{R_{s}} + \frac{R_{sc}}{R_{s}} A'_{s}. \tag{4.26}$$

+ Nếu $x=\xi h_{\rm o}<2a'$ thì ứng suất trong cốt thép chịu nén A'_s chưa đạt đến cường độ chịu nén tính toán R_{sc} . Viết phương trình cân bằng mômen đối với trọng tâm cốt thép A_s ta được:

$$M_{gh} = R_s A_s (h_0 - a').$$
 (4.27)

Từ điều kiện $M=M_{gh}$ ta tính được:

$$A_s = \frac{M}{R_s(h_o - a')}. (4.28)$$

Bài toán kiểm tra cường độ.

Biết $b, h, A_s, A'_s, R_b, R_s, R_{sc}$. Tính M_{gh} .

Bài toán có hai ẩn số là ξ và M_{gh} với hai phương trình bản (4.18) và (4.19). Từ (4.18) rút ra:

$$\xi = \frac{R_s A_s - R_{sc} A'_s}{R_b b h_o}.$$

Có thể xảy ra các trường hợp sau:

+ Nếu $\xi > \xi_R$ thì lấy $\xi = \xi_R$ hoặc $\alpha_m = \alpha_R$ để tính M_{gh}

$$M_{gh} = \alpha_R R_b b h_o^2 + R_{sc} A'_s (h_o - a').$$

- + Nếu $\xi < \frac{2a'}{h_o}$ (tức là x < 2a') thì sử dụng (4.27) để tính M_{gh} .
- + Nếu $\frac{2a'}{h_o}$ < $\xi \le \xi_R$ thì từ ξ tra bảng hay tính ra α_m rồi tính khả năng chịu lực theo công thức sau:

$$M_{ah} = \alpha_m R_h b h_o^2 + R_{sc} A'_s (h_o - a').$$

Vi~du~4.1. Tính cốt thép A_s cho dầm có tiết diện chữ nhật với kích thước $b\times h=25\times 50$ cm, bêtông có cấp cường độ chịu nén là B20, nhóm cốt thép AII, mômen uốn tính toán M=178 kNm.

Căn cứ vào cấp độ bền của bêtông và nhóm cốt thép, tra các bảng của phụ lục ta có $R_b=11.5~\mathrm{MPa}$; $R_s=280~\mathrm{MPa}$. Giả thiết $a=4~\mathrm{cm}$, tính được $h_o=50-4=46~\mathrm{cm}$.

Tính ξ_R

$$\xi_R = \frac{\omega}{1 + \frac{R_s}{\sigma_{sc,u}} \left(1 - \frac{\omega}{1,1}\right)} = \frac{0.85 - 0.008 \times 11.5}{1 + \frac{280}{400} \left(1 - \frac{0.85 - 0.008 \times 11.5}{1.1}\right)} = 0.623$$

Tính α_R (theo 4.11):

$$\alpha_R = \xi_R(1 - 0.5\xi_R) = 0.623(1 - 0.623 \times 0.5) = 0.429.$$

Tính α_m (theo 4.12):

$$\alpha_m = \frac{M}{R_b b h_a^2} = \frac{178 \times 10^6}{11.5 \times 250 \times 460^2} = 0.293.$$

Tra bảng ta được $\xi=0.355<\xi_R=0.623$, tức là thỏa mãn điều kiện hạn chế. $\zeta=0.822$.

Tính diện tích cốt thép (theo 4.13)

$$A_{s} = \frac{M}{R \zeta h} = \frac{178 \times 10^{6}}{280 \times 0,822 \times 460} = 1681 \text{ mm}^{2} = 16,81 \text{ cm}^{2};$$

$$M = \frac{16.81}{25 \times 46} \times 100 = 1.46\% > M_{\min} = 0.05\%.$$

Chọn dùng $2\phi 25 + 2\phi 22$ ($A_s = 17,42~{\rm cm}^2$, sai số +3,6%. Chiều dày lớp bêtông bảo vệ là 25 mm do đó giá trị a thực tế là $a = 25 + \frac{25}{2} = 37,7~{\rm mm} < 40~{\rm mm}$. Sự sai khác giữa a giả thiết và a thực tế là không lớn và thiên về an toàn nên không cần phải giả thiết lại. Cốt thép được bố trí một lớp và phù hợp với các yêu cầu về khoảng cách nối giữa các cốt thép.

Vi~du~4.2. Tính cốt thép cho dầm với kích thước tiết diện và vật liệu như trong ví du 4.1, mômen uốn tính toán $M=277~\mathrm{kN.m.}$

Các số liệu ban đầu giống như trong ví dụ 4.1:

$$\xi_R = 0.623$$
; $\alpha_R = 0.429$; $R_b = 11.5$ MPa;
 $R_{sc} = 280$ MPa; $R_s = 280$ MPa.

Giả thiết a = 6.5 cm, do đó $h_a = 43.5$ cm.

Tính α_m (theo 4.12):

$$\alpha_m = \frac{M}{R_b b h_a^2} = \frac{277 \times 10^6}{11.5 \times 250 \times 435^2} = 0.509 > \alpha_R = 0.429$$

do đó phải đặt cốt thép kép.

Giả thiết a' = 3 cm. Tính A'_{s} (theo 4.23):

$$A'_{a} = \frac{M - \alpha_{R} R_{b} b h_{o}^{2}}{R_{\infty} (h_{o} - a')} = \frac{277 \times 10^{6} - 0.429 \times 11.5 \times 250 \times 435^{2}}{280(435 - 30)} =$$

$$= 385 \text{ mm}^{2} = 3.85 \text{ cm}^{2}.$$

Tính A_s (theo 4.24):

$$A_{\kappa} = \frac{\xi_{R} R_{b} b h_{u}}{R_{\kappa}} + \frac{R_{\infty}}{R_{\kappa}} A'_{\kappa} =$$

$$= \frac{0.623 \times 11.5 \times 250 \times 435}{280} + \frac{280}{280} \times 385 = 3168 \text{ mm}^{2} = 31.7 \text{ cm}^{2}.$$

Chọn dùng $2\phi 16$ (A'_s = 3,08) làm cốt chịu nén.

Chọn $2\phi 28 + 4\phi 25$ ($A_s = 12,32 + 19,64 = 31,96$ cm²) làm cốt chịu kéo.

Nếu bố trí 2¢28 và 2¢25 ở lớp ngoài và 2¢25 ở lớp trong với những khoảng cách quy định và lớp bêtông bảo vệ có chiều dày 3 cm (lớn hơn đường kính cốt thép 2,8 cm) thì giá tri a sẽ là

$$a = \frac{12,32(3+1,4)+9,82(3+1,25)+9,82(3+2,8+2,8)+1,25)}{31,96} = 6,03 \text{ cm}$$

Giá trị a thực tế nhỏ hơn giá trị a tính toán không nhiều và thiên về an toàn nên không cần thiết phải giả thiết lại.

 $\emph{Vi dụ 4.3.}$ Tính khả năng chịu lực của dầm có tiết diện chữ nhật $b \times h = 20 \times 45$ cm, cốt thép dọc chịu kéo là 3 ϕ 20 A-II, cấp độ bền của bêtông là 200.

Các số liệu ban đầu tra được trong các bảng phụ lục như sau: $R_b=11,5$ MPa; $R_s=280$ MPa. Lớp bêtông bảo vệ có chiều dày 2 cm, đường kính cốt thép là 2 cm do đó a=3 cm, $h_o=45-3=42$ cm. Tương tự như ví dụ 4.1 ta tính được $\xi_R=0,623$

$$\xi = \frac{R_s A_s}{R_b b h_a} = \frac{280 \times 942}{11.5 \times 200 \times 420} = 0.273 < \xi_R = 0.623.$$

Tra bảng được $\alpha_m = 0.236$

$$M_{gh} = \alpha_m R_b b h_o^2 = 0.236 \times 11.5 \times 200 \times 420^2 =$$

= 95.7 × 10⁶ Nmm = 95.7 kNm.

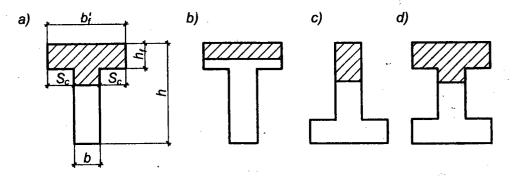
Cũng có thể từ ξ tra bảng được ζ = 0,863 và tính M_{gh} như sau:

$$M_{gh} = \zeta R_s A_s h_o = 0.863 \times 280 \times 942 \times 420 = 95.6 \times 10^6 \text{ Nmm} = 95.6 \text{ kNm}.$$

4.5. TÍNH TOÁN CẦU KIỆN CÓ TIẾT DIỆN CHỮ T THEO CƯỜNG ĐỘ TRÊN TIẾT DIÊN THẮNG GÓC

4.5.1. Đặc điểm cấu tạo và tính toán

Tiết diện chữ T gồm có cánh và sườn (h.4.8). Cánh có thể nằm trong vùng nén (h.4.8a,b) hoặc nằm trong vùng kéo (h.4.8c,d). Khi cánh nằm trong vùng nén, diện tích vùng bêtông chịu nén tăng thêm so với tiết diện chữ nhật $b \times h$. Do vậy dùng tiết diện chữ T cánh trong vùng nén sẽ tiết kiệm hơn tiết diện chữ nhật. Khi cánh nằm trong vùng kéo, vì bêtông không được tính cho chịu kéo nên về mặt cường độ nó chỉ có giá trị như tiết diện chữ nhật $b \times h$. Do đó tiết diện chữ I cũng chỉ có giá trị như tiết diện chữ I có cánh trong vùng nén.


Việc bố trí cánh trong vùng kéo là do các yêu cầu cấu tạo kiến trúc và yêu cầu về bố trí cốt thép trong tiết diện.

Bề rộng b_f của cánh không được vượt quá một giới hạn nhất định để bảo đảm cánh cùng tham gia chịu lực với sườn. Độ vươn của sải cánh S_c tính từ mép sườn tiết diện không được lớn 1/6 nhịp dầm và không được lớn hơn các giá trị sau:

- Khi có dầm ngang hoặc khi bề dày của cánh $h_f' \ge 0.1h$ thì S_c phải không vượt quá 1/2 khoảng cách thông thủy giữa hai dầm dọc.
- Khi không có dầm ngang hoặc khi khoảng cách giữa chúng lớn hơn khoảng cách giữa hai dầm dọc và khi $h_f' < 0.1h$ thì $S_c \le 6 h_f'$.
- Khi cánh có dạng côngxon (dầm độc lập)

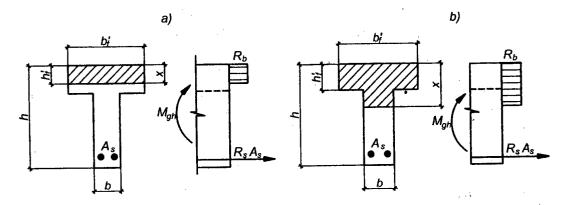
$$S_c \le 6h'_f$$
 khi $h'_f \ge 0.1 h$.
 $S_c \le 3h'_f$ khi $0.05h \le h'_f < 0.1 h$.

Bỏ qua h'_f trong tính toán khi $h'_f < 0.05h$.

Hình 4.8. Các trường hợp tính toán cấu kiện chịu uốn có tiết diện chữ T

Về mặt tính toán, khi trục trung hòa đi qua cánh, tiết diện chữ T được tính như tiết diện chữ nhật có chiều rộng là b_f' (h.4.8b). Còn tiết diện chữ I thì được tính như tiết diện chữ T có cánh trong vùng nén.

4.5.2. Sơ đồ ứng suất


Xuất phát từ trường hợp phá hoại dẻo, ta có sơ đồ ứng suất dùng để tính toán tiết diện chữ T có cánh trong vùng nén như trên hình 4.9.

Để phân biệt trường hợp trục trung hòa qua cánh và qua sườn, ta tính

$$M_f = R_b b'_f h'_f (h'_f - 0.5h'_f)$$
(4.29)

đó là giá trị mômen ứng với trường hợp trục trung hòa đi qua mép dưới của cánh. So sánh mômen ngoại lực với M_F

- Nếu $M \le M_f$ thì trục trung hòa đi qua cánh, việc tính toán được tiến hành như đối với tiết diện chữ nhật $b'_f \times h$.
- Nếu $M > M_f$ thì trục trung hòa đi qua sườn. Dưới đây chỉ đề cập đến trường hợp này.

Hình 4.9. Sơ đổ ứng suất dùng để tính tiết diện chữ T

4.5.3. Các công thức cơ bản

Đối với trường hợp không đặt cốt thép chịu nén theo tính toán, trên cơ sở sơ đồ ứng suất (h.4.9b) ta viết được hai phương trình cân bằng sau đây:

$$R_s A_s = R_b b x + R_b (b'_f - b) h'_f; (4.30)$$

$$M_{gh} = R_b bx \left(h_o - \frac{x}{2}\right) + R_b (b'_f - b)h'_f (h_o - 0.5h'_f). \tag{4.31}$$

Điều kiện cường độ sẽ là:

$$M_{gh} \le R_b bx \left(h_o - \frac{x}{2}\right) + R_b (b'_f - b)h'_f (h_o - 0.5h'_f).$$
 (4.32)

Đặt $\xi = \frac{x}{h_o}$ và $\alpha_m = \xi(1 - 0.5\xi)$ thì (4.30) và (4.32) sẽ có dạng:

$$R_{s}A_{s} = \xi R_{h}bh_{o} + R_{h}(b'_{f} - b)h'_{f}; \tag{4.33}$$

$$M \le \alpha_m R_b b h_o^2 + R_b (b'_f - b) h'_f (h_o - 0.5 h'_f). \tag{4.34}$$

Xem xét (4.33) và (4.34) ta thấy cánh của tiết diện chữ T làm tăng sức chịu tải cho sườn tiết diện chữ nhật giống như vai trò của cốt thép A'_s trong (4.18) và (4.19).

4.5.4. Điều kiện hạn chế

Điều kiện để xảy ra phá hoại dẻo, ứng suất trong cốt thép đạt đến R_s là:

$$\xi \leq \xi_R$$
 hoặc $\alpha_m \leq \alpha_R = \xi_R (1 - 0.5\xi_R)$.

ở đây ξ_R – được tính theo (4.4), thể hiện chiều cao giới hạn của vùng nén: $x_{\text{max}} = \xi_R h_o$.

4.5.5. Tính toán tiết diện

a. Tính cốt thép

Biết kích thước tiết diện R_b , R_s và mômen ngoại lực M, cần phải tính A_s . Đây là bài toán mà trong hai phương trình (4.33) và (4.34) chỉ có hai ẩn số là A_s và ξ . Từ (4.34) ta tính được:

$$\alpha_m = \frac{M - R_b(b'_f - b)h'_f(h_o - 0.5h'_f)}{R_b bh_o^2}.$$
 (4.35)

Từ α_m tra bảng của phụ lục ta được ξ. Xác định A_s theo công thức (4.36):

$$A_{s} = \frac{R_{b}}{R_{s}} \left[\xi b h_{o} + (b'_{f} - b) h'_{f} \right]. \tag{4.36}$$

Nếu $\alpha_m > \alpha_R$ thì phải đặt cốt thép chịu nén A'_s , khi đó trong các công thức cơ bản sẽ có mặt cốt thép A'_s với cường độ chịu nén tính toán R_{sc} . Để tính toán cốt thép có thể tham khảo phần tính toán tiết diện chữ nhật có đặt cốt kép.

b. Kiểm tra cường độ

Biết kích thước tiết diện, R_s , R_b , A_s , cần phải tính được M_{gh} . Đây là bài toán mà trong hai phương trình (4.30) và (4.31) có hai ẩn số là M_{gh} và x. Có thể tính M_{gh} theo cách sau:

Τừ (4.33) tính ξ:

$$\xi = \frac{R_s A_s - R_b (b'_f - b) h'_f}{R_b b h_o}.$$
 (4.37)

Nếu $\xi \leq \xi_R$ thì tra bảng ra α_m và tính được M_{gh} :

$$M_{gh} = \alpha_m R_b b h_o^2 + R_b (b'_f - b) h'_f (h_o - 0.5 h'_f). \tag{4.38}$$

Nếu $\xi \leq \xi_R$ thì lấy $\alpha_m = \alpha_R$ để tính M_{gh} .

Vi~du~4.4. Tính cốt thép dọc chịu lực cho một dầm có tiết diện chữ T như trên hình (4.10). Cánh tiết diện chữ T ở trong vùng chịu nén. Giá trị mômen uốn tính toán M=128 kNm, cấp độ bền của bêtông là B20. Cốt thép nhóm A-III.

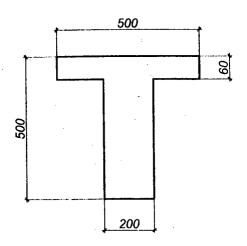
Tra bảng phụ lục ta có:

$$R_b = 11.5 \text{ MPa}$$
; $R_s = 365 \text{ MPa}$.

Tính ξ_R theo (4.4)

$$\xi_R = \frac{\omega}{1 + \frac{R_s}{\sigma_{sc,u}} \left(1 - \frac{\omega}{1,1}\right)} = \frac{0.85 - 0.008 \times 11.5}{1 + \frac{365}{400} \left(1 - \frac{0.85 - 0.008 \times 11.5}{1.1}\right)} = 0.590$$

Giả thiết a = 3.5 cm;


$$h_o = h - a = 50 - 3.5 = 46.5$$
 cm.

Tính M_c (theo 4.29):

$$M_c = R_b b'_f h'_f (h_o - 0.5h'_f) = 11.5 \times 500 \times 60 (465 - 0.5 \times 60) =$$

= 150 × 10⁶ Nmm = 150 kNm.

 $M=128~\rm{kNm} < M_c=150~\rm{kNm},$ do đó trục trung hòa đi qua cánh. Tính A_s như đối với tiết diện chữ nhật với kích thước $b\times h=50\times 50~\rm{cm}.$

Ví dụ 4.5. Tính cốt thép dọc chịu lực cho dầm có tiết diện như trên hình 4.10. Cánh tiết diện chữ T ở trong vùng chịu nén. Giá trị mômen uốn tính toán M = 160 kNm.

Hình 4.10. Tiết diện chữ T

Lấy các số liệu đã tính ở ví dụ 4.4 ta có:

$$\xi_R = 0.590$$
, $\alpha_R = 0.416$

 $M = 160 \text{ kNm} > M_c = 150 \text{ kNm}$, do đó trục trung hòa đi qua sườn.

Tính α_m (theo 4.35):

$$\alpha_{m} = \frac{M - R_{b} (b'_{f} - b)h'_{f} (h_{o} - 0.5h'_{f})}{R_{b}bh_{o}^{2}} =$$

$$= \frac{160 \times 10^{6} - 11.5(500 - 200) \times 60 \times (465 - 30)}{11.5 \times 200 \times 465^{2}} = 0.140.$$

Tra bảng ta được $\xi = 0.15 < \xi_R = 0.590$.

Tính A_s (theo 4.36):

$$A_s = \frac{R_b}{R_s} \left[\xi b h_o + (b'_f - b) h'_f \right] =$$

$$= \frac{11.5}{365} \left[0.15 \times 200 \times 465 + (500 - 200)60 \right] = 1007 \text{ mm}^2 = 10.7 \text{ cm}^2.$$

Chọn dùng $2\phi 20 + 1\phi 22$ thì $A_s = 10.8$ cm² (sai số không đáng kể). Kiểm tra lại khoảng cách cốt thép và a đã giả thiết ở trên đều thấy đạt yêu cầu.

Vi~du~4.6. Tính khả năng chịu mômen của dầm có tiết diện chữ T cánh trong vùng nén với các số liệu: $h=50~{\rm cm}; b=20~{\rm cm}; h'_f=8~{\rm cm};$

 $b'_f = 30$ cm; cấp độ bền của bêtông là 200, cốt thép 2 ϕ 25 nhóm A-III.

Tra các bảng phụ lục và lấy kết quả tính ξ_R ở ví dụ 4.4 ta có:

 $R_b=11.5$ MPa; $R_s=365$ MPa; $\xi_R=0.590$; $\alpha_R=0.416$. Chiều dày lớp bảo vệ là 25 mm nên tính được:

$$a = 2.5 + \frac{2.5}{2} = 3.75 \text{ cm} \approx 4 \text{ cm};$$

$$h_0 = 50 - 4 = 46$$
 cm.

Vì
$$R_s A_s = 982 \times 365 = 358430 \text{ N} > R_b h'_f b'_f =$$

= 11,5 × 80 × 300 = 276 000 N nên trục trung hòa đi qua sườn.

Tính ξ (theo 4.37)

$$\xi = \frac{R_{b}A_{b} - R_{b}(b'_{f} - b)h'_{f}}{R_{b}bh_{o}} = \frac{982 \times 365 - 11,5(300 - 120)80}{11,5 \times 120 \times 460} =$$

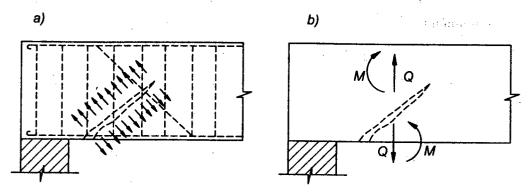
$$= 0.304 < \xi_R = 0.590.$$

Tra bảng ta được $\alpha_m = 0.258$.

Tinh M_{gh} (theo 4.38):

$$M_{gh} = \alpha_m R_b b h_o^2 + R_b (b'_f - b) h'_f (h_o - 0.5 h'_f) =$$

$$= 0.304 \times 11.5 \times 120 \times 460^2 + 11.5 (300 - 120) 80 (460 - 0.5 \times 80) =$$


$$= 158.3 \times 10^6 \text{ Nmm} = 158.3 \text{ KNm}.$$

4.6. TÍNH TOÁN CƯỜNG ĐỘ TRÊN TIẾT DIỆN NGHIÊNG

4.6.1. Sự phá hoại theo tiết diện nghiêng

Ở những đoạn dầm có lực cắt lớn, ứng suất tiếp do lực cắt và ứng suất pháp do mômen sẽ gây ra những ứng suất kéo chính nghiêng với trục dầm một góc nào đó và có thể làm xuất hiện những khe nứt nghiêng. Các cốt thép dọc, cốt đai và cốt xiên đi ngang qua khe nứt nghiêng sẽ chống lại sự phá hoại theo tiết diện nghiêng. Cũng có thể mô tả sự phá hoại này như sau: trên tiết diện nghiêng có tác dụng của mômen uốn và lực cắt,

mômen uốn có xu hướng làm quay hai phần dầm xung quanh vùng nén, còn lực cắt có xu hướng kéo tách hai phần dầm theo phương vuông góc với trực (h.4.11).

Hình 4.11. Mô tả sự phá hoại trên tiết diện nghiêng

Cốt dọc, cốt đai và cốt xiên có tác dụng chống lại sự quay của hai phần dầm (mômen). Còn cốt đai và cốt xiên có tác dụng chống lại sự tách hai phần dầm đó (lực cắt). Cốt dọc cũng có tác dụng chịu lực cắt (chống lại sự tách), nhưng ở đây không kể đến tác dụng của nó trong tính toán chịu cắt.

Dầm cũng có thể bị phá hoại ở phần bụng, trên những dải nằm giữa các khe nứt do tác dụng của ứng suất nén chính. Ứng suất nén chính do bêtông chịu là chủ yếu nhưng vẫn phải kể đến khả năng chịu nén của cốt đai đi qua các dải chịu nén đó. Sự phá hoại này là phá hoại giòn nên cần phải tính toán để loại bỏ khả năng đó xảy ra.

4.6.2. Những nguyên tắc tính toán

a. Bảo đảm khả năng chịu ứng suất nén chính của bung dầm

Úng suất kéo chính tách bụng dầm thành những dải nghiêng. Các dải nghiêng đó có thể bị vỡ nát vì ứng suất nén chính. Thông thường khi ứng suất nén chính không vượt quá cường độ chịu nén R_b (nén một trục) của bêtông thì bêtông không bị phá hoại. Tuy nhiên bụng dầm chịu ứng suất nén và kéo theo hai phương vuông góc, điều đó làm giảm khả năng chịu nén của bêtông và cần phải được lưu ý.

Các kết quả thí nghiệm đã chứng tỏ rằng, cường độ chịu nén của dải nghiêng ở bụng dầm nằm giữa các khe nứt sẽ được bảo đảm khi thỏa mãn điều kiện:

$$Q \le 0.3\varphi_{w1}\varphi_{b1}R_bbh_o,\tag{4.39}$$

trong đó: φ_{w1} – hệ số xét đến ảnh hưởng của cốt đai đặt vuông góc với trục cấu kiện, được xác định theo công thức:

$$\varphi_{w1} = 1 + 5\alpha \mu_w \le 1.3 , \qquad (4.40)$$

ở đây:

$$\alpha = \frac{E_s}{E_h} , \quad \mu_w = \frac{A_{sw}}{bs} ,$$

 A_{sw} – diện tích tiết diện ngang của các nhánh đai đặt trong một mặt phẳng vuông góc với trục cấu kiện và cắt qua tiết diện nghiêng;

b - chiều rộng của tiết diện chữ nhật; chiều rộng sườn của tiết diên chữ T và chữ I;

s – khoảng cách giữa các cốt đai theo chiều dọc của cấu kiện;

 ϕ_{b1} - hệ số xét đến khả năng phân phối lại nội lực của các loại bêtông khác nhau,

$$\varphi_{b1} = 1 - \beta R_b \tag{4.41}$$

 $\beta = 0.01$ đối với bêtông nặng và bêtông hạt nhỏ;

 $\beta = 0.02$ đối với bêtông nhẹ;

 R_b – tính bằng MPa.

Khi điều kiện (4.39) không được thỏa mãn thì cần phải tăng kích thước tiết diện hoặc tăng cấp độ bền của bêtông.

b. Tính toán cường độ của tiết diện nghiêng theo lực cắt

Sự phá hoại trên tiết diện nghiêng có liên quan một cách hữu cơ đến mômen và lực cắt. Nhưng đến nay trong tiêu chuẩn thiết kế vẫn tách riêng việc tính cốt đai, cốt xiên theo lực cắt với việc tính toán cường độ trên tiết diện nghiêng theo mômen.

Khe nứt nghiêng được hình thành đầu tiên ở giữa sườn dầm, nơi ứng suất tiếp do lực cắt gây ra đạt giá trị cực đại. Do tính chất không đàn hồi của bêtông, ứng suất tiếp sẽ dần dần trở thành phân bố đều và khe nứt phát triển. Sự phân bố ứng suất tiếp như vậy chỉ xảy ra khi các cốt đai được neo tốt, cản trở sự quay của hai phần cấu kiện và cấu kiện bị phá hoại do sự chuyển dịch tương đối của hai phần đó.

Thí nghiệm chứng tổ rằng khi chịu cắt thuần túy, nếu

$$\tau = \sigma_{kc} = \frac{Q}{bh_o} \le 2.5R_{bt}$$

thì không xuất hiện khe nứt nghiêng tức là khả năng chịu cắt lớn nhất của bêtông bằng:

$$Q_{b\text{max}} = 2.5 R_{bt} b h_o. \tag{4.42}$$

Biểu thức (4.42) dùng để khống chế giá trị $Q_{\rm max}$ ở mép gối tựa của cấu kiện không có cốt thép ngang khi phải chịu lực tập trung ở rất gần gối tựa, cụ thể là:

$$Q_{\text{max}} \le 2.5 R_{bt} b h_o. \tag{4.42a}$$

Đồng thời, trong trường hợp chung, khi không có cốt thép ngang còn phải thỏa mãn các điều kiện sau:

$$Q \le \frac{\varphi_{b4}(1 + \varphi_n)R_{bt}bh_o^2}{c} , \qquad (4.43)$$

vế phải của (4.43) không được nhỏ hơn $\phi_{\rm b3}(1+\phi_{\rm n})\,R_{bt}bh_o$, tức là

$$\frac{\varphi_{b4}(1+\varphi_n)R_{bt}bh_o^2}{c} \ge \varphi_{b3}(1+\varphi_n)R_{bt}bh_o \tag{4.44}$$

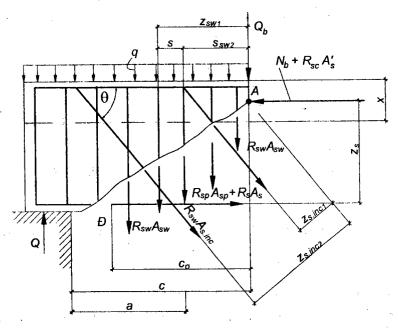
trong đó: Q - lực cắt ở cuối tiết diện nghiêng;

c – chiều dài hình chiếu tiết diện nghiêng trên trục cấu kiện tính từ mép gối tựa, $c \le c_{\text{max}} = 2h_o$;

 φ_{b3} – hệ số bằng 0,6 đối với bêtông nặng và bằng 0,5 đối với bêtông hạt nhỏ;

 ϕ_{b4} – hệ số bằng 1,5 đối với bêtông nặng và bằng 1,2 đối với bêtông hạt nhỏ;

 ϕ_n – hệ số xét đến ảnh hưởng của lực dọc trục.


Khi lực dọc là lực nén (ví dụ lực nén do cốt thép ứng lực trước) thì:

$$\varphi_n = 0.1 \frac{N}{R_{bt} b h_o} \le 0.5 \tag{4.45}$$

Khi lực dọc là lực kéo thì:

$$\varphi_n = -0.2 \frac{N}{R_{bt} b h_o} \,, \tag{4.46}$$

Giá trị tuyệt đối của vế phải của biểu thức (4.46) không được lớn hơn 0,8.

Hình 4.12. Sơ đồ tính toán cường độ trên tiết diện nghiêng

Đối với cấu kiện bêtông cốt thép chịu uốn có đặt cốt thép ngang (h.4.12), điều kiện để bảo đảm cường độ trên tiết diện nghiêng như sau:

$$Q \le Q_b + Q_{sw} + Q_{sinc}, \tag{4.47}$$

Q - lực cắt tính ở một phía của tiết diện nghiêng đang xét;

 Q_{sw} – lực cắt do cốt đai chịu;

 $Q_{s.inc}$ – lực cắt do cốt xiên chịu;

 Q_b – lực cắt do bêtông chịu, được xác định bằng công thức thực nghiệm:

$$Q_b = \frac{\varphi_{b2}(1 + \varphi_f + \varphi_n)R_{bt}bh_o^2}{c}, \qquad (4.48)$$

trong đó: c - chiều dài hình chiếu của mặt cắt nghiêng trên trục dọc của cấu kiên;

 φ_{b2} - hệ số xét đến ảnh hưởng của loại bêtông,

 $\phi_{b2} = 2,00 \text{ dối với bêtông nặng và bêtông tổ ong;}$ $\phi_{b2} = 1,70 \text{ dối với bêtông hạt nhỏ;}$

 φ_f – hệ số xét đến ảnh hưởng của cánh tiết diện chữ T và chữ I khi cánh nằm trong vùng chịu nén;

$$\varphi_f = 0.75 \frac{(b'_f - b)h'_f}{bh_o} \le 0.5 ,$$
(4.49)

đồng thời lấy $b_f' \le b + 3h_f'$ và cốt thép ngang phải được neo vào cánh.

Trong mọi trường hợp phải khống chế giá trị:

$$1+\varphi_f+\varphi_n\leq 1,5.$$

Giá trị Q_b tính theo (4.48) phải bị khống chế như sau:

$$Q_b \ge Q_{\text{bmin}} = \varphi_{b3}(1 + \varphi_f + \varphi_n) R_{bt}bh_o$$
, (4.50)

Từ (4.48) có thể tháy rằng khả năng chịu cắt của bêtông Q_b phụ thuộc chiều dài hình chiếu của mặt cắt nghiêng c. Tuy vậy khi c tăng, Q_b không thể giảm vô hạn mà phải bảo đảm $Q_b \ge Q_{bmin}$ theo (4.50). Từ (4.48) và (4.50) rút ra:

$$c \le \frac{\varphi_{b2}}{\varphi_{b3}} h_o. \tag{4.50a}$$

Đồng thời khi c giảm, Q_b không thể tăng vô hạn mà phải bảo đảm $Q_b \le Q_{b\text{max}}$ theo (4.42). Từ (4.48) và (4.42) rút ra:

$$c \ge \frac{\varphi_{b2}}{2.5} \left(1 + \varphi_f + \varphi_n \right) h_o. \tag{4.50b}$$

c. Bảo đảm cường độ trên tiết diện nghiêng theo mômen uốn

Dưới tác dụng của mômen uốn và lực cắt, khi khe nứt nghiêng đã xuất hiện, tiết diện nghiêng sẽ bị quay quanh một tâm quay tức thời là trọng tâm vùng chịu nén. Nếu cốt thép không được neo chắc chắn hoặc cốt thép bị chảy dẻo thì vùng nén sẽ dần dần bị thu hẹp và dẫn đến sự phá hoại cấu kiện.

Để bảo đảm cường độ trên tiết diện nghiêng theo mômen, cần phải tính toán với tiết diện nghiêng nguy hiểm nhất theo điều kiện:

$$M \le M_s + M_{sin} + M_{sinc}, \tag{4.51}$$

trong đó: M – mômen của tất cả ngoại lực đặt ở một phía của tiết diện nghiêng đối với trục đi qua hợp lực của vùng nén và thẳng góc với mặt phẳng uốn;

 M_s , M_{sw} và $M_{s.inc}$ – tổng mômen đối với trục nói trên của các nội lực tương ứng trong cốt thép dọc, cốt đai và cốt xiên cắt qua tiết diện nghiêng (xem hình 4.12).

Điều kiện cường độ (4.51) cần phải được kiểm tra tại vị trí cắt hoặc uốn cốt thép dọc, tại vùng gần gối tựa của dầm và đầu tự do của côngxon, tại các vị trí có sự thay đổi đột ngột của hình dạng tiết diện, thay đổi khoảng cách cốt đai v.v...

4.6.3. Tính toán cốt đai khi không đặt cốt xiên

Khi không có cốt xiên, điều kiện cường độ trên tiết diện nghiêng (4.47) sẽ như sau:

$$Q \le Q_b + Q_{sw} , \qquad (4.52)$$

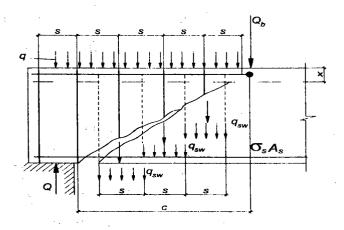
trong đó

$$Q_{sw} = \sum R_{sw} A_{sw} = q_{sw} c; \qquad (4.53)$$

$$q_{sw} = \frac{R_{sw}A_{sw}}{s}, \tag{4.54}$$

ở đây:

R_{sw} - cường độ tính toán của cốt thép đai;


 A_{sw} – diện tích tiết diện ngang của các nhánh cốt đai đặt trong một mặt phẳng vuông góc với trực cấu kiện;

s – khoảng cách giữa các cốt đai (xem hình 4.13).

Diều kiện cường độ (4.52) có thể viết dưới dạng:

$$Q \leq Q_u = \frac{\varphi_{b2}(1 + \varphi_f + \varphi_n)R_{bt}bh_o^2}{c} + q_{sw}c. \tag{4.55}$$

Theo (4.55), khi chiều dài hình chiếu của mặt cắt nghiêng trên trục cấu kiện c tăng lên thì Q_b giảm và Q_{sw} tăng và khả năng chịu cắt của cấu kiện có một giá trị cực tiểu ứng với một giá trị c nào đó được gọi là tiết diện nghiêng nguy hiểm nhất c_o . Để tìm giá trị c_o chỉ cần triệt tiêu đạo hàm Q_u đối với biến số c, ta được:

Hình 4.13. Sơ đồ tính toán cốt đai

$$\frac{dQ_u}{dc} = q_{sw} - \frac{M_b}{c_s^2} = 0, (4.56)$$

trong đó:

$$M_b = \varphi_{b2} (1 + \varphi_f + \varphi_n) R_{bt} b h_o^2. \tag{4.57}$$

Giải phương trình (4.57) ta được:

$$c_o = \sqrt{\frac{M_b}{q_{sw}}} \,. \tag{4.58}$$

Các nghiên cứu thực nghiệm đã đưa ra các giá trị khống chế đối với khả năng chịu cắt Q_b được tính theo (4.48) như đã thể hiện trong (4.49) và (4.50). Điều đó được hiểu rằng khi c giảm, Q_b không thể tăng lên vô cùng mà phải có giới hạn nào đó; khi c tăng, Q_b không thể trở về số không mà phải có một giá trị cực tiểu. Hơn nữa cũng cần phải lưu ý đến ảnh hưởng của hàm lượng cốt đai đối với khả năng chịu cắt Q_b . Những nghiên cứu thực nghiệm đã cho thấy rằng, khả năng chịu cắt của cốt đai và bêtông $(Q_b + Q_{sw})$ phụ thuộc vào chiều dài a lấy bằng khoảng cách từ mép gối tựa đến lực tập trung gần nhất hoặc bằng 1/4 nhịp dầm khi tải trọng là phân bố đều. Trước kia người ta sử dụng giá trị cực tiểu của $(Q_b + Q_{sw})$ như là một hằng số không phụ thuộc vào giá trị a. Những nghiên cứu sau này chứng tỏ rằng khi a tăng thì Q_{sw} tăng và Q_b giảm cho đến khi $a = c_o$ thì đạt đến sự cân bằng của chúng $(Q_{sw} = Q_b)$; khi tiếp tục tăng a ($a = c > c_o$) thì chỉ có a0 giảm còn a1 giữ giá trị không đổi bằng a1 bằng a2.

Như vậy, không thể chỉ suy luận toán học về khả năng chịu cắt của tiết diện nghiêng trên cơ sở các biểu thức (4.55), (4.56) và (4.58).

Tiêu chuẩn thiết kế yêu cầu rằng khi tính toán cốt đai, giá trị Q_{sw} được xác định theo công thức:

$$Q_{sw} = q_{sw}c_o. (4.59)$$

Đồng thời trên tiết diện nghiêng nguy hiểm lấy bằng $2h_o$ ($c_o = 2h_o$), cốt đai phải chịu được lực cắt không ít hơn khả năng chịu cắt tối thiểu của bêtông để tránh phá hoại giòn:

$$q_{sw} \ge \frac{\varphi_{b3} (1 + \varphi_f + \varphi_n) R_{bt} b}{2} = \frac{Q_{b \min}}{2h_o}.$$
 (4.60)

Khi tính toán cường độ tiết diện nghiêng, cụ thể là khi tính toán cốt đai, phải tính với hàng loạt tiết diện nghiêng khác nhau với những giá trị

không vượt quá khoảng cách từ gối tựa đến tiết diện có giá trị mômen cực đại và không vượt quá $\left(\frac{\varphi_{b2}}{\varphi_{b3}}\right)h_o$ theo (4.50a)).

a. Tính cấu kiện chịu tải trọng phân bố đều

Giả sử trên dầm có tác dụng tải trọng thường xuyên liên tục q_1 thì trong biểu thức (4.55) phải bổ sung thêm thành phần q_1 , cụ thể là:

$$Q_u = \frac{M_b}{c} + (q_{cw} + q_1)c . {(4.61)}$$

Khi đó hình chiếu của tiết diện nghiêng c_o sẽ có dạng:

$$c_o = \sqrt{\frac{M_b}{q_{sw} + q_1}} \tag{4.62}$$

Nếu gọi q là tổng tải trọng phân bố đều tác dụng lên cấu kiện, khi toàn bộ q là tải trọng thường xuyên thì lấy $q_1=q$. Khi trong q có một phân là tải trọng tạm thời ký hiệu là v phân bố liên tục để tạo nên biểu đồ mômen có dạng parabol thì lấy $q_1=g+\frac{v}{2}$, trong đó g là tải trọng thường xuyên phân bố liên tục.

Điều kiện cường độ sẽ là:

$$Q_{\max} \le \frac{M_b}{c} + (q_{sw} + q_1)c, \tag{4.63}$$

trong đó: $Q_{
m max}$ – lực cắt ở mép gối tựa.

Giá trị c_o tính theo (6.42) cần phải được xem xét cùng với tương quan giữa q_{sw} và q_1 . Xét một dầm có lực cắt Q_{\max} ở mép gối tựa, tiết diện bh_o và q_{sw} (tức là cốt đai đã được xác định), sự phá hoại trên tiết diện nghiêng theo lực cắt phụ thuộc vào q_1 (q_1 có thể thay đổi để Q_{\max} không đổi bằng cách thay đổi chiều dài nhịp l); Tức là chiều dài tiết diện nghiêng c_o không những phụ thuộc tổng số $q_{sw}+q_1$ mà còn phụ thuộc tỷ số q_{sw}/q_1 . Người ta chứng minh rằng khi $q_1 \leq 0.56q_{sw}$ thì tính c_o theo công thức:

$$c_o = \sqrt{\frac{M_b}{q_1}} , \qquad (4.64)$$

còn khi $q_1 > 0.56 q_{sw}$ thì

$$c_o = \sqrt{\frac{M_b}{q_1 + q_{sw}}} \,. \tag{4.65}$$

Điều đó có ý nghĩa là khi q_1 nhỏ, giá trị c_0 không phụ thuộc vào sự bố trí cốt đai.

Trong tính toán thiết kế, người ta tính cốt đai (tính q_{sw}) như sau:

• Khi
$$Q_{\text{max}} \le \frac{Q_{b1}}{0.6}, \tag{4.66}$$

trong đó:
$$Q_{b1} = 2\sqrt{M_b q_1}$$
, (4.67)

thì:
$$q_{sw} = \frac{Q_{\text{max}}^2 - Q_{b1}^2}{4 M_b}. \tag{4.68}$$

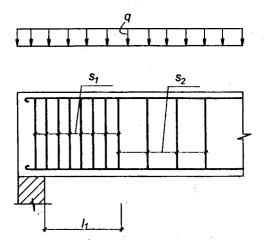
• Khi
$$\frac{M_b}{h_o} + Q_{b1} > Q_{\text{max}} > \frac{Q_{b1}}{0.6}$$
, (4.69)

thì:
$$q_{sw} = \frac{(Q_{max} - Q_{b1})^2}{M_b}$$
 (4.70)

Trong cả hai trường hợp trên, q_{sw} không được lấy nhỏ hơn $\dfrac{Q_{\max} - Q_{b1}}{2h_o}$.

• Khi
$$Q_{\text{max}} \ge \frac{M_b}{h_o} + Q_{b1}$$
, (4.71)

thì:
$$q_{sw} = \frac{Q_{max} - Q_{b1}}{h_o}$$
 (4.72)


ullet Nếu tính được $q_{sw} < rac{Q_{b\,\mathrm{min}}}{2h_o}\,.$

thì phải tính lại $q_{\$w}$ theo công thức sau:

$$q_{sw} = \frac{Q_{max}}{2h_o} + \frac{\varphi_{b2}}{\varphi_{b3}}q_1 - \sqrt{\left(\frac{Q_{max}}{2h_o} + \frac{\varphi_{b2}}{\varphi_{b3}}q_1\right)^2 - \left(\frac{Q_{max}}{2h_o}\right)^2} . \tag{4.73}$$

b. Trường hợp cốt đai đặt không đều (tải trọng phân bố đều)

Dưới tác dụng của tải trọng phân bố đều, càng xa gối tựa lực cắt càng giảm, do đó từ khoảng cách l_1 nào đó tính từ gối tựa có thể tăng khoảng cách cốt đai. Gọi mặt cắt nghiêng có chiều dài hình chiếu trên trục cấu kiện bằng l_1 là mặt cắt nghiêng c_1 với khoảng cách cốt đai là s_1 ứng với khả năng chịu cắt của cốt đai là q_{sw1} . Khoảng ngoài đoạn l_1 các chỉ tiêu của cốt đai tương ứng là s_2 và q_{sw2} (h.4.14). Việc tính toán được tiến hành theo [17] như sau:

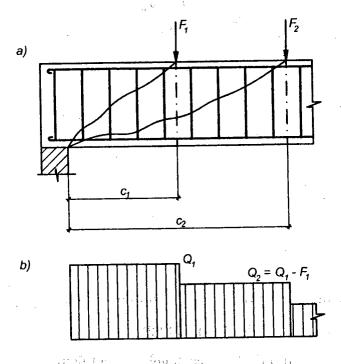
Hình 4.14. Khoảng cách cốt đai thay đổi

• Tính c_{01} và c_{02} theo (5.48):

$$c_{oi} = \sqrt{\frac{M_b}{q_{swi}}}$$

• Khi $q_1 > q_{sw1} - q_{sw2}$ thì:

$$l_1 = c - \frac{\frac{M_b}{c} + q_{sw1}c_{o1} - Q_{max} + q_1c}{q_{sw1} - q_{sw2}}; \qquad (4.74)$$


trong đó:

$$c = \sqrt{\frac{M_b}{q_1 - (q_{sw1} - q_{sw2})}} \le \frac{\varphi_{b2}}{\varphi_{b3}} h_o.$$
 (4.75)

• Khi
$$q_1 \le q_{sw1} - q_{sw2}$$
 thì
$$l_1 = \frac{Q_{\max} - (Q_{b\min} + q_{sw2}c_{o1})}{q_1} - c_{o1}. \tag{4.76}$$

Trong đoạn cốt đai được giảm (nằm ngoài khoảng l_1) giá trị q_{sw2} không bắt buộc phải tuân theo điều kiện (4.60).

c. Tính cốt đại cho cấu kiện chịu tải trọng tập trung

Hình 4.15. Sơ đổ tính toán cốt đai khi chịu lực tập trung a) Sơ đổ tiết diện nghiêng; b) Biểu đồ lực cắt.

Khi chịu tải trọng tập trung, cần phải tính với tất cả các tiết diện nghiêng c_i xuất phát từ gối tựa nhưng không vượt quá tiết diện có giá trị mômen to nhất. Giá trị q_{sw} được xác định theo hệ số:

$$\chi = \frac{Q_i - Q_{bi}}{Q_{bi}}, \tag{4.77}$$

trong đó:
$$Q_{bi} = \frac{M_b}{c_i}. \tag{4.78}$$

• Nếu
$$\chi_i < \chi_{oi} = \frac{Q_{b \min}}{Q_{bi}} \times \frac{c_o}{2h_o},$$
 thì:
$$q_{sw(i)} = \frac{Q_i}{c_o} \times \frac{\chi_{oi}}{\chi_{oi} + 1}.$$
 (4.79)

• Nếu
$$\chi_{oi} \leq \chi_i \leq \frac{c_i}{c_o}$$
,

thi:
$$q_{sw(i)} = \frac{Q_i - Q_{bi}}{c_o}$$
 (4.80)

• Nếu
$$\frac{c_i}{c_o} < \chi_i \le \frac{c_i}{h_o},$$
 thì:
$$q_{sw(i)} = \frac{(Q_i - Q_{bi})^2}{M_b}.$$
 (4.81)

ở đây: $h_0 ≤ c_i$.

Cuối cùng lấy giá trị $q_{sw(i)}$ lớn nhất để xác định cốt đai.

Trong các công thức (4.77) - (4.82)

 Q_i – lực cắt ở tiết diện cách gối tựa một đoạn c_i ;

 Q_{bi} – được xác định theo (4.48) với $c = c_i$;

 $Q_{b \, \mathrm{min}}$ - được xác định theo (4.50);

 \dot{M}_b – được xác định theo (4.57);

 c_o – lấy bằng c_i nhưng không lớn hơn $2h_o$.

d. Khoảng cách lớn nhất giữa các cốt đai

Khoảng cách lớn nhất giữa các cốt đai s_{max} , khoảng cách từ mép gối tựa tự do đến điểm đầu của cốt xiên (h.4.12) và khoảng cách từ điểm cuối của

cốt xiên trước điểm đầu của cốt xiên sau được xác định từ điều kiện không được phép xuất hiện khe nứt nghiêng cắt qua bêtông; Tức là toàn bộ lực cắt phải do bêtông chịu. Từ (4.43), lấy $c = s_{\rm max}$ ta nhận được:

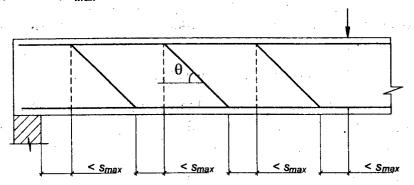
$$s_{\text{max}} = \frac{\left[\phi_{b4}(1 + \phi_n)R_{bi}bh_o^2\right]}{Q}.$$
 (4.83)

Đưa vào hệ số ϕ_{b4} để xét đến sự không chính xác của khoảng cách cốt đai trong thi công và sự lệch lạc về phương của khe nứt nghiêng do bêtông không đồng chất.

e. Yêu cầu cấu tao đối với cốt đai trong dầm và bản

Trong dầm có chiều cao lớn hơn 150 mm và trong tấm có lỗ với chiều dày của tấm lớn hơn 300 mm cần phải đặt cốt thép ngang (cốt đai hoặc cốt ngang hàn vào cốt dọc).

Trong bản đặc không phụ thuộc chiều cao, trong tấm có lỗ với chiều dày nhỏ hơn 300 mm và trong dầm có chiều cao nhỏ hơn 150 mm cho phép không đặt cốt ngang nhưng phải thỏa mãn điều kiện (4.43).


Khi phải bố trí cốt thép ngang thì yêu cầu cấu tạo như sau:

- Ở vùng gần gối tựa lấy bằng 1/4 nhịp khi có tải trọng phân bố đều và lấy bằng khoảng cách từ gối tựa đến lực tập trung gần nhất nhưng không nhỏ hơn 1/4 nhịp.
- Khoảng cách cốt thép ngang phụ thuộc vào chiều cao tiết diện h như sau:
 - + Khi $h \le 450$ mm không lớn hơn h/2 và không lớn hơn 150 mm.
 - + Khi h > 450 mm không lớn hơn h/3 và không lớn hơn 500 mm.
 - + Trên các phần còn lại của nhịp, khi chiều cao tiết diện lớn hơn 300 mm không lớn hơn 3/4h và không lớn hơn 500 mm.

4.6.4. Tính toán cốt xiên

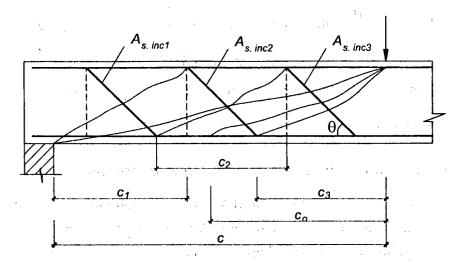
Cốt xiên được bố trí vào những vùng của cấu kiện mà lực cắt tính toán Q lớn hơn khả nằng chịu cắt của cốt đại và bêtông Q_u (theo (4.55)) trên tiết

diện nghiêng nguy hiểm nhất. Trước khi tính toán, cần phải xác định vị trí của các lớp cốt xiên trong vùng có $Q > Q_u$ để bảo đảm không xuất hiện khe nứt nghiêng cắt qua bêtông nằm giữa mép gối tựa và đầu lớp cốt xiên thứ nhất và cắt qua bêtông nằm giữa những lớp cốt xiên tiếp theo (xem hình 4.16). Giá trị Q_u được xác định theo (4.55) với c_o được xác định theo (4.58). Giá trị $s_{\rm max}$ được xác định theo (4.83).

Hình 4.16. Vị trí các lớp cốt xiên trong dầm

Góc nghiêng θ của cốt xiên thường được lấy bằng 45° . Đối với dầm có chiều cao tiết diện lớn hơn 80 cm có thể lấy $\theta \le 60^{\circ}$; còn đối với dầm và bản có chiều cao bằng hoặc nhỏ hơn 30 cm thì có thể lấy $\theta = 30^{\circ}$.

Điều kiện cường độ trên tiết diện nghiêng C cắt qua cả cốt đai và cốt xiên (h.4.12) được viết như sau:


$$Q \le q_{sw}c + \frac{M_b}{c} + R_{sw}A_{s.inc}\sin\theta , \qquad (4.84)$$

trong đó: $A_{s.inc}$ – tổng diện tích các lớp cốt xiên cắt qua mặt cắt nghiêng c.

Khi thiết kế cần phải kiểm tra cường độ của tất cả các mặt cắt nghiêng xuất phát từ mép gối tựa, xuất phát từ cuối lớp cốt xiên thứ nhất và xuất phát từ cuối các lớp cốt xiên tiếp theo.

Ngoài ra còn phải kiểm tra cường độ của tiết diện nghiêng xuất phát từ điểm đặt của lực tập trung nằm trong khu vực có các lớp cốt xiên. Điều đó được thể hiện trên hình 4.17.

Giả thiết cốt đai phân bố đều liên tục, c_o được tính theo công thức (4.58).

Hình 4.17. Các mặt cắt nghiêng dùng để tính toán cốt xiên (trong hình vẽ này đã lược bỏ cốt đai cho dễ nhìn)

Theo hình 4.17 cần phải tính khả năng chịu cắt (tức là vế trái của biểu thức (4.84)) của các mặt cắt nghiêng c_i và khả năng chịu lực đó phải lớn hơn lực cắt ở cuối mặt cắt nghiêng. Cụ thể là

$$\begin{split} Q_{1} &\leq q_{sw}c_{1} + R_{sw}A_{s.inc1}\sin\theta + \frac{M_{b}}{c_{1}}\,;\\ Q_{2} &\leq q_{sw}c_{2} + R_{sw}A_{s.inc2}\sin\theta + \frac{M_{b}}{c_{2}}\,;\\ Q_{3} &\leq Q_{sw}c_{3} + R_{sw}A_{s.sinc3}\sin\theta + \frac{M_{o}}{c_{3}}\,;\\ Q_{3} &\leq q_{sw}c_{o} + R_{sw}(A_{s.in2} + A_{s.in3})\sin\theta + \frac{M_{o}}{c_{o}}\,. \end{split}$$

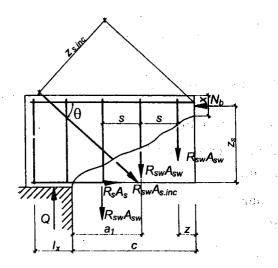
trong đó $oldsymbol{Q}_i$ là lực cắt ở điểm đầu của mặt cắt nghiêng $oldsymbol{c}_i$.

Khi tính khả năng chịu cắt trên các tiết diện nghiêng như trên cần phải lưu ý một số điều:

- Phải kể đến tải trọng phân bố q_1 làm giảm lực cắt ở cuối tiết diện nghiêng;
- Khi tính $q_{sw}c_i$, nếu $c_i > c_o$ thì phải lấy $c_i = c_o$; khi $c_o > 2h_o$ thì phải lấy $c_o = 2h_o$;

• Khi tính $\frac{M_b}{c_i}$ phải khống chế $c_i \leq \frac{\varphi_{b2}}{\varphi_{b3}} h_o$, tức là $Q_b \geq Q_{b \text{ min}}$. Đồng thời nếu lấy khả năng chịu cắt cực đại của bêtông là $Q_{b \text{ max}} = 2.5 R_{bt} b h_o$ (công thức (4.42)) thì phải khống chế $c_i \geq \frac{\varphi_{b2}}{2.5} (1 + \varphi_f + \varphi_n) h_o$ (công thức (4.50b)).

4.6.5. Kiểm tra cường độ trên tiết diện nghiêng theo mômen


Việc kiểm tra cường độ trên tiết diện nghiêng theo mômen cần phải được thực hiện ở mép gối tựa tự do của dầm, ở đầu tự do của côngxon khi không có giải pháp neo cốt thép dọc, đồng thời phải thực hiện khi có uốn cốt dọc làm cốt xiên hoặc cắt bớt cốt dọc cho phù hợp với biểu đồ mômen.

Việc kiểm tra này cũng không thể thiếu khi có sự thay đổi đột ngột hình dang tiết diện ngang của cấu kiện.

Công thức chung để kiểm tra cường độ trên tiết diện nghiêng theo mômen là (4.51). Khai triển theo cốt dọc, cốt đại và cốt xiên thì (4.51) có dạng:

$$M \le R_s A_s z_s + \sum R_{sw} A_{sw} z_{sw} + \sum R_{sw} A_{s.inc} z_{s.inc}$$
 (4.85)

Hình 4.18 thể hiện các đại lượng trong (4.85).

Hình 4.18. Sơ đồ lực trên tiết diện nghiêng

Cần lưu ý rằng trong (4.85) M là mômen của ngoại lực nằm ở một phía của tiết diện nghiêng đối với trục thẳng góc với mặt phẳng uốn và đi qua điểm đặt của hợp lực N_b trong vùng nén.

Chiều cao vùng chịu nén x được xác định từ phương trình cân bằng hình chiếu của các lực lên trục của cấu kiện, cụ thể là:

$$R_b A_b + R_{sc} A'_s - R_s A_s - \sum_{sw} R_{sinc} \cos \theta = 0,$$
 (4.86)

trong đó: A_b – diện tích vùng nén (đối với cấu kiện có tiết diện chữ nhật $A_b = bx$).

Từ giá trị của x có thể xác định được z_s . Vì có điều kiện $x \le 2a'$ nên phải khống chế $z_s \le h_o - a'$.

Số hạng thứ hai của (4.85) được triển khai như sau:

$$\sum R_{sw} A_{sw} z_{sw} = 0.5 q_{sw} c^2 , \qquad (4.87)$$

trong đó: q_{sw} – nội lực trong cốt đai tính trên một đơn vị chiều dài trục dầm, tính theo (4.54);

c – chiều dài hình chiếu của tiết diện nghiêng. Phải kiểm tra cường độ với tiết diện nghiêng nguy hiểm nhất.

Cánh tay đòn của nội lực trong cốt xiên sẽ được tính như sau:

$$z_{s.inc} = z_s \cos\theta + (c - a_1) \sin\theta , \qquad (4.88)$$

trong đó: a_1 – khoảng cách từ điểm đầu của tiết diện nghiêng đến điểm xuất phát của cốt xiên trong vùng kéo (xem hình 4.18).

a. Kiểm tra cường độ trên tiết diện nghiêng theo mômen đối với gối tựa tự do của dầm

Trên phạm vi tiết diện nghiêng c, diện tích cốt thép dọc đã được xác định theo cường độ trên tiết diện thẳng góc. Mômen uốn trên tiết diện thẳng góc ở mép gối tựa khá nhỏ, do đó A_s ở mép gối tựa có thể nhỏ, nhưng mômen uốn trên tiết diện nghiêng c lại khá lớn và cần phải kiểm tra cường độ trên tiết diện nghiêng c. Ở gần gối tựa, khả năng chịu mômen do giảm bớt cốt dọc sẽ được bù bởi sự tham gia chịu mômen của cốt đại và cốt

xiên cắt qua tiết diện nghiêng c. Trong tính toán, ứng suất trong cốt dọc chỉ đạt đến R_s khi nó được neo chắc với chiều dài l_{an} tính từ mép gối tựa (điểm đầu của mặt cắt nghiêng).

$$l_{an} = \left(\omega_{an} \frac{R_s}{R_b} + \Delta \lambda_{an}\right) d , \qquad (4.89)$$

trong đó: $\omega_{an} = 0.5$; $\Delta \lambda_{an} = 8$ (neo trong vùng nén) đối với cốt có gờ; $\omega_{an} = 0.8$; $\Delta \lambda_{an} = 12$ đối với cốt tron.

Khi có cốt gián tiếp (lưới, lò xo) hoặc cốt đai bao quanh cốt dọc mà không hàn với nó, hệ số ω_{an} được giảm đi bằng cách chia cho đại lượng $1+12\mu_{\nu}$ còn hệ số $\Delta\lambda_{an}$ thì được giảm bớt một lượng bằng $0.5\sigma_b/R_b$. Ở đây μ_{ν} là hàm lượng thể tích của cốt thép gián tiếp:

- đối với cốt đại $\mu_v = \frac{A_{sw}}{as}$ (A_{sw} và s lần lượt là diện tích thanh cốt đại bao quanh cốt dọc và khoảng cách cốt đại);

– đối với lưới
$$\mu_v = \frac{n_x A_{sx} l_x + n_y A_{sy} l_y}{A_{ef} s}$$
, (4.90)

ở đây: n_x , A_{sx} , l_x – lần lượt là số thanh, diện tích tiết diện ngang và chiều dài của thanh lưới theo phương x;

 n_y , A_{sy} , l_y – như trên, theo phương y;

 A_{ef} – diện tích tiết diện bêtông nằm bên trong lưới;

s – khoảng cách giữa các lưới.

Trong mọi trường hợp, hệ số $\mu_{\rm v}$ không được vượt quá 0,06. Giá trị ứng suất nén của bêtông ở gối tựa σ_b được xác định bằng cách chia phản lực gối tựa cho diện tích tựa của cấu kiện và không được lấy lớn hơn $0.5R_b$.

Nếu chiều dài neo của cốt thép $l_x < l_{an}$ thì ứng suất trong cốt thép được đưa vào trong tính toán không phải là R_s mà phải giảm đi bằng cách nhân với hệ số γ_{s5} bằng:

$$\gamma_{s5} = \frac{l_x}{l_{an}} \tag{4.91}$$

Khi cốt dọc trong phạm vi neo được hàn với cốt ngang hoặc cốt phân bố, thì giá trị R_sA_s trong cốt dọc được tăng lên một lượng là:

$$N_w = 0.7 n_w \varphi_w d_w^2 R_{bt} \le 0.8 R_s d_w^2 n_w, \qquad (4.92)$$

trong đó: n_w - số thanh ngang được hàn trên chiều dài l_x ;

 d_w - đường kính thanh được hàn;

 φ_w - hệ số lấy theo bảng 4.1.

Bảng 4.1. Giá trị của hệ số φω

d _w (mm)	6	8	10	12	14
Φ _w	200	150	120	100	80

Trong mọi trường hợp, giá trị A_sR_s tính được không được vượt quá giá trị R_sA_s khi không kể đến hệ số γ_{s5} và N_w .

Trong trường hợp dầm có cả cốt xiên và lực tập trung trong phạm vi gần gối tựa (trong mặt cắt c), biểu thức (4.85) cần phải được kiểm tra trên tiết diện nghiêng nguy hiểm nhất có giá trị

$$c = \frac{Q - F_i - R_{sw} A_{s.inc} \sin \theta}{q_{sw} + q} , \qquad (4.93)$$

trong đó: Q – lực cắt ở tiết diện gối tựa;

 F_{ij} q – tải trọng tập trung và tải trọng phân bố trong phạm vi tiết diện nghiêng;

A_{s.inc} - diện tích cốt xiên cắt qua tiết diện nghiêng;

 q_{sw} – được tính theo (4.54).

Giá trị c tính được theo (4.93) không được lớn hơn chiều dài phần kề gối tựa mà ở phía ngoài đoạn đó thỏa mãn điều kiện:

$$Q \le \frac{0.8\phi_{b4}R_{bt}bh_o^2}{c} \tag{4.94}$$

ứng với giá trị $c \le 0.8 c_{\text{max}} (c_{\text{max}} = 2.5 h_o)$.

Nếu giá trị được xác định có xét đến lực tập trung F_i nhỏ hơn khoảng cách từ mép gối tựa đến lực F_i nhưng lại lớn hơn khoảng cách đó khi không xét đến lực F_i thì giá trị c trong (4.93) sẽ được lấy bằng khoảng cách từ mép gối tựa đến lực F_i .

Đối với dầm chỉ chịu tải trọng phân bố đều, không có cốt xiên và cốt đại có mật độ không đổi, điều kiện (4.85) được thay bằng (4.95):

$$Q \le \sqrt{2(R_s A_s z_s - M_g)(q_{sw} + q)} \tag{4.95}$$

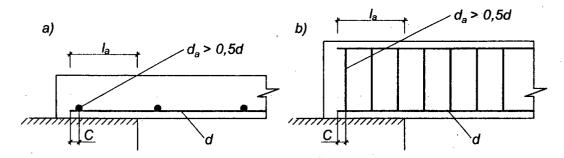
trong đó Q_{\max} – lực cắt lớn nhất ở mép gối tựa:

Q - lực cắt ở tiết diện gối tựa;

 M_o – mômen ở tiết diện mép gối tựa.

Cho phép không phải kiểm tra cường độ trên tiết diện nghiêng theo mômen khi thỏa mãn các điều kiện sau:

$$Q_{\text{max}} \le 2R_{bt}bh_o \; ; \; Q \le \frac{0.8\varphi_{b4}bh_o^2}{c} \; ;$$
 (4.96)

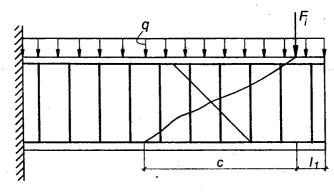

trong đó: Q - lực cắt ở cuối tiết diện nghiêng;

c – chiều dài hình chiếu tiết diện nghiêng xuất phát từ mép gối tựa với $c \leq 2h_o.$

Ngoài việc tính toán như trên, nếu cốt thép dọc ở gối tựa tự do của cấu kiện chịu uốn không được neo đặc biệt hoặc không được hàn vào tấm đệm ở gối tựa thì cần phải thỏa mãn những yêu cầu về neo sau đây.

- Nếu tiết diện thỏa mãn điều kiện (4.42a) và (4.43) thì đoạn kéo dài la của thanh thép dọc vào sâu phía trong mép gối tựa tự do không được nhỏ hơn 5d (d đường kính cốt thép dọc). Nếu dùng khung và lưới hàn mà cốt dọc là cốt tron thì trong phạm vi đoạn kéo dài la phải có một cốt ngang với da ≥ 0,5d được hàn với cốt dọc, cách mút cốt dọc một đoạn C ≤ 15 mm khi d ≤ 10 mm và C ≤ 1,5d khi d > 10 mm (h.4.19a).
- Nếu các điều kiện (4.42a) và (4.43) không được thỏa mãn thì đoạn kéo dài cốt dọc qua mép gối tựa tự do l_a không được nhỏ hơn 10d.

Nếu cốt dọc là cốt trơn thì trong phạm vi đoạn l_a phải hàn hai thanh cốt ngang có đường kính $d_a \ge 0.5d$ và cốt ngang cuối cùng phải cách mút cốt dọc một đoạn C như đã trình bày ở trên (h.4.19b).


Hinh 4.19. Neo cốt thép hàn ở gối tựa tự do a) Trong bản; b) Trong dầm

b. Kiểm tra cường độ trên tiết diện nghiêng theo mômen đối với côngxon

• Đối với côngxon chịu tải trọng tập trung (h.4.20), khe nứt nghiêng sẽ xuất phát từ điểm đặt của lực tập trung đặt gần đầu mút côngxon. Chiều dài hình chiếu của tiết diện nghiêng nguy hiểm nhất có giá trị như sau:

$$c = \frac{Q_1 - R_{sw} A_{s.inc} \sin \theta}{q_{sw}}, \tag{4.97}$$

trong đó: Q_1 – lực cắt ở đầu tiết diện nghiêng.

Hình 4.20. Côngxon có tiết diện không đổi chịu tải trọng tập trung

Giá trị c tính được theo (4.97) không được lớn hơn khoảng cách từ khởi điểm của tiết diện nghiêng đến mép gối tựa.

Kiểm tra cường độ trên tiết diện nghiêng theo (4.85) với giá trị mômen như sau:

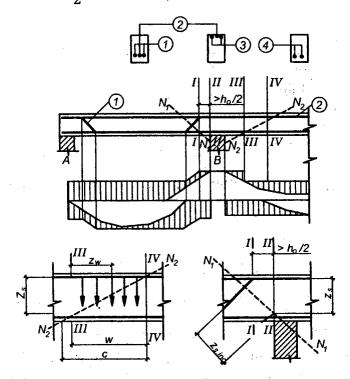
$$\boldsymbol{M} = q l_1 \left(c + \frac{l_1}{2} \right) = \boldsymbol{F}_i c \tag{4.98}$$

• Đối với côngxon chỉ chịu tải trọng phân bố q, tiết diện nghiêng nguy hiểm nhất sẽ kết thúc ở gối tựa và có chiều dài hình chiếu là:

$$c = \frac{A_s R_s z_s}{l_{an}(q_{sw} + q)},$$
 (4.99)

trong đó: A_s – diện tích cốt dọc được kéo đến đầu mút của côngxon; z_s – được xác định đối với tiết diện gối tựa.

Nếu $c < l - l_{an}$, việc kiểm tra cường độ trên tiết diện nghiêng có thể được bỏ qua.


• Đối với côngxon có chiều cao tiết diện tăng dần theo luật bậc nhất về phía gối tựa, khi xác định chiều dài hình chiếu của tiết diện nghiêng nguy hiểm nhất theo (4.97), giá trị của tử số phải được giảm đi một đại lượng bằng R_sA_stgβ khi mép chịu nén nghiêng một góc β với phương ngang và bằng R_sA_ssinβ khi mép chịu kéo nghiêng một góc β.

c. Uốn cốt dọc chiu kéo

Hình 4.21 thể hiện sơ đồ bố trí cốt thép dọc và cốt thép xiên trong một dầm liên tục ba nhịp (chỉ vẽ một nửa), biểu đồ bao mômen và biểu đồ vật liệu (tức là biểu đồ thể hiện cường độ trên tiết diện thẳng góc của từng tiết diện khi chịu mômen âm và dương).

Cốt thép số $\mathbb Q$ được uốn từ nhịp I lên gối tựa B để chịu mômen âm. Ở tiết diện II – II khả năng chịu lực của cốt số $\mathbb Q$ được tận dụng hết. Để bảo đảm cường độ trên tiết diện nghiêng N_1-N_1 thì cánh tay đòn z phải lớn hơn hoặc bằng cánh tay đòn z_s . Điều đó sẽ xảy ra khi khoảng cách từ tiết diện thẳng góc II – II đến tiết diện I – I (trùng với điểm uốn của cốt xiên)

lớn hơn hoặc bằng $\frac{h_o}{2}$ (h.4.21c). Có thể phát biểu như sau: khoảng cách từ khởi điểm của cốt xiên trong vùng kéo (tiết diện I – I) đến tiết diện mà tại đó cốt thép được sử dụng hết khả năng chịu lực (tiết diện II – II) phải lớn hơn hoặc bằng $\frac{h_o}{2}$.

Hình 4.21. Sơ đổ bố trí cốt thép và biểu đổ vật liệu của dầm liên tục ba nhịp

d. Cắt bớt cốt dọc chịu kéo

 \mathring{O} xa gối tựa của dầm liên tục, mômen âm giảm, ta có thể cắt bớt cốt thép dọc chịu kéo. Ví dụ từ tiết diện III – III trên hình 4.21, theo cường độ trên tiết diện thẳng góc thì cốt thép số 2 có thể cắt bớt. Tiết diện III – III được gọi là tiết diện cắt lý thuyết. Tuy vậy để bảo đảm cường độ trên các tiết diện nghiêng bất kỳ N_2-N_2 thì cốt số 2 phải được kéo dài thêm một đoạn W đến tiết diện IV – IV (h.4.21b) để cho

$$\sum R_{sw} A_{sw} z_{sw} \ge R_s A_{s2} z_s$$

tức là khả năng chịu mômen trên tiết diện nghiêng N_2-N_2 bị giảm đi do cốt dọc số $\mathbb O$ bị cắt bớt phải được bù lại bằng khả năng chịu mômen của các cốt đai nằm trong phạm vi tiết diện nghiêng đó. Bỏ qua các phép chứng minh tính toán, đối với dầm tiết diện không đổi ta có;

$$W = \frac{Q}{2q_{sw}} + 5d \ge 20d, \qquad (4.100)$$

trong đó: Q – giá trị lực cắt (độ dốc của biểu đồ mômen) tại tiết diện cắt lý thuyết;

d – đường kính cốt dọc bị cắt bớt;

 q_{sw} - được tính theo (4.54).

Giá tri 5d trong (4.100) là để bảo đảm neo chắc cốt thép.

Khi trong vùng cắt bớt cốt dọc có cốt xiên thì W được tính theo công thức:

$$W = \frac{Q - Q_{s.inc}}{2q_d} + 5d \ge 20d , \qquad (4.101)$$

trong đó: $Q_{s.inc} = R_s A_{sw} \sin \alpha$;

 A_{sw} – diện tích của lớp cốt xiên nằm trong vùng cắt bớt cốt thép.

Để đơn giản và thiên về an toàn có thể lấy như sau: A_{sw} là diện tích lớp cốt xiên cắt qua tiết diện cắt lý thuyết, là diện tích lớp cốt xiên nằm ngay phía trước tiết diện cắt lý thuyết (kể từ gối tựa trở ra), mà khoảng cách từ điểm đầu của lớp cốt xiên đó đến tiết diện cắt lý thuyết không lớn hơn $Q-Q_{s.inc}$

Ví dụ 4.6. Thiết kế cốt đại khi không dùng cốt xiên cho dầm đơn giản có nhịp

4,8 m; kích thước tiết diện ngang: b=20 cm, h=45 cm ($h_o=43$ cm); Bêtông có cấp độ bền B15; Cốt đại thuộc nhóm A-I; Tổng tải trọng tác dụng phân bố đều q=40 kN/m, trong đó phần tải trọng tạm thời phân bố đều liên tục $\nu=20$ kN/m.

Các số liệu lấy từ phụ lục:

$$R_b = 8.5 \text{ MPa}; R_{bt} = 0.75 \text{ MPa}, \text{ láy } \gamma_{b2} = 1.00;$$

$$E_b = 23 \times 10^3 \text{ MPa}; R_{sw} = 175 \text{ MPa}; E_s = 21 \times 10^4 \text{ MPa}$$

Tính lực cắt lớn nhất ở gối tựa:

$$Q_{\text{max}} = \frac{40 \times 4.8}{2} = 96 \text{ kN}.$$

Kiểm tra khả năng chịu ứng suất nén chính theo (4.39)

$$Q_{\max} \le 0.3 \; \varphi_{w1} \varphi_{b1} \; R_b \; bh_o.$$

giả thiết hàm lượng cốt đai tối thiểu: $\phi 6$, S=150 mm

 $= 213044 \text{ N} = 213 \text{ kN} > Q_{\text{max}} = 96 \text{ kN}$

Điều kiện (4.39) được thỏa mãn

Tính M_b theo (4.57)

$$M_b = \varphi_{b2} (1 + \varphi_f + \varphi_n) R_{bt} b h_o^2;$$

 $\varphi_f = 0$ vì tiết diện là chữ nhật;

 $\varphi_n = 0$ vì không có lực nén hoặc kéo;

 ϕ_{b2} = 2,0 đối với bêtông nặng.

$$M_b = 2 \times 1 \times 0.75 \times 200 \times 420^2 = 52.92 \cdot 10^6 \text{ Nmm}$$

= 52.92 kNm

Tính
$$q_1 = g + \frac{v}{2} = 20 + \frac{20}{2} = 30 \text{ kN/m}$$

Tính Q_{b1} theo (4.67)

$$\begin{aligned} &Q_{b1} = 2\sqrt{M_b q_1} = 2\sqrt{52,92\times30} = 79,69 \text{ kN;} \\ &\frac{Q_{b1}}{0.6} = \frac{79,69}{0.6} = 132,82 \text{ kN} > Q_{\text{max}} = 96 \text{ kN, thỏa mãn điều kiện (4.66).} \end{aligned}$$

Tính q_{sw} theo (4.68)

$$q_{nw} = \frac{Q_{max}^2 - Q_{b1}^2}{4 M_{c}} = \frac{(96^2 - 79,69^2)}{4 \times 52,92} = 13,54 \text{ kN/m} = 13,54 \text{ N/mm}.$$

Kiểm tra điều kiện $q_{sw} \geq \frac{Q_{\max} - Q_{b1}}{2h_o} = q_o$

$$q_u = \left(\frac{96 - 79,69}{2.420}\right) \times 10^3 = 19,42 \text{ N/mm} > 13,54 \text{ N/mm},$$

như vậy phải lấy $q_{sw} = 19,42 \text{ N/mm}$ để tính tiếp.

Chọn đai φ6, hai nhánh, tính khoảng cách đai ở khu vực gần gối tựa.

$$s = \frac{R_{sw} A_{sw}}{q_{sw}} = \frac{175 \times 2 \times 28,3}{19,42} = 510 \text{ mm}$$

do đó phải chọn cốt đai theo cấu tạo tối thiểu:

- + ở khu vực gần gối tựa: ϕ 6, hai nhánh, s = 150 mm.
- + ở khu vực giữa dầm: φ6, hai nhánh, s = 250 mm.

Tính chiều dài khu vực gần gối tựa

$$q_{sw1} = \frac{175 \times 28, 3 \times 2}{150} = 66,03 \text{ N/mm};$$

$$175 \times 28.3 \times 2$$

$$q_{sw2} = \frac{175 \times 28,3 \times 2}{250} = 39,62 \text{ N/mm};$$

 $q_{sw1} - q_{sw2} = 66,03 - 39,62 = 26,41 \text{ N/mm} < q_1 = 30 \text{ N/mm}.$

Tính l_1 theo (4.74).

$$l_{1} = c - \frac{\frac{M_{b}}{c} + q_{sw1}c_{o1} - Q_{max} + q_{1}c}{q_{sw1} - q_{sw2}};$$

$$c = \sqrt{\frac{M_{b}}{q_{1} - (q_{sw1} - q_{sw2})}} \le \frac{\varphi_{b2}}{\varphi_{b3}}h_{o};$$

$$c_{o1} = \sqrt{\frac{M_b}{q_{sic1}}};$$

$$c_{o1} = \sqrt{\frac{52,92 \times 10^6}{66,03}} = 895,2 \text{ mm};$$

$$c = \sqrt{\frac{52,92 \times 10^6}{26,41}} = 1415,6 \text{ mm}.$$

 $\frac{\phi_{b2}}{\phi_{b3}} \; h_{_0} = \frac{2.0}{0.6} 420 \; = 1400 \; \text{mm} < c = 1415,6 \; \text{mm}, \; \text{do dó phải lấy} \; c = 1400 \; \text{mm} \; \text{để}$ tính l_1

$$l_1 = 1400 - \frac{52,92 \cdot \frac{10^6}{1400} + 66,03 \times 895,2 - 96.10^3 + 30 \times 1400}{26,41} = 1398 \text{ mm} = 1,4 \text{ m} > \frac{l}{4} = \frac{4,8}{4} = 1,2 \text{ m}.$$

Tính s_{max} theo (4.83).

$$s_{\max} = \frac{\left[\phi_{b\phi} (1 + \phi_n) R_{bl} b h_a^2\right]}{Q};$$

 $\varphi_{b4} = 1.5$ đối với bêtông nặng; $\varphi_n = 0$

$$s_{\text{max}} = \frac{1.5 \times 0.75 \times 200 \times 420^2}{96 \times 10^3} = 413.4 \text{ mm} > 150 \text{ mm}.$$

Kết luận:

Chọn đai $\phi 6$ hai nhánh với khoảng cách s=150 mm trên đoạn 1400 mm ở gần gối tựa. Phần còn lại ở giữa dầm dùng đai $\phi 6$ hai nhánh với s=250 mm.

Ví dụ 4.7. Thiết kế cốt đai và cốt xiên cho dầm đơn giản như trên hình 4.22 với các số liệu sau: tiết diện chữ nhật $b \times h = 30$ cm \times 60 cm, $h_o = 56$ cm; lực tập trung P = 255 kN; bêtông có cấp độ bền B200; cốt thép đai nhóm A-I; cốt xiên nhóm A-II.

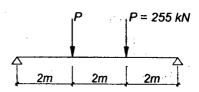
Từ phụ lục, lấy ra các số liệu

$$R_b = 11.5 \text{ MPa}; R_{bt} = 0.90 \text{ MPa}; E_b = 27 \times 10^3 \text{ MPa}.$$

Cốt A–I có $R_{sw}=175~\mathrm{MPa}$; cốt A–II có $R_{sw}=225~\mathrm{MPa}$. $E_s=21$. $10^4~\mathrm{MPa}$.

Kiểm tra khả năng chịu ứng suất nén chính theo (4.39). Giả thiết trước cốt đai $\phi 6$, hai nhánh với khoảng cách $s = \frac{h}{3} = 20$ cm.

$$\mu_{sw} = \frac{A_{sw}}{bs} = \frac{28,3 \times 2}{300 \times 200} = 0,00094$$


$$\alpha = \frac{E_s}{E_L} = \frac{21.10^4}{27.10^3} = 7.8$$

$$\varphi_{w1} = 1 + 5\alpha\mu_{sw} = 1 + 5 \times 7.8 \times 0.00094 = 1.004 < 1.3$$

$$\varphi_{b1} = 1 - \beta R_b = 1 - 0.01 \times 11.5 = 0.885$$

 $(\beta = 0.01 \text{ dối với bêtông nặng})$

$$0.3\varphi_{w1} \varphi_{b1} R_b b h_o = 0.3 \times 1.004 \times 0.885 \times 11.5 \times 300 \times 560 =$$

= 515 \cdot 10^3 N = 515 \km N > Q_{max} = 255 \km N.

Hình 4.22. Sơ đổ dẫm chơ ví du 4.7

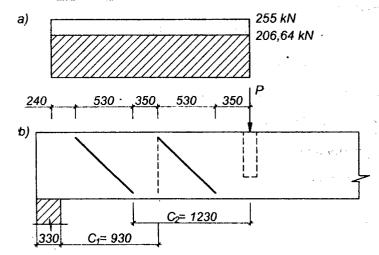
Điều kiện (4.39) được thỏa mãn

$$\widetilde{Tinh} \ s_{max} = \frac{\left[\phi_{b4} (1 + \phi_n) \ R_{bt} b h_o^2\right]}{Q} = \frac{(1.5 \times 0.90 \times 300 \times 560^2)}{255.10^3} = 498 \text{mm}.$$

Tính
$$q_{sw} = \frac{A_{sw} R_{sw}}{s} = \frac{28.3 \times 2 \times 175}{200} = 49.5 \text{ N/mm}.$$

Tính
$$M_b = \varphi_{b2} \, R_{bt} b h_o^2 = 2.0 \times 0.90 \times 300 \times 560^2 = 169.34 \cdot 10^6 \, \mathrm{Nmm}$$

Tính c_o theo (4.58)


$$c_o = \sqrt{\frac{M_b}{q_{sw}}} = \sqrt{\frac{169,34 \times 10^6}{49,5}} = 1850 \text{ mm} > 2h_o = 1120 \text{ mm}$$

do đó phải lấy c_o = 1120 mm để tính Q_u

$$Q_{u} = \frac{\varphi_{b2}(1 + \varphi_{f} + \varphi_{n})R_{bt}bh_{o}^{2}}{c_{o}} + q_{sw}c_{o}$$

$$= \frac{2 \times 0,90 \times 300 \times 560^{2}}{1120} + 49,5 \times 1120 = 206640 \text{ N} < Q = 255 \times 10^{3} \text{ N}.$$

Trên cơ sở $s_{\rm max}$ và Q_u , bố trí các lớp cốt xiên như trên hình 4.23.

Hình 4.23. Bố trí các lớp cốt xiên cho ví dụ 4.7 a) Biểu đồ lực cắt; b) Sơ đồ bố trí cắt xiên

Tính
$$\frac{\phi_{b2}}{\phi_{b3}}h_{o} = \frac{2.0}{0.6}560 = 1866$$
 mm;

Tất cả các c_i trên hình 4.23 đều nhỏ hơn $\frac{\phi_{b2}}{\phi_{b3}}\,h_a$, do vậy không xảy ra trường hợp

$$Q_b < Q_{b\min}$$
.

Tính
$$\frac{\varphi_{b2}}{2.5} (1 + \varphi_f + \varphi_n) h_o = \frac{2}{2.5} \times 1 \times 560 = 448 \text{ mm}.$$

Tất cả các c_i trên hình (4.23) đều lớn hơn 448 mm, do vậy đảm bảo điều kiện $Q_b < Q_{b{
m max}}$.

Tính cường độ trên mặt cắt c_1

$$Q_1 \leq q_{sw}c_1 + R_{sw}A_{s,inc1}\sin\theta + \frac{M_b}{c_1};$$

$$255 \times 10^{3} \le 49,5 \times 930 + A_{s.inc1} \times 225 \times 0,707 + \frac{169,34 \times 10^{6}}{930}$$

$$A_{s.inc1} \ge 169 \text{ mm}^2$$

Tính cho mặt cắt c_o xuất phát từ lực tập trung

$$255 \times 10^3 \leq 49.5 \times 1120 + A_{s.inc2} \times 225 \times 0,707 + \frac{169.34 \times 10^6}{1120};$$

$$A_{s,inc2} \ge 310 \text{ mm}^2$$
.

Tính cho mặt cắt c_o xuất phát từ mép gối tựa, được:

$$A_{s.inc1} + A_{s.inc2} \ge 310 \text{ mm}^2$$

Không cần tính cho mặt cắt nghiêng c_2 vì $c_2 = 1230 > c_o$.

Kết luận: diện tính cốt xiên yêu cầu là:

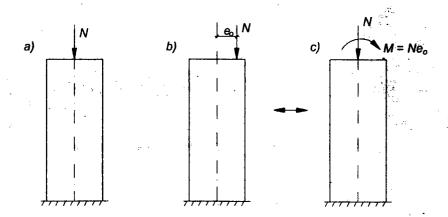
$$A_{s.inc1} = 169 \text{ mm}^2;$$

$$A_{s.inc2} = 310 \text{ mm}^2.$$

CẤU KIỆN CHỊU NÉN

5.1. ĐẠI CƯƠNG VỀ CẤU KIỆN CHỊU NÉN

5.1.1. Khái niệm


Cấu kiện chịu nén là cấu kiện chịu tác dụng của lực nén N dọc theo trục của nó. Cấu kiện chịu nén thường gặp là các cột của khung, các tấm tường, thân vòm hoặc các thanh chịu nén trong dàn.

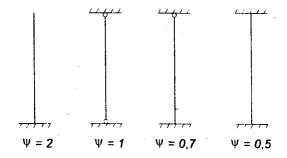
Tùy theo vị trí của N mà phân biệt thành trường hợp nén đúng tâm và nén lệch tâm.

Nén đúng tâm khi lực nén N tác dụng đúng theo trục cấu kiện và không có mômen uốn (h.5.1a). Xét trên mỗi mặt cắt thì lực nén tác dụng vào đúng trọng tâm của nó. Nén đúng tâm thường chỉ là trường hợp lý tưởng, ít gặp trong thực tế.

Nén lệch tâm khi lực N đặt lệch so với trục cấu kiện (h.5.1b). Lúc này ngoài tác dụng nén, lực N còn gây ra uốn, nó tương đương với lực N đặt đúng tâm và một mômen uốn $M=Ne_o$ (h.5.1c).

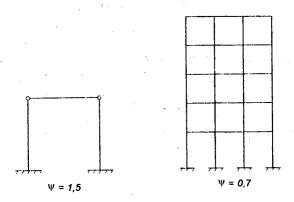
Nội lực trong cấu kiện chịu nén được xác định từ việc tính toán kết cấu khung, tường, vòm ... Với kết cấu khung của nhà thì lực nén N trong cột là do tải trọng trên sàn, mái tác dụng lên bản, truyền vào dầm và truyền vào cột, mômen uốn trong cột một phần do tải trọng gió gây ra, một phần khác do tải trọng tác dụng trên dầm. Tải trọng gió cũng gây ra lực dọc trong cột, nhất là đối với các cột biên của khung.

Hình 5.1. Các trường hợp của cấu kiện chịu nén a) Nén đúng tâm; b, c) Nén lệch tâm.


5.1.2. Chiều dài tính toán

Gọi l chiều dài thật của cấu kiện, bằng khoảng cách giữa hai liên kết. Chiều dài tính toán $l_{\rm o}$ được xác định theo công thức:

$$l_o = \psi l$$
,


trong đó: ψ – hệ số phụ thuộc vào sơ đồ biến dạng của cấu kiện khi bị mất ổn định, tức phụ thuộc vào liên kết của cấu kiện.

Với các liên kết lí tưởng như trên hình 5.2 hệ số ψ cho ở hình vẽ.

Hình 5.2. Hệ số ψ ứng với các liên kết lí tưởng

Với các liên kết thực tế cần phân tích sơ đồ biến dạng để xác định ψ . Hình 5.3 đưa ra một vài sơ đồ hay gặp.

Hình 5.3. Hệ số ψ ứng với một số kết cấu

Với khung nhiều tầng có liên kết cứng giữa dầm và cột, kết cấu sàn đổ toàn khối:

Khung có từ ba nhịp trở lên $\psi = 0.7$.

Với khung như trên, kết cấu sàn lắp ghép:

- Khung một nhịp $\psi = 1,2$ với tầng một; $\psi = 1,5$ ở các tầng trên;
- Khung có từ ba nhịp trở lên $\psi = 1$.

5.1.3. Tiết diện

Tiết diện ngang của cấu kiện chịu nén thường có dạng hình vuộng, chữ nhật, tròn, đa giác đều hoặc chữ I, chữ T. Diện tích tiết diện là A có thể xác định sơ bộ theo công thức sau:

$$A=\frac{kN}{R_b},$$

trong đó: N – lực nén trong cấu kiện. Trong trường hợp chưa có số liệu một cách chính xác, có thể dùng cách tính gần đúng để xác định N;

 R_b – cường độ tính toán về nén của bêtông;

k – hệ số,

 $k = 0.9 \div 1.5$ phụ thuộc vào các nhiệm vụ thiết kế cụ thể.

Khi chọn kích thước tiết diện, cần thỏa mãn các điều kiện về thi công, về han chế đô mảnh và bảo đảm khả năng chịu lực.

Về thi công, cần chọn kích thước sao cho có được sự thuận lợi về việc làm ván khuôn, đặt cốt thép, đổ bêtông. Thông thường cạnh tiết diện được chọn theo bội số của 2 hoặc 5 cm, với cạnh khá lớn nên là bội số của 10 cm.

Hạn chế độ mảnh nhằm bảo đảm sự ổn định của cấu kiện. Cần hạn chế độ mảnh λ theo điều kiện sau:

$$\lambda = \frac{l_o}{r} \leq \lambda_{gh} ,$$

trong đó: r – bán kính quán tính của tiết diện,

với tiết diện chữ nhật mà b là cạnh nhỏ $\lambda_b = \frac{l_o}{b} \le \lambda_{ob}$

$$(r=0,288b)$$
 λ_{gh} – độ mảnh giới hạn, với cột nhà λ_{gh} = 120, λ_{ob} = 31; với cấu kiện khác λ_{gh} = 200, λ_{ob} = 52.

Về đảm bảo khả năng chịu lực cần tiến hành tính toán hoặc kiểm tra theo trạng thái giới hạn thứ nhất, đó là nội dung cơ bản của chương này.

Tiết diện của cấu kiện chịu nén lệch tâm phần lớn có dạng chữ nhật cạnh $b \times h$, trong đó h – chiều cao tiết diện, là cạnh nằm trong phương mặt phẳng của mômen uốn; b – bề rộng, là cạnh vuông góc với mặt phẳng nói trên.

5.2. CẤU TAO CỐT THÉP

Trong cấu kiện chịu nén cần đặt khung cốt thép gồm các cốt thép dọc và cốt thép ngang (h.5.4a).

5.2.1. Cốt thép dọc chịu lực

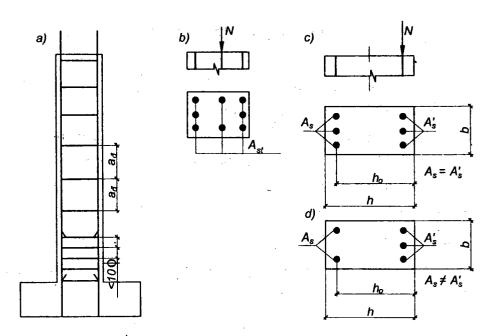
Đó là các cốt thép được kể đến khi xác định khả năng chịu lực của cấu kiện. Cốt thép dọc chịu lực thường dùng các thanh đường kính $\phi = 12 \div 40$. Khi cạnh tiết diện lớn hơn 200 mm nên chọn $\phi \ge 16$.

Trong cấu kiện nén đứng tâm cốt thép dọc được đặt đều theo chu vi (h.5.4b).

Trong cấu kiện nén lệch tâm tiết diện chữ nhật nên đặt cốt thép dọc chịu lực tập trung theo cạnh b và chia ra hai phía: A_s và A'_s . Cốt thép A'_s ở về phía chịu nén nhiều hơn (gần hơn với điểm đặt lực N). Cốt thép A_s ở phía đối diện với A'_s , chịu kéo hoặc nén ít hơn (xa điểm đặt N hơn). Khi $A_s = A'_s$ ta có trường hợp cốt thép đối xứng; khi $A_s \neq A'_s$ – có cốt thép không đối xứng (h.5.4c,d).

Đặt cốt thép đối xứng làm cho thi công được đơn giản. Khi cấu kiện chịu mômen đổi dấu có giá trị gần bằng nhau thì việc đặt cốt thép đối xứng là hợp lý về phương diện chịu lực.

Với một cặp nội lực gồm M và N đã biết thì tính toán cốt thép không đối xứng thường cho kết quả tổng lượng cốt thép ít hơn so với tính toán cốt thép đối xứng. Tuy vậy trong nhiều trường hợp sự chênh lệch là không lớn.


Chỉ nên tính toán và đặt cốt thép không đối xứng trong một số trường hợp đặc biệt khi mà cấu kiện chịu mômen không đổi dấu (hoặc M theo chiều này khá lớn hơn M theo chiều kia) và việc tính toán chứng tỏ rằng nếu đặt cốt thép không đối xứng sẽ có hiệu quả tiết kiệm đáng kể.

Đặt
$$\mu\% = \frac{100 A_s}{bh_o}$$
 và $\mu'\% = \frac{100 A'_s}{bh_o}$

là tỉ số phần trăm cốt thép. Giá trị μ và μ ' không bé hơn μ_{\min} . Theo TCXDVN 356 – 2005 giá trị μ_{\min} lấy theo độ mảnh $\lambda = \frac{l_o}{r}$ theo bảng 5.1.

Bảng 5.1. Giá trị tỉ số cốt thép tối thiểu

$\lambda = I_O I_T$	< 17	17 ÷ 35	35 ÷ 83	> 83
μ _{min} (%)	0,05	0,1	0,2	0,25

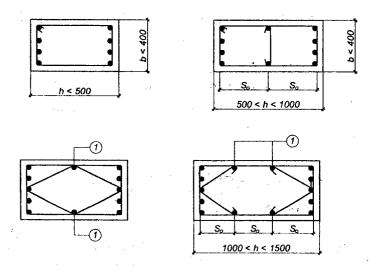
Hình 5.4. Cốt thép dọc chịu lực trong cấu kiện

Khi chưa sử dụng quá 50% khả năng chịu lực của cấu kiện thì $\mu_{min}=0.05\%$ không phụ thuộc độ mảnh.

Trong một số trường hợp đặc biệt, với tiết diện chữ nhật chịu nén lệch tâm cũng có thể đặt cốt thép dọc chịu lực đều theo chu vi. Làm như vậy nhằm tạo cho cấu kiện có khả năng chịu uốn cao theo cả hai phương hoặc để tránh việc đặt quá nhiều thép theo một cạnh, gây khó khăn cho thi công.

Gọi A_{st} là diện tích tiết diện toàn bộ cốt thép dọc chịu lực. Đặt $\mu_t = \frac{A_{st}}{A_b}$ hoặc $\mu_t\% = \frac{100A_{st}}{A_b}$ với A_b là diện tích tính toán của tiết diện bêtông.

Trong cấu kiện nén lệch tâm đặt cốt thép theo cạnh b thì $A_{st} = A_s + A_s'$ và $A_b = bh_o$. Trong cấu kiện chịu nén lệch tâm có cốt thép đặt theo chu vi và cấu kiện nén trung tâm thì A_b bằng diện tích tiết diện.


Nên hạn chế tỉ số cốt thép µt

$$\mu_{o} \le \mu_{t} \le \mu_{\text{max}}.\tag{5.1}$$

Lấy $\mu_0 = 2\mu_{min}$. Giá trị μ_{max} được quy định tùy thuộc quan điểm sử dụng vật liệu. Khi cần hạn chế việc sử dụng quá nhiều thép người ta lấy $\mu_{max} = 3\%$. Để bảo đảm sự làm việc chung giữa thép và bêtông thường lấy $\mu_{max} = 6\%$.

5.2.2. Cốt thép dọc cấu tạo

Với cấu kiện nén lệch tâm, khi $h>500~{\rm mm}$ mà cốt thép A_s , A'_s được đặt tập trung theo cạnh b thì còn cần đặt cốt thép dọc cấu tạo vào khoảng giữa cạnh h, dùng để chịu những ứng suất sinh ra do bêtông co ngót, do nhiệt độ thay đổi và cũng để giữ ổn định cho những nhánh cốt thép đai quá dài. Cốt thép cấu tạo không tham gia vào tính toán khả năng chịu lực, có đường kính $\phi \geq 12$, có khoảng cách theo phương cạnh h là $S_o \leq 500~{\rm mm}$ (h.5.5). Trên hình 5.5 các thanh số \bigcirc là cốt thép cấu tạo. Khi đã đặt cốt thép dọc chịu lực theo chu vi thì không cần đặt cốt thép dọc cấu tạo nữa.

Hình 5.5. Cốt dọc cấu tạo và cốt thép đai

5.2.3. Cốt thép ngang

Trong khung buộc, cốt thép ngang là những cốt đai. Chúng có tác dụng giữ vị trí của cốt thép dọc khi thi công, giữ ổn định của cốt thép dọc chịu nén. Trong trường hợp đặc biệt khi cấu kiện chịu lực cắt khá lớn thì cốt đai tham gia chịu lực cắt.

Đường kính cốt đai $\phi_{\vec{a}} \ge \frac{1}{4} \phi_{\text{max}}$ và 5 mm.

Khoảng cách cốt đai $a_d \le k \phi_{\min}$ và a_o .

 ϕ_{max} , ϕ_{min} - đường kính cốt thép dọc chịu lực lớn nhất, bé nhất.

Khi $R_{sc} \le 400 \text{ MPa lấy } k = 15 \text{ và } a_o = 500 \text{ mm};$

 $R_{sc} > 400 \text{ MPa lấy } k = 12 - a_o = 400.$

Nếu tỉ lệ cốt thép dọc μ ' > 1,5% cũng như khi toàn bộ tiết diện chịu nén mà μ_t > 3% thì k = 10 và a_o = 300 mm.

Trong đoạn nối chồng thép dọc, khoảng cách $a_d \le 10\phi$.

Về hình thức, cốt thép đai cần bao quanh toàn bộ cốt thép dọc và giữ cho cốt thép dọc chịu nén không bị phình ra theo bất kì hướng nào. Muốn vậy các cốt thép dọc (tối thiểu là cách một thanh) cần được đặt vào chỗ uốn của cốt thép đai và các chỗ uốn này cách nhau không quá 400 mm theo cạnh tiết diện. Khi chiều rộng tiết diện không lớn hơn 400 mm và trên mỗi cạnh có không quá 4 thanh cốt thép dọc, được phép dùng một cốt thép đai bao quanh toàn bộ cốt thép dọc (h.5.5).

5.3. TÍNH TOÁN CẦU KIỆN CHỊU NÉN ĐÚNG TÂM

5.3.1. Sự làm việc của cấu kiện

Khi chịu nén đúng tâm bêtông và cốt thép dọc cùng chịu lực cho đến khi bêtông bắt đầu bị phá hoại. Lúc này biến dạng của bêtông đạt giá tri $\epsilon_{bc} = 0,002$ và biến dạng của cốt thép ϵ_s cũng bằng chừng ấy. Nếu cốt thép còn làm việc trong giai đoạn đàn hồi thì ứng suất sẽ là:

$$\sigma_s = \varepsilon_s E_s$$

với $E_s = 200000$ MPa thì $\sigma_s = 400$ MPa. Như vậy nếu cốt thép có cường độ (giới hạn chảy) dưới 400 MPa thì khi bêtông bị phá hoại cốt thép đã làm việc ở vùng có biến dạng dẻo, ứng suất đạt cường độ của thép. Nếu cốt thép có giới hạn chảy trên 400 MPa thì khi bêtông bắt đầu phá hoại ứng suất trong cốt thép cũng chỉ mới đạt 400.

Cấu kiện chịu nén đúng tâm có độ mảnh λ lớn có thể bị uốn dọc. Ảnh hưởng của uốn dọc làm giảm khả năng chịu lực của cấu kiện.

5.3.2. Điều kiện và công thức

Tính toán cấu kiện theo trạng thái giới hạn về khả năng chịu lực cần thỏa mãn điều kiện sau:

$$N \leq N_{gh}$$
,

trong đó: N – nội lực nén do tải trọng tính toán gây ra; $N_{gh} - {\rm khả~năng~chịu~lực~của~tiết~diện~d} {\rm trạng~thái~giới~hạn},$ được xác định theo công thức :

$$N_{gh} = \varphi(R_b A_b + R_{sc} A_{st}); \qquad (5.2)$$

 R_b – cường độ tính toán về nén của bêtông. Khi tính toán cấu kiện chịu nén cần chú ý đến các hệ số điều kiện làm việc; R_{sc} – cường độ tính toán về nén của cốt thép,

$$R_{sc} = \min (R_s; 400 \text{MPa});$$

 A_{st} – diện tích tiết diện toàn bộ cốt thép dọc;

 A_b – diện tích tiết diện bêtông.

Gọi A là diện tích tiết diện thì $A_b=A-A_{st}$. Tuy nhiên khi $\mu_{\rm t}=\frac{100A_{st}}{A}<3\%~{\rm c\'o}~{\rm thể}~{\rm l\'ay}~{\rm g\`an}~{\rm d\'ung}~A_b=A.$

 $\phi \leq 1$ – hệ số giảm khả năng chịu lực do ảnh hưởng của uốn dọc, gọi tắt là hệ số uốn dọc.

Khi
$$\lambda = \frac{l_o}{r_{\min}} \le 28$$
 bỏ qua uốn dọc, lấy $\varphi = 1$.

Khi $28 < \lambda \le 120$ có thể xác định ϕ theo công thức thực nghiệm:

$$\varphi = 1,028 - 0,0000288\lambda^2 - 0,0016\lambda.$$

5.3.3. Vận dụng

a. Bài toán kiểm tra

Biết kích thước tiết diện, l_o , bố trí cốt thép. Kiểm tra xem cấu kiện có đủ khả năng chịu lực N.

Từ kích thước tiết diện tính bán kính quán tính r_{\min} , tính $\lambda = \frac{l_o}{r_{\min}}$ để xét uốn dọc, xác định ϕ . Tính N_{gh} theo công thức (5.2) và kiểm tra theo điều kiện $N \leq N_{gh}$.

b. Bài toán tính cốt thép

Biết kích thước tiết diện, l_o , lực nén N – cần xác định cốt thép A_{st} .

Quá trình giải bài toán được trình bày thông qua ví dụ sau: Cho cột chịu nén đúng tâm, lực dọc N=1180 kN, chiều dài tính toán $l_o=3.6$ m. Tiết diện chữ nhật có cạnh 300×400 mm. Dùng bêtông cấp B20, đổ bêtông theo phương đứng. Yêu cầu tính toán, bố trí cốt thép bằng thép nhóm CII.

Số liệu: cạnh bé của tiết diện 300 mm; $r_{\rm min} = 0.288 \times 300 = 86.4$ mm $\lambda = \frac{l_o}{r_{\rm min}} = \frac{3600}{86.4} = 41.6 > 28$. Cần xét đến uốn dọc.

$$\varphi = 1,028 - 0,0000288 \times 41,6^2 - 0,0016 \times 41,6 = 0,912.$$

Bêtông B20 có $R_b=11.5$ MPa. Kể đến điều kiện đổ bêtông theo phương đứng, mỗi lớp dày trên 1,5 m, dùng hệ số điều kiện làm việc $\gamma_b=0.85$. Tính toán với $R_b=11.5\times0.85=9.78$ MPa.

Cốt thép CII có R_{sc} = 280 MPa.

Diện tích tiết diện $A = 300 \times 400 = 120000 \text{ mm}^2$.

Từ điều kiện $N=N_{gh}=\phi\;(R_bA_b+R_{sc}A_{st})$, rút ra:

$$A_{st} = \frac{\frac{N}{\varphi} - R_b A_b}{R_{sc}}.$$
 (5.3a)

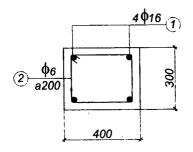
Tạm lấy gần đúng $A_b=A=120~000$. Đổi giá trị của lực dọc thành đơn vi Niutơn để tính toán ($N=1180\times 1000$)

$$A_{st} = \frac{\frac{1180 \times 1000}{0.912} - 9.78 \times 120000}{280} = 431 \text{ mm}^2;$$

$$\mu_t = \frac{100 A_{st}}{A} = \frac{431 \times 100}{120000} = 0.36\%.$$

Với $\lambda = 41.6$ có $\mu_{min} = 0.2\%$; $\mu_{o} = 2 \times 0.2 = 0.4\%$.

 $\mu_t < \mu_0$: thỏa mãn điều kiện hạn chế.


Chọn cốt thép. Với $A_{st} = 431 \text{ mm}^2$ chọn $4\phi 16 = 604 \text{ mm}^2$.

Cốt đai chọn $\phi_d = 6 > 0.25 \phi_{\text{max}}$ và 5 mm.

Khoảng cách $a_d = 200 < 15\phi_{min} = 240$ mm.

Chú thích:

1) Khi μ_t quá bé, kể cả khi tính được $A_{st} < 0$ chứng tỏ kích thước tiết diện quá lớn. Lúc này nếu có thể được thì giảm kích thước hoặc giảm cấp độ bền của bêtông để tính lại. Nếu vẫn giữ nguyên số liệu thì cần chọn cốt thép theo yêu cầu tối thiểu, lấy $A_{st} \ge \mu_0 A$.

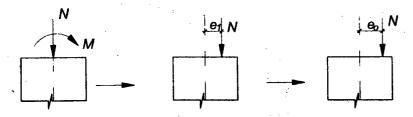
Hinh 5.6. Tiết diện cột theo ví dụ nén đúng tâm

2) Khi $\mu_t > 3\%$ cần lấy $A_b = A - A_{st}$ để tính toán. Như vậy cần tính toán lại A_{st} theo công thức sau:

$$A_{st} = \frac{\frac{N}{\varphi} - R_b A}{R_{sc} - R_b} \tag{5.3b}$$

3) Khi tính được $\mu_t > \mu_{max}$ chứng tổ tiết diện quá bé. Cần tăng kích thước tiết diện hoặc tăng cấp độ bền của bêtông để tính lại.

5.4. SƯ LÀM VIỆC CỦA CẤU KIỆN NỀN LỆCH TÂM


5.4.1. Độ lệch tâm

Tiết diện chịu tác dụng của cặp nội lực M và N, chúng được đổi thành lực dọc đặt lệch tâm với $e_1=\frac{M}{N}$, được gọi là độ lệch tâm tĩnh học (h.5.7). Tiêu chuẩn thiết kế yêu cầu chú ý tới độ lệch tâm ngẫu nhiên e_a do các yếu tố không được kể đến trong tính toán gây ra. Lấy e_a không nhỏ hơn: $\frac{1}{600}$ chiều dài cấu kiện và $\frac{1}{30}$ chiều cao của tiết diện.

Trong tính toán lấy độ lệch tâm ban đầu e_o (h.5.7).

Với cấu kiện của kết cấu siêu tĩnh: $e_o = \max(e_1, e_a)$.

Với cấu kiện của kết cấu tĩnh định: $e_o = e_1 + e_a$.

Hình 5.7. Độ lệch tâm của lực dọc

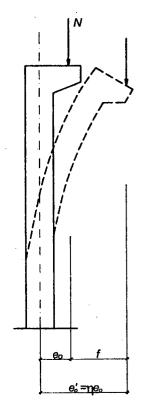
5.4.2. Ảnh hưởng của uốn dọc

Mômen uốn M làm cho cấu kiện có độ võng f. Đó là hiện tượng uốn dọc. Giá trị mômen từ $M_o = Ne_o$ tăng lên thành $M'_o = N(e_o + f)$, tương đương với việc độ lệch tâm từ e_o tăng lên thành $e'_o = e_o + f = e_o \left(1 + \frac{f}{e_o} \right) = \eta e_o$

(h.5.8) $\eta \ge 1$ – hệ số xét đến ảnh hưởng của uốn dọc. Khi $\frac{l_o}{r_u} \le 28$; $\left(\frac{l_o}{h} \le 8\right)$ có thể bỏ qua ảnh hưởng của uốn dọc, lấy $\eta = 1$.

 r_u - bán kính quán tính của tiết diện theo phương mặt phẳng uốn, với tiết diện chữ nhật $r_u = 0.288h$.

Khi $\frac{l_o}{r_u} > 28 \left(\frac{l_o}{h} > 8\right)$ cần xét ảnh hưởng của uốn dọc, tính hệ số η .


Theo kết quả tính toán về ổn định ta có:

$$\eta = \frac{1}{1 - \frac{N}{N_{cr}}},$$
 (5.4)

trong đó: N_{cr} – lực dọc tới hạn.

Với cấu kiện bằng vật liệu đàn hồi, đồng chất xác định N_{cr} theo công thức Euler:

$$N_{cr} = \frac{\pi EI}{l_o^2}.$$
 (5.5)

Hình 5.8. Ảnh hưởng của uốn dọc

Với cấu kiện bêtông cốt thép người ta thường dùng các công thức thực nghiệm.

Theo tiêu chuẩn thiết kế TCXDVN 356 - 2005:

$$N_{cr} = \frac{6.4 E_b}{l_o^2} \left(\frac{SI}{\varphi_l} + \alpha I_s \right), \tag{5.6}$$

trong đó: l_o – chiều dài tính toán của cấu kiện;

 E_b – môđun đàn hồi của bêtông;

I - mômen quán tính của tiết diện lấy đối với trục qua trọng tâm và vuông góc với mặt phẳng uốn; I_s – mômen quán tính của diện tích tiết diện cốt thép dọc chịu lực lấy đối với trục đã nêu;

 $\alpha = rac{E_s}{E_b}$ với E_s – mô
đun đàn hồi của cốt thép;

S – hệ số kể đến ảnh hưởng độ lệch tâm,

$$S = \frac{0.11}{0.1 + \frac{\delta_e}{\varphi_p}} + 0.1; \tag{5.7}$$

 δ_e – hệ số, lấy theo quy định sau:

$$\delta_e = \max\left(\frac{e_o}{h}; \delta_{\min}\right)$$

$$\delta_{\min} = 0.5 - 0.01 \frac{l_o}{h} - 0.01 R_b$$

 $(R_b \text{ tính bằng MPa})$

 ϕ_p – hệ số xét đến ảnh hưởng của cốt thép căng ứng lực trước. Với kết cấu bêtông cốt thép thường: ϕ_p = 1;

 $\phi_l \ge 1 - h$ ệ số xét đến ảnh hưởng của tải trọng tác dụng dài hạn,

$$\phi_{l} = 1 + \beta \frac{M_{dh} + N_{dh}y}{M + Ny} \le 1 + \beta,$$
(5.8)

y – khoảng cách từ trọng tâm tiết diện đến mép chịu kéo, với tiết diện chữ nhật y = 0.5h;

 M_l ; N_l – nội lực do tải trong tác dụng dài hạn;

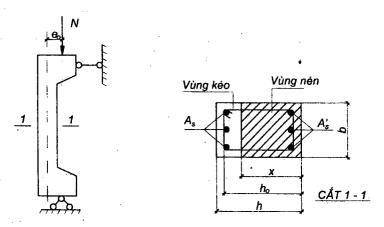
β - hệ số phụ thuộc vào loại bêtông,

với bêtông nặng $\beta = 1$. Với các loại bêtông khác giá trị của β được cho ở bảng 29 của TCXDVN 356-2005.

Trong công thức (5.8) khi mà M_l và M ngược dấu nhau thì M_l được lấy giá trị âm, lúc này nếu tính được $\varphi_l < 1$ thì phải lấy $\varphi_l = 1$ để tính N_{cr} .

Công thức thực nghiệm (5.6) đã kể đến nhiều nhân tố ảnh hưởng đến N_{cr} nhưng việc tính toán khá phức tạp. Đã có một số công thức thực nghiệm khác đơn giản hơn, như công thức (5.9) do Gs. Nguyễn Đình Cống đề xuất:

$$N_{cr} = \frac{2.5 \theta E_b I}{l_o^2}, \tag{5.9}$$


trong đó: θ – hệ số xét đến độ lệch tâm,

$$\theta = \frac{0.2 \, e_o + 1,05 \, h}{1,5 \, e_o + h} \,. \tag{5.10}$$

So với công thức (5.6) thì công thức (5.9) được xem là gần đúng.

5.4.3. Hai trường hợp nén lệch tâm

Thí nghiệm khảo sát sự làm việc của cấu kiện chịu nén lệch tâm theo sơ đồ ở hình 5.9. Khi $e_o = 0$ toàn bộ tiết diện chịu nén, cấu kiện chịu được lực nén lớn nhất. Tăng dần e_o đến một mức nào đó trên tiết diện xuất hiện vùng kéo và càng tăng e_o thì vùng kéo càng mở rộng, chiều cao của vùng nén là x giảm dần, lực nén cấu kiện chịu được giảm xuống.

Hình 5.9. Thí nghiệm cấu kiện chịu nén lệch tâm

Khi độ lệch tâm e_o bé, phần lớn tiết diện chịu nén (x lớn) sự phá hoại bắt đầu từ phía bêtông chịu nén nhiều hơn. Khi độ lệch tâm e_o lớn (x bé) sự phá hoại bắt đầu từ cốt thép chiu kéo.

Khi cốt thép được đặt tập trung theo cạnh b thành A_s và A_s , tiêu chuẩn thiết kế TCXDVN 356 – 2005 đưa ra hai trường hợp tính toán phụ thuộc vào chiều cao vùng bêtông chiu nén x.

a. Trường hợp 1

Khi thỏa mãn điều kiện $x \leq \xi_R h_o$, ứng suất trong cốt thép chịu kéo A_s đạt đến cường độ tính toán R_s , trạng thái giới hạn đạt đến bằng sự phá hoại dẻo, gọi đây là trường hợp *nén lệch tâm lớn*.

Hệ số ξ_R và chiều cao làm việc h_o được định nghĩa như trong cấu kiện chịu uốn.

b. Trường hợp 2

Khi $x > \xi_R h_o$ cốt thép A_s có thể chịu kéo hoặc nén mà ứng suất trong cốt thép σ_s còn bé, chưa đạt đến R_s . Sự phá hoại bắt đầu từ mép bêtông chịu nén nhiều hơn (phá hoại giòn). Gọi đây là trường hợp *nén lệch tâm bé*.

c. Điều kiện để xảy ra nén lệch tâm lớn hoặc bé

Xét cấu kiện là nén lệch tâm lớn hoặc bé là xét khi cấu kiện làm việc ở trạng thái giới hạn về khả năng chịu lực (bắt đầu bị phá hoại).

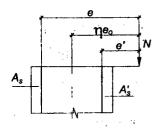
Khi M tương đối lớn, N tương đối bé (so với kích thước tiết diện) cấu kiện làm việc gần với chịu uốn, trên tiết diện có hai vùng nén và kéo rõ rệt. Nếu cốt thép chịu kéo A_s không nhiều quá thì sự phá hoại sẽ bắt đầu từ vùng kéo, có nén lệch tâm lớn.

Gọi là nén lệch tâm lớn vì rằng độ lệch tâm $e_o = \frac{M}{N}$ là lớn.

Khi N tương đối lớn và M tương đối nhỏ (độ lệch tâm e_o bé) cấu kiện làm việc chủ yếu là chịu nén. Nếu cốt thép A_s không lớn quá (so với A_s) thì sự phá hoại xảy ra ở vùng nén. Có trường hợp nén lệch tâm bé.

Như vậy để xảy ra nén lệch tâm là lớn hoặc bé, ngoài tương quan giữa M, N với kích thước tiết diện còn phụ thuộc vào việc bố trí cốt thép.

5.4.4. Điểu kiện về độ bền


Tính toán cấu kiện chịu nén lệch tâm theo trạng thái giới hạn về khả năng chịu lực cần thỏa mãn diều kiện:

$$Ne_{u} \leq [Ne_{u}]_{eh}. \tag{5.11}$$

Đồng thời thỏa mãn điều kiện cân bằng lực:

$$N = N_{gh}, \tag{5.12}$$

trong đó: e_u – khoảng cách từ điểm đặt lực N đến trục lấy mômen. Trục này vuông góc với mặt phẳng uốn và có thể đi qua trọng tâm cốt thép $A_s(e_u=e)$, trọng tâm cốt thép $A_s(e_u=e)$ hoặc trọng tâm tiết diện $(e_u=ne_o)$;

Hình 5.10. Sơ đồ tính toán

e, e', $\eta e_o - \text{xem hinh } 5.10$;

 N_{td} – khả năng chịu nén của tiết diện, lấy bằng tổng hợp lực trong bêtông chịu nén và trong các cốt thép;

 $[Ne_u]_{gh}$ – khả năng chiu lực của tiết diện, lấy bằng tổng mômen của hợp lực trong bêtông và trong cốt thép lấy đối với trục đã nói ở trên (dùng để lấy e_u).

Biểu thức để xác định N_{gh} và $[Ne_u]_{gh}$ được thành lập cho từng loại tiết diện ứng với các trường hợp tính toán.

5.5. TÍNH TOÁN CẤU KIỆN CÓ TIẾT DIỆN CHỮ NHẬT

5.5.1. Kích thước tiết diện

Cấu kiện có tiết diện chữ nhật $b \times h$ trong đó:

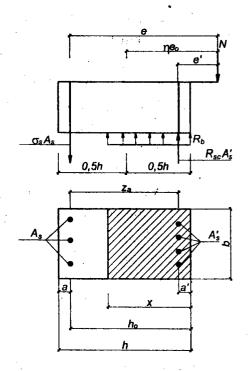
h – chiều cao tiết diện, là cạnh nằm trong phương mặt phẳng uốn;

b – bề rộng, là cạnh vuông góc với mặt phẳng uốn.

Khi dùng h > b sẽ có lợi về mặt chịu lực, thông thường lấy $b = (0,4 \div 0,7)h$. Tuy vậy trong những trường hợp đặc biệt vẫn có thể chọn $b \ge h$ (cột dẹt hoặc vuông).

Xét trường hợp cốt thép được đặt tập trung theo phương cạnh b và gồm A_s và A'_s . Khoảng cách từ trọng tâm A_s và A'_s đến mép cạnh b gần nhất là a, a' (h.5.11).

 $h_0 = h - a$: chiều cao làm việc của tiết diện


 $Z_a = h_o - a'$: khoảng cách giữa trọng tâm A_s và A'_s .

5.5.2. Sơ đồ ứng suất, công thức cơ bản

a. Sơ đồ ứng suất

Ở trạng thái giới hạn, sơ đồ ứng suất dùng để tính toán cho cả hai trường hợp có thể mô tả trên hình 5.11 với các giả thiết sau đây.

• Bổ qua sự làm việc của bêtông vùng kéo. Úng suất trong cốt thép A_s là σ_s. Với trường hợp nén lệch tâm lớn σ_s đạt giá trị R_s. Với trường hợp nén lệch tâm bé σ_s có thể là kéo hoặc nén, được xác định theo công thức thực nghiệm.

- . Úng suất trong bêtông Hình 5.11. Sơ đổ ứng suất dùng để tính toán vùng nén phân bố đều và đạt giá trị cường độ chịu nén tính toán của bêtông R_b . Hợp lực của bêtông vùng nén là R_bbx
- Úng suất trong cốt thép A_s là σ_s đạt đến giá trị cường độ tính toán về nén của cốt thép R_{sc} khi thỏa mãn điều kiện $x \ge 2a$. Nếu xảy ra x < 2a thì σ_s chưa đạt đến R_{sc} .

b. Công thức cơ bản

Trong trường hợp thông thường dùng trục đi qua trọng tâm cốt thép A_s để lấy mômen và như vậy điều kiện (5.11) được viết thành:

$$Ne \le [Ne]_{gh} = R_b bx \left(h_o - \frac{x}{2}\right) + R_{sc} A'_s Z_a.$$
 (5.13)

Điều kiện cân bằng lực (5.12) viết thành:

$$N = N_{gh} = R_b bx + R_{sc} A'_s - \sigma_s A_s. {(5.14)}$$

Trường hợp nén lệch tâm lớn, khi $x \le \xi_R h_o$ lấy $\sigma_s = R_s$.

Trường hợp nén lệch tâm bé, khi $x > \xi_R h_o$ xác định σ_s theo công thức thực nghiệm. Tiêu chuẩn thiết kế TC XDVN 356 – 2005 đưa ra các công thức như sau:

• Đối với các cấu kiện làm từ bêtông có cấp độ bền nhỏ hơn hoặc bằng B30, dùng cốt thép có $R_s \le 365$ MPa, xác định σ_s theo công thức:

$$\sigma_{s} = \left(\frac{2 - \frac{2x}{h_{o}}}{1 - \xi_{R}} - 1\right) R_{s}. \tag{5.15}$$

• Đối với cấu kiện làm từ bêtông cấp lớn hơn B30 cũng như đối với cấu kiện sử dụng cốt thép nhóm cao hơn A-III ($R_s > 365$ MPa) xác định σ_{si} theo công thức:

$$\sigma_{si} = \frac{\sigma_{sc.u}}{1 - \frac{\omega}{1.1}} \left(\frac{\omega}{\xi_i} - 1 \right). \tag{5.16}$$

trong đó: $\xi_i = \frac{x}{h_{oi}}$ – chiều cao tương đối của vùng bêtông chịu nén;

 ω và $\sigma_{sc,u}$ – như đã giải thích ở mục xác định ξ_R trong chương 4.

Cần tính σ_{si} cho riêng từng thanh cốt thép thứ i với chiều cao làm việc h_{oi} .

Giá trị σ_s tính được nếu dương là ứng suất kéo, âm là ứng suất nén. Giá trị của σ_s trong công thức (5.14) được dùng cùng với dấu đại số và không được vượt quá cường độ tính toán của cốt thép R_s , R_{sc} , theo điều kiện:

$$-R_{sc} \le \sigma_s \le R_s \ . \tag{5.17}$$

Điều kiện để dùng được biểu thức (5.13) và (5.14) là $x \ge 2a'$ để cho ứng suất trong cốt thép A'_s đạt đến R_{sc} .

Trường hợp đặt biệt khi xảy ra $\dot{x} < 2a'$, không thể dùng các biểu thức đã nêu, lúc này cần lấy mômen đối với trục đi qua trọng tâm A'_s . Điều kiện (5.11) trở thành:

$$Ne' \leq [Ne']_{gh} = R_s A_s Z_a + R_b bx \left(\alpha' - \frac{x}{2}\right).$$

Nhận xét rằng giá trị $\left(a'-\frac{x}{2}\right)$ là khá bé và nếu bỏ qua thì sẽ an toàn

hơn và đơn giản hơn cho tính toán nên trong đa số trường hợp có thể bỏ qua (trừ trường hợp a' quá lớn) và điều kiện trên trở thành:

$$Ne' \le [Ne']_{gh} = R_s A_s Z_a$$
 (5.18)

5.5.3. Tính toán cốt thép đối xứng

Biết kích thước tiết diện $b \times h$, chiều dài tính toán l_0 , vật liệu được dùng, cặp nội lực M, N. Yêu cầu tính toán cốt thép đối xứng $A_s = A_s'$.

a. Chuẩn bị số liệu

Từ cấp bêtông và nhóm cốt thép tra các số liệu E_b, R_b (chú ý điều kiện làm việc) R_s, R_{sc}, E_s . Tính toán hoặc tra bảng để tìm giá trị ξ_R . Giả thiết a, a' để tính h_o, Z_a – xác định độ lệch tâm ngẫu nhiên e_a , tính $e_1 = \frac{M}{N}$ và e_o .

Xét ảnh hưởng của uốn dọc. Khi $\frac{l_o}{h} \leq 8$ lấy $\eta = 1$. Khi $\frac{l_o}{h} > 8$ cần xác định N_{cr} để tính η . Khi dùng công thức (5.6) để tính N_{cr} thì còn cần biết M_l , N_l để tính ϕ_l . Cần giả thiết cốt thép để tính I_s , thông thường giả thiết tỉ số cốt thép μ_t (xem điều kiện (5.1)).

$$I_s = A_s(0.5h - a)^2 + A_s'(0.5h - a')^2 = \mu_t b h_o(0.5h - a)^2$$
 (5.19)

(khi lập công thức đã xem a = a')

Tính η theo công thức (5.4) và tính e theo công thức:

$$e = \eta e_o + \frac{h}{2} - a \,. \tag{5.20}$$

b. Xác định sơ bộ chiều cao vùng nén x_1

Trường hợp 1. Khi dùng cốt thép có $R_s = R_{sc}$.

Giả thiết điều kiện $2a' \le x \le \xi_R h_o$ được thỏa mãn, từ phương trình (5.14) tính được x và đặt là x_1

$$x_1 = \frac{N}{R_b b}. ag{5.21}$$

Trường hợp 2. Khi dùng cốt thép có $R_s \neq R_{sc}$.

Giả thiết điều kiện $2a' \le x \le \xi_R h_o$ được thỏa mãn, rút $A_s = A'_s$ từ phương trình (5.14) thay vào phương trình (5.13) rút gọn lại được phương trình (5.22) chứa x:

$$x^{2} - 2(h_{o} + t_{s})x + \frac{2N}{R_{b}b}(e + t_{s}) = 0, \qquad (5.22)$$

với
$$t_s = \frac{R_{sc}Z_a}{R_s - R_{sc}}$$
.

Giải phương trình (5.22) lấy nghiệm có nghĩa, đặt là x_1 .

c. Các trường hợp tính toán

Dựa vào x_1 đã tìm được để biện luận các trường hợp tính toán.

Trường hợp 1. Khi $2a' \le x_1 \le \xi_R h_o$, đúng với giả thiết, lấy $x = x_1$ thay vào phương trình (5.13) rút ra công thức tính A'_s :

$$A'_{s} = \frac{Ne - R_{b}bx\left(h_{o} - \frac{x}{2}\right)}{R_{sc}Z_{a}}.$$
(5.23)

Trường hợp $R_s=R_{sc}$ thì từ (5.14) có được $R_bbx=N$. Thay vào công thức trên, biến đổi thành:

$$A'_{s} = \frac{N\left(e + \frac{x}{2} - h_{o}\right)}{R_{sc}Z_{a}}.$$
(5.24)

Trường hợp 2. Khi xảy ra $x_1 < 2a'$ – giả thiết không đúng. Không thể dùng giá trị x_1 . Từ phương trình (5.18) rút ra công thức tính A_s :

$$A_s = \frac{Ne'}{R_s Z_a} = \frac{N(e - Z_a)}{R_s Z_a}.$$
 (5.25)

Trường hợp 3. Khi xảy ra $x_1 > \xi_R h_o$ – giả thiết không đúng, có trường hợp nén lệch tâm bé. Phải lập phương trình để tính lại x.

Khi dùng bêtông cấp độ bền không quá B30 và cốt thép có $R_s \le 365$ MPa, dùng phương trình (5.15) kết hợp với hai phương trình (5.13), (5.14) rút gọi lại thành một phương trình bậc ba của x.

trong đó:
$$a_{2} = -(2 + \xi_{R}) h_{o};$$

$$a_{1} = \frac{2Ne}{R_{b}b} + 2\xi_{R}h_{o}^{2} + (1 - \xi_{R})h_{o}Z_{a};$$

$$a_{o} = \frac{-N[2e\xi_{R} + (1 - \xi_{R})Z_{a}]h_{o}}{R_{b}b}.$$
(5.26)

Giải phương trình bậc ba tìm được x. Điều kiện khi dùng phương trình (5.15) cũng tức là điều kiện của x trong trường hợp này là $\xi_R h_o < x < h_o$. Vì phương trình (5.15) là gần đúng, rút ra từ thực nghiệm nên có một số trường hợp đặc biệt không đạt được độ chính xác, tính được x ra ngoài giới hạn trên. Nếu tính được $x > h_o$ thì cũng chỉ lấy $x = h_o$ để tính cốt thép.

Có được giá trị của x, thay vào phương trình (5.13) để rút ra công thức tính A_s . Đó chính là công thức (5.23) đã được lập.

d. Cách tính gần đúng x khi nén lệch tâm bé

Việc lập và giải phương trình (5.26) là khá phức tạp. Trong tính toán thực hành có thể tính gần đúng giá trị x. Có thể kể một vài phương pháp sau:

1) Phương pháp đúng dần

Dùng $x = x_1$ thay vào công thức (5.24) để tính giá trị của A'_s (gần đúng) và đặt là A_s^* .

$$A_s^* = \frac{N\left(e + \frac{x_1}{2} - h_o\right)}{R_{sc}Z_a}.$$

Dùng hai phương trình (5.14) và (5.15) với $A_s = A_s^* = A_s^*$ tính ra x

$$x = \frac{\left[N + 2R_{s}A_{s}^{*}\left(\frac{1}{1 - \xi_{R}} - 1\right)\right]h_{o}}{R_{b}bh_{o} + \frac{2R_{s}A_{s}^{*}}{1 - \xi_{R}}}.$$
 (5.27)

Thay x vào (5.23) để tính A'_s .

2) Công thức gần đúng

Dựa trên cơ sở phân tích kết quả nghiệm của phương trình (5.26) phụ thuộc vào các thông số $n=\frac{N}{R_bbh_o}$; $\epsilon=\frac{e}{h_o}$; $\gamma_a=\frac{Z_a}{h_o}$ và ξ_R nhóm

nghiên cứu do tác giả chỉ đạo đưa ra công thức tính x:

$$x = \frac{\left[(1 - \xi_R) \gamma_a n + 2 \xi_R (n \varepsilon - 0, 48) \right] h_o}{(1 - \xi_R) \gamma_a + 2 (n \varepsilon - 0, 48)}.$$
 (5.28)

Công thức (5.28) cho kết quả gần trùng khóp với nghiệm của phương trình (5.26).

e. Xử lí kết quả tính toán

Kết quả tính cốt thép theo công thức (5.23), (5.24) hoặc (5.25) có thể là dương hoặc âm.

Khi có $A_s>0$, kết quả tạm được chấp nhận. Lúc này cần tính tỉ số cốt thép $\mu\%=\frac{100\,A_s}{bh_o}$ và so sánh với $\mu_{\rm min}$ (xem bảng 5.1). Nếu $\mu\%<\mu_{\rm min}$

chứng tổ kích thước tiết diện hơi lớn, lúc này nếu không thay đổi kích thước để tính lại thì cần chọn cốt thép theo yêu cầu tối thiểu $A_s = A'_s = \mu_{\min} \; \frac{bh_o}{100} \, .$

Lại còn cần tính
$$\mu_t = \frac{100(A_s + A_s)}{bh_o} = 2\mu$$
. (5.29)

Nếu $\mu_l > \mu_{max}$ – xem công thức (5.1), chứng tỏ kích thước tiết diện quá bé, cần tăng kích thước tiết diện hoặc tăng cấp độ bền của bêtông, tăng nhóm hoặc loại cốt thép để tính lại.

Cũng cần chú ý khi dùng công thức (5.6) để tính N_{cr} đã phải giả thiết μ_t để xác định I_s theo công thức (5.19). Cần so sánh μ_t theo kết quả tính toán với μ_t đã giả thiết. Nếu xét thấy sự chênh lệch là quá lớn, có thể ảnh hưởng đáng kể đến kết quả cuối cùng thì cần giả thiết lại và tính toán lai.

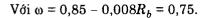
Khi tính được $A_s < 0$ chỉ có thể kết luận là kích thước tiết diện khá lớn so với yêu cầu, theo tính toán thì không cần cốt thép chịu lực, chỉ phải đặt thép theo yêu cầu tối thiểu $A_s = A_s' = \mu_{\min} \frac{bh_o}{100}$. Lúc này các kết quả

tính toán trung gian như giá trị x, trường hợp nén lệch tâm... đều không còn chính xác. Lí do là khi lập các công thức đã mặc nhiên công nhận điều kiện $A_s>0$. Tính toán được $A_s<0$ chứng tỏ điều kiện không đúng, kéo theo các kết quả không đúng.

Khi chọn và bố trí cốt thép cần tuân theo các yêu cầu cấu tạo về đường kính, lớp bảo vệ, khoảng hở của cốt thép. Sau khi bố trí cốt thép cần xác định các khoảng cách a, a, tính lại h_o và Z_a . So sánh h_o , Z_a với các giá trị đã dùng để tính toán. Nếu thấy sự sai khác là đáng kể và làm giảm khả năng chịu lực của cấu kiện thì cần giả thiết lại a, a' và tính toán lại.

g. Ví dụ tính toán

Ví dụ 5.1. Cho khung nhà ba tầng, một nhịp, có sơ đồ như hình vẽ, sàn lấp ghép. Tiết diện cột b=250; h=400 mm. Bêtông cấp độ bền B25, cốt thép nhóm CIII. Yêu cầu tính toán cốt thép cho cột tầng một với cặp nội lực M=110 kNm, N=500 kN trong đó nội lực do tải trọng dài hạn gây ra là $M_{dh}=20$ kNm, $N_{dh}=400$ kN.


Số liệu: bêtông B25 có R_b = 14,5; E_b = 30000 MPa.

Cho rằng đổ bêtông cột theo phương đứng mỗi lớp trên 1,5 m, dùng hệ số điều kiện làm việc $\gamma_b=0.85$.

Do đó $R_b = 0.85 \times 14.5 = 12.3 \text{ MPa.}$

Cốt thép CIII có $R_s = R_{sc} = 365; E_s = 200000$ MPa.

$$\text{Hệ số } \xi_R = \frac{\omega}{1 + \frac{\sigma_{_{\mathit{NR}}}}{\sigma_{_{\mathit{NC},\mathit{U}}}} \left(1 - \frac{\omega}{1,1}\right)}.$$

$$\sigma_{SR} = R_s = 365$$
; $\sigma_{sc,u} = 400$ tính được $\xi_R = 0.58$.

Độ lệch tâm:
$$e_1 = \frac{M}{N} = \frac{110}{500} = 0.22 \text{ m} = 220 \text{ mm}.$$

Độ lệch tâm ngẫu nhiên e_a lấy lớn hơn $\frac{1}{600}l=\frac{1}{600}\times 4200=7$ mm và lớn hơn

$$\frac{1}{30}h = \frac{400}{30} = 13,3$$
 mm. Lấy $e_a = 15$ mm.

Cột thuộc kết cấu siêu tĩnh: $e_o = \max(e_1, e_a) = 220 \text{ mm}$.

Giả thiết a = a' = 40 mm; $h_o = 400 - 40 = 360$; $Z_a = 320$ mm.

Chiều dài tính toán $l_o = \psi l$ với l = 4200. Khung nhiều tầng, một nhịp, sàn lắp ghép, cột tầng một có $\psi = 1,2$.

$$l_o = 1.2 \times 4200 = 5040$$
 mm; $\frac{l_o}{h} = \frac{5040}{\cdot 400} = 12.6 > 8$. Cần xét uốn dọc.

Mômen quán tính của tiết diện $I = \frac{bh^3}{12}$.

$$I = \frac{250 \times 400^3}{12} = 1333 \times 10^6 \text{ mm}^4.$$

Giả thiết $\mu_t = 1\% = 0.01$.

$$I_s = \mu_t b h_o \left(\frac{h}{2} - a\right)^2 = 0.01 \times 250 \times 360(200 - 40)^2 = 23 \times 10^6 \text{ mm}^4$$

$$\alpha = \frac{E_s}{E_b} = \frac{200000}{30000} = 6,67.$$

$$\begin{split} \delta_{\min} &= 0.5 - 0.01 \frac{l_o}{h} - 0.01 R_b = 0.5 - 0.01 \times 12.6 - 0.01 \times 12.3 = 0.25. \\ \frac{e_o}{h} &= \frac{220}{400} = 0.55; \, \delta_e = \max\left(\frac{e_o}{h}, \, \delta_{\min}\right) = 0.55. \\ \phi_p &= 1; \quad S = \frac{0.11}{0.1 + \frac{\delta_e}{\phi_p}} + 0.1 = \frac{0.11}{0.1 + 0.55} + 0.1 = 0.27. \\ \phi_l &= 1 + \beta \frac{M_{dh} + N_{dh}y}{M + Ny}. \\ Voi &\beta &= 1; \, y = 0.5h = 0.2m, \\ \phi_l &= 1 + \frac{20 + 400 \times 0.2}{110 + 500 \times 0.2} = 1.47. \\ N_{cr} &= \frac{6.4 \, E_b}{l_o^2} \left(\frac{SI}{\phi_l} + \alpha I_o\right); \\ N_{cr} &= \frac{6.4 \times 30000}{5040^2} \left(\frac{0.27 \times 1333 \times 10^6}{1.47} + 6.67 \times 23 \times 10^6\right) = 3 \times 10^6 \, \mathrm{N} \\ N_{cr} &= 3000 \, \mathrm{kN}. \\ \eta &= \frac{1}{1 - \frac{N}{N_{cr}}} = \frac{1}{1 - \frac{500}{3000}} = 1.2. \\ e &= \eta e_o + \frac{h}{2} - \alpha = 1.2 \times 220 + 200 - 40 = 424 \, \mathrm{mm}. \end{split}$$

Với
$$R_s = R_{sc}$$
, tính $x_1 = \frac{N}{R_b b} = \frac{500 \times 1000}{12,3 \times 250} = 162,6 \text{ mm}.$

So sánh x_1 với $2a' = 2 \times 40 = 80$ mm và $\xi_R h_o = 0.58 \times 360 = 208$ mm.

Thỏa mãn điều kiện $2a' < x_1 < \xi_R h_o$. Có trường hợp nén lệch tâm lớn thông thường. Tính A'_s theo công thức (5.24)

$$A_{N} = A_{N}' = \frac{N\left(e + \frac{x}{2} - h_{0}\right)}{R_{Nc}Z_{a}} = \frac{500 \times 1000\left(424 + \frac{162,6}{2} - 360\right)}{365 \times 320} = 622 \text{ mm}^{2}.$$

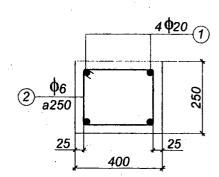
$$\mu = \frac{622 \times 100}{250 \times 360} = 0.7\% > \mu_{\min} = 0.2\%.$$

$$\mu_t = 2\mu = 1.4\% < \mu_{max} = 6\%.$$

So với μ_t đã giả thiết là 1%, có $\mu_t=1,4\%>1\%$. Không cần giả thiết để tính lại. Chọn cốt thép $A_s=A'_s=2\phi 20=628~\mathrm{mm}^2$.

Cốt thép đai $\phi 6 > \frac{1}{4} \phi_{max} = 5 \text{ mm}.$

Khoảng cách cốt đại


$$a_d = 250 < 15\phi_{\min} = 300.$$

Lấy chiều dày lớp bảo vệ $C_1 = 25 \text{ mm} > \phi$ và $C_0 = 20 \text{ mm}$.

Tính
$$a = C_1 + \frac{\phi}{2} = 25 + \frac{20}{2} = 35 \text{ mm};$$

$$h_o = 400 - 35 = 365$$
; $Z_a = 365 - 35 = 320$

mm. Giá trị h_o và Z_a đều lớn hơn trị số đã dùng để tính toán.

Chú thích. Trong ví dụ trên đây, nếu dùng công thức gần đúng (5.9) để xác định N_{cr} thì:

$$\theta = \frac{0.2e_a + 1.05h}{1.5e_a + h} = \frac{0.2 \times 220 + 1.05 \times 400}{1.5 \times 220 + 400} = 0.64;$$

$$N_{cr} = \frac{2,59E_bI}{l_c^2} = \frac{2,5 \times 0,64 \times 30000 \times 1333 \times 10^6}{5040^2} = 2,52 \times 10^6$$

$$N_{cr} = 2520 \text{ kN}; \eta = 1,24; e = 432 \text{ mm}, A_s = A'_s = 656 \text{ mm}^2.$$

Vi~du~5.2. Cho phần trên của cột nhà công nghiệp một tầng lắp ghép. Tiết diện chữ nhật b=400, h=600 mm. Dùng bêtông cấp độ bền B30, cốt thép loại RB300. Tại tiết diện trên vai cột đã xác định được cặp nội lực tính toán M=124 kNm; N=384 kN trong đó $M_{dh}=8$ kNm và $N_{dh}=280$ kN. Yêu cầu tính toán cốt thép đối xứng.

Số liệu: B30 có $R_b=17$; $E_b=32500$ MPa. Cột lắp ghép, được đổ bêtông theo phương ngang, không có hệ số γ_b . Vậy $R_b=17$ MPa. Cốt thép RB300, tương đương cốt thép CII, có $R_s=R_{sc}=280$; $E_s=210$ 000 MPa; $\omega=0.85-0.008\times17=0.714$. Với $\sigma_{SR}=280$; $\sigma_{sc.u}=400$ tính được $\xi_R=0.57$.

Giả thiết a = a' = 50 mm; $h_o = 600 + 50 = 550$; $Z_a = 500$ mm.

Độ lệch tâm:
$$e_1 = \frac{M}{N} = \frac{124}{384} = 0,323 \text{ m} = 323 \text{ mm}.$$

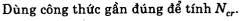
Lệch tâm ngẫu nhiên:

$$\frac{1}{600}l = \frac{1}{600} \times 4800 = 8 \text{ mm}.$$

$$\frac{1}{30}h = \frac{1}{30} \times 600 = 20$$
 mm; lấy $e_a = 20$ mm.

Phần cột trên trực tiếp đỡ kết cấu mái, làm việc như kết cấu tĩnh định. Tính

$$e_o = e_1 + e_a = 323 + 20 = 343$$
 mm.


Chiều dài tính toán:

phần cột trên của nhà công nghiệp

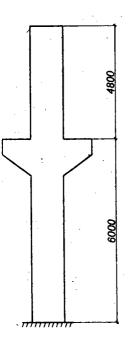
$$l_o = 2.5l = 2.5 \times 4800 = 12000 \text{ mm};$$

$$\frac{l_n}{h} = \frac{12000}{600} = 20 > 8$$
. Cần xét uốn dọc

$$I = \frac{bh^3}{12} = \frac{400 \times 600^3}{12} = 72 \times 10^8 \text{ mm}^4.$$

$$\theta = \frac{0.2e_{o} + 1.05h}{1.5e_{o} + h} = \frac{0.2 \times 343 + 1.05 \times 600}{1.5 \times 343 + 600} = 0.626.$$

$$N_{cr} = \frac{2,50E_bI}{l_a^2} = \frac{2,5\times0,626\times32500\times72\times10^8}{12000^2} = 2,54\times10^6.$$

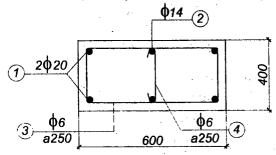

$$N_{cr} = 2540 \text{ kN}; \ \eta = \frac{1}{1 - \frac{384}{2540}} = 1,18.$$

$$e = \eta e_o + \frac{h}{2} - a = 1,18 \times 343 + 300 - 50 = 655 \text{ mm}.$$

Với
$$R_s = R_{sc}$$
 tính $x_1 = \frac{N}{R.b} = \frac{384 \times 1000}{17 \times 400} = 56.5 \text{ mm}.$

 $x_1 < 2a' = 100$ mm. Dùng công thức (5.25) để tính cốt thép

$$A'_{s} = A_{s} = \frac{N(e - z_{a})}{R_{s}z_{a}} = \frac{384000(655 - 500)}{280 \times 500} = 422 \,\mathrm{mm}^{2}.$$



$$\mu = \frac{A_s}{bh_o} = \frac{422}{400 \times 550} = 0,00192 = 0,192\% < \mu_{\min} = 0,25\%.$$

Chọn cốt thép theo yêu cầu tối thiểu:

$$A_s = A'_s = \mu_{\min} bh_o = \frac{0.25}{100} \times 400 \times 550 = 550 \text{ mm}^2$$

Chọn cốt thép $2\phi 20 = 624 \text{ mm}^2$ ở mỗi phía, cốt đai dùng $\phi 6$, khoảng cách a = 250. Cạnh h > 500 mm, cần đặt thêm cốt thép cấu tạo $\phi 14$ ở giữa cạnh.

Cũng cần đặt thêm thanh số 4, nếu không có thanh đó thì có chỗ uốn gập của cốt đai cách nhau quá 400 mm.

Chọn lớp bảo vệ 30 mm, tính lại a = 40 mm; $h_o = 560$.

Ghi chú. Trong ví dụ trên nếu dùng công thức (5.6) để tính N_{cr} thì:

giả thiết $\mu_{\rm t}$ = 0.5%, tính được $I_{\rm s}$ = 68,75 × 10^6 mm.

$$\alpha = 6,46$$
; $\delta_e = 0,57$; $S = 0,264$; $\phi_l = 1,38$; $N_{cr} = 2630$ kN.

Vi~du~5.3. Cột của khung nhà nhiều tầng, ba nhịp, dầm liên kết cứng với cột, sàn toàn khối. Chiều dài cột l=3.9 m. Tiết diện chữ nhật b=300; h=500 mm. Bêtông cấp B20, cốt thép nhóm CII. Nội lực tính toán gồm N=1650 kN; M=198 kNm. Yêu cầu tính toán cốt thép đối xứng.

Số liệu: B20 có R_b = 11,5 MPa; E_b = 27 000 MPa. Cột được đổ bêtông theo phương đứng, yêu cầu mỗi lớp đổ không quá 1,5 m. Không xét hệ số điều kiện làm việc.

Cốt thép CII có $R_s = R_{sc} = 280; E_s = 210 000 \text{ MPa}.$

Giả thiết a = a' = 40 mm; $h_o = 500 - 40 = 460$; $Z_a = 420$ mm.

Với B20, thép CII tính toán được $\xi_R = 0.622$.

Độ lệch tâm:

$$e_1 = \frac{198}{1650} = 0.12 \text{ m} = 120 \text{ mm}.$$

Lệch tâm ngẫu nhiên:

$$\frac{1}{600}l = \frac{1}{600} \times 3900 = 6,5 \text{ mm};$$

$$\frac{1}{30}h = \frac{1}{30} \times 500 = 16,7 \text{ mm}; e_a = 16,7.$$

Cấu kiện thuộc kết cấu siêu tĩnh, $e_o = \max(e_1, e_a) = 120$ mm.

Khung ba nhịp, sàn toàn khối $l_o = 0.7l = 0.7 \times 3.9 = 2.73$ m.

Xét uốn dọc.
$$\frac{l_4}{h} = \frac{2730}{500} = 5,46 < 8$$
. Bỏ qua uốn dọc, $\eta = 1$.

$$e = \eta e_o + \frac{h}{2} - a = 120 + 250 - 40 = 330 \text{ mm}.$$

Với
$$R_s = R_{sc}$$
, tính $x_1 = \frac{N}{R_b b} = \frac{1650 \times 1000}{11.5 \times 300} = 478 \text{ mm}.$

$$\xi_R h_o = 0.622 \times 460 = 286.$$

Xảy ra trường hợp $x_1 > \xi_R h_o$, nén lệch tâm bé.

Xác định x theo phương pháp đúng dần.

Với $x = x_1$, tính A_s^* theo công thức (5.24) và tính x theo (5.27)

$$A_{\kappa}^{\star} = \frac{N\left(e + \frac{x_{1}}{2} - h_{o}\right)}{R_{\kappa e}Z_{a}} = \frac{1650 \times 1000(330 + 239 - 460)}{280 \times 420} = 1529 \text{ mm};$$

$$x = \frac{\left[N + 2R_{\kappa}A_{\kappa}^{\star}\left(\frac{1}{1 - \xi_{R}} - 1\right)\right]h_{o}}{R_{b}bh_{o} + \frac{2R_{\kappa}A_{\kappa}^{\star}}{1 - \xi_{R}}} \quad \text{v\'ent } 1 - \xi_{R} = 1 - 0,622 = 0,378 ;$$

$$x = \frac{\left[1650000 + 2 \times 280 \times 1529\left(\frac{1}{0,378} - 1\right)\right]460}{11,5 \times 300 \times 460 + \frac{2 \times 280 \times 1529}{0.378}} = 365 \text{ mm}.$$

Thỏa mãn điều kiện: $286 = \xi_R h_o < x < h_o = 460$.

Tính $A'_s = A_s$ theo công thức (5.23)

$$A_{s} = A'_{s} = \frac{Ne - R_{b}bx\left(h_{o} - \frac{x}{2}\right)}{R_{sc}Z_{a}} = \frac{1650000 \times 330 - 11,5' \times 300 \times 365(460 - 182,5)}{280 \times 420} = 1657 \text{ mm}^{2};$$

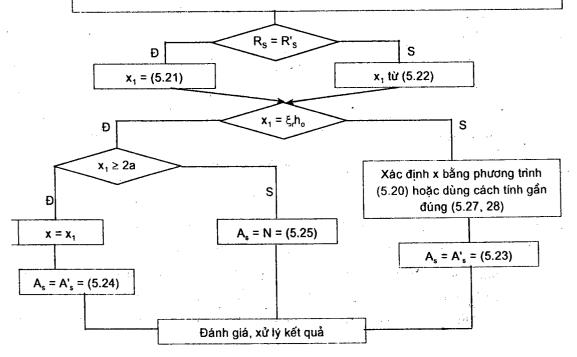
$$\mu = \frac{100 \times 1657}{300 \times 460} = 1,20\% > \mu_{min} = 0,1\%$$

$$\mu_t = 2\mu = 2,40\% < \mu_{max}$$

Ghi chú

1) Trong bài toán trên nếu dùng phương trình (5.26) thì tính được:

$$a_2 = -1206$$
; $a_1 = 652\ 142$; $a_0 = -125\ 294\ 400$.
 $x^3 - 1206x^2 + 671\ 232x - 134\ 481\ 000 = 0$.


Giải phương trình có nghiệm x = 361 mm.

2) Nếu dùng công thức gần đúng (5.28) tính được $n=1,0397;~\epsilon=0,7174;$ $\gamma_a=0,913;~x=362$ mm.

h. Sơ đồ khối tính cốt thép đối xứng

Bài toán tính cốt thép đối xứng rất hay gặp trong thực tế thiết kế. Để tiện việc sử dụng các công thức cho các trường hợp tính toán, lập sơ đồ sau.

Chuẩn bị số liệu: b, h, I_{o} , M, N, M_{dh} , N_{dh} , R_{b} , E_{b} , R_{sc} , E_{s} , a, $a \stackrel{I}{\Box}$, h_{o} , Z_{a} , ξ_{R} , e_{1} , e_{a} , e_{o} . Xét uốn dọc: $\frac{I_{o}}{h} \leq 8$ lấy $\eta = 1$ $\frac{I_{o}}{8} > 8$ tính $I \dots N_{CI}$, η . Tính độ lệch tâm e.

5.5.4. Tính toán cốt thép không đối xứng

a. Trường hợp tính toán

Khi đặt cốt thép không đối xứng, chưa thể xác định được x để căn cứ vào đó mà phân biệt trường hợp nén lệch tâm là lớn hoặc bé. Lúc này có thể dựa vào độ lệch tâm. Tính độ lệch tâm phân giới e_p :

$$e_p = 0.4 (1.25h - \xi_R h_o)$$
, (5.30)

khi $\eta e_o \ge e_p$ – tính theo nén lệch tâm lớn $\eta e_o < e_p$ – tính theo nén lệch tâm bé.

b. Trường hợp nén lệch tâm lớn

Điều kiện để tính toán là khi $\eta e_o \ge e_p$. Điều kiện của x là $2a' \le x \le \xi_R h_o$. Lúc này chỉ có hai phương trình (5.13) và (5.14) để xác định ba ẩn số: x, A'_s và A_s . Bài toán có nhiều nghiệm trong lúc để thiết kế chỉ cần một nghiệm hợp lý là được. Để có được một nghiệm hợp lý có thể cho trước giá trị của x hoặc của A'_s để tìm hai ẩn còn lại.

Bài toán 1. Cho trước x. Cho x một giá trị trong khoảng hạn chế 2a' và $\xi_R h_o$. Thay x vào công thức (5.23) tính được A'_s . Khi $A'_s > 0$, thay x và A'_s vào phương trình (5.14) và tính A_s .

$$A_{s} = \frac{R_{b}bx + R_{sc}A'_{s} - N}{R_{s}}. (5.31)$$

Khi chọn $x=\xi_R h_o$ sẽ cho giá trị A_s' bé nhất nhưng giá trị A_s sẽ lớn nhất. Tổng $A_{st}=A_s+A_s'$ là một hàm của x. Có thể chứng minh được rằng khi $x=\frac{h_o+a'}{2}$ thì có được A_{st} bé nhất.

Nếu tính được $A'_s < 0$ thì nên chọn x bé hơn để tính lại. Khi đã lấy $x = x_{\min} = 2a'$ mà vẫn tính được $A'_s < 0$ thì lấy A'_s theo cấu tạo và tính A_s theo công thức (5.25) thuộc trường hợp đặc biệt.

Bài toán 2. Cho trước A'_s . Có thể cho trước A'_s theo cấu tạo hoặc theo một sự lựa chọn nào đó. Lúc này từ phương trình (5.13) xác định x. Để tránh việc giải phương trình bậc 2 của x người ta đặt

 $\xi = \frac{x}{h_o}$; $\alpha_m = \xi(1-0.5\xi)$ như trong cấu kiện chịu uốn. Từ (5.13) tính

được α_m

$$\alpha_m = \frac{Ne - R_{sc}A'_s Z_a}{R_b b h_o^2}.$$
 (5.32)

Từ α_m tra bảng hoặc tính ξ theo công thức:

$$\xi = 1 - \sqrt{1 - 2\alpha_m}$$

Tính $x = \xi h_o$. Khi thỏa mãn điều kiện của x là $2a' \le x \le \xi_R h_o$ thì thay x vào công thức (5.31) để tính A_s .

Nếu $x > \xi_R h_o$ chứng tỏ A'_s đã cho là chưa đủ, cần phải tăng A'_s hoặc tính A'_s theo công thức (5.23).

Nếu x < 2a', kể cả trường hợp tính được $\alpha_m \le 0$ chứng tỏ A'_s đã cho là khá lớn, nên giảm bớt A'_s để tính lại. Khi không thể giảm A'_s thì tính toán A_s theo công thức (5.25).

c. Trường hợp nén lệch tâm bé

Điều kiện để tính toán là $\eta e_o < e_p$. Lúc này nếu thỏa mãn điều kiện (5.33) thì riêng bêtông đủ khả năng chịu lực, chỉ cần đặt cốt thép theo cấu tạo.

$$N \le N_b = R_b b \ (h - 2\eta e_o).$$
 (5.33)

Khi không thỏa mãn (5.33) thì cần tính cốt thép với điều kiện của x là $\xi_R h_o \le x \le h_o$. Lúc này có ba phương trình (5.13), (5.14) và (5.15) để xác định bốn ẩn số là x, σ_s , A_s và A_s . Bài toán có nhiều nghiệm trong lúc chỉ cần một nghiệm hợp lí là được. Có thể cho trước x hoặc A_s để tính toán.

Bài toán 1. Tính theo phương pháp đúng dần. Chọn A_s theo yêu cầu về cấu tạo. Chọn x, nên xác định x theo công thức gần đúng (5.28) và tính A_s theo (5.23). Tính lại x:

$$x = \frac{N + C - R_{sc}A'_{s} - R_{s}A_{s}}{R_{b}b + C/h_{o}}$$
 (5.34)

$$\text{v\'oi} \ C = \frac{2R_sA_s}{1-\xi_R} \ .$$

Tính lại A_s' theo (5.23) với giá trị mới của x. Quy trình tính toán này có độ hội tụ cao và có thể lấy các giá trị thu được sau một chu kỳ lặp. Khi $\eta e_o < 0.15 h_o$, cốt thép A_s chịu nén với ứng suất đáng kể, nên cần được kiểm tra theo công thức

$$A_{s} = \frac{Ne' - R_{b}bx(0,5x - a)}{\sigma_{s}(h_{o} - a')}.$$
 (5.34a)

Bài toán 2. Có thể chọn trước A_s theo cấu tạo hoặc theo một cách nào đó. Bài toán còn lại ba ẩn số là x, σ_s và A'_s . Sau khi thực hiện một số biến đổi cần thiết đưa về phương trình bậc 2 của x:

$$0.5R_bbdx^2 + 2(R_sA_sZ_a - R_bbda')x - (Ne'd + tR_sA_sZ_a) = 0, (5.35)$$

trong đó: $d=h-\xi_R h_o$; $t=h+\xi_R h_o$; $e'=Z_a-e$.

Gải phương trình, kiểm tra điều kiện của x là $\xi_R h_o \leq x \leq h_o$. Nếu tính được x vượt ra khỏi giới hạn trên chứng tỏ A_s đã có là chưa hợp lí, cần chọn lại.

Trường hợp đặc biệt là chọn A_s hoàn toàn theo cấu tạo và không kể vào trong tính toán. Trong phương trình (5.35) cho $A_s=0$, được phương trình đơn giản hơn. Cũng có thể lập trực tiếp phương trình của x bằng cách lấy mômen đối với trục đi qua trọng tâm A_s (với $\sigma_s A_s=0$).

$$Ne' - R_b bx \left(\frac{x}{2} - a'\right) = 0. \tag{5.36}$$

Đặt
$$\alpha = \frac{x}{\alpha'}$$
; $T = \alpha (0.5\alpha - 1)$.

Rút ra:

$$T = \frac{Ne'}{R_b ba'^2}$$
; $\alpha = 1 + \sqrt{1 + 2T}$; $x = \alpha a'$.

Điều kiện là $x \le h$. Nếu tính được x > h thì bắt buộc phải đặt cốt thép A_s theo tính toán, lúc này A_s chiu nén. Sau khi có x, tính A'_s theo điều kiện cân bằng lực:

$$A'_{s} = \frac{N - R_b bx}{R_{sc}}. ag{5.37}$$

d. Đánh giá và xử lí kết quả

Thực hiện như đối với trường hợp cốt thép đối xứng.

e. Vî du tính toán

Ví dụ 5.4. Theo số liệu ví dụ 5.1 yêu cầu tính cốt thép không đối xứng

Số liệu:
$$b = 250$$
; $h = 400$; $a = a' = 40$; $h_o = 360$; $Z_a = 320$ mm.

$$M = 110 \text{ kNm}; N = 500 \text{ kN}; R_b = 12.3 \text{ MPa}; R_s = R_{sc} = 365 \text{ MPa}.$$

$$\eta = 1.2$$
; $e_0 = 220$ mm; $e = 424$ mm; $\xi_R = 0.58$.

Tính:
$$e_p = 0.4(1.25h - \xi_R h_o) = 0.4(1.25 \times 400 - 0.58 \times 360) = 116.5 \text{ mm}.$$

 $\eta e_o=1.2\times220=264>e_p.$ Tính toán theo nén lệch tâm lớn $\xi_R h_o=0.58\times360=208.8$ mm. Chọn x=200 mm $<\xi_R h_o.$

$$= 446 \text{ mm}^2$$

$$A_{s} = \frac{R_{b}bx + R_{sc}A'_{s} - N}{R_{s}} = \frac{12,3 \times 250 \times 200 + 365 \times 446 - 500000}{365} = 761 \text{mm}^{2}$$

$$\mu = \frac{100 \times 761}{250 \times 360} = 0.85\% \; ; \; \mu' = \frac{100 \times 446}{250 \times 360} = 0.5\% > \mu_{\min}.$$

$$\mu_t = 0.85 + 0.5 = 1.35\% < \mu_{\text{max}}.$$

$$A_{st} = A_s + A'_s = 761 + 446 = 1207 \text{ mm}^2$$
.

So sánh với trường hợp đặt cốt thép đối xứng $A_{st}=1244~\mathrm{mm}^2$, đặt cốt thép không đối xứng dùng hết ít thép hơn nhưng chênh lệch không đáng kể.

Ví dụ 5.5. Với số liệu của ví dụ 5.3, yêu cầu tính toán cốt thép không đối xứng.

Số liệu:
$$b = 300$$
; $h = 500$; $a = a' = 40$; $h_o = 460$; $Z_a = 420$ mm;

$$R_b = 11.5$$
; $R_s = R_s' = 280$ MPa; $M = 198$ kNm; $N = 1650$ kN.

$$e_o = 120$$
 mm; $\eta = 1$; $e = 330$ mm; $\xi_R = 0.622$.

Tính $e_p = 0.4 (1.25h - \xi_R h_o) = 0.4 (1.25 \times 500 - 0.622 \times 460) = 135 \text{ mm}.$

 $\eta e_o = 120 < e_p.$ Tính theo nén lệch tâm bé.

Chọn $A_s = 0.002 \times 30 \times 46 = 2.76 \text{ cm}^2$. Bố trí $2\phi 16 \ (A_s = 4.02 \text{ cm}^2)$

Xác định x theo công thức gần đúng (5.28) có x = 361 mm.

Tính A'_s theo (5.23)

$$A'_{a} = \frac{Ne - R_{b}bx\left(h_{a} - \frac{x}{2}\right)}{R_{\kappa}Z_{a}} = \frac{1650000 \times 330 - 11,5 \times 300 \times 361(460 - 361/2)}{280 \times 420}$$
$$= 1670 \text{ mm}^{2}.$$

Tính lai x:

$$C = \frac{2R_s A_s}{1 - \xi_R} = \frac{2 \times 280 \times 402}{1 - 0.622} = 595 \ 556 \ \text{N}$$

$$x = \frac{1650000 + 595556 - 280 \times 1670 - 2800 \times 402}{11.5 \times 300 + 595556 / 460} = 350 \ \text{mm}.$$

Tính lại A's:

$$A'_{s} = \frac{1650000 \times 330 - 11,5 \times 300 \times 350(460 - 175)}{280 \times 420} = 1704 \text{ mm}^{2}.$$

Kiểm tra điều kiện cần bằng:

$$N = R_b bx + R_{sc} A'_s - \sigma_s A_s$$

Ta có:

$$\xi = \frac{x}{h_o} = \frac{350}{460} = 0,76$$

$$\sigma_s = \left(\frac{2(1-\xi)}{\xi_R} - 1\right) R_s = \left(\frac{2(1-0,76)}{0,622} - 1\right) \times 280 = 75,6 \text{ MPa}$$

 $N = 11,5 \times 300 \times 350 + 280 \times 1704 - 75,6 \times 402 = 1654229 \approx 1650000$

Vi du 5.6. Theo số liệu của ví dụ 5.5 khi cho $A_s = 0$.

$$e' = Z_{\alpha} - e = 420 - 330 = 90 \text{ mm}.$$

(cũng có thể tính
$$e' = \frac{h}{2} - \eta e_o - \alpha' = 250 - 120 - 40 = 90$$
)

$$T = \frac{Ne^{\prime}}{R_b b a^{\prime 2}} = \frac{1650000 \times 90}{11,5 \times 300 \times 40^2} = 26,9$$
.

$$\alpha = 1 + \sqrt{1 + 2T} = 1 + \sqrt{1 + 2 \times 26,9} = 8,4$$
.
 $x = \alpha a' = 8,4 \times 40 = 336 \text{ mm} < h = 500.$

$$A'_{s} = \frac{N - R_{b}bx}{R_{s}} = \frac{1650000 - 11,5 \times 300 \times 336}{280} = 1753 \text{ mm}^{2}.$$

5.5.5. Kiểm tra khả năng chịu lực

Biết kích thước tiết diện $b \times h$, chiều dài tính toán l_o , cấu tạo của cốt thép, loại vật liệu. Yêu cầu kiểm tra tiết diện có đủ khả năng chịu cặp nội lực M, N.

Chuẩn bị số liệu: tìm $R_b, R_s; E, \xi_R$. Dựa vào chiều tác dụng của M để xác định cốt thép A'_s , A_s . Tính a, a', h_o , Z_a , e_1 , e_o . Xét uốn dọc, tính η ; e.

Phân biệt trường hợp tính toán. Giả thiết có trường hợp nén lệch tâm lớn thông thường $(2a' \le x \le \xi_R h_o)$. Từ phương trình (5.14) tính được x và đặt là x_2 .

$$x_2 = \frac{N + R_s A_s - R_{sc} A'_s}{R_{\iota} b} \,. \tag{5.38}$$

Dựa vào x_2 để biện luận các trường hợp.

Trường hợp 1. Khi $2a' \le x_2 \le \xi_R h_o$, giả thiết đúng. Lấy $x = x_2$ thay vào công thức (5.13) tính $[Ne]_{gh}$ để kiểm tra.

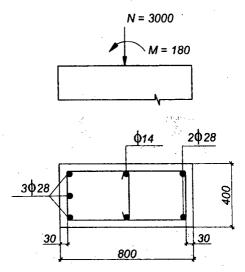
Trường hợp 2. Khi $x_2 < 2a'$, không phù hợp giả thiết, không dùng được kết quả. Xem là trường hợp đặc biệt (x < 2a'), tính $[Ne']_{gh}$ theo (5.18), kiểm tra theo điều kiện $Ne' \le [Ne']_{gh}$ với $e' = e - Z_a = \eta e_o + a' - 0.5h$.

Trường hợp 3. Khi $x_2 > \xi_R h_o$, không phù hợp giả thiết, xảy ra nén lệch tâm bé, cần tính lại x. Lúc này cần giải kết hợp hai phương trình (5.14) và (5.15) để xác định x.

$$x = \frac{(N - R_{sc}A'_s)(1 - \xi_R)h_o + R_sA_s(1 + \xi_R)h_o}{R_bb(1 - \xi_R)h_o + 2R_sA_s}.$$
 (5.39)

Điều kiện của x là $\xi_R h_o \le x \le h_o$.

Nếu tính được $x>h_o$ thì phải tính lại x, lúc này lấy $\sigma_s=-R_{sc}$


$$x = \frac{N - R_{sc} (A'_s + A_s)}{R_b b}.$$
 (5.39a)

Giá trị x theo (5.39) phải nằm trong giới hạn $h_o \le x \le h$. Nếu tính được x > h thì cũng chỉ lấy x = h để tính tiếp.

Thay giá trị x vào công thức (5.13) tính $[Ne]_{gh}$ để kiểm tra.

Khi kiểm tra khả năng chịu lực, ngoài việc kiểm tra sự làm việc trong phương mặt phẳng uốn như trên còn cần kiểm tra sự chịu lực theo phương ngoài mặt phẳng uốn khi mà b < h. Lúc này tính toán như trường hợp nén đúng tâm, tính N_{td} theo công thức (5.2) và kiểm tra điều kiện $N \le N_{gh}$.

Vi~du~5.7. Cho cột thuộc kết cấu tĩnh định có tiết diện như hình vẽ. Bêtông cấp B25, cốt thép RB400. Chiều dày lớp bảo vệ C_1 = 30 mm. Chiều dài tính toán l_o = 4 m.

Yêu cầu kiểm tra xem cột có chịu được cặp nội lực gồm M=180 kNm, N=3000 kN. Số liệu: $R_b=14.5$ MPa (không kể đến hệ số điều kiện làm việc)

$$R_s = R_{sc} = 365 ; \xi_R = 0,563; h = 800; b = 400 \text{ mm.}$$

$$a = a' = 30 + \frac{28}{2} = 44 \text{ mm}; h_o = 756; Z_a = 712 \text{ mm.}$$

$$e_1 = \frac{M}{N} = \frac{180}{3000} = 0,06 \text{ m} = 60 \text{ mm.}$$

$$\frac{1}{600} l_o = 7 \text{ mm}; \frac{1}{30} h = 27 \text{ mm. Láy } e_a = 27 \text{ mm.}$$

Cột thuộc kết cấu tĩnh định $e_o = e_1 + e_a = 60 + 27 = 87$ mm.

$$\frac{l_o}{h} = \frac{4000}{800} = 5 < 8. \text{ Bo qua uon doc } \eta = 1.$$

$$e = \eta e_o + \frac{h}{2} - a = 87 + 400 - 44 = 443 \text{ mm} = 0,443 \text{ m}.$$

Dựa vào chiều của mômen M, có $A_s' = 3\phi 28 = 1847 \text{ mm}^2$

$$A_s = 2\phi 28 = 1232 \text{ mm}^2$$
 (cốt thép $\phi 14$ là cấu tạo)
$$x_2 = \frac{N + R_s A_s R_{sc} A_s'}{R_b b} = \frac{3000 \times 1000 + 365 \times 1232 - 365 \times 1847}{14,5 \times 400} =$$

= 478 mm.

$$\xi_R h_o = 0.563 \times 756 = 425 \text{ mm. Có } x_2 > \xi_R h_o.$$

Tính lại x theo công thức (5.36)

$$x = \frac{(N - R_{sc}A'_{s})(1 - \xi_{R})h_{o} + R_{s}A_{s}(1 + \xi_{R})h_{o}}{R_{b}b(1 - \xi_{R})h_{o} + 2R_{s}A_{s}}$$

$$x = \frac{(3000000 - 365 \times 1847)0,437 \times 756 + 365 \times 1232 \times 1,563 \times 756}{14,5 \times 400 \times 0,437 \times 756 + 2 \times 365 \times 1232} = 462$$

x thỏa mãn điều kiện $\xi_R h_o < x < h_o$.

$$[Ne]_{gh} = R_h bx \left(h_o - \frac{\dot{x}}{2} \right) + R_{sc} A'_s Z_a.$$

 $[Ne]_{gh} = 14.5 \times 400 \times 462 (756 - 231) + 365 \times 1847 \times 712 = 1886 \times 10^6.$

 $[Ne]_{gh} = 1886 \text{ kNm}.$

 $Ne = 3000 \times 0,443 = 1329 \text{ kNm. Thỏa mãn } Ne \le [Ne]_{gh}.$

5.5.6. Xác định khả năng chịu lực

Biết kích thước tiết diện, l_o , bố trí cốt thép. Yêu cầu xác định khả năng chịu lực. Tiến hành giải bài toán theo hai dạng sau:

- a) Bài toán 1. Cho N tìm M với $N \leq N_{gh}$ theo công thức (5.2). Tiến hành tính toán theo mục 5.5.5, tìm được η và $[Ne]_{gh}$ hoặc $[Ne']_{gh}$ (khi $x_2 < 2a'$). Từ điều kiện $Ne = [Ne]_{gh}$ hoặc $Ne' = [Ne']_{gh}$ tìm ra e hoặc e', từ đó tính được e_o ; $M = Ne_o$.
- b) Bài toán 2. Cho e_o tìm N. Cho e_o có nghĩa là cho vị trí điểm đặt lực. Giả thiết trước một giá trị $\eta \ge 1$ để tính e và e'. Giả thiết điều kiện $x \ge 2a'$ được thỏa mãn. Lấy N từ phương trình (5.14) rồi thay vào (5.15) được:

$$x^{2} + 2(e - h_{o})x + \frac{2(R_{sc}A'_{s}e' - \sigma_{s}A_{s}e)}{R_{b}b} = 0$$
 (5.40)

Cũng có thể lập phương trình (5.40) một cách trực tiếp bằng cách lấy mômen đối với trục đi qua điểm đặt của N.

Giả thiết là $x \le \xi_R h_o$ để lấy $\sigma_s = R_s$, giải phương trình, tìm nghiệm và đặt là x_3

$$x_3 = (h_o - e) + \sqrt{(h_o - e)^2 + \frac{2(R_s A_s e - R_{sc} A'_s e')}{R_b b}}$$
 (5.41)

Trong công thức (5.41) tính $e' = e - Z_a$ và lấy theo dấu đại số. Dựa vào x_3 để phân biệt các trường hợp.

Trường hợp 1. Khi $2a' \le x_3 \le \xi_R h_o$. Các giả thiết đều thỏa mãn, xảy ra nén lệch tâm lớn thông thường, lấy $x = x_3$ và $\sigma_s = R_s$ thay vào công thức (5.14) để tính N.

Trường hợp 2. Khi $x_3 < 2a'$ – dùng điều kiện (5.18) để tính N.

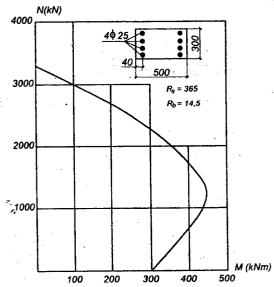
Trường hợp 3. Khi $x_3 > \xi_R h_o - x$ ảy ra nén lệch tâm bé, phải tính lại x. Giải đồng thời hai phương trình (5.40) và (5.15) để tìm x. Điều kiện của x là $\xi_R h_o < x \le h_o$.

Có được x rồi, dùng điều kiện (5.13) để rút ra công thức xác định N:

$$N = \frac{R_b bx \left(h_o - \frac{x}{2}\right) + R_{sc} A'_{s} Z_a}{e}.$$
 (5.42)

5.5.7. Biểu đồ tương tác

Biểu đồ tương tác là biểu đồ thể hiện khả năng chịu lực của tiết diện với mọi giá trị N và M.


Để tính toán và vẽ biểu đồ tương tác có thể theo một trong ba cách sau:

- 1) Cho N thay đổi trong khoảng $0 \le N \le N_{gh}$ với N_{gh} được tính theo công thức (5.2). Với mỗi giá trị N tìm được một giá trị M tương ứng theo bài toán 1 của mục trên. Mỗi cặp N và M cho một điểm trên biểu đồ.
- 2) Cho e_o thay đổi trong khoảng $0 \le e_o \le \infty$. Với mỗi e_o tìm được N tương ứng (bài toán 2 mục 5.5.6).
- 3) Cho x thay đổi. Đầu tiên cho x thay đổi trong phạm vi $0 \le x \le \xi_R h_o$, tính toán theo nén lệch tâm lớn với $\sigma_s = R_s$. Tiếp đến cho x thay đổi trong khoảng tiếp theo $\xi_R h_o < x \le h_o$, tính toán theo nén lệch tâm bé với σ_s theo công thức (5.15).

Với mỗi giá trị của x tìm được một cặp giá trị của N và M theo các công thức (5.14) và suy ra từ (5.13).

 $Vi~d\mu$: Cho tiết diện b=300; $h=500~{\rm mm},~l_o=2,8~{\rm m};$ $A_s=A'_s=4\phi25=1964{\rm mm}^2;$ $a=a'=40~{\rm mm};~R_b=14,5{\rm MPa};$ $R_s=R_{sc}=365~{\rm MPa};$ $\xi_R=0,563.$ Sau khi tính toán, vẽ được biểu đồ tương tác như trên hình 5.12.

Biểu đồ tương tác chia góc phần tư mặt phẳng làm hai

Hình 5.12. Biểu đồ tương tác của tiết diện

phần: bên trong và bên ngoài. Với mỗi cặp nội lực M và N cho trước có được một điểm. Khi điểm đó nằm ở phần bên trong thì tiết diện đủ khả năng chịu lực. Nếu điểm đó nằm ra bên ngoài, tiết diện không đủ khả năng chịu lực.

5.5.8. Họ biểu đồ không thứ nguyên

Với một tiết diện cho sẵn vẽ được một biểu đồ tương tác và chỉ có thể dùng để kiểm tra hoặc xác định khả năng chịu lực. Để tính toán cốt thép cần vẽ họ biểu đồ không thứ nguyên với b, h, A_s bất kì và thường được vẽ cho trường hợp cốt thép đối xứng.

Đặt các thông số sau:

$$\delta = \frac{a}{h_o} = \frac{a'}{h_o}; \alpha = \frac{R_{sc}A'_s}{R_bbh_o} = \frac{R_sA_s}{R_bbh_o}; \xi = \frac{x}{h_o};$$

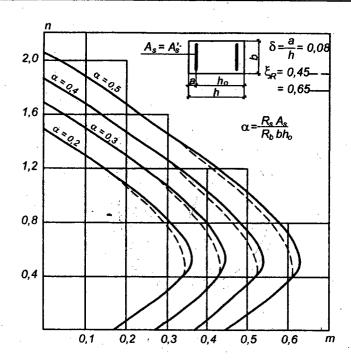
$$\beta_s = \frac{\sigma_s}{R_s} = \frac{1 - 2\xi + \xi_R}{1 - \xi_R}; n = \frac{N}{R_bbh_o}; m = \frac{N\eta e_o}{R_bbh^2}.$$
(5.43)

Biến đổi công thức (5.14) thành:

$$n = \xi + \alpha(1 - \beta_s) \tag{5.44}$$

Khi mà $\xi \le \xi_R$ thì $\sigma_s = R_s$; $\beta_s = 1$. Khi $\xi > 1 + \delta$ thì $\beta_s = -1$.

Biến đổi công thức (5.13) thành:


$$m = \xi(1 - 0.5\xi) + (1 - \delta) (\alpha - 0.5n). \tag{5.45}$$

Để lập một biểu đồ cần cho các giá trị δ , ξ_R và α . Cho biến số ξ thay đổi sẽ tính ra các cặp giá trị n và m.

Để có được một họ biểu đồ, cho α nhiều giá trị khác nhau, mỗi giá trị α có một biểu đồ. Hình 5.13 giới thiệu một họ biểu đồ như vậy.

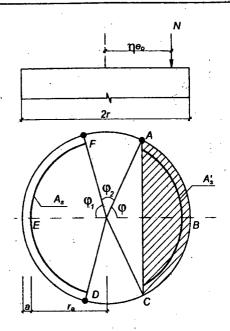
Dùng họ biểu đồ để tính toán cốt thép khá thuận lợi. Tính n và m theo công thức (5.43), giả thiết δ . Có R_b và R_s tìm ra ξ_R . Dùng họ biểu đồ với δ và ξ_R đã biết, với n và m tìm được một điểm ứng với giá trị α .

$$A_s = \frac{\alpha R_b b h_o}{R_s}. ag{5.46}$$

Hình 5.13. Ví dụ về họ biểu đổ tương tác không thứ nguyên

5.6. TÍNH TOÁN CẦU KIỆN CÓ TIẾT DIỆN TRÒN

5.6.1. Sơ đồ và giả thiết


Cốt thép trong tiết diện tròn đặt đều theo chu vi, có từ sáu thanh trở lên được mô hình hóa thành phân bố đều, liên tục.

Trường hợp thông thường tiết diện có vùng nén và vùng kéo như trên hình 5.14.

Vùng nén ABC được giới hạn bởi góc 2φ , trong đó xem ứng suất trong bêtông phân bố đều, đạt giá trị R_b , ứng suất trong cốt thép chịu nén A'_s đạt giá trị R_{sc} .

Bỏ qua vùng gần trục trung hòa AF và CD giới hạn bởi góc φ_2 .

Bỏ qua sự làm việc của bêtông chịu kéo. Cốt thép chịu kéo A_s phân bố trong đoạn FED giới hạn bởi góc $2\phi_1$ mà $\phi_1=\pi-\phi-\phi_2$. Ứng suất trong cốt thép chịu kéo đạt R_s .

Hình 5.14. Sơ đổ tính toán tiết diện tròn

5.6.2. Điều kiện và công thức

Vận dụng điều kiện tổng quát (5.11) và (5.12) cho tiết diện tròn với trục lấy mômen đi qua trọng tâm tiết diện và vuông góc với mặt phẳng uốn. Điều kiện được viết thành:

$$N\eta e_o \leq [Ne_u]_{gh} = M_B + M'_A + M_A;$$
 (5.47)

$$N = N_{gh} = N_B + N_A - N_A , \qquad (5.48)$$

trong đó: N_B , M_B – nội lực dọc và mômen uốn trong bêtông vùng nén (mômen lấy đối với trục đã dẫn);

 N_A , M_A , N_A , M_A – như trên của cốt thép chịu nén và kéo.

Sau khi tiến hành lập biểu thức để tính các giá trị vừa nêu, có được:

$$[Ne_{u}]_{gh} = \frac{2}{3\pi} R_{b} A r \sin^{3} \varphi + \frac{R_{sc} A_{st}}{\pi} r_{a} \sin \varphi + R_{s} A_{st} \varphi_{s} Z_{s}; \qquad (5.49)$$

$$N_{gh} = \frac{R_b A}{\pi} \left(\varphi - \frac{\sin 2\varphi}{2} \right) + \frac{R_{sc} A_{st}}{\pi} \varphi - R_s A_{st} \varphi_s, \qquad (5.50)$$

trong đó: r - bán kính tiết diện;

A – diện tích tiết diện, $A = \pi r^2$;

 A_{st} – diện tích tiết diện toán bộ cốt thép dọc;

 r_a – bán kính của vòng cốt thép, $r_a = r - a$;

a – khoảng cách từ tâm cốt thép đến mép tiết diện;

 $\phi_s = \frac{\phi_1}{\pi} \text{ với } \phi_1 - \text{góc ở tâm của cốt thép chiu kéo;}$

 Z_s – khoảng cách từ hợp lực trong cốt thép chịu kéo đến trục lấy mômen;

φ - góc giới hạn của vùng nén.

Tiêu chuẩn TCXDVN 356 – 2005 đưa ra một số công thức thực nghiệm để xác định $\phi_{\rm s}$ và $Z_{\rm s}$.

$$\varphi_s = \omega_1 - \omega_2 \xi \quad \text{v\'oi} \quad \xi = \frac{\varphi}{\pi}; \tag{5.51}$$

$$Z_s = (0.2 + 1.3\xi) r_a.$$
 (5.52)

Khi xảy ra $\xi \le 0.15$ thì lấy $\xi = 0.15$ để tính ϕ_s và Z_s .

Nếu tính được $\varphi_s < 0$ thì lấy $\varphi_s = 0$ và $\omega_1 = \omega_2 = 0$ để tính tiếp.

$$\omega_1 = \eta_r - \frac{\sigma_{sp}}{R_s} ;$$

$$\omega_2 = \omega_1 \delta$$
;

$$\delta = 1.5 + 6R_s \times 10^{-4}$$

trong đó: η_r hệ số. Với cốt thép có giới hạn chảy thực tế $\eta_r = 1$. Với cốt thép có giới hạn chảy quy ước $\eta_r = 1,1$,

 σ_{sp} – ứng suất trong cốt thép ứng lực trước. Với cốt thép thường σ_{sp} = 0.

Như vậy, với cốt thép, có giới hạn chảy, xác định ϕ_s theo công thức sau:

$$\varphi_s = 1 - \xi \delta = 1 - \xi (1.5 + 6R_s 10^{-4}).$$

5.6.3. Kiểm tra khả năng chịu lực

Biết đường kính tiết diện D, l_o , bố trí cốt thép (A_{st}, r_a) . Yểu cầu kiểm tra xem tiết diện có đủ khả năng chịu cặp nội lực M và N.

Chuẩn bị số liệu: Tìm $R_b,\,R_s,\,R_{sc}$, tính $r,\,A,\,e_1,\,e_o$. Xét uốn dọc, tính hệ số uốn dọc η . Trường hợp $\frac{l_o}{D} \le 7$ có thể bỏ qua uốn dọc, lấy $\eta=1$.

Giả thiết $\xi > 0,15$. Cho $N = N_{gh}$, từ phương trình (5.50) rút ra phương trình của φ :

$$\varphi = \frac{\pi (N + R_s A_{st} \omega_1) + 0.5 R_b A \sin 2\varphi}{R_b A + A_{st} (R_{sc} + \omega_2 R_s)}.$$
 (5.53)

Nếu tính được $\xi = \frac{\varphi}{\pi} < 0.15$ thì lấy $\xi = 0.15$ để tính φ_s theo công thức (5.51) và phương trình của φ sẽ là:

$$\varphi = \frac{\pi (N + R_s A_{st} \varphi) + 0.5 R_b A \sin 2\varphi}{R_b A + R_{sc} A_{st}}.$$
 (5.54)

Giải phương trình siêu việt (5.53), (5.54) bằng chương trình máy tính, dùng phương pháp đồ thị hoặc gần đúng dần. Có được φ (đơn vị của φ là Radian) tìm sin φ , sin³ φ , tính φ_s , Z_s , tính $[Ne_u]_{gh}$ theo công thức (5.49) và kiểm tra theo điều kiện (5.47): $N\eta e_o \leq [Ne_u]_{gh}$.

5.6.4. Tính cốt thép

Biết đường kính D, l_o . Yêu cầu tính cốt thép để chịu cặp nội lực M, N. Chuẩn bị số liệu: giả thiết a, tính r_a . Tìm các số liệu khác như trong bài toán kiểm tra, xét uốn dọc, tính η .

Tính toán cốt thép A_{st} bằng cách giải đồng thời hai phương trình siêu việt (5.49) và (5.50) với $[Ne_u]_{gh} = N\eta e_o$ và $N_{gh} = N$ để xác định hai ẩn là φ và A_{st} .

Thường giải bằng phương pháp gần đúng dần.

5.6.5. Biểu đồ tương tác

Với tiết diện cho trước, để vẽ biểu đồ tương tác thì chọn φ làm biến số độc lập. Cho φ thay đổi trong khoảng $0 < \varphi < \pi$. Ứng với mỗi giá trị của φ tìm được hai giá trị N và $N\eta e_o$ dựa vào hai phương trình cơ bản (5.50) và (5.49).

Để tính và vẽ họ biểu đồ không thứ nguyên đặt các kí hiệu sau:

$$\xi = \frac{\varphi}{\pi}; \quad n = \frac{N}{R_b A}; \quad m = \frac{N \eta e_o}{R_b A r}; \quad \alpha = \frac{R_s A_{st}}{R_b A}. \tag{5.55}$$

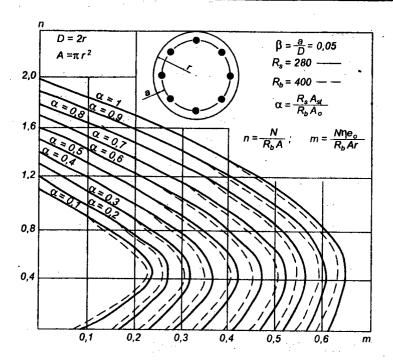
Chọn thông số $\beta=\frac{a}{D}$. Thông thường $\beta=0.05\div0.1.$

Với các cốt thép có giới hạn chảy và $R_s \le 400$ MPa thì $R_s = R_{sc}$ và $\omega_1 = 1$.

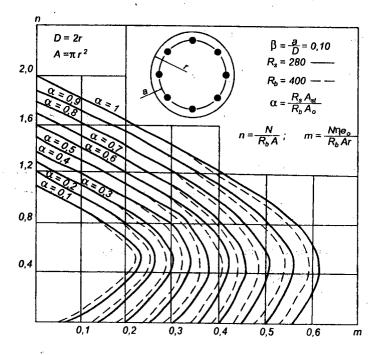
$$\delta = 1.5 + 6R_s 10^{-4}$$
; $\varphi_s = 1 - \delta \xi$; khi $\varphi_s < 0$ thì lấy $\varphi_s = 0$.
 $Z_s = (0.2 + 1.3\xi) r_s = (0.2 + 1.3\xi) (1 - 2\beta) r$.

Biến đổi công thúc (5.50) và (5.49) thành:

$$n = \xi(1+\alpha) - \frac{1}{2\pi}\sin 2\varphi - \alpha\varphi_s; \qquad (5.56)$$


$$m = \frac{2}{3\pi}\sin^3\varphi + \frac{1}{\pi}\alpha(1-2\beta)\sin\varphi + \alpha\varphi_s(1-2\beta)(0,2+1,3\xi) \quad (5.57)$$

Mỗi họ biểu đồ được vẽ với hai thông số cố định là β và R_s . Mỗi biểu đồ ứng với một giá trị α ($\alpha = 0.10 \div 1$). Cho α một số giá trị khác nhau sẽ có họ biểu đồ. Khi vẽ biểu đồ cần loại bỏ các cặp giá trị có n < 0.


Dùng họ biểu đồ để tính cốt thép như sau: tính n và m theo công thức (5.55) từ đó tìm được một điểm trên họ biểu đồ, suy ra α .

$$A_{st} = \frac{\alpha R_b A}{R_s} \,. \tag{5.58}$$

Hình 5.15 và 5.16 giới thiệu một số họ biểu đồ của tiết diện tròn.

Hình 5.15. Họ biểu đồ tương tác tiết diện tròn với β = 0,05

Hình 5.16. Họ biểu đổ tương tác tiết diện tron với β = 0,10

VÀ CHỊU XOẮN CẤU KIỆN CHỊU KÉO

A. CẤU KIỆN CHỊU KÉO

6.1. ĐẠI CƯƠNG VỀ CẤU KIỆN CHỊU KÉO

Cấu kiện chịu kéo là cấu kiện chịu tác dụng của nội lực chủ yếu là lực kéo N, ngoài ra có thể chịu thêm mômen uốn M, lực cắt Q. Khi chỉ có lực kéo N tác dụng đúng trục, có cấu kiện kéo đúng tâm. Khi vừa có N vừa có M sẽ có trường hợp kéo lệch tâm.

Cấu kiện chịu kéo thường gặp là các thanh căng trong vòm, thanh kéo trong dàn, thành của đường ống dẫn có áp, thành của bể chứa, thành của xilô.

Cấu kiện chịu kéo thường có tiết diện chữ nhật, đặt cốt thép dọc và cốt thép ngang liên kết với nhau thành khung hoặc lưới. Với cấu kiện kéo đúng tâm cốt thép dọc đặt đều theo chu vi. Với cấu kiện kéo lệch tâm cốt thép dọc nên đặt tập trung trên cạnh b vuông góc với mặt phẳng uốn, có giá trị là A_s và A_s . Tỉ số cốt thép $\mu_{\min} = 0.05\%$ khi kéo lệch tâm lớn và $\mu_{\min} = 0.06\%$ khi kéo lệch tâm bé.

Kéo lệch tâm bé là khi toàn bộ tiết diện đều chịu kéo.

Kéo lệch tâm lớn khi trên tiết diện có một phần chịu nén.

Cốt thép dọc chịu kéo nên dùng nguyên thanh, nếu cần nối phải dùng hàn, hai đầu thanh cần được neo chắc chắn vào các bộ phận khác của kết cấu.

Cốt thép ngang trong cấu kiện chịu kéo có nhiệm vụ giữ vị trí cốt thép dọc, có khoảng cách không quá 500 mm. Trường hợp kéo lệch tâm lớn, khi trong tính toán có kể đến cốt thép chịu nén thì cấu tạo cốt thép đai cần tuân theo các quy định đối với cấu kiện chịu nén.

Trong trường hợp cấu kiện chịu lực cắt khá lớn, cần phải tính toán thì cốt thép đai còn được tính toán để chịu lực cắt và được cấu tạo theo yêu cầu chịu lực cắt.

6.2. TÍNH TOÁN CẤU KIỆN KÉO ĐÚNG TÂM

Bỏ qua sự chịu kéo của bêtông, chỉ kể đến khả năng chịu lực của cốt thép, tính toán cấu kiện kéo đúng tâm theo điều kiện (6.1)

$$N \le N_{gh} = R_s A_{st} , \qquad (6.1)$$

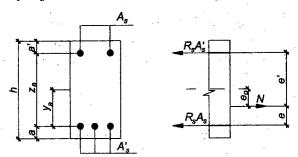
trong đó: N - lực kéo tính toán;

 N_{gh} – khả năng chịu lực;

 A_{st} – diện tích tiết diện toàn bộ cốt thép dọc.

Đặt $\mu_t = \frac{100\,A_{st}}{A}$ với A là diện tích tiết diện. Với cấu kiện kéo đúng tâm nên lấy $\mu_t = 0.4 \div 3\%$.

6.3. TÍNH TOÁN CẤU KIỆN KÉO LỆCH TÂM BÉ


6.3.1. Điều kiện xảy ra kéo lệch tâm bé

Kéo lệch tâm bé khi toàn bộ tiết diện đều chịu kéo, đó là khi lực dọc N đặt trong phạm vi giữa hai lớp cốt dọc A_s và A_s . Cốt thép A_s đặt gần lực N, chịu kéo nhiều hơn, cốt thép A_s đặt xa N, chịu kéo ít hơn.

Điều kiện xảy ra kéo lệch tâm bé là:

$$e_o = \frac{M}{N} \le y_a, \tag{6.2}$$

trong đó: y_a – khoảng cách từ trọng tâm tiết diện đến trọng tâm cốt thép A_s . Với tiết diện chữ nhật $y_a=0.5h-a$.

Hình 6.1. Sơ đổ tính toán tiết diện kéo lệch tâm bé

6.3.2. Điều kiện và công thức cơ bản

Xem rằng ở trạng thái giới hạn ứng suất trong cốt thép A_s và A'_s đều đạt đến giá trị cường độ tính toán R_s .

Điều kiện và công thức tính toán được thành lập bằng cách lấy mômen đối với trục đi qua trọng tâm A_s và A_s'

$$Ne \leq [Ne]_{gh} = R_s A_s' Z_a; \qquad (6.3)$$

$$Ne' \le [Ne']_{gh} = R_s A_s Z_a , \qquad (6.4)$$

trong đó: e, e' – khoảng cách từ điểm đặt lực dọc lệch tâm đến trọng tâm cốt thép A_s và A'_s .

Với tiết diện chữ nhật:

$$e = \frac{h}{2} - e_o - a; \tag{6.5}$$

$$e' = \frac{h}{2} + e_o - a'; (6.6)$$

 Z_a – khoảng cách giữa trọng tâm của A_s và A'_s .

6.3.3. Vận dụng

Với bài toán kiểm tra khả năng chịu lực, tính vế trái và vế phải của biểu thức (6.3) và (6.4) rồi so sánh.

Với bài toán tính cốt thép, từ (6.3) rút ra công thức tính A'_s và từ (6.4) rút ra công thức tính A_s .

Tính toán cốt thép chịu kéo lệch tâm bé cần chú ý: khi tăng giá trị N thì cả A_s và A'_s đều tăng, còn khi tăng M thì A_s tăng và A'_s giảm. Trong một đoạn cấu kiện có N là hằng số và M thay đổi thì để tính A_s cần dùng giá trị M lớn nhất còn để tính A'_s phải lấy M nhỏ nhất.

6.4. TÍNH TOÁN CẦU KIỆN LỆCH TÂM LỚN TIẾT DIỆN CHỮ NHẬT

6.4.1. Điều kiện xảy ra kéo lệch tâm lớn

Kéo lệch tâm lớn khi lực dọc lệch tâm N đặt ra ngoài phạm vi cốt thép. Lúc này tiết diện có một phần chịu kéo với cốt thép A_s và một phần chịu nén với cốt thép A_s . Điều kiện để xảy ra kéo lệch tâm lớn (h.6.2) là:

$$e_o = \frac{M}{N} > 0.5 h - a'. {(6.7)}$$

6.4.2. Điều kiện và công thức cơ bản

Sơ đồ ứng suất ở trạng thái giới hạn được lấy theo như cấu kiện chịu uốn hoặc nén lệch tâm lớn.

Điều kiện và công thức được viết như sau:

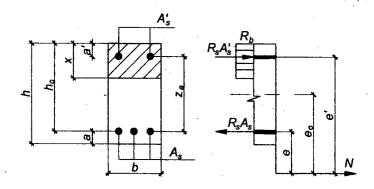
$$Ne \leq [Ne]_{gh} = R_b bx \left(h_o - \frac{x}{2}\right) + R_{sc} A'_s Z_a; \qquad (6.8)$$

$$N = N_{gh} = R_s A_s - R_b bx - R_{sc} A_s', (6.9)$$

trong đó:
$$e = e_o - \frac{\dot{n}}{2} + a'$$
. (6.10)

Điều kiện để dùng được các công thức trên là:

$$2a' \le x \le \xi_R h_o. \tag{6.11}$$


Giá trị của ξ_R như trong cấu kiện chịu uốn và nén lệch tâm.

Trường hợp đặc biệt, khi xảy ra x < 2a' thì điều kiện (6.6) được thay bằng điều kiện (6.12) bằng cách lấy mômen đối với trục qua trọng tâm A'_s và xem gần đúng hợp lực của bêtông vùng nén đặt trùng với hợp lực trong cốt thép A'_s

$$Ne' \le [Ne']_{gh} = R_s A_s Z_a , \qquad (6.12)$$

với

$$e' = e_o + \frac{h}{2} - a'$$
 (6.13)

Hình 6.2. Sơ đổ tính toán tiết diện kéo lệch tâm lớn

6.4.3. Kiểm tra khả năng chịu lực

Biết kích thước tiết diện và cốt thép. Yêu cầu kiểm tra xem tiết diện có đủ khả năng chịu cặp nội lực M, N.

Từ phương trình (6.9) rút ra công thức tính x:

$$x = \frac{R_s A_s - R_{sc} A'_s - N}{R_b b}.$$
 (6.14)

Khi x thỏa mãn điều kiện hạn chế thì thay vào vế phải của công thức (6.6) để tính $[Ne]_{gh}$ và so sánh với Ne.

Khi $x > \xi_R h_o$ thì cũng tính theo công thức (6.8) nhưng trong đó lấy $x = \xi_R h_o$.

Khi x < 2a', tính vế phải của (6.12) rồi so sánh với Ne'.

6.4.4. Tính toán cốt thép

Biết kích thước tiết diện và cặp nội lực M, N. Yêu cầu xác định cốt thép A_s , A'_s .

Có hai phương trình (6.8) và (6.9) để xác định ba ẩn số là x, A_s , A_s . Bài toán có nhiều nghiệm. Chỉ cần một nghiệm hợp lí là được.

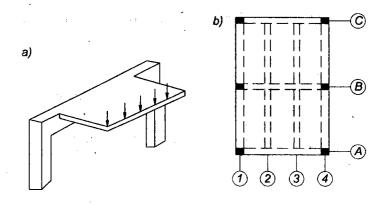
Thông thường cho x một giá trị trong khoảng hạn chế $2a' \le x \le \xi_R h_o$. Từ phương trình (6.8) rút ra công thức tính A'_s :

$$A'_{s} = \frac{Ne - R_{b}bx\left(h_{o} - \frac{x}{2}\right)}{R_{sc}Z_{a}}.$$
(6.15)

Khi tính được $A_s' > 0$ thì đem x và A_s' vào phương trình (6.9), rút ra công thức tính A_s :

$$A_{s} = \frac{R_{b}bx + R_{sc}A'_{s} + N}{R_{s}}.$$
 (6.16)

Khi tính được $A'_s < 0$ thì giảm x để tính lại. Nếu đã lấy x = 2a' mà vẫn có $A'_s < 0$ thì chọn A'_s theo cấu tạo và tính A_s theo trường hợp đặc biệt, rút ra từ phương trình (6.12):


$$A_{s} = \frac{Ne'}{R_{s}Z_{a}} = \frac{N(e + Z_{a})}{R_{s}Z_{a}}.$$
 (6.17)

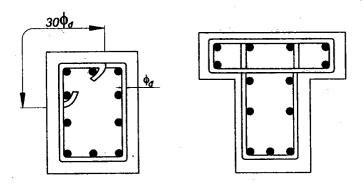
B. CẤU KIỆN CHỊU XOẮN

6.5. ĐẠI CƯƠNG VỀ CẤU KIỆN CHỊU XOẮN

Mômen xoắn, kí hiệu M_t , là mômen tác dụng trong mặt phẳng vuông góc với trục cấu kiện.

Trong kết cấu bêtông cốt thép hầu như không gặp hiện tượng xoắn thuần túy mà thường gặp xoắn kết hợp với uốn. Xét dầm liên kết cứng với cột và có bản ở một phía, tải trọng trên bản gây ra xoắn cho dầm (h.6.3a). Xét khung biên có dầm khung liên kết cứng với cột và các dầm sàn liên kết cứng với dầm khung (h.6.3b), tải trọng trên các dầm trục 2, 3 gây ra mômen xoắn cho dầm khung trục A và C.

Hình 6.3. Một số trường hợp dầm chịu xoắn


Khả năng chịu xoắn của bêtông cốt thép kém hơn so với khả năng chịu uốn do đó trong nhiều trường hợp mômen xoắn tuy không lớn cũng gây ra ảnh hưởng đáng kể, làm xuất hiện khe nứt. Khi thiết kế kết cấu BTCT càng tránh hoặc giảm được mômen xoắn càng tốt.

Thí nghiệm cấu kiện BTCT chịu xoắn thuần túy thấy rằng các vết nứt nghiêng với trục góc 45° và chạy vòng quanh cả các phía theo dạng cuốn lò xo. Nguyên nhân là mômen xoắn gây ra ứng suất tiếp τ. Hợp lực của τ tạo ra ứng suất chính kéo và ứng suất chính nén theo phương xiên 45° . Ứng suất chính kéo khi vượt quá cường độ chịu kéo của bêtông sẽ gây ra vết nứt. Ứng suất chính nén nếu quá lớn có thể làm võ bêtông.

Trường hợp dầm chịu xoắn và uốn đồng thời thì sự làm việc phức tạp hơn. Các vết nứt xiên xuất hiện trên ba mặt dầm còn mặt thứ tư chịu nén, tạo thành tiết diện vênh. Sự phá hoại xảy ra theo tiết diện vênh đó (xem hình 6.5, 6.6).

Để chịu tác dụng của uốn và xoắn trong dầm cần đặt các cốt thép dọc theo chu vi tiết diện và các cốt đai khép kín. Các cốt thép dọc phải được neo chắc vào gối với chiều dài l_{an} theo công thức (3.10). Cốt thép đai trong khung buộc cần làm thành vòng kín và neo chắc chắn ở hai đầu (đoạn nối chồng lên nhau dài $30\phi_{\rm dai}$). Với khung thép hàn tất cả các thanh cốt thép ngang theo cả hai phương cần được hàn chắc chắn vào các thanh cốt thép dọc.

Cấu kiện có tiết diện chữ T chữ I cần đặt cốt đai thành vòng kín trong cả sườn và cánh (h.6.4).

Hình 6.4. Cấu tạo cấu kiện chịu uốn - xoắn

6.6. ĐIỀU KIỆN VỀ KHẢ NĂNG CHỊU LỰC

Cấu kiện chịu uốn – xoắn có thể bị phá hoại theo tiết diện vênh do các cốt thép dọc và cốt đai đạt đến giới hạn về cường độ, cũng có thể bị phá hoại do ứng suất nén chính làm phá vỡ bêtông. Tiêu chuẩn TCXDVN 356 – 2005 quy định cần kiểm tra cấu kiện chịu uốn – xoắn theo hai điều kiện:

a. Điều kiên han chế ứng suất nén chính

$$M_t \le 0.1 R_b c d^2$$
, (6.18)

trong đó: M_t – mômen xoắn;

 R_b – cường độ tính toán về nén của bêtông. Với bêtông cấp cao hơn B30 được lấy như đối với bêtông cấp B30; c, d – kích thước cạnh tiết diện trong đó d là cạnh bé.

b. Điều kiên theo tiết diện vênh

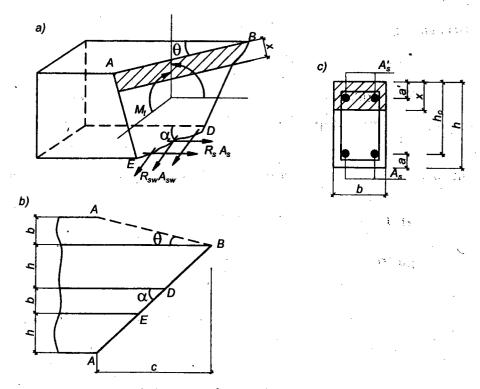
$$M_t \le M_{gh} , \qquad (6.19)$$

trong đó: M_{gh} – giới hạn về khả năng chịu xoắn của tiết diện vênh.

Tiêu chuẩn TCXDVN 356 – 2005 đưa ra ba sơ đồ để tính M_{gh} , các sơ đồ ứng với vùng nén khác nhau. Các công thức được lập cho tiết diện chữ nhật có bề rộng b, chiều cao h (h – cạnh trong phương mặt phẳng uốn).

6.7. TÍNH TOÁN VỚI SƠ ĐỒ 1

6.7.1. Sơ đồ, giả thiết


Sơ đồ 1 được tính với tác dụng đồng thời của mômen uốn M và mômen xoán M_t , vùng chịu nén ở về phía bị nén do uốn. Sơ đồ tiết diện vênh ABDE thể hiện trên hình 6.5a. Cạnh vùng nén AB nghiêng với trục dầm góc θ , chiều cao vùng nén x. Hình chiếu của tiết diện vênh lên trục dầm là $C = AB\cos\theta$. Cạnh chịu kéo DE nghiêng với trục dầm góc α . Đem khai triển biết diện vênh ra trên mặt phẳng có được dạng như trên hình 6.5b. Chiếu tiết diện vênh lên mặt phẳng vuông góc với trục dầm có được hình 6.5c.

Dựa trên kết quả thí nghiệm đưa ra các giả thiết sau:

- Bỏ qua khả năng chịu kéo của bêtông.
- Úng suất trong các cốt thép dọc chịu kéo đạt đến cường độ tính toán R_s , cốt đai đạt đến R_{sw} .
- Vùng nén AB được xem là phẳng, ứng suất trong vùng nén phân bố đều và bằng R_b . Ứng suất trong cốt thép vùng nén lấy bằng R_{sc} .

Điều kiện để dùng được các giả thiết trên đây là:

$$2a' \le x \le \xi_R h_o$$
.

Hình 6.5. Sơ đổ tinh toán với M và M_t

6.7.2. Công thức xác định M_{gh}

a. Lập công thức M_{gh}

Xét tiết diện vênh ABDE chịu tác dụng đồng thời mômen uốn M và mômen xoắn M_t với sơ đồ ứng suất như đã mô tả. Lập phương trình mômen đối với trục đi qua hợp lực của vùng nén và theo phương AB sẽ được:

$$M\sin\theta + M_t\cos\theta = R_sA_sZ_s\sin\theta + \sum_{sw}R_{sw}Z_w\cos\theta$$
, (6.20)

trong đó: Z_s, Z_w – cánh tay đòn nội lực của cốt thép dọc và cốt thép đai. Với mức độ gần đúng có thể chấp nhận $Z_s=Z_w=Z=\left(h_o-\frac{x}{2}\right)$.

Đặt $\chi = \frac{M}{M_r}$, biến đổi phương trình (6.20) thành:

$$M_t = \frac{(R_s A_s \mathrm{tg}\theta + \sum R_{sw} A_{sw})Z}{1 + \chi \mathrm{tg}\theta} \; \cdot \label{eq:mt_t}$$

Biểu thức vừa viết là phương trình cân bằng. Liên hệ với điều kiện về khả năng chịu lực thấy rằng vế phải của biểu thức chính là khả năng chịu xoắn của tiết diện vênh, được kí hiệu là M_{gh} .

Kết hợp với điều kiện (6.19) viết được:

$$M_t \le M_{gh} = \frac{(R_s A_s tg\theta + \sum R_{sw} A_{sw})Z}{1 + \chi tg\theta}. \tag{6.21}$$

Dùng một số phép biến đổi toán học để biểu diễn M_{gh} thành dạng dễ vận dụng hơn.

Gọi s là khoảng cách giữa các cốt đai thì trong phạm vi cạnh DE có số lượng cốt đai bằng $\frac{DE\cos\alpha}{s}$ mà $DE = \frac{b}{\sin\alpha}$.

Vậy:
$$\sum A_{sw} = A_{sw} \frac{b}{s} \times \frac{\cos \alpha}{\sin \alpha} = \frac{A_{sw}b}{s \operatorname{tg}\alpha}$$

Hình triển khai 6.5b cho thấy tg $\alpha = \frac{c}{2h+b}$.

Như vậy

$$\sum R_{sw}A_{sw} = \frac{R_{sw}A_{sw}b}{s} \times \frac{c}{2h+b}.$$

Cũng từ hình triển khai cho thấy tg $\theta = \frac{b}{c}$.

Biến đổi vế phải của biểu thức (6.21) thành:

$$M_{gh} = \frac{R_s A_s (1 + \varphi_w \delta \lambda^2) Z}{\lambda + \chi}, \qquad (6.22)$$

trong đó:

$$\delta = \frac{b}{2h+b}; \quad \lambda = \frac{c}{b}.$$

 φ_w – đặc trưng quan hệ giữa cốt thép ngang và cốt thép dọc,

$$\varphi_w = \frac{R_{sw}A_{sw}}{R_sA_s} \times \frac{b}{s}. \tag{6.23}$$

Theo kết quả nghiên cứu thấy rằng nên hạn chế ϕ_w trong khoảng:

$$\varphi_{w \min} \le \varphi_w \le \varphi_{w \max}; \tag{6.24a}$$

$$\varphi_{w \min} = \frac{0.5}{1 + \frac{M}{2\varphi_{w}M_{u}}}; \tag{6.24b}$$

$$\varphi_{w \text{ max}} = 1.5 \left(1 - \frac{M}{M_{u}} \right), \tag{6.24c}$$

trong đó: M_u – mômen uốn lớn nhất mà tiết diện thẳng góc với trục cấu kiện chịu được. Xác định M_u theo bài toán kiểm tra khả năng chịu lực của cấu kiện chịu uốn ở chương 4.

Nếu giá trị ϕ_w tính được từ công thức (6.23) nhỏ hơn $\phi_{w \text{ min}}$ thì cần nhân giá trị R_sA_s ở công thức (6.23) và (6.25) với tỉ số $\frac{\phi_w}{\phi_{w \text{min}}}$.

b. Chiều cao vùng nén

Chiều cao vùng nén x được xác định từ điều kiện cân bằng lực. Hợp lực trong bêtông vùng nén là $R_b(AB)$ x tác dụng vuông góc với phương AB. Chiếu các lực lên phương trục dầm:

$$R_b(AB) x \sin\theta + R_{sc} A'_s - R_s A_s = 0.$$

Chú ý rằng (AB) $\sin\theta = b$; rút ra phương trình:

$$R_b b x = R_s A_s - R_{sc} A_s'. \tag{6.25}$$

Giá trị của x cần thỏa mãn điều kiện $x \leq \xi_R h_o$. Khi trong tính toán có kể đến A_s' thì còn cần điều kiện $x \geq 2a'$.

Khi kể đến A_s' mà xảy ra x < 2a' (kể cả x < 0) thì tạm xem $A_s' = 0$ để tính $x_1 = \frac{R_s A_s}{R_b b}$.

Khi tính được $x > \xi_R h_o$ chúng tỏ A_s quá lớn, lúc này trong biểu thức (6.22) cần nhân $A_s R_s$ với tỉ số $\frac{\xi_R h_o}{r}$.

c. Cánh tay đòn nội lực Z

Trường hợp x thỏa mãn điều kiện hạn chế thì có thể tính Z gần đúng như sau:

$$Z = h_o - \frac{x}{2}. \tag{6.26a}$$

Trường hợp có kể đến A'_s mà x < 2a' thì:

$$Z = \max \left(Z_a = h_o - a'; Z_b = h_o - \frac{x_1}{2} \right).$$
 (6.27)

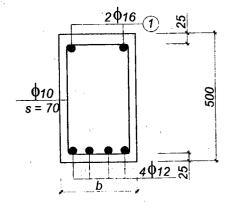
d. Giá tri hình chiếu của tiết diện C

Để tính được M_{gh} theo công thức (6.22) còn cần xác định giá trị của hình chiếu C theo điều kiện tiết diện vênh được khảo sát là nguy hiểm nhất, ứng với giá trị M_{gh} bé nhất. Giá trị C được xác định bằng phương pháp lặp gần đúng dần, tính đạo hàm của M_{gh} theo C hoặc các phương pháp khác.

Đồng thời cần hạn chế:

$$C \le C_o = 2h + b. \tag{6.28}$$

6.7.3. Ví dụ tính toán


Dầm tiết diện chữ nhật b=300; h=500 mm bêtông cấp B20. Mômen uốn M=120 kNm; mômen xoắn $M_t=30$ kNm. Cốt thép dọc nhóm CII, cốt đai nhóm CI. Yêu cầu bố trí cốt thép, kiểm tra khả năng chịu lực.

Số liệu: $R_b = 11.5$ MPa; cốt thép CII có $R_s = R_{sc} = 280$; cốt thép đai CI có $R_{sw} = 175$ MPa; $\xi_R = 0.64$.

Dự kiến bố trí cốt thép như hình vẽ:

$$A_s = 4\phi 22 = 1520 \text{ mm}^2;$$

 $A_s' = 2\phi 16 = 402 \text{ mm}^2.$

Chiều dày lớp bảo vệ 25 mm.

$$a = 25 + \frac{22}{2} = 36 \text{ mm}; h_o = 464;$$

 $a' = 25 + \frac{16}{2} = 33 \text{ mm}.$

Cốt thép đai $\phi 10$ có $A_{sw} = 78,5 \text{ mm}^2$

Khoảng cách s = 70 mm.

Tính toán:

a) Kiểm tra điều kiện (6.18) về hạn chế ứng suất nén chính với c = 500; d = 300 mm;

$$0.1R_bcd^2 = 0.1 \times 11.5 \times 500 \times 300^2 = 51.75 \times 10^6 = 51.75 \text{ kNm};$$

 $M_t = 30 < 0.1R_bcd^2 = 51.75.$

b) Kiểm tra tiết diện vênh:

$$\chi = \frac{M}{M_t} = \frac{120}{30} = 4;$$

$$\delta = \frac{b}{2h + b} = \frac{300}{2 \times 500 + 300} = 0.23;$$

$$x = \frac{R_s A_s - R_{sc} A'_s}{b R_b} = \frac{280 \times 1520 - 280 \times 402}{300 \times 11.5} = 90.6 \text{ mm}.$$

Thỏa mãn điều kiện x > 2a' = 66; $x < \xi_R h_o = 290$.

$$M_{u} = R_{b}bx \left(h_{o} - \frac{x}{2}\right) + R_{sc}A'_{s}(h_{o} - a') =$$

$$= 11,5 \times 300 \times 90,6 (464 - 45,3) + 280 \times 402 (464 - 33) = 188 \times 10^{6}$$

$$M_{u} = 188 \text{ kNm};$$

$$\phi_{w} = \frac{R_{sw}A_{sw}}{R_{s}A_{s}} \times \frac{b}{s} = \frac{175 \times 78,5}{280 \times 1520} \times \frac{300}{70} = 0,138;$$

$$\phi_{w \min} = \frac{0,5}{1 + \frac{M}{200 M}} = \frac{0,5}{1 + \frac{120}{2 \times 0.138 \times 188}} = 0,15;$$

$$\phi_{w \max} = 1.5 \left(1 - \frac{M}{M_u} \right) = 1.5 \left(1 - \frac{120}{188} \right) = 0.54$$

Xảy ra $\phi_w < \phi_{w \; \rm min}$ vì vậy phải nhân $R_s A_s$ với $\frac{\phi_w}{\phi_{w \; \rm min}} = \frac{0.138}{0.15} = 0.92$.

Tính lại
$$x = \frac{0.92 \times 280 \times 1520 - 280 \times 402}{300 \times 11.5} = 80.8 \text{ mm};$$
 $Z = h_o - \frac{x}{2} = 464 - 40.4 = 423.6 \text{ m};$ $\lambda = \frac{C}{h} = \frac{C}{300}.$

Đưa các giá trị đã tính được vào biểu thức tính M_{gh} :

$$M_{gh} = \frac{R_s A_s (1 + \phi_w \delta \lambda^2) Z}{\lambda + \chi} \text{ cần nhân } R_s A_s \text{ với } \frac{\phi_w}{\phi_{w \min}} = 0,92 \,.$$

$$M_{gh} = \frac{0.92 \times 280 \times 1520 \left(1 + 0.138 \times 0.23 \frac{C^2}{300^2}\right) 423.6}{\frac{C}{300} + 4}$$

Rút gọn thành
$$M_{gh} = \frac{17548C^2 + 49758 \times 10^6}{C + 1200}$$
.

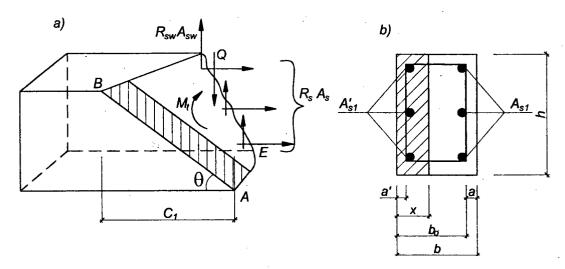
Tìm C để có M_{gh} bé nhất bằng cách xét đạo hàm bậc nhất và bậc hai của M_{gh} theo C, tính được C=1187 mm.

Thỏa mãn $C < C_0 = 2h + b = 1300 \text{ mm}.$

Thay $C=1187~\mathrm{mm}$ vào biểu thức tính M_{gh} có được:

$$M_{gh} = \frac{17548 \times 1187^2 + 49758 \times 10^6}{1187 + 1200} = 31,2 \times 10^6 = 31,2 \text{ kNm}$$

Có được $M_t = 30 < M_{gh} = 31,2 \text{ kNm}.$


Dầm đủ khả năng chịu lực.

6.8. TÍNH TOÁN VỚI SƠ ĐỒ 2

Sơ đồ 2 được tính với tác dụng đồng thời của mômen xoắn M_t và lực cắt Q, vùng nén ở phía cạnh bên của tiết diện, theo phương cạnh h (h.6.6).

6.8.1. Tính toán M_{ah}

Khi $M_t > 0.5Qb$, kiểm tra khả năng chịu lực theo điều kiện (6.19)

Hình 6.6. Sơ đồ tính toán với M, và Q

Tiến hành phân tích và lập luận tương tự như với sơ đồ 1, đưa đến công thức để xác định M_{gh} là:

$$M_{gh} = \frac{R_s A_{s1} (1 + \varphi_{w_1} \delta_1 \lambda_1^2) Z_1}{\varphi_a \lambda_1}.$$
 (6.29)

Chiều cao vùng nén x xác định từ điều kiện cân bằng lực:

$$R_b h x = R_s A_{s1} - R_{sc} A'_{s1}, (6.30)$$

trong đó: A_{s1} , A'_{s1} – diện tích cốt thép trong vùng kéo và trong vùng nén, đặt dọc theo canh h.

Điều kiện là $x \le \xi_R b_o$ với $b_o = b - a$.

 Z_1 – cánh tay đòn nội lực.

$$Z_1 = b_o - \frac{x}{2}$$
. (6.31a)

Khi trong tính toán có kể đến A'_{s1} thì cần điều kiện $x \ge 2a'$. Nếu xảy ra x < 2a' (kể cả x < 0) thì lấy Z_1 như sau:

$$Z_1 = \max \left(Z_a = b_o - a'; Z_b = b_o - \frac{x_1}{2} \right),$$
 (6.31b)

trong đó: x_1 – chiều cao vùng nén được tính với $A'_{s1} = 0$;

 ϕ_{w1} – đặc trưng quan hệ giữa cốt thép ngang và dọc,

$$\Phi_{w1} = \frac{R_{sw}A_{sw}}{R_sA_{s1}} \times \frac{h}{s}. \tag{6.32}$$

Giá trị của φ_{w1} nên thỏa mãn điều kiện:

$$0.5 \leq \varphi_{w1} \leq 1.5.$$

Nếu ϕ_{w1} < 0,5 thì giá trị R_sA_{s1} ở biểu thức (6.29), và (6.30) cần được nhân với tỉ số $\frac{\phi_{w1}}{0,5}$.

$$\varphi_q = 1 + \frac{Qb}{2M_t}; \tag{6.33}$$

$$\lambda_1 = \frac{C_1}{h} \; ; \; \delta_1 = \frac{h}{2b+h} \, .$$

Việc tính toán M_{gh} được thực hiện với giá trị C_1 nguy hiểm nhất, có nghĩa là làm cho M_{gh} có giá trị nhỏ nhất. Có thể tìm C_1 bằng phương pháp đúng dần hoặc bằng đạo hàm của M_{gh} theo C_1 . Điều kiện hạn chế của C_1 là:

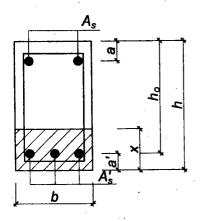
$$C_1 \leq 2b + h.$$

6.8.2. Trường hợp đặc biệt

Khi thỏa mãn điều kiện (6.34) thì việc tính toán theo sơ đồ 2 được thực hiện theo điều kiện (6.35)

$$M_t \le 0.5 \ Qb \ ; \tag{6.34}$$

$$Q \le Q_{sw} + Q_b - \frac{3M_t}{b}, \tag{6.35}$$


trong đó: Q_{sw} , Q_b – khả năng chịu cắt của cốt đai và của bếtông, xác định theo các chỉ dẫn ở chương 4.

6.9. TÍNH TOÁN VỚI SƠ ĐỒ 3

Sơ $d\hat{o}$ 3 có vùng nén ở cạnh chịu kéo do uốn (h.6.7)

Cần tính theo sơ đồ 3 khi $M_t > M \frac{b}{2h + b}$.

Lúc này khả năng chịu lực được kiểm tra theo điều kiện (6.19) với M_{gh} được tính toán theo công thức (6.22), trong đó giá trị M trong các biểu thức tính χ , $\phi_{w \, \text{min}}$ và $\phi_{w \, \text{max}}$ được lấy với dấu – (giá trị âm). Các biểu thức khác và cách tính toán theo như sơ đồ 1 với chú ý vai

Hình 6.7. Vị trí vùng nén theo sơ đổ 3

trò cốt thép đã được hoán vị, cốt thép A_s' trong sơ đồ 1 trở thành A_s trong sơ đồ 3 và ngược lại.

TÍNH TOÁN CẤU KIỆN BÊTÔNG CỐT THÉP THEO TRẠNG THÁI GIỚI HẠN THỨ HAI

Tính toán cấu kiện bêtông cốt thép theo trạng thái giới hạn thứ hai bao gồm các phần việc sau:

- Tính toán về sự hình thành khe nứt. Nội dung của việc tính toán này là xác định khả năng chống nứt của cấu kiện (còn gọi là nội lực làm xuất hiện khe nứt trên tiết diện). Nếu nội lực do tải trọng sử dụng gây ra không vượt quá khả năng chống nút thì cấu kiện không bị nứt.
- Tính toán về sự mở rộng khe nứt. Nội dung của việc tính toán này là xác định bề rộng khe nứt trên tiết diện thẳng góc và tiết diện nghiêng sau đó so sánh với bề rộng khe nứt giới hạn được ghi trong các tiêu chuẩn thiết kế. Nếu giá trị bề rộng khe nứt tính được không vượt quá giá trị giới hạn thì đạt yêu cầu về an toàn.
- Tính toán về sự khép kín khe nứt. Các khe nút tồn tại thường xuyên (do tải trọng thường xuyên tác dụng dài hạn gây ra) sẽ là rất nguy hiểm đối với cốt thép ở góc độ bị ăn mòn (gỉ). Nếu sau khi tải trọng tạm thời được dỡ bỏ, khe nút được khép lại thì đạt yêu cầu về an toàn.
- Tính toán biến dạng của cấu kiện. Nội dung của việc tính toán này là xác định chuyển vị của cấu kiện và so sánh nó với chuyển vị giới hạn được ghi trong các tiêu chuẩn thiết kế. Nếu giá trị chuyển vị tính được không vượt quá chuyển vị giới hạn thì đạt yêu cầu về an toàn.

A. TÍNH TOÁN VỀ SỰ HÌNH THÀNH VÀ MỞ RỘNG KHE NỨT

7.1. KHÁI NIỆM CHUNG

Đối với kết cấu bêtông cốt thép nói chung, khe nứt có thể xuất hiện đo biến dạng ván khuôn, do co ngót của bêtông, do sự thay đổi nhiệt độ và độ ẩm, do sự tác dụng của tải trọng và các tác động khác. Khi trong bêtông xuất hiện ứng suất kéo vượt quá cường độ chịu kéo của nó thì bêtông bắt đầu bị nứt. Ở thời điểm mới nứt, mắt thường không nhìn thấy được, chỉ khi bề rộng khe nứt từ 0,005 mm trở lên mới thấy. Khe nứt có thể làm cho công trình mất khả năng chống thấm, làm cho bêtông không bảo vệ được cốt thép khỏi bị ăn mòn vì tác dụng xâm thực của môi trường. Không phải mọi khe nứt đều nguy hiểm. Ngay cả khi có tải trọng tác dụng vẫn có thể cho phép hoặc không cho phép xuất hiện khe nứt.

Để phục vụ cho việc thiết kế kết cấu bêtông cốt thép về những vấn đề có liên quan đến khe nút trong vùng kéo, người ta chia ra ba cấp khả năng chống nút căn cứ vào điều kiện làm việc của chúng và loại cốt thép được dùng:

- Cấp 1 Không cho phép xuất hiện khe nứt.
- Cấp 2 Cho phép xuất hiện khe nứt ngắn hạn với bề rộng hạn chế a_{crc1} nhưng chắc chắn khe nứt sẽ được khép kín trở lại khi đã dỗ bỏ tải trọng tạm thời. Điều này chỉ có thể xảy ra khi trong bêtông có một giá trị ứng suất nén trước σ_b ≥ 0,5 MPa, đồng thời dưới tác dụng của tải trọng thường xuyên, tải trọng tạm thời dài hạn và ngắn hạn, trong cốt thép ứng lực trước không xuất hiện biến dạng không khôi phục. Như vậy trong chương này, đối với bêtông cốt thép thường, vấn đề tính toán theo khả năng chống nứt cấp 2 sẽ không được đề cập đến.
- Clpha p 3 Cho phép xuất hiện khe nứt ngắn hạn với bề rộng hạn chế a_{crc1} và cho phép xuất hiện khe nứt dài hạn với bề rộng hạn chế a_{crc2} .

Khe nứt ngắn hạn là do tải trọng thường xuyên và tải trọng tạm thời gây ra;

Khe nứt dài hạn là do tải trọng thường xuyên và tải trọng tạm thời dài hạn gây ra.

Cấp chống nứt của cấu kiện bêtông cốt thép được cho trong phụ lục 10 và phụ lục 11. Phụ lục 10 đưa ra cấp chống nứt và bề rộng khe nứt giới hạn a_{crc1} và a_{crc2} (mm) để hạn chế khả năng thấm của kết cấu.

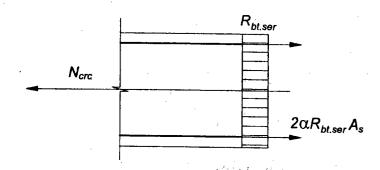
Phụ lục 11 đưa ra cấp chống nứt và bề rộng khe nứt giới hạn a_{crc1} và a_{crc2} (mm) để bảo vệ cốt thép.

Tải trọng dùng để tính kết cấu bêtông cốt thép theo sự hình thành và mở rộng khe nứt được lấy theo phụ lục 12, trong đó phần tải trọng tác dụng dài hạn và ngắn hạn được lấy theo "Tiêu chuẩn tải trọng và tác động" TCVN 2737 – 95.

Cần lưu ý rằng để cho kết cấu bêtông cốt thép không bị nứt, biện pháp tin cậy và triệt để nhất là dùng bêtông cốt thép ứng lực trước. Đối với bêtông cốt thép thường, cho dù đã tính toán không cho nứt nhưng khe nứt vẫn có thể xuất hiện do nhiều yếu tố ngẫu nhiên.

7.2. TÍNH TOÁN VỀ SỰ HÌNH THÀNH KHE NỨT

Khi tính toán khả năng chống nứt của một tiết diện nào đó trên cấu kiện, người ta sử dung những nguyên tắc sau:


- Dùng giả thiết tiết diện phẳng, nghĩa là sau khi biến dạng, tiết diện vẫn được coi là phẳng.
- Độ dẫn dài tương đối lớn nhất của thớ bêtông chịu kéo ngoài cùng có giá trị bằng $\frac{2R_{bt,ser}}{E_b}$; ứng suất trong bêtông vùng kéo được xem là phân bố đều với giá trị là $R_{bt,ser}$.
- Úng suất trong vùng bêtông chịu nén được xác định có xét đến biến dạng đàn hồi và không đàn hồi của bêtông. Biến dạng không đàn hồi

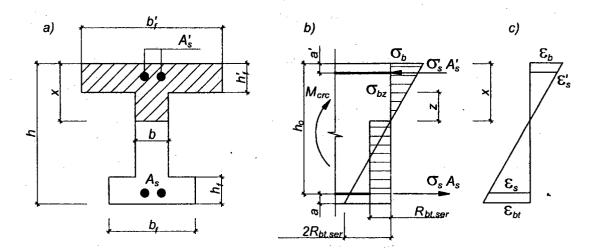
được tính đến bằng cách giảm khoảng cách từ trọng tâm tiết diện quy đổi đến điểm mép lõi nằm đối diện với mép chịu kéo (đang được kiểm tra sự hình thành khe nứt) khi có lực nén trước P của cốt thép ứng lực trước.

Trong chương này chỉ trình bày việc tính toán về sự hình thành khe nứt đối với cấu kiện bêtông cốt thép thường.

7.2.1. Cấu kiện chịu kéo đúng tâm

Nội lực mà tiết diện chịu được ngay trước khi xuất hiện khe nứt đầu tiên được xác định từ điều kiện cân bằng của các lực trên trục cấu kiện (xem hình 7.1)

Hình 7.1. Sơ đổ tính khả năng chống nứt của cấu kiện chịu kéo đúng tâm


$$N_{crc} = AR_{bt.ser} + 2\alpha R_{bt.ser} A_s , \qquad (7.1)$$

trong đó: A, A_s – diện tích tiết diện ngang của cấu kiện và diện tích cốt thép thường;

$$\alpha = \frac{E_a}{E_b}.$$

7.2.2. Cấu kiện chịu uốn

Biểu đồ ứng suất và biến dạng trên tiết diện thẳng góc dùng để tính khả năng chống nứt M_{crc} (mômen uốn mà cấu kiện chịu được ngay trước khi nứt) được thể hiện trên hình 7.2.

Hình 7.2. Biểu đồ ứng suất dùng để tính M_{crc} a) Tiết diện ngang; b) Biểu đồ ứng suất; c) Biểu đồ biến dạng.

Đối với cấu kiện chịu uốn, xem bêtông vùng nén làm việc đàn hồi, nghĩa là biểu đồ ứng suất trong vùng nén có dạng đường thẳng.

Trên cơ sở giả thiết tiết diện phẳng và giá trị $\epsilon_{bt}=\frac{2R_{bt,ser}}{E_b}$ ta có thể tính được:

$$\sigma_{b} = 2R_{bt,ser} \frac{x}{h - x};$$

$$\sigma'_{s} = 2R_{bt,ser} \alpha \frac{x - a'}{h - x};$$

$$\sigma_{s} = 2R_{bt,ser} \alpha \frac{h - x - a}{h - x}$$

$$(7.2)$$

Chiều cao vùng chịu nén x được xác định từ phương trình hình chiếu của các lực lên phương trục của cấu kiện:

$$\int_{A_{bn}} \sigma_{bz} dA + \sigma'_s A_s = R_{bt,ser} A_{bt} + \sigma_s A_s, \qquad (7.3)$$

trong đó: A_{bt} – diện tích vùng bêtông chịu kéo; A_{bn} – diện tích vùng bêtông chịu nén;

$$\sigma_{bz} = \frac{z}{x}\sigma_b = 2R_{bt,ser}\frac{z}{h-x}.$$
 (7.4)

Thay các giá trị của (7.2) và (7.4) vào (7.3) và triệt tiêu giá trị $R_{bt, ser}$ ở hai vế, ta có:

$$2\frac{S'_{bo}}{h-x} + 2\alpha \frac{A'_{s}(x-a')}{h-x} = A_{bt} + 2\alpha \frac{A_{s}(h-x-a)}{h-x}.$$

Viết ở dang khác:

$$S'_{bo} + \alpha S'_{so} - \alpha S_{so} = \frac{(h - x)A_{bt}}{2},$$
 (7.4a)

trong đó: S'_{bo} – mômen tĩnh của vùng bêtông chịu nên đối với trục trung hòa;

 S_{so} , S'_{so} – mômen tĩnh của diện tích cốt thép chịu kéo và cốt thép chịu nén đối với trục trung hòa.

Đối với tiết diện chữ I với những ký hiệu về kích thước như trên hình (7.2), giải phương trình (7.4a) ta được:

$$\xi = \frac{x}{h} = 1 - \frac{bh + 2\left(1 - \frac{h'_f}{0.5h}\right)A'_f + 2\left(1 - \frac{a'}{h}\right)\alpha A'_s}{2A_{red} - A_f},$$
 (7.5)

trong đó $A'_f = (b'_f - b) h'_f; A_f = (b_f - b) h_f$

$$A_{red} = bh + A'_f + A_f + \alpha(A_s + A'_s).$$

Viết phương trình cân bằng mômen đối với trục trung hòa ta được giá trị mômen chống nứt của tiết diện:

$$M_{crc} = \sigma'_{s} A'_{s}(x-a) + \int_{A_{bn}} \sigma_{bz} z dF + R_{bt,ser} A_{bt} \frac{S_{bt}}{A_{bt}} + \sigma_{s} A_{s}(h-x-a). \quad (7.6)$$

Thay các giá trị ứng suất đã tính được ở trên vào (7.6) ta được:

$$M_{crc} = \left[\frac{2(I_{bo} + \alpha I_{so} + \alpha I'_{so})}{h - x} + S_{bo}\right] R_{bt,ser}, \qquad (7.7)$$

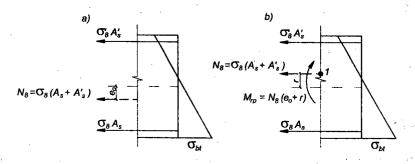
trong đó: I_{bo} , I_{so} , I_{so} – lần lượt là mômen quán tính đối với trực trung hòa của diện tích vùng bêtông chịu nén, của diện tích cốt thép chịu kéo và của diện tích cốt thép chịu nén.

 S_{bo} – mômen tĩnh đối trực trung hòa của diện tích vùng bêtông chịu kéo.

Biểu thức (7.7) có thể viết thành:

$$M_{crc} = R_{bt, ser} W_{pl}, \tag{7.8}$$

trong đó: W_{pl} – mômen kháng uốn của tiết diện đối với thớ chịu kéo ngoài cùng có xét đến biến dạng không đàn hồi của bêtông vùng chịu kéo,


$$W_{pl} = \frac{2(I_{bo} + \alpha I_{so} + \alpha I'_{so})}{h - x} + S_{bo}.$$
 (7.9)

Điều kiện để cấu kiện không bị nứt như sau:

$$M \le M_{crc} \,, \tag{7.10}$$

trong đó: M – mômen ngoại lực trên tiết diện đang xét.

Sự co ngót của bêtông gây ra ứng suất kéo trong bêtông và ứng suất nén trong cốt thép, do vậy sự co ngót của bêtông làm ảnh hưởng đến khả năng chống nứt của cấu kiện. Có thể dùng sơ đồ trên hình 7.3 để thể hiện nội ứng suất do co ngót của bêtông gây ra.

Hình 7.3. Nội ứng suất do co ngót của bêtông

- a) Ứng suất trong bêtông và cốt thép; b) Sơ đồ tính toán tương đương
- 1- mép trên của lõi tiết diện quy đổi; e_o độ lệch tâm của lực dọc N₈;
- r khoảng cách từ trọng tâm đến mép trên của lõi tiết diện quy đổi.

Úng suất trong cốt thép σ_8 có thể lấy một cách gần đúng bằng ứng suất hao do co ngót gây ra đối với cốt thép có gây ứng lực trước.

Lực dọc do co ngót $N_{\rm s}$ được đặt ở vị trí mép trên của lõi (điểm 1) nên không gây ra ứng suất kéo ở mép dưới của tiết diện. Giả thử mômen ngoại lực M gây kéo ở mép dưới, tức là cùng chiều với M_{rp} thì điều kiện để cấu kiện không bị nứt là

$$M + M_{rp} \le R_{bt, ser} W_{pl}$$

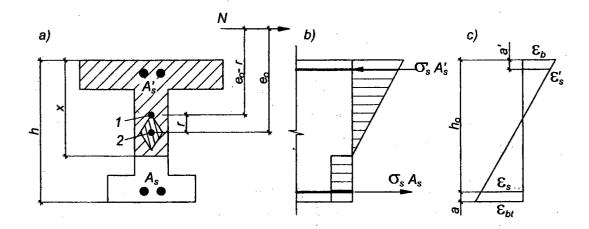
hoặc

$$M \le R_{bt, ser} W_{pl} - M_{rp} \tag{7.11}$$

trong trường hợp này có thể viết một cách tổng quát:

$$M_{crc} = R_{bt, ser} W_{pl} \pm M_{rp} . \tag{7.12}$$

trong (7.12), M_{rp} lấy dấu trừ khi M và M_{rp} quay cùng chiều và M_{rp} lấy dấu cộng khi M và M_{rp} quay ngược chiều nhau. Ta thấy ngay rằng đối với cấu kiện chịu uốn bình thường, $A_s > A_s$; M_{rp} và M quay cùng chiều do đó khả năng chống nứt của cấu kiện bị giảm đi một lượng bằng M_{rp} .


Từ biến của bêtông cũng làm thay đổi trạng thái ứng suất trên tiết diện ngang của cấu kiện và cũng ảnh hưởng đến khả năng chống nứt. Xét đến ảnh hưởng của từ biến cũng giống như xét ảnh hưởng của co ngót, khi đó ứng suất trong bêtông (dùng để tính ứng suất hao do từ biến của bêtông đối với cốt thép có ứng lực trước) được xác định với giả thiết vật liệu làm việc đàn hồi có diện tích quy đổi A_{red} giống như trong biểu thức (7.5) đã trình bày.

7.2.3. Cấu kiện chịu nén lệch tâm

Biểu đồ ứng suất và biến dạng trên tiết diện thẳng góc để tính khả năng chống nứt của cấu kiện chịu nén lệch tâm được thể hiện trên hình (7.4).

Nếu chuyển lực dọc N về mép lõi 2 thì phải thêm một mômen có giá trị

$$M_r = N (e_o - r).$$
 (7.13)

Hình 7.4. Biểu đồ ứng suất dùng để tính khả năng chống nứt của cấu kiện chịu nén lệch tâm
a) Tiết diện ngang; b) Biểu đồ ứng suất; c) Biểu đồ biến dạng; 2- trong tâm tiết diên; 1- mép lõi tiết diên

Lực dọc N đặt ở mép lõi không gây ứng suất ở mép chịu kéo, chỉ có M_r gây ra ứng suất kéo σ_{bt} . Có thể tính σ_{bt} theo các công thức đối với vật liệu đàn hồi theo tiết diện quy đổi:

$$\sigma_{bt} = \frac{M_r}{W_{red}} = \frac{N(e_o - r)}{W_{red}} \tag{7.14}$$

$$M_r = N(e_o - r) = \sigma_{bt} W_{red} . \tag{7.15}$$

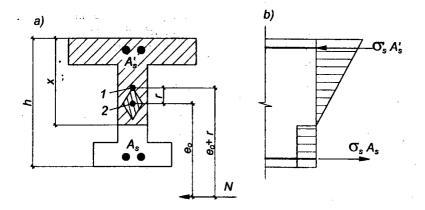
Khi σ_{bt} đạt đến giá trị $R_{bt, ser}$ và phát triển biến dạng dẻo để biểu đồ ứng suất có dạng như trên hình (7.4b) thì giá trị $\sigma_{bt}W_{red}$ đạt đến giá trị $R_{bt, ser}W_{pl}$ khi coi biểu đồ ứng suất trong vùng chịu nén có dạng đường thẳng. Điều kiện để cấu kiện không bị nứt là:

$$M_r = N (e_o - r) \le R_{bt, ser} W_{pl}$$
 (7.16)

Biểu thức (7.16) có thể viết thành:

$$M = Ne_o \le R_{bt, ser} W_{pl} + Nr. \tag{7.17}$$

Từ (7.17) có thể thấy rằng khi có lực nén, khả năng chống nứt của tiết diện được tăng lên.


Trong các công thức ở trên r là khoảng cách từ trọng tâm đến mép trên của lõi (nằm ở phía xa mép chịu kéo), được tính bằng công thức:

$$r = \frac{W_{red}}{A_{red}},\tag{7.18}$$

trong đó: W_{red} , A_{red} – mômen kháng uốn đối với thớ chịu kéo ngoài cùng của tiết diện quy đổi và diện tích tiết diện quy đổi khi coi vật liệu làm việc đàn hồi.

7.2.4. Cấu kiện chịu kéo lệch tâm

Biểu đồ ứng suất dùng để tính cấu kiện chịu kéo lệch tâm theo sơ đồ hình thành khe nứt được thể hiện trên hình 7.5.

Hình 7.5. Biểu đổ ứng suất dùng để tính cấu kiện chịu kéo lệch tâm theo sự hình thành khe nút

Khi tính toán cấu kiện chịu kéo lệch tâm theo sự hình thành khe nứt, người ta quy đổi tiết diện theo bêtông vùng kéo (xem công thức (7.1)). Khi đó khoảng cách r được xác định như sau:

$$r = \frac{W_{pl}}{A + 2\alpha (A_0 + A_0')} \tag{7.19}$$

Điều kiện để cấu kiện không bị nứt là:

$$M_r = N(e_o + r) \le R_{bt, ser} W_{pl}.$$
 (7.20)

7.2.5. Tính gần đúng W_{pl}

Cho phép tính gần đúng giá trị W_{pl} theo cách sau:

$$W_{pl} = \gamma W_{red}, \tag{7.21}$$

trong đó: γ – hệ số xét đến ảnh hưởng của biến dạng không đàn hồi của bêtông vùng chịu kéo, được xác định theo phụ lục 18.

7.2.6. Tính toán theo sự hình thành khe nứt trên tiết diện nghiêng

Tính toán theo sự hình thành khe nứt trên tiết diện nghiêng được thực hiện theo điều kiện:

$$\sigma_{mt} \le \gamma_{b4} R_{bt, ser} \,, \tag{7.22}$$

trong đó: γ_{b4} - hệ số điều kiện làm việc của bêtông, xét ảnh hưởng của trạng thái ứng suất phức tạp (kéo - nén) đến cường độ của bêtông,

$$\gamma_{b4} = \frac{1 - \frac{\sigma_{mc}}{R_{b,ser}}}{0.2 + \alpha B},\tag{7.23}$$

ở đây: α – hệ số lấy bằng 0,01 đối với bêtông nặng, bêtông hạt nhỏ và bêtông nhe; bằng 0,02 đối với bêtông tổ ong;

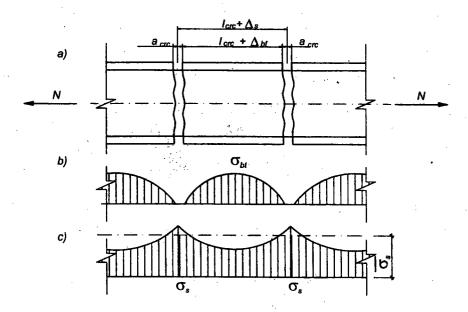
B – cấp độ bền chịu nén của bêtông tính bằng MPa. Tích số αB không được nhỏ hơn 0,3;

 $\sigma_{mt},\,\sigma_{mc}$ – ứng suất kéo chính và nén chính.

Giá trị ứng suất kéo chính và nén chính trong bêtông được xác định theo công thức

$$\sigma_{mt(mc)} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} , \qquad (7.24)$$

trọng đó: σ_x – ứng suất pháp trong bêtông trên tiết diện vuông góc với trục dọc của cấu kiện do ngoại lực gây ra;


- σ_y ứng suất pháp trong bêtông trên tiết diện song song với trục dọc của cấu kiện do tác dụng cục bộ của phản lực gối tựa, do tải trọng tập trung và tải trọng phân bố gây ra;
- τ_{xy} ứng suất tiếp trong bêtông do ngoại lực gây ra.

Các giá trị ứng suất σ_x , σ_y trong (7.24) được lấy dấu cộng nếu là ứng suất kéo, lấy dấu trừ nếu là ứng suất nén. Ứng suất σ_{mc} trong (7.23) được lấy giá trị tuyệt đối. Việc kiểm tra theo (7.24) được thực hiện tại trọng tâm tiết diện quy đổi và ở chỗ tiếp giáp giữa cánh chịu nén với sườn của tiết diện chữ I và tiết diện chữ T.

7.3. TÍNH TOÁN CẤU KIỆN BỆTÔNG CỐT THÉP THƯỜNG THEO SỰ MỞ RỘNG KHE NỨT

7.3.1. Công thức tổng quát để tính bề rộng khe nứt a_{crc} trên tiết diện thẳng góc

a. Ứng suất trong bêtông và cốt thép chịu kéo sau khi nứt

Hình 7.6. Sơ đồ ứng suất trong bêtông và cốt thép chịu kéo a) Sơ đồ khe nút; b) Ứng suất trong bêtông chịu kéo; c) Ứng suất trong cốt thép chịu kéo.

Xem xét một cấu kiện chịu kéo đúng tâm. Dưới tác dụng của lực dọc N, cấu kiện bị nứt với bề rộng khe nứt là a_{crc} và khoảng cách giữa hai khe nứt là l_{crc} . Vì tính không đồng chất của bêtông nên a_{crc} và l_{crc} có các giá trị khác nhau theo chiều dọc của cấu kiện. Tuy nhiên để tiện cho việc tính toán, ta coi bêtông là đồng chất và chỉ có một giá trị a_{crc} và l_{crc} đại diện.

 $\mathring{\mathbf{O}}$ chỗ có khe nứt, ứng suất trong cốt thép là lớn nhất và có giá trị gọi là σ_s . Trong khoảng giữa hai khe nứt, vì có sự truyền lực từ cốt thép sang bêtông thông qua lực dính nên ứng suất trong cốt thép giảm dần và đạt giá trị cực tiểu ở giữa hai khe nứt. Sự thay đổi của ứng suất trong cốt thép chịu kéo được thể hiện trên hình 7.6c.

Có thể tưởng tượng một giá trị ứng suất trung bình của cốt thép σ_s dọc theo trục của cấu kiện. Lập quan hệ:

$$\psi_s = \frac{\overline{\sigma_s}}{\sigma_s} \le 1. \tag{7.25}$$

 ψ_s là hệ số xét đến ảnh hưởng của sự làm việc của bêtông chịu kéo nằm giữa hai khe nứt.

Ứng suất trong bêtông chịu kéo ở thớ trùng với trọng tâm cốt thép được thể hiện trên hình 7.6b.

b. Bê rộng khe nút a_{crc}

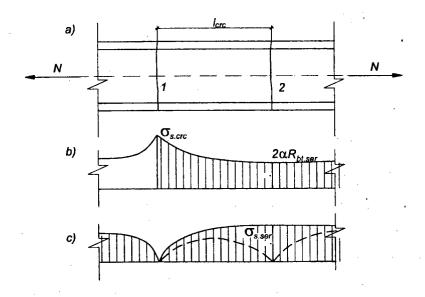
Khoảng cách giữa hai khe nút tính theo biến dạng của cốt thép sẽ là:

$$l_{crc} + \Delta_s = l_{crc} + \overline{\varepsilon}_s l_{crc} = l_{crc} + \psi_s \frac{\sigma_s}{E_s} l_{crc}$$
 (7.26)

Khoảng cách giữa hai khe nút tính theo biến dạng của bêtông sẽ là:

$$a_{crc} + l_{crc} + \Delta_{bt}, \qquad (7.27)$$

trong đó Δ_{bt} là tổng biến dạng kéo của bêtông nằm giữa hai khe nứt. Do biến dạng cực hạn khi kéo của bêtông rất nhỏ nên ta có thể bỏ qua biến dạng Δ_{bt} so với các đại lượng khác. So sánh (7.26) và (7.27) ta có:


$$a_{crc} = \psi_s \frac{\sigma_s}{E_s} l_{crc} \tag{7.28}$$

Từ (7.28) có thể thấy bề rộng khe nứt sẽ lớn khi ứng suất làm việc của cốt thép lớn và các khe nứt ở cách xa nhau. Đối với cấu kiện chịu kéo đúng tâm, σ_s được xác định trực tiếp từ lực dọc N.

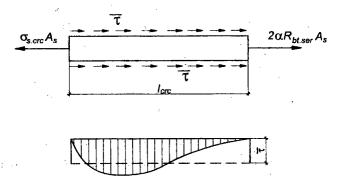
$$\sigma_s = \frac{N}{A_s} \,. \tag{7.29}$$

Đối với các cấu kiện chịu uốn, nén và kéo lệch tâm, giá trị σ_s sẽ được trình bày trong phần tính toán biến dạng của cấu kiện.

7.3.2. Khoảng cách giữa các khe nút I_{crc}

Hình 7.7. Sơ đổ ứng suất của bêtông chịu kéo và cốt thép sau khi xuất hiện khe nứt đầu tiên a) Sơ đổ khe nứt; b) Ứng suất trong bêtông; c) Ứng suất trong cốt thép.

Xét một đoạn cấu kiện chịu kéo đúng tâm. Khi ứng suất kéo trong bêtông đạt tới $R_{bt, ser}$ thì khe nút đầu tiên sẽ xuất hiện một cách ngẫu nhiên tại tiết diện nào đó mà bêtông chịu kéo yếu nhất. Tại tiết diện có khe nút ấy, ứng suất kéo trong bêtông trở về không, ứng suất trong cốt thép là $\sigma_{s.crc}$ (h.7.7). Càng xa tiết diện bị nút, ứng suất kéo trong bêtông tăng dần do có sự truyền lực từ cốt thép sang bêtông thông qua lực dính, còn ứng suất


trong cốt thép thì giảm dần. Tại tiết diện mà ứng suất kéo trong bêtông đạt tới $R_{bt, ser}$ lại xuất hiện một khe nứt mới. Quá trình xuất hiện các khe nứt tiếp theo cứ xảy ra như vậy. Gọi l_{crc} là khoảng cách giữa hai khe nứt, tức là khoảng cách từ khe nứt đầu tiên (tiết diện 1) đến tiết diện gần nhất mà tại đó ứng suất kéo trong bêtông đạt đến giá trị $R_{bt, ser}$ (tiết diện 2). Tại tiết diện 2 ứng suất trong cốt thép sẽ là $2\alpha R_{bt, ser}$.

Để tính được l_{crc} , ta tách một cách tưởng tượng đoạn cốt thép có chiều dài là l_{crc} và đặt vào đó các lực tương ứng như trên hình (7.8).

Viết phương trình cân bằng lực trên đoạn cốt thép:

$$\sigma_{s, crc} A_s = 2\alpha R_{bt, ser} A_s + \bar{\tau} S l_{crc} , \qquad (7.30)$$

trong đó: $\bar{\tau}$ - ứng suất dính trung bình trên đoạn l_{crc} ; S - chu vi cốt thép.

Hình 7.8. Sơ đổ dể tính l_{crc}

Từ (7.30) rút ra:

$$l_{crc} = \frac{\sigma_{s.crc} - 2\alpha R_{bt,ser}}{\bar{\tau}} \times \frac{A_s}{S}.$$
 (7.31)

Nếu cốt thép trong cấu kiện có một loại đường kính (d) thì có thể tính được $\frac{A_s}{S}=\frac{d}{4}$.

Từ (7.31) có thể thấy rằng nếu lực dính giữa bêtông và cốt thép lớn, cường độ chịu kéo của bêtông lớn, chu vi cốt thép lớn thì khoảng cách giữa hai

khe nứt sẽ nhỏ và theo (7.18) thì bề rộng khe nứt cũng sẽ nhỏ. Vì vậy đối với những kết cấu cần hạn chế bề rộng khe nứt thì nên dùng cốt có gờ với đường kính nhỏ.

7.3.3. Tính bề rộng khe nứt thẳng góc theo tiêu chuẩn thiết kế TCXDVN 356 – 2005

Bề rộng khe nứt của cấu kiện chịu uốn, kéo trung tâm, chịu kéo và nén lệch tâm được xác định theo công thức:

$$a_{crc} = \delta \varphi_l \eta \frac{\sigma_s}{E_s} 20(3.5 - 100 \,\mu) \sqrt[3]{d}$$
 (7.32)

trong đó: a_{crc} – tính bằng mm;

δ - hệ số lấy bằng 1 đối với cấu kiện chịu uốn và nén lệch tâm,
 lấy bằng 1,2 đối với cấu kiện chịu kéo;

 ϕ_l – hệ số lấy bằng 1,0 đối với tải trọng tác dụng ngắn hạn; còn đối với tải trọng tác dụng dài hạn và tải trọng lặp thì lấy như sau:

 $φ_l = 1,6 - 15μ$ đối với bêtông nặng, trong điều kiện độ ẩm tự nhiên:

 $\varphi_l = 1,2$ đối với bêtông nặng, trong trạng thái bão hòa nước; $\varphi_l = 1,75$ đối với bêtông nặng, khi trạng thái bão hòa nước và

khô luân phiên nhau.

Tiêu chuẩn còn có những quy định chi tiết đối với bêtông hạt nhỏ, bêtông nhẹ, bêtông tổ ong...

η - hệ số lấy bằng 1,0 đối với cốt thép thanh có gờ; bằng 1,3 đối với cốt thép tròn trơn; bằng 1,2 đối với thép sợi có gờ hoặc cáp; bằng 1,4 đối với cốt thép trơn;

 σ_s – ứng suất trong các thanh cốt thép lớp ngoài cùng.

Đối với cấu kiện chịu kéo đúng tâm, tính theo (7.29). Đối với cấu kiện chịu uốn:

$$\sigma_s = \frac{M}{A_s z}. ag{7.33}$$

ở đây: z – cánh tay đòn của nội ngẫu lực được tính theo (7.72). Đối với cấu kiện chịu n**ề**n và kéo lệch tâm:

$$\sigma_s = \frac{N(e_s \pm z)}{A_s z}. (7.34)$$

Trong (7.34), dấu cộng được lấy khi kéo lệch tâm, dấu trừ được lấy khi nén lệch tâm.

Đối với cấu kiện chịu kéo lệch tâm, khi $e_{o.tot} < 0.8h_o$ ($e_{o.tot}$ - độ lệch tâm của lực dọc đối với trọng tâm của tiết diện quy đổi) thì lấy $z=z_s$ (z_s là khoảng cách giữa trọng tâm cốt thép A_s và A_s); khi lực kéo N nằm giữa trọng tâm của hai cốt thép A_s và A_s thì giá trị e_s được lấy dấu trừ.

Khi cốt chịu kéo được đặt thành một số lớp theo chiều cao tiết diện, đối với cấu kiện chịu uốn, chịu nén lệch tâm và chịu kéo lệch tâm với $e_{o, tot} \geq 0.8h_o$, ứng suất $\sigma_{\rm s}$ trong (7.33) và (7.34) cần phải được nhân với hệ số δ_n như sau:

$$\delta_{\rm n} = \frac{h - x - a_2}{h - x - a_1},\tag{7.35}$$

ở đây:

 $x = \xi h_o$ – chiều cao vùng chịu nén;

 a_1 , a_2 – khoảng cách từ trọng tâm tiết diện toàn bộ cốt thép và từ trọng tâm tiết diện của hàng cốt thép ngoài cùng đến thớ bêtông chịu kéo lớn nhất;

 μ – hàm lượng cốt thép chịu kéo của tiết diện:

$$\mu = \frac{A_s}{bh_o}.$$

Hàm lượng μ phải lấy nhỏ hơn hoặc bằng 0,02; d – đường kính cốt thép được tính bằng mm.

Đối với cấu kiện có yêu cầu chống nứt cấp 2, bề rộng khe nứt được xác định theo tổng tải trọng thường xuyên, tải trọng tạm thời dài hạn và ngắn hạn với hệ số $\varphi_l = 1,0$.

Đối với cấu kiện có yêu cầu chống nứt cấp 3, bề rộng khe nứt dài hạn a_{crc2} được xác định theo tải trọng thường xuyên và tải trọng tạm thời dài hạn với hệ số $\varphi_l > 1$; còn bề rộng khe nứt ngắn hạn a_{crc1} là tổng của bề rộng khe nứt dài hạn và bề rộng khe nứt tăng thêm do tác dụng của tải trọng tạm thời ngắn hạn, với hệ số $\varphi_l = 1,0$. Điều đó được thể hiện bởi công thức sau:

$$a_{crc1} = a_{crc.1t} - a_{crc.1d} + a_{crc.2};$$
 (7.36)

trong đó: $a_{crc.1t}$ – bề rộng khe nút do tác dụng ngắn hạn của toàn bộ tải trọng;

 $a_{crc.1d}$ – bề rộng khe nứt ban đầu do tải trọng thường xuyên và tải trọng dài hạn (các tải trọng này tác dụng ngắn hạn);

 $a_{crc.2}$ – bề rộng khe nút dài hạn do tác dụng (dài hạn) của tải trọng thường xuyên và tải trọng dài hạn.

Tiêu chuẩn thiết kế TCXDVN 356 - 2005 còn cho phép điều chỉnh bề rộng khe nứt trong một số trường hợp đặc biệt.

7.3.4. Tính toán bề rộng khe nứt nghiêng theo tiêu chuẩn thiết kế

Bề rộng khe nứt nghiêng khi sử dụng cốt đai thẳng góc với trục của cấu kiện được xác định theo công thức:

$$a_{crc} = \varphi_l \frac{0.6 \sigma_{sw} d_w \eta}{E_s \frac{d_w}{h_o} + 0.15 E_b (1 + 2\alpha \mu_w)}; \qquad (7.37)$$

trong đó: ϕ_l – hệ số được lấy như sau:

- * Khi tính với tải trọng ngắn hạn và tác động dài hạn của tải trọng thường xuyên và tải trọng dài hạn thì lấy $\varphi_l = 1{,}00$.
- * Khi tính với tải trọng lặp, tác dụng dài hạn của tải trọng thường xuyên và tải trọng tạm thời dài hạn thì phân ra:

Đối với bêtông nặng

ở trong độ ẩm tự nhiên

 $\varphi_l = 1,50$

ở trong trang thái ngập nước

 $\phi_{l} = 1.2$

ở trong trạng thái khi ướt khi khô $\varphi_l = 1,75$

- Đối với bêtông hạt nhỏ, bêtông nhẹ thì lấy theo những quy định kèm theo công thức (147) của tiêu chuẩn thiết kế.

 η – hệ số lấy theo những quy định của công thức (7.32); d_w – đường kính cốt đai

$$\alpha = \frac{E_s}{E_b} \; ; \quad \mu_w = \frac{A_{sw}}{bs} \; , \label{eq:alpha}$$

Úng suất trong cốt đai được xác định theo công thức:

$$\sigma_{sw} = \frac{Q - Q_{b1}}{A_{sw}h_o} s , \qquad (7.38)$$

Giá trị σ_{sw} không được vượt quá $R_{s, ser}$;

Trong công thức (7.38): Q – lực cắt do tất cả ngoại lực tính từ một phía của tiết diện nghiêng đang xét.

$$Q_{b1} = \frac{0.8\varphi_{b4} (1 + \varphi_n) R_{bt,ser}}{c}$$
 (7.39)

ở đây: c - hình chiếu của tiết diện nghiêng trên trục dọc của cấu kiện.

Giá trị $R_{bt, ser}$ không được vượt quá giá trị tương ứng với B30. Khi tính bề rộng khe nứt nghiêng cũng phải xét đến ảnh hưởng của sự tác dụng dài hạn và ngắn hạn của tải trọng giống như đối với bề rộng khe nứt thẳng góc (theo công thức (7.32)).

B. TÍNH TOÁN BIẾN DẠNG CỦA CẤU KIỆN

7.4. NGUYÊN TẮC CHUNG

Ngày nay, để đạt được hiệu quả kinh tế, kỹ thuật và mỹ thuật, Người ta có xu hướng giảm kích thước tiết diện của cấu kiện, sử dụng vật liệu (bêtông và cốt thép) có cường độ cao. Điều đó có thể dẫn đến việc tăng quá mức biến dạng (độ võng, chuyển vị ngang) của kết cấu. Biến dạng quá lớn có thể ảnh hưởng đến việc sử dụng kết cấu một cách bình thường: làm mất mỹ quan, làm bong lớp ốp, trát, làm hỏng trần treo hoặc gây tâm lí sợ hãi cho người sử dụng. Vì vậy phải tính toán biến dạng và khống chế nó không được vượt quá một giá trị giới hạn quy định. Độ võng giới hạn đối với một số cấu kiện được cho trong phụ lục 13. Cần lưu ý rằng các biến dạng giới hạn đối với kết cấu (chuyển vị ngang của đỉnh nhà, cao tầng, chuyển vị ngang tương đối của hai sàn tầng trên và tầng dưới v.v.) được quy định trong các tài liệu riêng.

Độ võng được tính toán theo tải trọng tác dụng khi kết cấu làm việc trong điều kiện bình thường, tức là ứng với độ tin cậy về tải trọng $\gamma_f = 1,0$. Trường hợp có vượt tải cũng chỉ là nhất thời, độ võng tăng lên nhất thời sẽ giảm đi khi tải trọng trở lại bình thường.

Biến dạng của cấu kiện bêtông cốt thép được tính toán theo các phương pháp của cơ học kết cấu, trong đó phải thay độ cứng đàn hồi bằng độ cứng có xét đến biến dạng dẻo của bêtông, có xét đến sự có mặt của cốt thép trong tiết diện và sự xuất hiện khe nứt trong vùng kéo của tiết diện ở một đoạn nào đó trên trục dọc của cấu kiện. Đối với những đoạn của cấu kiện mà trên đó không xuất hiện khe nứt trong vùng kéo, độ cong của cấu kiện được tính toán như đối với vật thể đàn hồi.

7.5. ĐỘ CONG CỦA CẤU KIỆN KHÔNG CÓ KHE NỚT TRONG VÙNG KÉO

Nếu gọi độ cứng uốn của cấu kiện bêtông cốt thép thường là B thì ở những đoạn không xuất hiện khe nứt thẳng góc, đối với cấu kiện chịu uốn, nén và kéo lệch tâm ta có:

$$B = \varphi_{b1} E_b I_{red} \,, \tag{7.40}$$

trong đó: ϕ_{b1} – hệ số xét đến ảnh hưởng của từ biến nhanh của bêtông, lấy bằng 0,85 đối với bêtông nặng và bêtông hạt nhỏ;

 E_b - môđun đàn hồi của bêtông;

 I_{red} – mômen quán tính của tiết diện quy đổi đối với trục trọng tâm của tiết diện, trong đó tiết diện bêtông phải được trừ đi diện tích cốt thép khi $\mu\% > 3\%$ và diện tích cốt thép được nhân với hệ số $\alpha = \frac{E_s}{E_b}$.

Để xét đến ảnh hưởng của tải trọng ngắn hạn và tải trọng dài hạn, độ cong của cấu kiện được xác định theo công thức:

$$\frac{1}{r} = \left(\frac{1}{r}\right)_1 + \left(\frac{1}{r}\right)_2,\tag{7.41}$$

trong đó: $\left(\frac{1}{r}\right)_1, \left(\frac{1}{r}\right)_2$ – độ cong do tác dụng của tải trọng ngắn hạn và độ,

cong do tác dụng của tải trọng thường xuyên và tải trọng tạm thời dài hạn, được xác định theo công thức:

$$\left(\frac{1}{r}\right)_{1} = \frac{M_{sh}}{B}$$

$$\left(\frac{1}{r}\right)_{2} = \frac{M_{l}\phi_{b2}}{B}$$
(7.42)

ở đây: M_{sh} , M_l – lần lượt là mômen do tải trọng tác dụng ngắn hạn và mômen do tải trọng tác dụng dài hạn đối với trục đi qua trọng tâm tiết diện quy đổi và thẳng góc với mặt phẳng uốn; ϕ_{b2} – hệ số xét ảnh hưởng của từ biến dài hạn của bêtông đến

biến dạng của cấu kiện không có khe nứt trong vùng kéo, giá trị φ_{b2} được lấy như sau đối với bêtông nặng:

khi tác dụng của tải trọng là không kéo dài $\varphi_{b2} = 1,0$.

khi tác dụng của tải trọng là kéo dài thì:

 $\varphi_{b2} = 2.0$ đối với độ ẩm của môi trường là 40 - 75%

 $\varphi_{b2} = 3.0$ đối với độ ẩm dưới 40%.

Đối với bêtông hạt nhỏ phải lấy φ_{b2} theo tiêu chuẩn thiết kế. Từ các công thức (7.40), (7.41) và (7.42) có thể thấy rằng: nếu gọi B_{sh} là độ cứng ngắn hạn và B_l là độ cứng dài hạn thì:

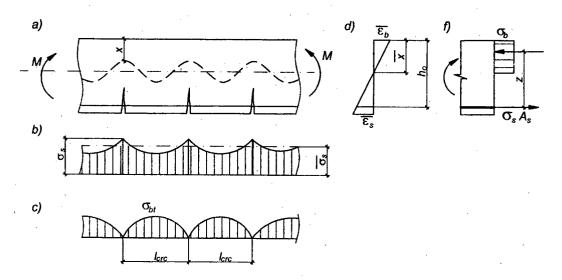
$$B_{sh} = B = \varphi_{b1} E_b I_{red} ; \qquad (7.43)$$

$$B_{l} = \frac{B}{\varphi_{b2}} = \frac{\varphi_{b1} E_{b} I_{red}}{\varphi_{b2}}.$$
 (7.44)

Đối với một dầm không có đoạn bị nứt, tức là đạt cấp chống nứt 1 và 2 thì từ M_{sh} và B_{sh} có thể tính được độ võng ngắn hạn f_{sh} ; từ M_l và B_l có thể tính được độ võng dài hạn f_l . Độ võng toàn phần f sẽ là:

$$f = f_{ch} + f_I \,. \tag{7.45}$$

7.6. ĐỘ CONG CỦA CẤU KIỆN BÊTÔNG CỐT THÉP ĐỐI VỚI ĐOẠN CÓ KHE NỚT TRONG VÙNG KÉO


7.6.1. Trạng thái ứng suất biến dạng của dầm sau khi xuất hiện khe nứt

Xét một đoạn dầm chịu uốn thuần tuý. Sau khi xuất hiện khe nứt, trạng thái ứng suất biến dạng của dầm được thể hiện trên hình 7.9. Cần lưu ý một số đặc điểm sau:

• Trục trung hòa có hình lượn sóng. Chiều cao vùng chịu nén ở tiết diện có khe nứt có giá trị nhỏ nhất và được ký hiệu là x. Tại tiết diện có khe nứt đó ứng suất nén ở thờ bêtông ngoài cùng được ký hiệu là σ_b. Gọi x là giá trị trung bình của chiều cao vùng nén và σ̄_b là giá trị ứng suất trung bình của thờ bêtông ngoài cùng, ta có quan hệ

$$\overline{\sigma}_b = \psi_b \sigma_b \quad \text{v\'en} \quad \psi_b \le 1, \tag{7.46}$$

trong đó: ψ_b – hệ số phân bố không đều của ứng suất (biến dạng) của thớ bêtông chịu nén ngoài cùng trên phần nằm giữa hai khe nứt Đối với bêtông nặng và bêtông hạt nhỏ, lấy $\psi_b = 0.9$.

Hình 7.9. Trạng thái ứng suất biến dạng của dầm sau khi xuất hiện khe nút a) Sơ đồ khe nút và trục trung hòa; b) Úng suất trong cốt thép chiu kéo;

- c) Ứng suất ở thớ bêtông chịu kéo trùng với trọng tâm cốt thép;
- d) Sơ đổ biến dạng trung bình; e) Sơ đổ ứng suất ở tiết diện có khe nứt.
- Tại tiết diện có khe nứt, ứng suất của cốt thép chịu kéo có giá trị lớn nhất, ký hiệu là σ_s. Càng xa khe nứt, ứng suất trong cốt thép càng giảm do có sự truyền lực qua lại (thông qua lực dính) giữa cốt thép và bêtông vùng kéo. Gọi σ_s là giá trị trung bình của ứng suất trong cốt thép chịu kéo, ta lập quan hệ:

$$\overline{\sigma}_s = \psi_s \sigma_s \quad \text{v\'eti} \quad \psi_s \le 1 \; ; \tag{7.47}$$

trong đó: ψ_s – hệ số xét đến sự phân bố không đều của ứng suất (biến dạng) của cốt thép chịu kéo nằm giữa hai khe nứt (sẽ được xác đinh theo (7.74))

- Úng suất kéo trong bêtông tại tiết diện có khe nút bằng không. Càng xa khe nút, ứng suất kéo trong bêtông càng tăng và đạt giá trị cực đại ở giữa hai khe nút.
- Chấp nhận giả thiết tiết diện phẳng đối với một dầm quy ước có chiều cao vùng nén là \bar{x} , biến dạng tỷ đối của thớ bêtông vùng nén ngoài cùng là $\bar{\epsilon}_b$ và biến dạng tỷ đối của cốt thép chịu kéo là $\bar{\epsilon}_s$. Ta có các quan hệ:

$$\overline{\varepsilon}_s = \frac{\overline{\sigma}_s}{E_s} = \psi_s \frac{\sigma_s}{E_s} \; ; \; \overline{\varepsilon}_b = \frac{\overline{\sigma}_b}{E_b'} = \psi_b \frac{\sigma_b}{E_b} \; .$$
 (7.48)

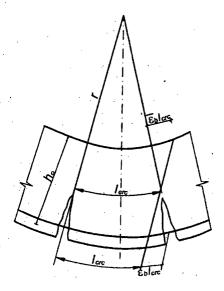
 Tại tiết diện có khe nứt, biểu đồ ứng suất trong bêtông vùng nén được coi như hình chữ nhật. Cân bằng mômen nội và ngoại lực ta có:

$$\sigma_s = \frac{M}{A_s z} \; ; \quad \sigma_b = \frac{M}{A_b z} \, , \tag{7.49}$$

trong đó: A_s – diện tích cốt thép chịu kéo;

z – cánh tay đòn của nội ngẫu lực tại tiết diện có khe nứt; F_b – diện tích vùng bêtông chịu nén trong trường hợp chỉ đặt cốt thép đơn (không có cốt chịu nén theo tính toán).

Trong trường hợp có cốt chịu nén theo tính toán, phải quy đổi diện tích cốt chịu nén A'_s thành diện tích bêtông tương đương. Khi đó phải thay A_b trong (7.49) bằng A_{bred} - diện tích quy đổi của vùng bêtông chịu nén có xét đến biến dạng không đàn hồi của bêtông:


$$A_{bred} = A_{b} + \frac{n}{v} A'_{s} \tag{7.50}$$

Trong trường hợp này, ứng suất σ_b được tính theo:

$$\sigma_b = \frac{M}{A_{bred}z}. (7.51)$$

7.6.2. Độ cong của trục dầm và độ cứng của dầm

Xét một đoạn dầm nằm giữa hai khe nứt. Khoảng cách giữa hai khe nứt trên trục trung hòa trung bình là l_{crc} , bán kính cong trung bình là r (h.7.10).

Hình 7.10. Sơ đổ để xác định độ cong của trục dầm

Từ phép tính đồng dạng của các tam giác ta có:

$$\frac{l_{crc}}{r} = \frac{(\overline{\varepsilon}_s + \overline{\varepsilon}_b)l_{crc}}{h_o},$$

từ đó rút ra

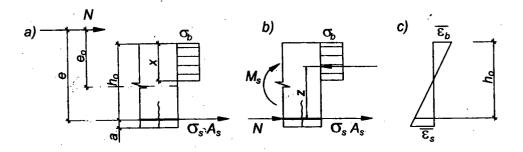
$$\frac{1}{r} = \frac{(\overline{\varepsilon}_s + \overline{\varepsilon}_b)}{h_o}.$$
 (7.52)

Thay các giá tri của (7.48), (7.49), (7.50) vào (7.52) ta được:

$$\frac{1}{r} = \frac{M}{h_o z} \left(\frac{\Psi_s}{E_s A_s} + \frac{\Psi_b}{\nu E_b A_{bred}} \right). \tag{7.53}$$

Nếu so sánh (7.53) với biểu thức độ cong của dầm làm bằng vật liệu đàn hồi đồng chất, đẳng hướng với độ cứng uốn EI

$$\frac{1}{r} = \frac{M}{EI}$$


thì có thể suy ra độ cứng uốn của dầm bêtông cốt thép có khe nứt trong vùng kéo với ký hiệu là B như sau:

$$B = \frac{h_o z}{\frac{\Psi_s}{A_s E_s} + \frac{\Psi_b}{\nu E_b A_{bred}}}.$$
 (7.54)

Từ công thức (7.54) ta thấy rằng độ cứng của cấu kiện chịu uốn bằng bêtông cốt thép khi có khe nứt trong vùng kéo không những phụ thuộc vào đặc trưng cơ học và hình học của tiết diện bêtông và cốt thép (như đối với vật liệu đàn hồi, đồng chất) mà còn phụ thuộc vào tải trọng và tính chất đàn hồi dẻo của bêtông. Để tăng độ cứng của cấu kiện (tức là giảm độ võng) thì tăng chiều cao của tiết diện là có hiệu quả nhất so với tăng diện tích cốt thép, tăng cấp cường độ của bêtông hay tăng bề rộng của tiết diện.

Biết độ cong $\frac{1}{r}$ hoặc độ cứng B, có thể tính độ võng của dầm theo các phương pháp của cổ học kết cấu.

7.6.3. Độ cong của trục cấu kiện chịu kéo, nén lệch tâm

Hình 7.11. Sơ đồ để tính biến dạng của cấu kiện chịu nén lệch tâm

Giả sử có một cấu kiện chịu nén lệch tâm mà vùng chịu kéo có xuất hiện khe nứt như hình 7.11a, trong đó e_o là độ lệch tâm (hình học) của lực dọc. Giá trị e_o được xác định theo kết quả tính toán nội lực bằng các phương pháp cơ học kết cấu ($e_o = \frac{M}{N}$). Nếu ta chuyển lực N đến trọng tâm của cốt thép chịu kéo A_s thì đồng thời phải thêm một mômen M_s :

$$M_s = Ne , (7.55)$$

trong đó: e – khoảng cách từ điểm đặt của lực dọc N đến trọng tâm cốt thép chịu kéo A_s .

Với sơ đồ ứng suất như trên hình (7.11b), từ điều kiện cân bằng mômen đối với trục đi qua hợp lực của vùng bêtông chịu nén và thẳng góc với mặt phẳng uốn ta có:

$$M_s - Nz = \sigma_s A_s z. \tag{7.56}$$

Từ (7.54) ta được

$$\sigma_s = \frac{M_s}{A_s z} - \frac{N}{A_s} \tag{7.57}$$

Nếu lưu ý rằng sau khi xuất hiện khe nứt trong vùng kéo, đối với cấu kiện chịu nén lệch tâm, vẫn tồn tại mối quan hệ (7.48). Từ đó ta có:

$$\overline{\varepsilon}_s = \psi_s \frac{\sigma_s}{E_s} = \frac{M_s \psi_s}{E_s A_s z} - \frac{N \psi_s}{E_s A_s}. \tag{7.58}$$

Từ điều kiệ
 bằng mômen đối trục đi qua trọng tâm của cốt thép A_s và thẳng gó
 thực polang uốn, ta có:

$$M_s = \sigma_s A_{bred} z . (7.59)$$

Cũng suy luận tương tự như đối với (7.58) ta được:

$$\overline{\varepsilon}_b = \frac{M_s \psi_b}{\nu E_b A_{bred} z}.$$
(7.60)

Thay (7.58) và (7.60) vào (7.52) với lưu ý rằng (7.52) là biểu thức tổng quát của độ cong đối với mọi loại cấu kiện, ta được:

$$\frac{1}{r} = \frac{M_s}{h_o z} \left(\frac{\psi_s}{E_s A_s} + \frac{\psi_b}{\nu E_b A_{bred}} \right) - \frac{N \psi_s}{h_o E_s A_s}, \tag{7.61}$$

hoặc có thể viết độ cong của cấu kiện chịu nén lệch tâm như sau:

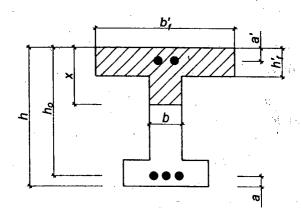
$$\frac{1}{r} = \frac{M_s}{B} - \frac{N\psi_s}{h_o E_s A_s},\tag{7.62}$$

trong đó: B – độ cúng uốn của dầm bêtông cốt thép có khe nút trong vùng kéo, tính theo (7.54).

Độ cong của cấu kiện chịu kéo lệch tâm được viết như sau:

$$\frac{1}{r} = \frac{M_s}{B} + \frac{N\psi_s}{h_o E_s A_s} \,. \tag{7.63}$$

Biểu thức (7.63) được áp dụng khi $e_o \ge 0.8 h_o$ với e_o là độ lệch tâm của lực kéo.


Từ độ cong $\frac{1}{r}$ có thể tính độ võng của cấu kiện theo mối quan hệ đã được sử dụng trong các môn sức bền vật liệu và cơ học kết cấu:

$$\frac{1}{r} = \frac{d^2y}{dx^2},\tag{7.64}$$

trong đó: y – chuyển vị theo phương vuông góc với trục của cấu kiện (chuyển vị pháp tuyến).

7.6.4. Xác định diện tích quy đổi của vùng bêtông chịu nén

Xuất phát từ sơ đồ ứng suất như trên hình (7.9) hoặc (7.11), giả thiết tiết diện phẳng và các phương trình cân bằng, có thể xác định được chiều cao vùng nén tại tiết diện có khe nứt. Tuy nhiên tiêu chuẩn thiết kế cho phép xác định chiều cao vùng chịu nén x đối với tiết diện chữ I (h.7.12) trong trường hợp tổng quát như sau:

Hình 7.12. Tiết diện chữ /

$$\xi = \frac{x}{h_o} = \frac{1}{\beta + \frac{1 + 5(\delta + \lambda)^2}{10\,\mu\alpha}} \pm \frac{1.5 + \varphi_f}{11.5 \frac{e}{h_o} \mp 5} ; \qquad (7.65)$$

trong đó: β – hệ số lấy bằng 1,8 đối với bêtông nặng, bằng 1,6 đối với bêtông nhẹ;

$$\delta = \frac{M}{bh_o^2 R_{h,ser}};\tag{7.66}$$

$$\varphi_f = \frac{(b'_f - b)h'_f + \frac{\alpha}{2\nu}A'_s}{bh_o};$$
 (7.67)

$$\lambda = \varphi_f \left(1 - \frac{h'_f}{2h_o} \right); \tag{7.68}$$

$$\mu = \frac{A_s}{bh_o} \; ; \quad \alpha = \frac{E_s}{E_b};$$

e – đô lệch tâm của lực dọc đối với trọng tâm cốt thép chịu kéo A_s .

- v hệ số đặc trưng trạng thái đàn hồi dẻo của bêtông vùng nén, được lấy như sau đối với bêtông nặng (đối với các loại bêtông khác, xem trong tiêu chuẩn thiết kế TCXDVN 356 – 2005):
 - * đối với tải trọng tác dụng ngắn hạn: v = 0.45
 - * đối với tải trọng tác dụng dài hạn:
 - khi độ ẩm môi trường là 40 75% lấy v = 0,15
 - khi độ ẩm môi trường < 40% lấy v = 0,10.

Khi bêtông ở trong trạng thái khô - ướt, giá trị v khi tính với tải trọng dài hạn được nhân với hệ số 1,2;

Khi độ ẩm của môi trường vượt quá 75% và khi bêtông được chất tải trong trạng thái ngập nước, giá trị v đối với tải trọng dài hạn được nhân với hệ số 1,25.

Trong công thức (7.65), dấu phía trên của số hạng thứ hai là đối với cấu kiện chịu nén lệch tâm, dấu phía dưới đối với cấu kiện chịu kéo lệch tâm.

Hệ số ξ tính được theo (7.65) không được lớn hơn 1,0.

Đối với cấu kiện chịu uốn, chiều cao tương đối của vùng chịu nén ξ được tính theo công thức:

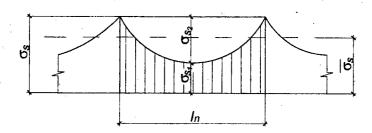
$$\xi = \frac{x}{h_o} = \frac{1}{\beta + \frac{1 + 5(\delta + \lambda)^2}{10\mu\alpha}}.$$
 (7.69)

Đối với tiết diện chữ nhật hay chữ T có cánh trong vùng kéo, cho $h'_f = 0$. Khi $\xi < \frac{h'_f}{h_o}$ thì tính toán như đối với tiết diện chữ nhật có chiều rộng là b'_f . Đối với tiết diện chữ nhật có kể đến cốt chịu nén A'_s thì lấy $h'_f = 2a'$, nếu $\xi < \frac{a'}{h_o}$ thì phải tính lại với điều kiện không kể đến A'_s .

Biết chiều cao tương đối của vùng chịu nén ξ , có thể xác định được diện tích quy đổi của vùng bêtông chịu nén $A_{b,red}$ theo công thức sau:

$$A_{b,red} = (\varphi_f + \xi) bh_o. \tag{7.70}$$

7.6.5. Xác định cánh tay đòn của nội ngẫu lực z


z là khoảng cách từ trọng tâm cốt thép chịu kéo A_s đến điểm đặt của hợp lực vùng nén (gồm lực nén của vùng bêtông chịu nén và lực nén của cốt A_s). Với giả thiết biểu đồ ứng suất của vùng bêtông chịu nén là hình chữ nhật thì z chính là tỷ số giữa mômen tĩnh $S_{b,red}$ của diện tích vùng nén đã được quy đổi đối với trục đi qua trọng tâm cốt thép chịu kéo A_s và diện tích $A_{b,red}$:

$$z = \frac{S_{b.red}}{A_{b.red}} = \frac{S_b + \frac{n}{v} A'_s (h_o - a')}{(\varphi_f + \xi) b h_o}$$
 (7.71)

Sau khi biến đổi, ta được:

$$z = \left[1 - \frac{\frac{h'_f}{h_o} \varphi_f + \xi^2}{2(\varphi_f + \xi)}\right] h_o.$$
 (7.72)

7.6.6. Hệ số ψ_s

Hình 7.13. Biểu đồ ứng suất của cốt thép trên đoạn I_n

Theo (7.45) thì $\psi_s = \frac{\overline{\sigma}_s}{\sigma_s}$. Nếu biểu thị $\overline{\sigma}_s$ bằng biểu thức $\overline{\sigma}_s = \sigma_s - \omega . \sigma_{s2}$

(xem hình 7.13) thì ta được
$$\psi_s = 1 - \omega \frac{\sigma_{s2}}{\sigma_s} = 1 - \omega \left(\frac{\sigma_s - \sigma_{s1}}{\sigma_s} \right)$$
. Tỷ số giữa

những ứng suất của cốt thép ở trên có thể biểu diễn thông qua tỷ số giữa mômen gây nứt và mômen nội lực với việc sử dụng các hệ số và có thể biểu diễn ψ_s như sau đối với cấu kiện chịu uốn:

$$\psi_s = 1 - \omega \chi \frac{M_{crc}}{M} \; ; \tag{7.73}$$

trong đó các hệ số ωχ được xác định bằng thực nghiệm.

Cũng giống như việc xác định hệ số ξ , tiêu chuẩn thiết kế cho phép dùng công thức thực nghiệm sau đây để tính ψ_s :

a. Đối với cấu kiện chịu uốn

$$\psi_s = 1,25 - \varphi_{ls} \frac{R_{bt.ser} W_{pl}}{M} \le 1,0 ;$$
(7.74)

trong đó: φ_{ls} – hệ số xét đến hình dáng cốt thép, tính chất dài hạn của tải trọng và cấp độ bền của bêtông. Khi cấp độ bền của bêtông cao hơn B7,5,

• đối với tải trọng tác dụng ngắn hạn

- dùng cốt thép tron và sợi: $\varphi_{ls} = 1,0$;

- dùng cốt thép có gờ: $\varphi_{I_8} = 1,1.$

• đối với tải trọng tác dụng dài hạn và mọi loại cốt thép: $\phi_{ls}=0.8$ W_{pl} – được xác định theo (7.9) hoặc (7.18).

Cần lưu ý rằng, trong (7.74), $R_{bt, \ ser}W_{pl}$ là mômen gây nứt, do đó tỷ số $R_{bt, \ ser}\frac{W_{pl}}{M}$ phải nhỏ hơn hoặc bằng một mới có thể rơi vào trường hợp vùng kéo bị nứt.

b. Đối với cấu kiện chịu kéo, nén lệch tâm bằng bêtông cốt thép thường

$$\psi_{s} = 1,25 - \varphi_{ls}\varphi_{m} - \frac{1}{(3,5 - 1,8\varphi_{m})\left(\frac{e_{s}}{h_{o}}\right)} \le 1,0, \tag{7.75}$$

trong đó:

$$\phi_m = \frac{R_{bt.ser} W_{pl}}{M_r} \le 1.0, (7.76)$$

ở đây M_r được tính theo (7.13) đối với cấu kiện chịu nén lệch tâm và tính theo (7.20) đối với cấu kiện chịu kéo lệch tâm. Tiêu chuẩn thiết kế khống chế giá trị:

$$\frac{e_s}{h_o} \ge \frac{1,2}{\varphi_{ls}},\tag{7.77}$$

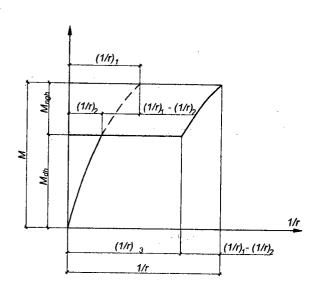
trong đó: e_s – độ lệch tâm của lực dọc đối với trọng tâm của cốt thép chịu kéo A_s .

7.6.7. Độ cong toàn phần và độ võng

a. Độ cong toàn phần

Dưới tác dụng của tải trọng ngắn hạn và tải trọng dài hạn, độ cong toàn phần của cấu kiện có khe nút trong vùng kéo được xác định theo công thức:

$$\frac{1}{r} = \left(\frac{1}{r}\right)_1 - \left(\frac{1}{r}\right)_2 + \left(\frac{1}{r}\right)_3 \,, \tag{7.78}$$

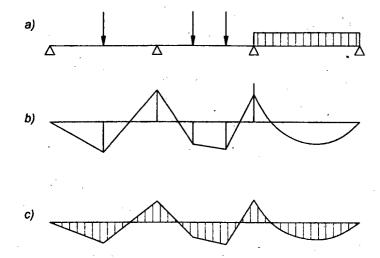

trong đó: $\left(\frac{1}{r}\right)_1$ – độ cong do tác dụng ngắn hạn của toàn bộ tải trọng; $\left(\frac{1}{r}\right)_2$ – độ cong do tác dụng ngắn hạn của tải trọng dài hạn; $\left(\frac{1}{r}\right)_3$ – độ cong do tác dụng dài hạn của tải trọng dài hạn.

Công thức (7.78) có thể được giải thích thông qua đồ thị quan hệ giữa mômen dài hạn và ngắn hạn với độ cong tương ứng (h.7.14).

Cần lưu ý rằng độ cong $\left(\frac{1}{r}\right)_3$ đối với tải trọng dài hạn phải được tính từ gốc toa đô.

b. Tính toán độ võng

Độ võng f_m do biến dạng uốn gây ra được xác định theo công thức:



Hình 7.14. Quan hệ giữa mômen và độ cong

$$f_m = \int_0^l \overline{M}_x \left(\frac{1}{r}\right)_x dx. \tag{7.79}$$

trong đó: \overline{M}_x – mômen uốn do tác dụng của lực đơn vị hướng theo phương của chuyển vị cần xác định và đặt tại tiết diện cần xác định chuyển vị (tiết diện m).

Đối với cấu kiện chịu uốn bằng bêtông cốt thép thường có tiết diện không đổi, có khe nứt, trên mỗi đoạn có mômen không đổi dấu, cho phép tính độ cong ở tiết diện có mômen uốn lớn nhất, độ cong của những tiết diện còn lại trên đoạn đó được lấy tỷ lệ với giá trị mômen uốn (h.7.15).

Hinh 7.15. Biểu đổ mômen uốn và độ cong đối với dầm bêtông cốt thép thường có tiết diện không đổi

a) Sơ đồ tải trọng; b) Biểu đồ mômen uốn; c) Biểu đồ độ cong.

Cũng có thể đưa vào trong tính toán độ cong của những đoạn dầm không xuất hiện khe nứt. Tính toán như vậy sẽ phức tạp hơn nhưng sẽ được kết quả tính toán chính xác hơn. Ở tiết diện nằm giữa đoạn bị nứt và đoạn không bị nứt, độ cong sẽ có bước nhảy.

Tiêu chuẩn thiết kế TCXDVN 356 – 2005 còn cho cách tính toán để xét đến ảnh hưởng của lực cắt Q đến độ võng của dầm có chiều cao lớn $\left(\frac{l}{h} < 10\right)$. Tiêu chuẩn cũng yêu cầu tăng giá trị độ võng của bản đặc loại dầm có chiều dày nhỏ hơn 25 cm, được đặt các lưới thép phẳng, có khe nứt trong vùng chịu kéo bằng cách nhân độ võng với hệ số $\left(\frac{h_o}{h_o-0.7}\right)^3$. Hệ số đó không lớn hơn 1.5; ở đây h_o được tính bằng cm.

Ví dụ 7.1. Tính độ võng và bề rộng khe nứt của dầm đơn giản chịu tải trọng phân bố đều với các số liệu sau: l=8 m; b=30 cm; h=70 cm; cốt thép chịu kéo $A_s=36,95$ cm² (6 ϕ 28A.III); cốt thép chịu nén $A'_s=2,26$ cm²; $h_o=63$ cm; a'=3 cm; tổng tải trọng tiêu chuẩn $q^c=64$ kN/m trong đó phần tải trọng dài hạn là $g^c=26$ kN/m; cấp độ bền của bêtông là B30.

Tra các số liệu trong phụ lục:

$$R_{b.ser} = 22 \text{ MPa}$$
; $R_{bl.ser} = 1.8 \text{ MPa}$.
 $E_b = 32.5 \times 10^3 \text{ MPa}$; $E\alpha = 20 \times 10^4 \text{ MPa}$.

Tính độ võng

- 1. Kiểm tra khả năng xảy ra khe nứt
- Tính giá trị mômen toàn phần

$$M = \frac{ql^2}{8} = \frac{64 \times 8^2}{8} = 512 \text{ kNm}.$$

- Tính khả năng chống nút theo (7.8)

$$\begin{split} M_{crc} &= R_{bt.ser} W_{pl} \; ; \\ W_{pl} &= \frac{2 (I_{bo} + \alpha I_{so} + \alpha I'_{so})}{h - r} + S_{bo} \; . \end{split}$$

Tính ξ theo (7.5)

$$\xi = \frac{x}{h_o} = 1 - \frac{bh + 2\left(1 - \frac{a'}{h}\right)\alpha A'}{2A_{red}}.$$

$$\mathrm{Tinh}\,A_{red}=bh+\alpha(A_s+A_s')$$

$$\alpha = \frac{E'_s}{E_b} = \frac{20 \times 10^4}{32,5 \times 10^3} = 6,15.$$

$$A_{red} = 300 \times 700 + 6,25(3695 + 226) = 234 114 \text{ mm}^2.$$

$$\xi = \frac{x}{h_0} = 1 - \frac{300 \times 700 + 2\left(1 - \frac{30}{700}\right)6,25 \times 226}{2 \times 234114} = 0,454.$$

$$x = \xi h_o = 0.454 \times 700 = 318 \text{ mm}.$$

$$I_{bo} = \frac{bx^2}{3} = \frac{300 \times 318^3}{3} = 32,157432 \times 10^8 \text{ mm}^4.$$

$$I_{so} = A_s(h - x - a)^2 = 3695 (700 - 318 - 70)^2 = 3,596861 \times 10^8 \text{ mm}^4.$$

$$I_{so} = A_s (x - \alpha)^2 = 226 (318 - 30)^2 = 0.187453 \times 10^8 \text{mm}^4$$
.

$$S_{bo} = \frac{b(h-x)^2}{2} = \frac{300(700-318)^2}{2} = 0.218886 \times 10^8 \text{ mm}^3.$$

$$W_{pl} = \frac{2(32,157432+6,15\times3,596861+6,15\times0,187453)10^8}{700-318} +$$

$$+0.218886 \times 10^8 = 0.5091 \times 10^8 \text{ mm}^3$$
.

$$M_{crc} = 1.8 \times 0.5091 \times 10^8 = 0.91638 \times 10^8 \text{ Nmm} = 91.638 \text{ kNm}.$$

 $M_{crc} < M^c = 512 \text{ kNm}.$

do đó dầm bị nút trên phạm vi rộng.

- 2. Tính độ cong ở giữa nhịp do tác dụng ngắn hạn của toàn bộ tải trọng
- Tính ξ theo (7.69) đối với cấu kiện chịu uốn:

$$\xi = \frac{x}{h_o} = \frac{1}{\beta + \frac{1 + 5(\delta + \lambda)^2}{10 \mu \alpha}},$$

 β = 1,8 đối với bêtông nặng; M_1 = 512 kNm;

$$\delta = \frac{M}{bh_o^2 R_{b,ser}} = \frac{512.10^6}{300 \times 630^2 \times 22} = 0,195.$$

$$\alpha = \frac{E_s}{E_b} = 6,15.$$

$$\mu = \frac{A_s}{bh_o} = \frac{3695}{300 \times 630} = 0,01955.$$

$$\alpha = \frac{\left(\frac{\alpha}{2\nu}\right)A_s}{200 \times 630} = 0,01955.$$

$$\phi_f = \frac{\left(\frac{\alpha}{2\nu}\right)A'_s}{bh_a}$$
, với $\nu = 0.45$ đối với tải trọng tác dụng ngắn hạn

$$\phi_f = \frac{\left(\frac{6,15}{2 \times 0,45}\right) 226}{300 \times 630} = 0,00817.$$

$$\lambda = \varphi_f \left(1 - \frac{h_f'}{2h_o} \right) = \varphi_f = 0,00817.$$

$$\xi = \frac{1}{1,8 + \frac{1 + 5(0,195 + 0,00817)^2}{10 \times 0,01955 \times 6,15}} = 0,3529.$$

- Tính $A_{b,red}$ theo (7.70):

$$A_{b.red} = (\varphi_f + \xi) \ bh_o = (0.00817 + 0.3529) \times 300 \times 630 = 68239 \ \text{mm}^2.$$

- Tính z theo (7.72) đối với tiết diện chữ nhật:

$$z = \left[1 - \frac{\xi^2}{2(\varphi_f + \xi)}\right] h_o = \left[1 - \frac{0,3529^2}{2(0,00817 + 0,3529)}\right] \times 630 = 521,4 \text{ mm}.$$

– Tính ψ_s theo (7.74) với $\varphi_{ls} = 1,1$

$$\psi_{_{\rm N}} = 1,25 - \phi_{_{\rm LN}} \frac{R_{_{ht,ser}} W_{_{pl}}}{M_{_1}} = 1,25 - 1,1 \frac{1,8 \times 0,5091 \times 10^8}{512000\,000} = 1,053 > 1,0\;,$$

lấy $\psi_s = 1.0$.

- Tính
$$\frac{1}{r_1}$$
 theo (7.53) với $v = 0.45$

$$\frac{1}{r_1} = \frac{M_1}{h_o z} \left(\frac{\psi_s}{E_s A_s} + \frac{\psi_b}{v E_b A_{b,red}} \right) =
= \frac{512.10^6}{630 \times 521.4} \left(\frac{1}{20.10^4 \times 3695} + \frac{0.9}{0.45 \times 32.5.10^3 \times 8239} \right) =
= 3.474 \cdot 10^{-6} (1/mm).$$

3. Tính độ cong ở giữa nhịp do tác dụng ngắn hạn của tải trọng dài hạn

$$\begin{split} & M_2 = \frac{26 \times 8^2}{8} = 208 \, \mathrm{kNm}. \\ & \delta = \frac{M_2}{b h_o^2 R_{b,\mathrm{ner}}} = \frac{208.10^6}{300 \times 630^2 \times 22} = 0,0794 \, . \\ & \alpha = 6,15. \\ & \mu = 0,01995. \\ & \phi_f = \lambda = 0,00817. \\ & \xi = \frac{1}{1,8 + \frac{1 + 5(0,0794 + 0,00817)^2}{10 \times 0,01955 \times 6,15}} = 0,3734 \, . \end{split}$$

$$A_{bred} = (\varphi_f + \xi) \ bh_o = (0,00817 + 0,3734) \ 300 \times 630 = 72117 \ \text{mm}^2.$$

$$z = \left[1 - \frac{0,3734^2}{2(0,00817 + 0,3761)}\right] 630 = 515 \ \text{mm}.$$

$$\psi_{\star} = 1,25-1,1\frac{1,8\times0,5091.10^8}{208.10^6} = 0,765 \; . \label{eq:psi_sum}$$

$$\frac{1}{r_2} = \frac{208.10^6}{630 \times 515} \left(\frac{0,765}{20.10^4 \times 3695} + \frac{0,9}{0,45 \times 32,5.10^3 \times 72117} \right) =$$
$$= 1,2107. 10^{-6} (1/\text{mm}).$$

4. Tính độ cong ở giữa nhịp do tác dụng dài hạn của tải trọng dài hạn

$$M_3 = 208 \text{ kNm}.$$

$$\delta = 0.0794$$
.

$$\alpha = 6.15$$
.

$$\mu = 0.01955$$
.

 $\phi_f = \frac{\left(\frac{\alpha}{2\nu}\right)A'}{bh_o}$. Đối với tải trọng tác dụng dài hạn và độ ẩm của môi trường vượt quá 75% lấy hệ số $\nu = 0.15 \times 1.25 = 0.1875$.

$$\phi_f = \frac{\left(\frac{6,15}{2 \times 0,1875}\right) 226}{300 \times 630} = 0,0196.$$

$$\lambda = \varphi_f = 0.0196.$$

$$\xi = \frac{1}{1.8 + \frac{1 + (0.0794 + 0.0196)^2}{10 \times 0.01955 \times 6.15}} = 0.3742.$$

 $A_{b.red} = (\varphi_f + \xi) \ bh_o = (0.0196 + 0.3742) \times 300 \times 630 = 74428 \text{ mm}^2.$ $z = \left[1 - \frac{0.3742^2}{2(0.0196 + 0.3742)}\right] 630 = 518 \text{ mm}.$

Tính ψ_s với $\varphi_{ls} = 0.8$

$$\psi_s = 1,25 - 0,8 \frac{1,8 \times 0,5091.10^8}{208.10^6} = 0,8975$$
.

$$\begin{split} \frac{1}{\rho_3} &= \frac{208.10^6}{630\times518} \bigg(\frac{0,8975}{20.10^4\times3695} + \frac{0,9}{0,1875\times32,5.10^3\times74428} \bigg) = \\ &= 2,03885\cdot10^{-6} \text{ (1/mm)}. \end{split}$$

5. Độ cong toàn phần

$$\frac{1}{r} = \frac{1}{r_1} - \frac{1}{r_2} + \frac{1}{r_3} = (3,5148 - 1,2107 + 2,0389).10^{-6} = 4,343.10^{-6}(1/\text{mm}).$$

6. Tính độ võng của dầm ở tiết diện giữa nhịp

$$f = \frac{5}{48} \left(\frac{1}{r}\right) l^2 = \frac{5}{48} \times 4,343 \cdot 10^{-6} \times 8 \cdot 10^6 = 28,95 \text{ mm},$$

 $f = 28,95 < \frac{8000}{250} = 32 \text{ mm}.$

Tính bề rộng khe nứt theo (7.32)

$$a_{erc} = \delta \varphi_l \eta \frac{\sigma_s}{E_s} 20(3.5 - 100 \mu) \sqrt[3]{d}$$
;

 $\delta = 1$ đối với cấu kiện chịu uốn;

 $\eta = 1$ đối với cốt thép có gờ.

1. Tính bề rộng khe nứt $a_{crc.1t}$ do tác dụng ngắn hạn của toàn bộ tải trọng $\phi_l=1,0~\sigma_s$ được tính theo (7.33) cùng với các kết quả đã tính được ở phần trước

$$\sigma_s = \frac{M_1}{A_s z} = \frac{512 \times 10^6}{3695 \times 521,4} = 265,76 \text{ N/mm}^2$$

$$a_{cre.1t} = 1 \times 1 \times 1 \times \frac{265,76}{20 \times 10^4} 20(3,5 - 100 \times 0,01955)\sqrt[3]{28} = 0,12 \text{ mm}.$$

2. Tính bề rộng khe nứt $a_{crc.1d}$ do tác dụng ngắn hạn của tải trọng dài hạn

$$\sigma_{s} = \frac{M_{2}}{A_{s}z} = \frac{208 \times 10^{6}}{3695 \times 515} = 109,31 \text{ N/mm}^{2};$$

$$a_{erc.1d} = \frac{109,31}{20 \times 10^4} 20(3,5 - 100 \times 0,01955)\sqrt[3]{28} = 0,05 \text{ mm}.$$

3. Tính bề rộng khe nứt $a_{crc,2}$ do tác dụng dài hạn của tải trọng dài hạn

$$\sigma_{x} = \frac{M_{3}}{A_{s}z} = \frac{208.10^{6}}{3695 \times 518} = 108,7 \text{ Nmm}^{2};$$

 $\phi_l = 1.6 - 15 \mu$ - đối với bêtông nặng trong điều kiện độ ẩm tự nhiên

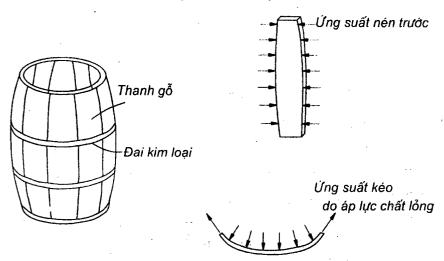
$$\varphi_l = 1.6 - 15 \times 0.01955 = 1.30675$$

$$a_{crc} = 1,30675 \frac{108,7}{20 \times 10^4} 20(3,5 - 100 \times 0,01955) \sqrt[3]{28} = 0,07 \text{ mm} < 0,3 \text{ mm}$$

4. Bề rộng khe nứt ngắn hạn được tính theo (7.36)

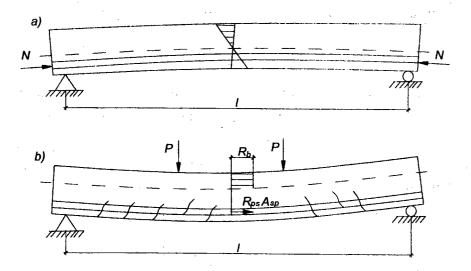
$$a_{crc.1} = a_{crc.1t} - a_{crc.1d} + a_{crc.2} = 0.12 - 0.05 + 0.07 = 0.13 \text{ mm} < 0.4 \text{ mm}.$$

.



KẾT CẤU BÊTÔNG ỨNG LỰC TRƯỚC

8.1. KHÁI NIỆM CHUNG


8.1.1. Bản chất của bêtông ứng lực trước

Có thể nói ý tưởng về ứng lực trước (ƯLT) xuất hiện từ nhiều thế kỷ trước. Để chế tạo thùng rượu, người ta sử dụng các đai kim loại bó quanh các thanh gỗ (h.8.1), khi đai được kéo chặt, các thanh gỗ bị ép chặt vào nhau và tạo ra ứng suất nén trước giữa chúng. Ứng suất nén này sẽ làm triệt tiêu ứng suất kéo vòng tác dụng lên thành khi thùng chứa chất lỏng, vì vậy thành thùng rượu sẽ không bị nứt tách. Trước khi đưa vào sử dụng, cả đai kim loại và các thanh gỗ đều đã được ƯLT.

Hình 8.1. Nguyên tắc ứng lực trước áp dụng cho việc chế tạo thùng rượu

Trong cấu kiện bêtông ULT, người ta đặt vào một lực nén trước tạo bởi việc kéo cốt thép rồi gắn chặt nó vào bêtông thông qua lực dính hoặc neo. Nhờ tính đàn hồi, cốt thép có xu hướng co lại tạo nên lực nén trước wã gây ra ứng suất nén trước trong bêtông. Ứng suất nén này sẽ triệt tiêu hay làm giảm ứng suất kéo do tải trọng sử dụng gây ra, do vậy làm tăng khả năng chịu kéo của bêtông và làm hạn chế sự phát triển của vết nứt (hình 8.2). ULT chính là việc tạo ra cho kết cấu một cách có chủ ý các ứng suất tạm thời nhằm tăng cường sự làm việc của vật liệu trong các điều kiện sử dụng khác nhau. Nói cách khác, trước khi cấu kiện chịu tải trọng sử dụng, cốt thép đã bị căng trước, còn bêtông đã bị nén trước.

Hình 8.2. Dầm bêtông ứng lực trước

Trong cấu kiện BTCT thường, những khe nứt đầu tiên ở bêtông xuất hiện khi ứng suất trong cốt thép chịu kéo mới chỉ đạt từ 200 đến 300 kG/cm². Nếu dùng thép cường độ cao, ứng suất trong cốt thép chịu kéo có thể đạt tới trị số 10000 đến 12000 kG/cm² hoặc lớn hơn, điều đó làm xuất hiện các khe nứt lớn, vượt quá giới hạn cho phép. Trong bêtông ULT, do có thể khống chế sự xuất hiện khe nứt bằng lực căng trước nên cần thiết và có thể dùng cốt thép cường độ cao. Mặt khác, để có thể giảm được kích thước

tiết diện và từ đó giảm trọng lượng bản thân của cấu kiện, đồng thời để tăng khả năng chịu ứng suất tập trung ở vùng neo, cần phải sử dụng bêtông cường độ cao. Bêtông ƯLT đã trở thành một sự kết hợp lý tưởng giữa hai loại vật liệu hiện đại có cường độ cao.

8.1.2. So sánh bêtông ƯLT và bêtông cốt thép

Sự khác biệt lớn nhất giữa hai loại vật liệu trên chính là việc sử dụng vật liệu cường độ cao trong bêtông ULT. Sự xuất hiện của bêtông ULT - với tính hợp lý, kinh tế và khả năng thích ứng cho các công trình đặc biệt, không có nghĩa là sự phủ nhận BTCT, mỗi loại vật liệu có những ưu. khuyết điểm và phạm vi áp dụng riêng của nó, thể hiện trong các khía cạnh: độ an toàn, tính kinh tế và phạm vi áp dụng.

a. Độ an toàn

Khi được thiết kế theo các tiêu chuẩn hiện hành, kết cấu bêtông ULT có khả năng chịu tải giới hạn tương đương, thậm chí cao hơn một chút so với BTCT. Các thí nghiệm cho thấy dầm bêtông ULT có độ võng dáng kể trước khi bị phá hoại, như vậy sẽ cho người sử dụng những cảnh báo rõ rệt trước khi kết cấu bị phá hoại. Khả năng chịu tải trọng động, tải trọng lặp giữa hai loại vật liệu là tương đương.

Do hạn chế được vết nứt và sử dụng bêtông chất lượng cao nên khả năng chống ăn mòn của bêtông ƯLT là cao hơn BTCT, nhưng một khi đã xuất hiện yết nứt thì quá trình ăn mòn cốt thép trong bêtông ƯLT sẽ diễn biến nhanh hơn.

Thép cường độ cao nhạy cảm với nhiệt độ lớn hơn so với cốt thép thường nên bêtông ƯLT có khả năng chịu lửa hạn chế hơn, tuy nhiên do cáp ƯLT thường được bố trí theo dạng cong nên tại một số vị trí trên cấu kiện, bêtông ƯLT có ưu thế hơn về lớp bêtông bảo vệ.

Do có cường độ vật liệu cao hơn, tiết diện thanh mảnh hơn, kết cấu bêtông ULT đòi hỏi phải được chú ý nhiều hơn trong các khâu thiết kế, thi công và lắp dựng.

Tuổi thọ của kết cấu bêtông ULT không thua kém so với BTCT.

b. Tính kinh tế

Để chịu được cùng một tải trọng, bêtông ULT sử dụng một khối lượng bêtông và thép ít hơn, do sử dụng được cấu kiện thanh mảnh, giảm trọng lượng bản thân, nên bêtông ULT tiết kiệm được vật liệu cho các bộ phận kết cấu khác như móng. cột v.v., với cấu kiện dúc sẵn, diều đó làm giảm chi phí vận chuyển và lắp dựng.

Tuy nhiên vật liệu cường độ cao sẽ có giá thành đơn vị cao hơn, mặt khác bêtông ƯLT lại sử dụng nhiều thiết bị chuyên dụng như neo, cáp, vữa v.v., việc gia công, chế tạo cốp pha phức tạp hơn. Chi phí thiết kế, giám sát thi công, chi phí nhân công cho một đơn vị khối lượng công việc cũng cao hơn. Tuỳ thuộc vào kinh nghiệm, trình độ của nhà thầu mà khối lượng công việc phát sinh cũng có thể nhiều hơn.

Nói chung bêtông ƯLT tổ ra có hiệu quả kinh tế hơn cho kết cấu nhịp lớn, chịu tải trọng nặng, các cấu kiện điển hình được thi công hàng loạt và cấu kiện đúc sẵn hoặc kết cấu liên hợp.

c. Pham vi áp dung

Nhờ việc sử dụng vật liệu cường độ cao, bêtông ULT thích hợp với kết cấu nhịp lớn, chịu tải trọng nặng. Do có thể sử dụng tiết diện thanh mảnh nên kết cấu bêtông ULT đáp ứng được các yêu cầu mỹ quan. Bêtông ULT cũng phù hợp với cấu kiện đúc sẵn hơn do có trọng lượng nhỏ hơn.

8.1.3. Phân loại bêtông ƯLT

Có nhiều cách phân loại bêtông ULT tuỳ thuộc vào đặc diểm thiết kế và phương pháp thi công.

a. Theo thời điểm căng cốt thép tạo ULT

Theo thời điểm căng cốt thép tạo ƯLT người ta phân thành phương pháp căng trước và phương pháp căng sau. Với phương pháp căng trước, hệ thống tạo ULT bao gồm hai khối neo đặt cách nhau một khoảng cách nào đó, thép ULT được căng giữa hai khối neo này trước khi đổ bêtông. lực căng được tạo bởi các kích thủy lực. Sau khi bêtông đủ cường độ, các áp lực kích được thả ra, truyền ULT cho bêtông.

Với phương pháp căng sau, thép ULT được đặt sẵn trong cấu kiện, khi bêtông đạt đủ cường độ thép ULT được căng và neo vào đầu cuối của cấu kiện.

Phương pháp căng trước và phương pháp căng sau sẽ được trình bày cụ thể trong mục 8.3.

b. Theo vi trí bố trí cáp ULT

Theo vị trí bố trí cáp ULT người ta phân thành phương pháp căng trong và phương pháp căng ngoài. Phương pháp căng trong là cách căng trước thép ULT nằm trong bêtông như đã đề cập tới ở trên. Khi thép ULT nằm bên ngoài cấu kiện, ta có phương pháp căng ngoài. Ngoài ra có thể tạo ULT bởi các tác nhân khác bên ngoài cấu kiện, ví dụ như đối với các kết cấu siêu tĩnh như dầm liên tục, khung, vòm v.v., bằng cách chuyển vị cưỡng bức gối tựa có thể tạo nên ứng suất trước nhằm điều chỉnh hợp lý sự phân bố nội lực trong kết cấu.

c. Theo mức độ hạn chế ứng suất kéo trong cấu kiện

Theo mức độ hạn chế ứng suất kéo trong cấu kiện trong giai đoạn sử dụng, người ta phân thành ứng lực toàn phần và ứng lực một phần. Ứng lực toàn phần nghĩa là cấu kiện được thiết kế sao cho không xuất hiện ứng suất kéo khi chịu tải trọng sử dụng. Nếu dưới tác dụng của tải trọng sử dụng, sau khi ULT vẫn có ứng suất kéo được khống chế trong cấu kiện, người ta gọi đó là ứng lực một phần.

d. Theo đặc điểm của cáp ULT

Theo đặc điểm của cáp ULT người ta phân thành cáp ULT dính kết (bonded) và không dính kết (unbonded). Cáp ULT dính kết là loại cáp có sự bám dính với bêtông xung quanh dọc theo chiều dài của nó. Cáp không dính kết phải được bảo vệ khỏi sự ăn mòn bằng các lớp mạ hoặc bởi một lớp bôi trơn chống dính, nó thường được bọc bởi ống chất dẻo để tránh sự bám dính với bêtông xung quanh.

e. Theo việc dặt cáp ULT trong cấu kiện

Theo việc đặt cáp ULT trong cấu kiện người ta phân thành ứng lực thẳng và ứng lực vòng. Đối với các cấu kiện có dạng thẳng như dầm, sàn v.v., tuy các sợi cáp được đặt theo hình parabol nhưng chúng không bị uốn cong trên mặt bằng, vì vậy được gọi là ứng lực thẳng. Đối với các kết cấu có tiết diện dạng tròn như silô, bể chứa v.v., các cáp ULT được dặt theo chu vi của cấu kiện, do vậy được gọi là ứng lực vòng.

8.1.4. Sự hình thành và phát triển của bêtông ứng lực trước

Năm 1886, P. H. Jackson, một kỹ sư người San Francisco, đã giành được bằng sáng chế nhờ việc buộc chặt các sợi dây thép vào bêtông khi thi công sàn nhà bằng phương pháp cuốn vòm. Vào năm 1888, C. E. W. Doehring, người Đức, cũng đã nhận được bằng sáng chế nhờ việc tạo nên lực kéo trước vào kim loại đặt trong bêtông trước khi chất tải cho bản sàn. Những sáng chế kể trên đã không đạt được thành công vì ứng lực trong cốt thép sớm bị mất mát do sự co ngót và từ biến của bêtông. Năm 1908. C. R. Steiner, người Mỹ, đã đề xuất việc gia cường các sợi cốt thép sau khi xảy ra co ngót và từ biến của bêtông, nhằm phục hồi một phần các ứng lực đã bị mất mát. Năm 1925, R. E. Dill, đã sử dụng các thanh cốt thép được sơn phủ nhằm tránh lực dính với bêtông, sau khi đổ bêtông, các thanh cốt thép được kéo và neo vào bêtông bằng các đai ốc, tuy nhiên phương pháp này đã không được áp dụng vì những lý do kinh tế.

Năm 1928, sự phát triển của bêtông ULT hiện đại thực sự được khởi đầu bởi E. Freyssinet, người Pháp, với việc sử dụng các sợi thép ULT có cường độ cao, tuy nhiên phương pháp thực hành đầu tiên được tìm ra bởi E. Hoyer, người Đức. Với phương pháp này các sợi thép được căng giữa hai bệ neo đặt cách nhau vài chục mét trước khi đúc một vài cấu kiện trong các khuôn đặt giữa hai khối neo, khi bêtông đạt đủ cường độ, sợi thép được cắt khỏi neo và sẽ gây nên ứng lực trước trong các cấu kiện đó.

Bêtông ULT thực sự được ứng dụng rộng rãi bởi độ tin cậy và tính kinh tế của nó, kể từ khi phương pháp ULT bằng các thiết bị neo được phát minh. Năm 1939, Freyssinet đã phát triển các neo có dạng nêm hình côn và các kích thủy lực hai chiều, vừa kéo cốt thép, vừa dẩy cho các nêm dạng côn lồng vào nhau tạo nên một kiểu neo rất chắc chắn. Năm 1940, giáo sư người Bỉ G. Magnel cũng đã sáng chế ra một hệ thống mang tên ông, trong đó hai sợi dây thép được kéo căng đồng thời và được neo bởi các nêm kim loại ở hai đầu. Từ năm 1945, trong bối cảnh sau chiến tranh thế giới lần thứ hai và sự khan hiếm của thép xây dựng ở châu Âu, với đặc điểm là sử dụng ít thép hơn, bêtông ULT đã trở thành một vật liệu xây dựng đóng vai trò quan trọng. Từ đó cho đến nay, cùng với quá trình không ngừng dược nghiên cứu và phát triển, bêtông ULT đã được các kỹ sư thiết kế, các nhà xây dựng công nhận như một giải pháp hoàn toàn tin cậy, an toàn, kinh tế và đã được ứng dụng rộng rãi trong xây dựng.

8.2. CÁC PHƯƠNG PHÁP TÍNH TOÁN CẦU KIỆN BỆTÔNG ƯLT

Việc phân tích và tính toán cấu kiện bêtông ULT dựa trên ba phương pháp cơ bản.

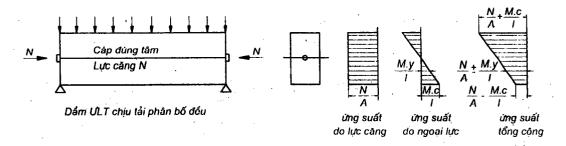
8.2.1. Phương pháp tính theo ứng suất cho phép

Theo phương pháp này, bêtông ƯLT được xem như vật liệu đàn hồi. Bêtông vốn là một vật liệu chịu nén tốt nhưng chịu kéo rất kém. Thông qua ƯLT, trong bêtông sẽ hạn chế đáng kể sự xuất hiện vết nứt, như vậy bêtông làm việc gần như vật liệu đàn hồi. Trong giai đoạn sử dụng, các

ứng suất, biến dạng và chuyển vị của cấu kiện khi chịu ULT và ngoại lực được xem xét riêng rẽ và có thể áp dụng được nguyên lý cộng tác dụng.

Xét một dầm đơn giản tiết diện chữ nhật có diện tích A, mômen quán tính I, được ứng lực trước bởi thép ULT có trọng tâm (c.g.s) chạy dọc theo trọng tâm tiết diện bêtông (c.g.c) và chịu tải trọng phân bố đều (h.8.3). Lực nén trước N gây ra ứng suất nén tại các tiết diện dầm:

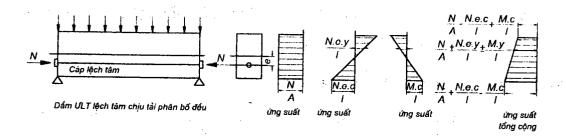
$$\sigma_N = \frac{N}{A}. \tag{8.1}$$


Mômen M do tải trọng phân bố đều và trọng lượng bản thân dầm gây ra ứng suất tại thớ cách trọng tâm một khoảng y là:

$$\sigma_{M} = \frac{My}{I} \,. \tag{8.2}$$

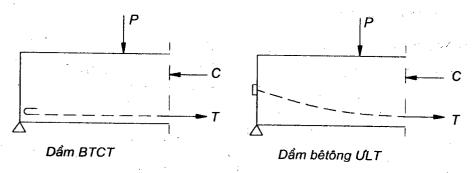
Úng suất tổng cộng trong bêtông tại một tiết diện bất kỳ là tổng của ứng suất trước và ứng suất uốn do tải trọng ngoài:

$$\sigma = \frac{N}{A} \pm \frac{My}{I}.$$
 (8.3)


Biểu đồ ứng suất thể hiện trên hình 8.3.

Hình 8.3. Phân bố ứng suất trên tiết diện chịu ƯLT đúng tâm

Vẫn xét dầm như ở trên, nhưng thép ULT được bố trí có độ lệch tâm e so với trục dầm (h.8.4), như vậy lực nén trước gây ra thêm một mômen uốn là Ne, lúc này ứng suất tổng cộng trong bêtông tại một tiết diện bất kỳ là:

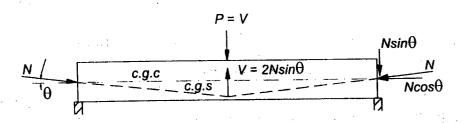

$$\sigma = \frac{N}{A} \pm \frac{Ney}{I} \pm \frac{My}{I} \tag{8.4}$$

Hình 8.4. Phân bố ứng suất của tiết diện chịu ƯLT lệch tâm

8.2.2. Phương pháp tính theo trạng thái giới hạn

Đây là quan niệm coi bêtông ULT như là một sự kết hợp giữa cốt thép và bêtông giống như BTCT, trong đó cốt thép chịu kéo, bêtông chịu nén- tạo nên một cặp ngẫu lực kháng lại mômen uốn do tải trọng ngoài gây ra (h.8.5).

Hình 8.5. Cấu kiện chịu uốn bêtông ƯLT và BTCT


Khi ứng suất trong thép cường độ cao đạt tới cường độ chịu kéo, nó có một độ giãn dài đáng kể. Nếu thép cường độ cao được sử dụng trong BTCT một cách dơn thuần thì phần bêtông xung quanh nó sẽ nhanh chóng xuất hiện vết nứt trong khi thép còn chưa đạt tới cường độ. Trong bêtông ULT, nếu thép cường độ cao được kéo trước và neo vào trong bêtông, sẽ có được những ứng suất và biến dạng phù hợp cho cả hai loại vật liệu. Sự kết hợp này tạo nên tính an toàn và hiệu quả cho cả bêtông và cốt thép vốn không thể đạt được trong kết cấu BTCT.

Với quan niệm này, bêtông ULT được nhìn nhận như một giải pháp quen thuộc của BTCT thường.

8.2.3. Phương pháp cân bằng tải trọng [15]

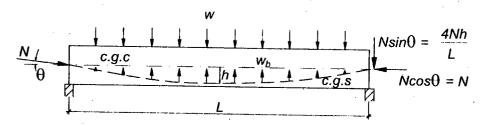
Đây là phương pháp với quan niệm coi ULT như là một thành phần để cân bằng với một phần tải trọng tiêu chuẩn tác dụng lên cấu kiện. Thông thường, ULT được sử dụng để cân bằng với trọng lượng bản thân của cấu kiện, do vậy trong các cấu kiện chịu uốn như sàn, dầm v.v. sẽ không xuất hiện mômen uốn với tải trọng do trọng lượng bản thân gây ra, điều đó biến cấu kiện chịu uốn trở thành cấu kiện chịu ứng suất trực tiếp và làm đơn giản hoá việc phân tích và thiết kế cấu kiện. Để có thể hiểu rõ hơn về tính toán theo phương pháp cân bằng tải trọng, ta xét các trường hợp tính toán với dầm đơn giản.

a) Xét một dầm đơn giản chịu tải trọng tập trung có thép ULT dạng gãy khúc, như trên hình 8.6. Để cân bằng với tải trọng tập trung này, phải tao ra một thành phần lực hướng lên là: $V=2Nsin\theta$

Hình 8.6. Cân bằng của một tải trọng tập trung

Nếu V cân bằng hoàn toàn với lực tập trung P tác dụng tại giữa nhịp, dầm không chịu một tải trọng đứng nào (bỏ qua trọng lượng dầm). Tại đầu dầm, thành phần đứng của ULT là $N\sin\theta$ được truyền trực tiếp lên gối tựa, trong khi thành phần nằm ngang $N\cos\theta$ tạo ra một ứng suất nén dọc theo toàn bộ dầm. Vì vậy ứng suất trong tiết diện dầm (trừ sự tập trung ứng suất cục bộ) là:

$$\sigma_N = \frac{N\cos\theta}{A} - \frac{N}{A} \text{ (vì giá trị } \theta \text{ nhỏ)}$$
 (8.5)


và độ võng của dầm bằng không.

Với bất kỳ giá trị tải trọng P lớn hơn V thì phần tải trọng chênh lệch (P - V) sẽ gây uốn cho dầm và ứng suất thêm vào có thể tính theo công thức:

$$\sigma_{M} = \frac{Mc}{I} \tag{8.6}$$

trong đó: M – mômen gây ra do tải trọng (P - V) gây ra.

b) Xét dầm đơn giản chịu tải trọng phân bố đều, có thép ULT được bố trí theo dạng parabol như trên hình 8.7

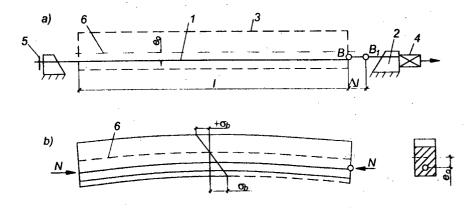
Hình 8.7. Cân bằng của tải trọng phân bố

Để cân bằng tải trọng phân bố đều w bởi cáp parabol, thành phần hướng lên w_b là:

$$w_b = \frac{8Nh}{L^2}. (8.7)$$

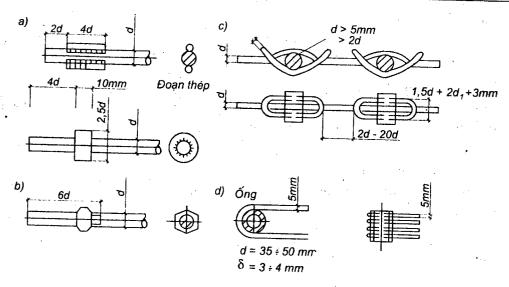
Nếu tải trọng tác dụng w (bao gồm cả tải trọng bản thân) được cân bằng hoàn toàn bởi w_b thì sẽ không có sự uốn trong dầm. Dầm sẽ chịu ứng suất nén phân bố đều:

$$\sigma = \frac{N}{A}. ag{8.8}$$


Nếu tải trọng tác dụng w lớn hơn w_b , chỉ cần phân tích mômen M gây ra bởi phần tải trọng $(w - w_b)$ và độ võng ngắn hạn của dầm cũng sẽ chỉ do phần tải trọng này gây ra.

Theo phương pháp thứ nhất và thứ ba, đều không đánh giá được trực tiếp khả năng chịu lực của cấu kiện, tuy nhiên việc phân tích ứng suất của bêtông trong giai đoạn sử dụng có thể dự đoán được dễ dàng sự phát triển vết nứt. Phương pháp cân bằng tải trọng cho phép người kỹ sư đánh giá độ võng của cấu kiện từ bước đầu thiết kế. Với phương pháp thứ hai có thể dễ dàng tính toán khả năng chịu lực của cấu kiện nhưng việc kiểm tra sự làm việc của cấu kiện trong giai đoạn sử dụng là phức tạp hơn. Trong thực tế, có thể kết hợp phương pháp thứ hai và ba để đưa ra quy trình tính toán đơn giản hơn.

8.3. CÁC PHƯƠNG PHÁP GÂY LỰC TRƯỚC


8.3.1. Phương pháp căng trước (phương pháp căng trên bệ)

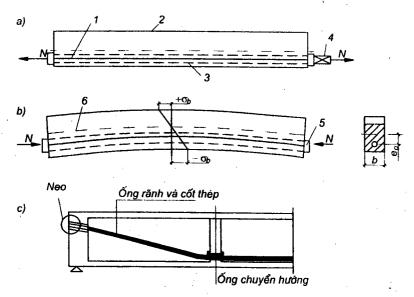
Cốt thép ứng lực trước được neo một đầu cố định vào bệ còn đầu kia được kéo ra với lực kéo N (h.8.8a). Dưới tác dụng của lực N, cốt thép được kéo trong giới hạn đàn hồi và sẽ dãn dài ra một đoạn Λ_1 tương ứng với các ứng suất xuất hiện trong cốt thép, điểm B của thanh được dịch chuyển sang điểm B_1 . Khi đó, đầu còn lại của cốt thép được cố định nốt vào bệ.

Hình 8.8. Sơ đổ phương pháp căng trước

a) Trước khi buông cốt thép ứng lực trước; b) Sau khi buông cốt thép ứng lực trước;
 1- cốt thép ứng lực trước;
 2- bệ căng;
 3- ván khuôn;
 4- thiết bị kéo thép;
 5- thiết bị cố định cốt thép ứng lực trước;
 6- truc trung tâm.

Hình 8.9. Neo cốt thép trong phương pháp căng trước a) Hàn đoạn thép ngắn hay vòng đệm; b) Ren các gờ xoắn ốc; c) Neo loại vòng; d) Neo loại ống.

Tiếp đó, đặt các cốt thép thông thường khác rồi đổ bêtông. Đợi cho bêtông đông cứng và đạt được cường độ cần thiết R_{bp} thì thả các cốt thép ứng lực trước rời khỏi bệ (gọi là bulông cốt thép). Như một lò xo bị kéo căng, các cốt thép này có xu hướng co ngắn lại và thông qua lực đính giữa nó với bêtông trên suốt chiều dài của cấu kiện, cấu kiện sẽ bị nén với giá trị bằng lực N đã dùng khi kéo cốt thép (h.8.8b).


Để tăng thêm lực dính giữa bêtông và cốt thép, người ta thường dùng cốt thép ứng lực trước là cốt thép có gờ hoặc là cốt thép tron được xoắn lại, hoặc là ở hai đầu có cấu tạo những mấu neo đặc biệt (h.8.9).

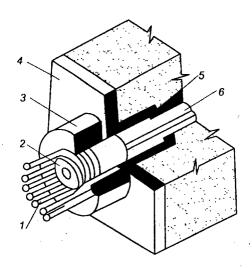
Phương pháp căng trước tỏ ra ưu việt đối với những cấu kiện sản xuất hàng loạt trong nhà máy. Ở đó có thể xây dựng những bệ căng cố dịnh có chiều dài từ 75 đến 150 m để một lần căng cốt thép có thể dúc dược nhiều cấu kiện (ví dụ dầm, panen). Cũng có thể sử dụng ván khuôn thép làm bệ căng.

8.3.2. Phương pháp căng sau (phương pháp căng trên bêtông)

Trước hết đặt các cốt thép thông thường và các ống rãnh bằng tôn, kẽm hoặc bằng vật liệu khác để tạo các rãnh dọc, rồi đổ bêtông. Khi bêtông đạt

đến cường độ nhất định R_{bp} thì tiến hành luồn và căng cốt thép ứng lực trước tới ứng suất quy định. Sau khi căng xong, cốt thép ứng lực trước được neo chặt vào đầu cấu kiện (h.8.10). Thông qua các neo đó, cấu kiện sẽ bị nén bằng lực đã dùng khi kéo căng cốt thép. Tiếp đó, người ta bơm vữa vào trong ống rãnh để bảo vệ cốt thép khỏi bị ăn mòn và tạo ra lực dính giữa bêtông với cốt thép. Đó là loại bêtông cốt thép ứng lực trước có dính bám. Trong các sàn phẳng, người ta còn dùng loại bêtông cốt thép ứng lực trước không dính bám, cốt thép (thường là cáp 7 sợi) được đặt trong những ống nhựa đặc biệt có chứa đầy mỡ chống gỉ. Ông nhựa chứa cốt thép được đặt cùng lúc với việc đặt cốt thép thường. Sau khi đổ bêtông và bêtông đủ cường độ, người ta căng cốt thép, neo cốt thép và đổ bêtông bảo vệ đầu neo. Cốt thép nằm trong ống mỡ nên giữa cốt thép và bêtông không tồn tại lực dính.

Hình 8.10. Sơ đổ phương pháp căng sau

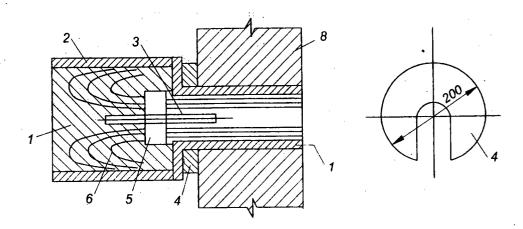

a) Trong quá trình căng;
b) Sau khi căng;
c) Biện pháp căng ngoài.
1- cốt thép ứng lực trước;
2- cấu kiện bêtông cốt thép;
3- ống rãnh;
4- thiết bị kích;
5- neo;
6- trục trung tâm.

Một dạng khác của phương pháp căng sau như đã nói ở trên là dùng biện pháp căng ngoài (h.8.10c). Cốt thép và ống rãnh nằm phía ngoài tiết diện bêtông. Đối với tiết diện hình hộp, cốt thép thường nằm trong bụng hộp.

Khi cốt thép chuyển hướng phải cấu tạo ống chuyển hướng và các phụ kiện kèm theo. Cốt thép căng ngoài rất thích hợp với việc gia cường và sửa chữa kết cấu. Ngoài ra cũng dùng cốt thép căng ngoài để điều chỉnh độ võng của kết cấu khi cần thiết.

Để bảo dảm tốt dự truyền lực nén lên cấu kiện, người ta chế tạo các loại neo đặc biệt như neo Freyssinet (neo bó sợi thép khi dùng kích hai chiếu (h.8.11), neo kiểu cốc (h.8.12) hoặc nhiều loại neo khác nữa.

Phương pháp căng sau được sử dụng thích hợp để chế tạo các cấu kiện mà yêu cầu phải có lực nén bêtông tương đối lớn hoặc các cấu kiện phải đổ bêtông tại chỗ. Nó còn được dùng để ghép các mảng của kết cấu có nhịp lớn (khoảng trên 30 m) như nhịp cầu, các dầm, dàn v.v...



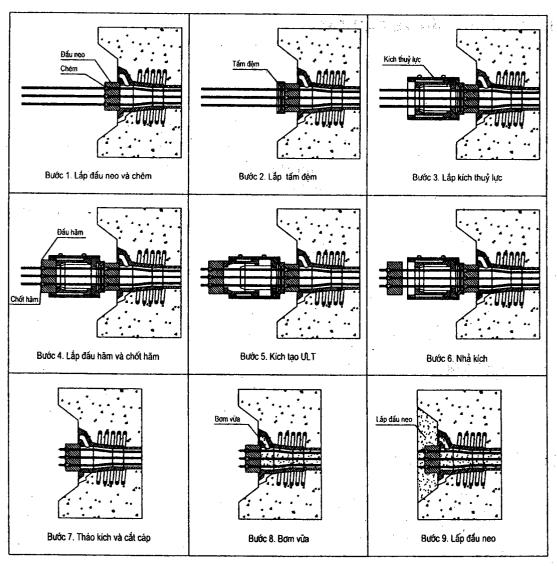
Hình 8.11. Neo bó sợi thép khi dùng kích hai chiều 1- bó sợi thép; 2- chêm hình côn; 3- khối neo bằng thép; 4- bản thép truyền lực; 5- đoạn ống neo; 6- ống tạo rãnh.

Thiết bị neo cho phương pháp căng sau

Có ba dạng thiết bị neo cơ bản được sử dụng để neo cáp ULT vào bêtông:

- Sử dụng nêm nhằm kẹp chặt cáp ở hai đầu cấu kiện.
- Sử dụng bulông và định tán bắt trực tiếp vào đầu cáp.
- Cuộn cáp theo vòng ở trong bêtông.

Hình 8.12. Neo kiểu cốc 1- bêtông; 2- cốc bằng thép; 3- chốt thép; 4- vòng đệm bằng thép; 5- vòng kẹp; 6- bó sợi thép; 7- ống tạo rãnh; 8- cấu kiện.


Trong thực tế, dạng neo thứ nhất đã phát triển thành một số hệ thống neo phổ biến và đáng tin cậy, trong đó có hệ thống neo Freyssinet. Quy trình thi công cấu kiện bêtông ứng lực trước theo phương pháp căng sau được trình bày trên hình 8.13.

Các thiết bị sử dụng trong hệ thống tạo ULT

Có bốn dạng thiết bị căng thép thường được sử dụng sau:

- 1) Căng bằng thiết bị cơ khí: bao gồm bộ truyền lực dòn bảy, bộ truyền lực số kết hợp với bệ ròng rọc có hoặc không có bánh răng và máy cuốn sợi. Những thiết bị này được sử dụng chủ yếu để sản xuất các cấu kiện bêtông ULT sản xuất tại nhà máy với quy mô lớn.
- 2) Căng bằng kích thủy lực: kích thủy lực là một thiết bị đơn giản được sử dụng rộng rãi. Các kích thủy lực thông dụng có lực căng khoảng 5-100 tấn, các kích thủy lực lớn cho lực căng 200-600 tấn. Với kích thủy lực, điều quan trọng nhất là lực căng cần được đo một cách chính xác bằng đồng hồ áp lực trong suốt quá trình căng.
- 3) Căng bằng nguyên lý điện học: các thanh thép tròn trơn được phủ một lớp vật liệu dễ nung chảy như sulfur hoặc hợp kim có độ nung chảy thấp, được đặt sẵn trong bêtông và có đầu chờ được ren ở ngoài đầu cấu kiện. Sau khi đổ bêtông, cho một dòng điện có điện thế thấp và cường

độ cao đi qua các thanh thép, thanh thép bị nung nóng và giãn dài, các đai ốc được siết chặt vào các đầu chờ và tỳ vào cấu kiện thông qua các vòng đệm cứng và tạo nên ULT khi thanh thép nguội đi. Người ta có thể tạo ra sự chênh lệch nhiệt độ đến 400° C và nhận được ứng suất trước khoảng 800 kG/cm^2 (chưa kể hao ứng suất xảy ra sau khi căng).

Hình 8.13. Căng và neo thép ƯLT trong phương pháp căng sau

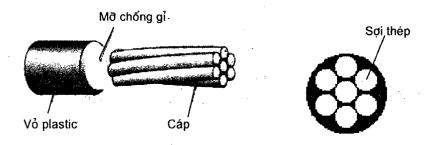
4) Căng bằng nguyên lý hoá học: nguyên lý của hệ thống này dựa vào phản ứng hoá học xảy ra trong ximăng trương nở bao bọc quanh thép và làm cho thép giãn ra. Kết quả là bêtông bị nén và cốt thép bị kéo. Trong thực tế rất khó khống chế chính xác độ giãn nở của bêtông, do vậy công nghệ này còn chưa được áp dụng vào thực tế sản xuất.

8.4. CÁC CHỈ DẪN VỀ CẤU TẠO

8.4.1. Vật liệu cho bêtông ULT

a. Bêtông

Bêtông dùng trong cấu kiện bêtông ULT thường là bétông nặng. Việc lựa chọn cấp độ bền của bêtông phụ thuộc vào dạng, loại và đường kính cốt thép căng, cũng như phụ thuộc vào việc neo cốt thép căng. Ví dụ nếu dùng sợi thép có đường kính không lớn hơn Φ5 thì cấp độ bền của bêtông lấy không nhỏ hơn B20, nếu sợi thép có đường kính không nhỏ hơn Φ6 thì cấp độ bền của bêtông lấy không nhỏ hơn B30. Ngoài ra việc lựa chọn cấp độ bền của bêtông còn phụ thuộc vào cường độ mà nó cần phải có khi bắt đầu gây ULT, cũng như vào loại tải trọng tác dụng lên cấu kiện. Thông thường với kết cấu nhịp lớn như dầm, dàn.. nên dùng bêtông có cấp độ bền không nhỏ hơn B30. Quy định sử dụng cấp độ bền của bêtông đối với kết cấu bêtông ULT được lấy theo bảng 8.1.


Bảng 8.1. Quy định sử dụng cấp độ bền của bêtông đối với kết cấu ứng lực trước

Loại và nhóm cốt thép căng		Cấp độ bền của bêtông không thấp hơn
1. Thép sợi nhóm:		
B-II (có neo)		B20
Bp-II (không có neo) có đường	≤ 5 mm	B20
kính:	≥ 6 mm	B30
K-7 và K-19		B30
2. Thép thanh không có neo, có đ	ường kính:	
+ từ 10 mm đến 18 mm, nhóm + ≥ 20 mm, nhóm	CIV, A-IV	B15
	A-V	B20
	A-VI và Ат-VII	B30
	CIV, A-IV	B20
	A-V	B25
	A-VI và AT-VII	B30

Theo tiêu chuẩn ACI (Mỹ), bêtông dùng trong cấu kiện bêtông ƯLT phải có cường độ chịu nén của mẫu lăng trụ ở 28 ngày tuổi là 28–55 MPa. Theo tiêu chuẩn châu Âu, bêtông nên có cường độ chịu nén của mẫu lập phương ở 28 ngày tuổi là 45 MPa. Với cường độ như vậy, bêtông sẽ có sự co ngót nhỏ, đặc tính từ biến nhỏ và môđun dàn hồi cao, làm giảm hao tổn ứng suất trong thép.

b. Thép

Trong cấu kiện bêtông ULT cần dùng thép cường độ cao để tạo ra lực căng trước lớn vì trong quá trình chế tạo và sử dụng, một phần ứng suất căng ban đầu bị mất đi. Tốt nhất là dùng sợi thép cường độ cao với đường kính Φ3-8. Khi số lượng sợi thép nhiều nên sử dụng cáp. Cáp bảy sợi được sử dụng rất phổ biến. được chế tạo từ sáu sợi thép xoắn quanh một sợi thẳng ở giữa. Cáp bảy sợi thường được chế tạo từ sợi thép Φ5 hoặc Φ6 (h.8.14). Khi cần thiết có thể ghép các cáp bảy sợi vào một ống rãnh để tạo lực căng lớn hơn.

Hình 8.14. Cáp bảy sợi

Hiện nay ở Việt Nam thường sử dụng cáp bảy sợi sản xuất theo tiêu chuẩn ASTM A-416 (Mỹ) với hai loại cáp có cường độ giới hạn nhỏ nhất là 1720 MPa và 1860 MPa.

Loại các bó sợi không bện thường gồm nhiều sợi thép đặt song song với nhau theo chu vi vòng tròn và được tựa lên các đoạn lò xo đặt cách nhau khoảng 1m. Số sợi trong một bó phụ thuộc vào số nêm trên kích (mỗi kích giữ được hai sợi). Người ta thường dùng bó có 12, 18 và 24 sợi.

Ngoài ra có thể dùng cốt thép thanh có gờ từ nhóm thép cán nóng loại A-IV và loại gia công nhiệt A_T -IV trở lên. Khi chiều dài cấu kiện dưới 12m, nên dùng các loại thép thanh nhóm A_T -VII, A_T -VI, A_T -V- còn khi chiều dài cấu kiện lớn hơn 12m thì nên dùng các sợi thép cường độ cao và cáp. Khi cấu kiện làm việc trong các điều kiện đặc biệt như dưới áp lực của hơi, chất lỏng, vật liệu hạt thì nên dùng các sợi thép cường độ cao và các cốt thép thanh thuộc nhóm A-V và A_T -V trở lên.

c. Các vật liệu khác

Ngoài các vật liệu chính là bêtông và thép cường độ cao, còn có những vật liệu phụ khác được sử dụng cho bêtông ULT căng sau.

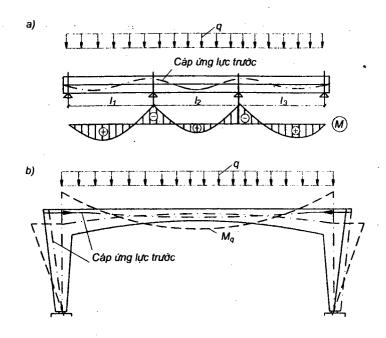
Với loại cáp ULT dính kết, cần phải có ống gen tạo lỗ đặt cáp. Ống gen có thể được chế tạo bằng tôn mạ kẽm hoặc bằng chất dẻo, ống được đặt sẵn trong cấu kiện trước khi đổ bêtông, ống phải đảm bảo độ bền, không bị hư hại trong khi thi công, đảm bảo kín và không có phản ứng với thép, bêtông. Sau khi hoàn thành việc căng cáp, vữa ximăng với một cấp phối quy định được bơm vào từ đầu neo thông qua các ống đặt sẵn với áp lực 0,3 0,5 MPa. Vữa bơm có tác dụng tạo sự dính kết và chống ăn mòn cho cáp. Vữa phải dễ chảy, ít co ngót. Thành phần của vữa bơm gồm ximăng pooclăng thường hoặc ximăng đông kết nhanh, trộn với nước với tỷ lệ theo trọng lượng là 0,33 và một số phụ gia như Flowcable, Pozzolith v.v., trong một số trường hợp cá biệt có thể dùng thêm cát mịn cho vữa bơm.

Với loại cáp ƯLT không dính kết (h.8.14), cáp được bọc bởi vỏ bọc chất dẻo tổng hợp hoặc lớp giấy đặc biệt. Lớp vỏ bọc phải đảm bảo tính năng cơ học trong khoảng nhiệt độ từ 20 đến 70°C, phải có dủ độ bền cần thiết để không bị hư hại trong khi chuyên chở, lắp dựng và kéo căng, có khả năng chống thấm tốt và không gây ăn mòn cho bêtông, thép và các vật liệu chèn khác. Việc lồng cáp vào vỏ bọc, việc xử lý tại các vị trí nối phải được tiến hành cẩn thận, tránh cho cáp tiếp xúc với vữa bêtông, gây ăn mòn cáp.

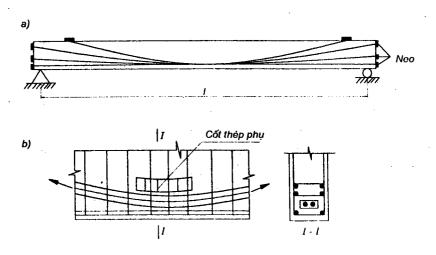
Vữa dùng để lấp các khe thi công, các mối nối của cấu kiện lắp ghép, để làm lớp bảo vệ cốt thép và bảo vệ các neo, phải có mác từ 15 MPa trở lên.

8.4.2. Bố trí cốt thép

Trong cấu kiện bêtông ULT, việc bố trí cốt thép ULT đóng một vai trò rất quan trọng.


Với cấu kiện chịu kéo trung tâm, thép ULT nên bố trí đối xứng với trọng tâm của tiết diện để có thể tạo ra ứng suất nén đều cho bêtông.

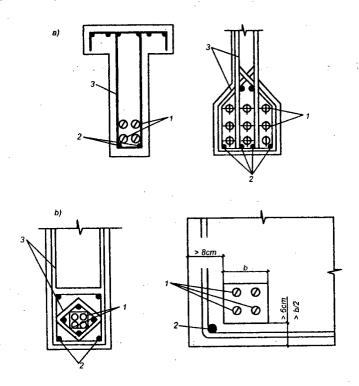
Với cấu kiện chịu uốn, hiệu quả của việc bố trí thép ULT phụ thuộc khá nhiều vào quỹ đạo của thép theo trục dầm. Nếu bố trí thép tương tự cấu kiện chịu kéo trung tâm (h.8.3), để hạn chế được ứng suất kéo ở thờ dưới của tiết diện, cần tạo ra lực nén trước lớn, nhưng gây ra ở thờ trên tại các tiết diện có mômen lớn ứng suất nén có thể làm cho bêtông bị phá vỡ hoặc phải sử dụng bêtông có cường độ cao hơn. Việc bố trí thép như vậy là không kinh tế. Nếu bố trí thép ULT với một độ lệch tâm, so với trục cấu kiện (h.8.4), phụ thuộc vào lực căng trước và độ lệch tâm có thể tạo ra ứng suất trước phù hợp hơn với sự làm việc của cấu kiện.


Để tạo ra hiệu quả tốt nhất, cần tìm ra quan hệ giữa việc bố trí thép ƯLT không những chỉ với ứng suất pháp mà còn với cả ứng suất kéo chính do tải trọng sử dụng gây ra, đặc biệt là các cấu kiện có nhịp lớn. Điều đó có thể thực hiện được bằng cách bố trí thép theo nguyên lý của phương pháp cân bằng tải trọng (h.8.6, 8.7). Như vậy, với các cấu kiện chịu uốn, nên bố trí quỹ đạo thép ƯLT tuân theo dạng của biểu đồ mômen do tải trọng sử dụng gây ra.

Ví dụ về cách bố trí thép ULT trong dầm liên tục và trong khung được thể hiện trên hình 8.15.

Tại các chỗ uốn cong của cốt thép ULT, cần đặt thêm các cốt thép phụ để gia cường (h.8.16).

Hình 8.15. Bố trí thép ƯLT a) Dầm liên tục; b) Khung toàn khối.



Hình 8.16. Sơ đồ đặt cốt thép ứng lực trước

a) Đặt cốt thép cong; b) Gia công bêtông bằng cách đặt cốt thép phụ.

Trong tiết diện ngang, cần lưu ý đến việc bố trí khoảng cách giữa các cốt thép và lớp bêtông bảo vệ. Trong phương pháp căng trước, việc cấu tạo tương tự như đối với bêtông cốt thép thường. Trong phương pháp căng

sau, nếu cốt thép ULT được đặt trong rãnh thì chiều dày lớp bêtông bảo vệ kể từ mặt ngoài cấu kiện đến mặt trong rãnh lấy không nhỏ hơn 20mm và không nhỏ hơn đường kính rãnh, còn khi đường kính rãnh lớn hơn 32mm thì lấy ít nhất bằng đường kính rãnh. Khi trong rãnh đặt một số bó hoặc thanh cốt thép thì lớp bảo vệ lấy không nhỏ hơn 80mm đối với các thành bên. không nhỏ hơn 60mm và nhỏ hơn một nửa chiều rộng rãnh dối với các mặt đáy (h.8.17). Khoảng cách giữa các rãnh không được nhỏ hơn đường kính rãnh và không nhỏ hơn 50mm. đồng thời phải chọn sao cho việc căng cốt thép được dễ dàng, tránh phá hoại cục bộ khi buông cốt thép.

Hình 8.17. Bố trí cốt thép trong tiết diện ngang
a) Trong phương pháp căng trước; b) Trong phương pháp căng sau;
1- cốt thép ứng lực trước; 2- cốt thép dọc thường; 3- cốt đai thường.

8.5. CÁC CHỈ DẪN VỀ TÍNH TOÁN

Giống như cấu kiện bêtông cốt thép thường, cấu kiện bếtông ULT cần phải được tính toán theo hai nhóm trạng thái giới hạn. Khi tính cấu kiện

bêtông ULT theo nhóm trạng thái giới hạn thứ nhất, ngoài việc tính toán theo cường độ, theo ổn dịnh (nếu có khả năng mất ổn định), theo độ mỏi (nếu chịu tải trọng động), còn cần phải tính toán kiểm tra khi buông cốt thép trong giai đoạn chế tạo và cường độ chịu nén cục bộ của bêtông dưới các thiết bị neo.

Tính toán theo nhóm trạng thái giới hạn thứ hai bao gồm tính toán kiểm tra khả năng chống nứt và biến đạng của cấu kiện.

Việc tính toán theo nhóm trạng thái giới hạn thứ hai đều có liên quan mật thiết đến trị số ứng suất trong cốt thép và bêtông, cũng như các hao tổn ứng suất trong quá trình chế tạo và sử dụng cấu kiên.

8.5.1. Trị số ứng suất trong cốt thép và trong bêtông

Trị số ứng suất trước cơ bản nhất của cốt thép ứng lực trước là trị số giới hạn $\sigma_{\rm sp}$ và $\sigma_{\rm sp}$ ' trong cốt thép căng trước S và S' (S và S' tương ứng được đặt trong miền kéo và nén của cấu kiện). Trị số này được chọn theo quy định của tiêu chuẩn thiết kế:

$$\sigma_{sp}(\sigma'_{sp}) + p \leq R_{s,ser}$$

$$\sigma_{sp}(\sigma'_{sp}) - p \geq 0.3 R_{s,ser}$$
(8.9)

trong đó: p tính bằng MPa, được xác định như sau:

· trong trường hợp căng bằng phương pháp cơ học:

$$p = 0.05 \,\sigma_{sp}; \tag{8.10}$$

 trong trường hợp căng bằng phương pháp nhiệt điện và cơ nhiệt điện:

$$p = 30 + \frac{360}{l} \tag{8.11}$$

với l - chiều dài thanh cốt thép căng (khoảng cách giữa các mép ngoài của bệ), mm.

Các giá trị ứng suất σ_{sp} và σ'_{sp} lấy không vượt quá $0.9~R_{s.~ser}$ đối với thép thanh và $0.7~R_{s.~ser}$ đối với thép sợi. Giá trị nhỏ nhất của ứng suất trước trong cốt thép lấy không nhỏ hơn $0.49~R_{s.~ser}$.

Ngoài ra, để đo kiểm tra ứng suất trong cốt thép ứng lực trước ở thời điểm kết thúc việc căng trên bệ, hoặc tại vị trí đặt lực khi căng cốt thép trên bêtông, người ta đưa vào khái niệm ứng suất khống chế.

Khi căng cốt thép trên bệ, trị số ứng suất khống chế σ_{con1} và σ'_{con1} lấy bằng trị số σ_{sp} sau khi đã kể đến các tổn hao do biến dạng của neo σ_3 và của ma sát σ_4 .

Giá trị ứng suất trong cốt thép căng S và S' được khống chế tại vị trí đặt lực kéo khi căng cốt thép trên bêtông đã rắn chắc được lấy tương ứng bằng σ_{con2} và σ'_{con2} trong đó các giá trị σ_{con2} và σ'_{con2} được xác định từ điều kiện đảm bảo ứng suất σ_{sp} và σ'_{sp} trong tiết diện tính toán. Khi đó σ_{con2} và σ'_{con2} được tính theo công thức:

$$\sigma_{con2} = \sigma_{sp} - \alpha_{sp} \left[\frac{N}{A_{red}} + \frac{N e_{0p} y_{sp}}{I_{red}} \right]; \tag{8.12}$$

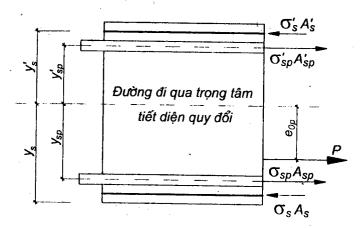
$$\sigma'_{con2} - \sigma'_{sp} - \alpha \left[\frac{p}{A_{red}} \frac{P e_{0p} y'_{sp}}{I_{red}} \right]. \tag{8.13}$$

Trong các công thức trên:

 σ_{sp} , σ'_{sp} - xác định không kể đến hao tổn ứng suất;

N, e_{0p} - xác định theo công thức (8.14) và (8.15), trong đó các giá trị σ_{sp} và σ_{sp}' có kể đến những hao tổn ứng suất thứ nhất;

$$\alpha_{sp} = E_{sp}/E_b$$
.


Úng lực nén trước N và độ lệch tâm của nó e_{0p} so với trọng tâm của tiết diện quy đổi được xác định theo các công thức:

$$N = \sigma_{sp} A_{sp} + \sigma'_{sp} A'_{sp} - \sigma_s A_s - \sigma'_s A'_s$$
 (8.14)

$$e_{op} = \frac{\sigma_{sp} A_{sp} y_{sp} + \sigma'_{s} A'_{s} y'_{s} - \sigma'_{sp} A'_{sp} y'_{sp} - \sigma_{s} A_{s} y_{s}}{N}$$
(8.15)

trong đó: σ_s và σ_s' — tương ứng là ứng suất trong cốt thép không căng S và S' gây nên do co ngót và từ biến trong bêtông;

 y_{sp} , y'_{sp} , y_s , y'_s - tương ứng là các khoảng cách từ trọng tâm tiết diện quy đổi đến các điểm đặt hợp lực của nội lực trong S và không căng S' (h.8.18).

Hình 8.18. Sơ đồ lực nén trước trong cốt thép trên tiết diện ngang của cấu kiện bêtông cốt thép

Trong thực tế, do sai số của các dụng cụ đo và các nguyên nhân khác chưa xét đến một cách chính xác trong tính toán ... mà ứng suất căng trước có thể không sát đúng như đã dự định. Để xét đến điều đó trong tính toán người ta đưa vào hệ số chính xác khi căng cốt thép $\gamma_{\rm sp}$:

$$\gamma_{\rm sp} = 1 \pm \Delta \gamma_{\rm sp} \ . \tag{8.16}$$

Trong công thức (8.16) lấy dấu (+) khi có ảnh hưởng bất lợi của ứng suất trước (ứng suất này làm giảm khả năng chịu lực, thúc đẩy sự hình thành vết nứt...), lấy dấu (-) khi có ảnh hưởng có lợi. Khi tạo ứng suất trước bằng phương pháp cơ học, giá trị $\Delta\gamma_{\rm sp}$ lấy bằng 0.1. Khi xác định hao tổn ứng suất trong cốt thép, cũng như khi tính toán theo diều kiện mở rộng vết nứt và tính toán theo biến dạng, cho phép lấy $\Delta\gamma_{\rm sp}$ bằng không.

Đối với bêtông, để biến dạng từ biến và hao tổn ứng suất trong cốt thép không lớn quá, quy phạm quy định tỷ số giữa ứng suất nén trước σ_{bp} trong bêtông và cường độ bêtông tại thời điểm nén trước R_{bp} không được lớn hơn trị số giới hạn cho trong bảng 8.2.

Cường độ bêtông tại thời điểm nén trước R_{bp} (được kiểm soát như đối với cấp độ bền chịu nén) chỉ định không nhỏ hơn 11 MPa, còn khi dùng thép thanh nhóm A-VI, AT-IV, AT-VIK, thép sợi cường độ cao không có neo và cáp thì cần chỉ định không nhỏ hơn 15,5 MPa. Ngoài ra R_{bp} không được nhỏ hơn 50% cấp độ bền chịu nén của bêtông.

Trạng thái ứng suất	Phương pháp	Tỉ số σ_{hp}/R_{hp} không lớn hơn		
của tiết diện	căng cốt thép	khi nén đúng tâm	khi nén . lệch tâm	
 Úng suất bị giảm hay không đổi khi kết cấu chịu tác dụng của ngoại lực 	· · · · · ·	0,85	0,95*	
	Trên bêtông (căng sau)	0,70	0,85	
2. Ứng suất bị tăng khi kết		0,65	0,70	
cấu chịu tác dụng của ngoại lực	Trên bêtông (căng sau)	0,60	0,65	

Báng 8.2. Trị số giới hạn σ_{bo}/R_{bo}

GHI CHÚ: Đối với bêtông nhẹ từ cấp B7,5 đến B12,5, giá trị σ_{bp}/R_{bp} nên lấy không lớn hơn 0,3.

8.5.2. Sự hao ứng suất trong cốt thép ứng lực trước

Ngay từ giai đoạn căng thép, do nhiều nguyên nhân khác nhau, ứng suất ban đầu trong cáp sẽ giảm đi từ từ theo thời gian, gây nên sự tổn hao ứng suất. Do đó trong thiết kế bêtông ULT, cần phải tính toán đến sự tổn hao ứng suất.

Việc phân tích và thiết kế tổng thể cấu kiện bêtông ƯLT có liên quan đến ứng suất hiệu quả trong thép ƯLT tại mỗi giai đoạn chất tải và đặc trung vật liệu tương ứng trong quá trình làm việc của kết cấu. Căn cứ vào nguyên nhân gây tổn hao ứng suất, người ta chia ứng suất hao trong cốt thép ứng lực trước ra các loại cơ bản sau.

1. Do tính chùng của cốt thép khi căng trên bê o1

Hiện tượng chùng ứng suất là hiện tượng ứng suất ban đầu trong cốt thép ứng lực trước giảm bớt theo thời gian trong khi chiều dài của cốt thép vẫn giữ nguyên không đổi. Khi căng bằng phương pháp cơ học:

• Đối với sợi thép:

$$\sigma_1 = \left(0, 22 \frac{\sigma_{sp}}{R_{s,ser}} - 0, 1\right) \sigma_{sp} \tag{8.17}$$

Đối với thép thanh:

$$\sigma_1 = 0.1\sigma_{sv} - 20. \tag{8.18}$$

2. Do sự chênh lệch nhiệt độ giữa cốt thép và thiết bi căng oz

Đối với bêtông cấp từ B15 đến B40:

$$\sigma_2 = 1,25\Delta t \tag{8.19}$$

• Đối với bêtông cấp B45 và lớn hơn:

$$\sigma_2 = 1,0\Delta t, \tag{8.20}$$

trong đó: Δt - chênh lệch nhiệt độ giữa cốt thép được nung nóng và bệ căng cố định, tính bằng $^{\rm o}$ C. Khi thiếu số liệu chính xác, có thể lấy $\Delta t=65^{\rm o}$ C

3. Do biến dạng của neo và sự ép sát các tấm đệm σ_3

Khi căng trên bệ:

$$\sigma_3 = \frac{\Delta l}{l} E_{sp}. \tag{8.21}$$

trong đó: Δl - biến dạng của các vòng đệm bị ép, các đầu neo bị ép cục bộ, lấy bằng 2 mm; khi có sự trượt giữa các thanh cốt thép trong thiết bị kẹp dùng nhiều lần, Δl xác định theo công thức:

$$\Delta l = 1,25 + 0,15d,\tag{8.22}$$

ở đây: d - đường kính thanh cốt thép, mm;

l - chiều dài cốt thép ứng lực trước (khoảng cách giữa mép ngoài của các gối trên bệ của khuôn hoặc thiết bị), mm.

· Khi căng trên bêtông:

$$\sigma_3 = \frac{\Delta l_1 + \Delta l_2}{l} E_{sp}, \qquad (8.23)$$

trong đó: Δl_1 - biến dạng của êcu hay các bản đệm giữa các neo và bêtông, lấy bằng 1 mm;

 Δl_2 - biến dạng của neo hình cốc, êcu neo, lấy bằng 1 mm; l - chiều dài cốt thép ứng lực trước (một sợi), hoặc cấu kiện, mm.

Độ lớn của biến dạng neo phụ thuộc vào dạng neo và ứng suất trong thép ứng lực trước. Khi sử dụng các neo dạng nêm, sau khi nhả kích, biến dạng neo cho phép có thể đạt đến 6mm.

4. Do ma sát của cốt thép với thành ống 04

Trong trường hợp cấu kiện căng sau, thép ULT được đặt trong ống đặt sẵn trong bêtông. Tuỳ theo yêu cầu thiết kế mà ống có thể là thẳng hoặc theo dạng cong của thép ULT. Do đó để căng sợi thép dạng cong, xảy ra sự tổn hao ứng suất trong cấu kiện căng sau do ma sát giữa thép ULT và bêtông xung quanh ống. Giá trị của sự tổn hao ứng suất này bao gồm:

- Do ảnh hưởng uốn cong, phụ thuộc vào hình dạng thép ULT dọc theo chiều dài của dầm.
- Do ảnh hưởng dung sai phụ thuộc vào độ lệch cục bộ của cáp, đây là kết quả của sự không thẳng hàng ngẫu nhiên khó tránh khỏi, khi ống không thể được đặt một cách hoàn hảo theo dạng định trước trong suốt chiều dài cấu kiện.

$$\sigma_4 = \sigma_{xp} \left(1 - \frac{1}{e^{\omega \chi + \delta \theta}} \right) \tag{8.24}$$

trong đó: e - cơ số lôgarit tự nhiên;

 δ , ω - hệ số, xác định theo bảng 8.3:

 χ – chiều dài tính từ thiết bị căng đến tiết diện tính toán. m;

 θ - tổng góc chuyển hướng của trục cốt thép, radian;

 $\sigma_{\rm sn}$ - được lấy không kể đến hao tổn ứng suất.

5. Do biến dạng của khuôn thép khi chế tạo σ_5

Khi thiếu các số liệu về công nghệ chế tạo và kết cấu khuôn, hao tổn do biến dạng khuôn lấy bằng 30 MPa.

Bảng 8.3. Các hệ số để xác định hao tổn ứng suất do ma sát cốt thép

ống rãnh hay bể mặt tiếp xúc	ω	δ khi cốt thép là		
		bó thép hay sợi thép	thanh có gờ	
1. Loại ống rãnh			:	
- có bề mặt kim loại	0,0030	0,35	0,40	
- có bể mặt bêtông tạo bởi khuôn bằng lõi cứng	0	0,55	0,65	
- có bề mặt bètông tạo bởi khuôn bằng lõi mềm	0,0015	0,55	0,65	
2. Bể mặt bêtông	0	0,55	0,65	

Khi căng bằng nhiệt diện, hao tổn do biến dạng khuôn trong tính toán không kể đến vì chúng đã dược kể đến khi xác định độ giãn dài toàn phần của cốt thép.

6. Do từ biến nhanh ban đầu của bêtông o

Trong phương pháp căng trước, ứng suất hao này xảy ra ngay sau khi buông cốt thép để ép bêtông. Đối với bêtông khô cứng tự nhiên:

$$\sigma_6 = 40 \frac{\sigma_{bp}}{R_{bp}}$$
 khi $\frac{\sigma_{bp}}{R_{bp}} \le \alpha;$ (8.25)

$$\sigma_6 = 40\alpha + 85\beta \left(\frac{\sigma_{bp}}{R_{bp}} - \alpha\right)$$
 khi $\frac{\sigma_{bp}}{R_{bp}} > \alpha$, (8.26)

trong đó: α và β - hệ số, lấy như sau:

 $\alpha = 0.25 + 0.025R_{bp}$, nhưng không lớn hơn 0,8;

 β = 5,25 - 0,185 R_{bp} , nhưng không lớn hơn 2,5 và không nhỏ hơn 1,1;

 σ_{bp} - được xác định tại mức trọng tâm cốt thép dọc S và S', có kể đến hao ứng suất đã đề cập ở trên.

Với bêtông dưỡng hộ nhiệt tính theo (8.25) và (8.26) rồi nhân với hệ số 0,85.

7. Do tính chùng của cốt thép khi căng trên bêtông o7

Lấy tương tự như trường hợp căng trên bệ $\sigma_7 = \sigma_1$

8. Do co ngót của bêtông 📆

Sự co ngót của bêtông trong cấu kiện ULT làm cho thép ULT co ngắn lại và gây ra sự tổn hao ứng suất. Co ngót của bêtông chịu ảnh hưởng của nhiều yếu tố, như từ biến, tỷ lệ khối lượng/bề mặt, độ ẩm tương đối và thời gian từ khi kết thúc bảo dưỡng ẩm tới khi tác dụng ULT. Với bêtông nặng σ_8 được lấy theo bảng 8.4

Bảng 8.4. Sự hao ứng suất trong cốt thép do co ngót của bêtông (MPa)

Cấp độ bền của bêtông	Bêtông dóng rắn tự nhiên	Bêtông được dưỡng hộ nhiệt trong điều kiện áp suất khí quyển	Không phụ thuộc điều kiện đóng rắn của bêtông
a) B35 và thấp hơn	40	35	30
b) B40	50	40	35
c) B45 và lớn hơn	60	50	, 40

9. Do từ biến của bêtông 09

Hao tổn do từ biến của bêtông xảy ra sau một quá trình chịu nén lâu dài. Đối với bêtông nặng:

$$\sigma_9 = 150 \alpha \frac{\sigma_{bp}}{R_{bp}}$$
 khi $\frac{\sigma_{bp}}{R_{bp}} \le 0.75$; (8.27)

$$\sigma_9 = 300 \,\alpha \left(\frac{\sigma_{hp}}{R_{hp}} - 0.375 \right) \quad \text{khi } \frac{\sigma_{hp}}{R_{hp}} > 0.75.$$
 (8.28)

10. Do bêtông bị cốt thép vòng hoặc cốt thép xoắn ốc ép lõm xuống σ_{10}

Một số cấu kiện có cốt thép ứng lực trước là cốt thép vòng hoặc cốt thép xoắn ốc như bể chứa, ống dẫn... Các cốt thép này ép lõm mặt bêtông xuống, do đó đường kính vòng thép giảm đi, gây ra sự hao ứng suất. Nếu đường kính của cấu kiện lớn hơn 3m, ứng suất này không đáng kể và có thể bỏ qua.

Các ứng suất hao được chia thành hai nhóm: ứng suất hao xảy ra trong quá trình chế tạo cấu kiện cũng như khi ép bêtông σ_{l1} và ứng suất hao xảy ra khi kết thúc ép bêtông σ_{l2} .

Trong phương pháp căng trước:

$$\sigma_{l1} = \sigma_1 + \sigma_2 + \sigma_3 + \sigma_4 + \sigma_5 + \sigma_6$$
; (8.29)

$$\sigma_{l2} = \sigma_8 + \sigma_9 + \sigma_{10} . \tag{8.30}$$

Trong phương pháp căng sau:

$$\sigma_{l1} = \sigma_3 + \sigma_4 \; ; \tag{8.31}$$

$$\sigma_{l2} = \sigma_7 + \sigma_8 + \sigma_9. \tag{8.32}$$

Trong tính toán, tổng các ứng suất hao $\sigma_l = \sigma_{l1} + \sigma_{l2}$ phải lấy ít nhất bằng 100 MPa.

8.6. CẤU KIỆN CHỊU KÉO TRUNG TÂM

Cấu kiện bêtông cốt thép ứng lực trước chịu kéo trung tâm thường gặp là cánh hạ chịu kéo của dàn, thanh kéo của vòm, bể chứa tròn...

8.6.1. Các giai đoạn của trạng thái ứng suất

a. Cấu kiện căng trước

Đặc điểm của trạng thái ứng suất biến dạng trong cấu kiện là giai đoạn I được chia làm sáu giai đoạn trung gian, còn các giai đoạn khác như cấu kiện chịu kéo trung tâm thông thường (h.8.19a).

- Giai đoạn I_1 : Đặt cốt thép vào khuôn nhưng chưa căng, ứng suất trong cốt thép bằng không.
- $Giai doạn I_2$. Cốt thép được căng tới ứng suất khống chế σ_{con1} :

$$\sigma_{\text{con1}} = \sigma_{\text{sp}} - \sigma_3 - \sigma_4. \tag{8.33}$$

rồi cố định vào bệ, đổ bêtông.

• Giai đoạn I_3 : Trong khi chờ bêtông đạt tới cường độ R_{bp} , do hiện tượng chùng ứng suất và sự chênh lệch nhiệt độ giữa cốt thép và thiết bị căng (nếu bêtông đông cứng trong điều kiện dưỡng hộ nhiệt), sẽ xảy ra các ứng suất hao trong cốt thép ứng lực trước:

$$\sigma_{\rm sp1} = \sigma_{\rm con1} - \sigma_1 - \sigma_2. \tag{8.34}$$

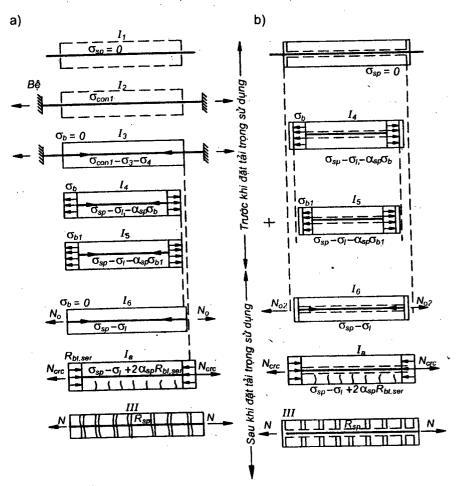
• Giai đoạn I_4 : Khi bêtông đạt cường độ R_{bp} thì buông cốt thép để ép bêtông. Lúc này phát sinh biến dạng từ biến nhanh ban đầu và xảy ra ứng suất hao σ_6 . Do đó ứng suất hao σ_{11} đạt giá trị lớn nhất:.

$$\sigma_{l1} = \sigma_1 + \sigma_2 + \sigma_3 + \sigma_4 + \sigma_6$$
, (8.35)

ở giai đoạn này, ứng suất trong cốt thép ứng lực trước là:

$$\sigma_{\rm sp1} = \sigma_{\rm sp} - \sigma_{l1} - \alpha_{sp}\sigma_{\rm b} \tag{8.36}$$

và ứng suất nén trước trong bêtông được tính theo công thức:


$$\sigma_b = \frac{N_1}{A_{pod}},\tag{8.37}$$

trong đó: N_1 - lực nén khi bắt đầu buông cốt thép:

$$N_1 = (\sigma_{sp} - \sigma_{l1}) A_{sp} - \sigma_6 A_s$$
 (8.38)

ở đây khi tính σ_{l1} không kể đến hao do từ biến nhanh σ_6 $A_{
m red}$ - diện tích bêtông tương đương:

$$A_{red} = A_b + \alpha_s A_s + \alpha_{sp} \text{ v\'oi } \alpha_s = \frac{E_s}{E_b}, \ \alpha_{sp} = \frac{E_{sp}}{E_b}. \tag{8.39}$$

Hình 8.19. Trạng thái ứng suất của cấu kiện ứng lực trước chịu kéo trung tâm a) Cấu kiện căng trước; b) Cấu kiện căng sau.

• Giai đoạn I_5 : Theo thời gian, do sự co ngót và từ biến của bêtông xảy ra thêm hao ứng suất σ_{l2} , do đó ứng suất hao tổng cộng $\sigma_l = \sigma_{l1} + \sigma_{l2}$ và ứng suất trong cốt thép ứng lực trước bằng:

$$\sigma_{sp} - \sigma_{sp} - \sigma_l - \alpha_{sp}\sigma_{b1} \tag{8.40}$$

 Giai đoạn I₆: Tải trọng tác dụng gây thêm ứng suất kéo trong cốt thép ứng lực trước. Khi ứng suất nén trong bêtông bị triệt tiêu thì ứng suất trong cốt thép ứng lực trước bằng:

$$\sigma_{sp1} = \sigma_{sp} - \sigma_l. \tag{8.41}$$

• $Giai\ doạn\ I_a$: Tải trọng tăng lên cho đến khi ứng suất kéo trong bêtông đạt trị số $R_{bt.ser}$, khi cấu kiện sắp bị nứt, ứng suất trong cốt thép ứng lực trước là:

$$\sigma_{sp1} = \sigma_{sp} - \sigma_l + 2\alpha_{sp}R_{bt, \text{ ser}}$$
 (8.42)

- Giai đoạn II: Giai đoạn xuất hiện khe nứt. Lúc này toàn bộ lực kéo do cốt thép chịu. Úng suất trong cốt thép ứng lực trước tăng lên hoàn toàn giống như sự tăng ứng suất trong cấu kiện thông thường không có ứng suất trước.
- Giai đoạn III: Giai đoạn phá hoại. Khe nứt mở rộng, ứng suất trong cốt thép đạt tới cường độ giới hạn và xảy ra sự phá hoại.

Qua phân tích các giai đoạn nói trên của trạng thái ứng suất, có thể thấy việc gây ứng lực trước chỉ nâng cao khả năng chống nứt của cấu kiện, mà không nâng cao khả năng chịu lực của cấu kiện, vì sau khi khe nứt xuất hiện, cấu kiện bêtông ứng lực trước làm việc hoàn toàn giống như cấu kiện bêtông cốt thép thường.

b. Cấu kiện căng sau

Trong phương pháp căng sau, các giai đoạn ứng suất cũng tương tự như trường hợp căng trước. Sự khác biệt là từ trạng thái ứng suất I_1 chuyển ngay sang I_4 mà không qua các giai đoạn I_2 và I_3 (h.8.19b).

- $Giai\ doạn\ I_1$: Luồn cốt thép vào trong cấu kiện nhưng chưa căng.
- Giai đoạn I_4 : Căng cốt thép đạt tới ứng suất khống chế:

$$\sigma_{con2} = \sigma_{sp} - \alpha_{sp}\sigma_b \quad v\acute{\sigma}i \quad \sigma_b = \frac{\sigma_{sp} - \sigma_{l1}}{A_{red}} A_{sp}. \tag{8.43}$$

Sau đó cốt thép được neo lại. Lúc này do biến dạng của neo và sự ép sát của các tấm đệm, do ma sát giữa cốt thép và thành ống nên xảy ra hao ứng suất $\sigma_{l1} = \sigma_3 + \sigma_4$ làm giảm ứng suất trong cốt thép ứng lực trước :

$$\sigma_{sp1} = \sigma_{sp} - \sigma_{l1} - \alpha_{sp}\sigma_b \tag{8.44}$$

Từ giai đoạn I_5 đến lúc phá hoại, trạng thái ứng suất trong bêtông và cốt thép giống như đối với cấu kiện căng trước.

8.6.2. Tính toán cấu kiện chịu kéo trung tâm

a. Tính theo cường độ

Cơ sở dùng để tính toán theo cường độ là giai đoạn III. Ở giai đoạn này, xem toàn bộ tải trọng do cốt thép chịu:

$$N \le R_s A_s + \gamma_{s6} R_{sp} A_{sp} , \qquad (8.45)$$

trong đó: $\gamma_{s6}-$ hệ số kể đến sự làm việc của cốt thép cường độ cao:

 A_s – diện tích cốt thép thường;

 A_{sp} – diện tích cốt thép ứng lực trước.

b. Tính không cho phép nứt

Cơ sở để tính toán cấu kiện không cho phép nứt là giai đoạn la của trạng thái ứng suất. Điều kiện để đảm bảo cho cấu kiện không hình thành khe nứt là:

$$N \le N_{crc} = R_{bt,ser} (A_b + 2\alpha_s A_s + 2\alpha_{sp} A_{sp}) + N_{02};$$
 (8.46)

$$N_{02} = \gamma_{sp} \left(\sigma_{sp} - \sigma_l \right) A_{sp} - \sigma_s A_s ; \qquad (8.47)$$

$$\sigma_{\rm s} = \sigma_6 + \sigma_8 + \sigma_9 \,. \tag{8.48}$$

c. Tính theo sự mở rộng của vết nút

Công thức kiểm tra giống như đối với cấu kiện bêtông cốt thép thường. Chỉ khác là độ tăng ứng suất trong cốt thép kể từ lúc ứng suất nén trước trong bêtông triệt tiêu, cho đến lúc kết cấu chịu tải trọng tiêu chuẩn N^c và được tính theo công thức:

$$\sigma_s = \frac{N^c - N_{o2}}{A_s + A_{sp}} \,. \tag{8.49}$$

d. Tính theo sự khép kín khe nứt

Để đảm bảo sự làm việc bình thường của của kết cấu, cũng như độ bền của công trình, đối với các kết cấu có tính chống nứt cấp Il cần phải tính toán kiểm tra sự khép kín khe nứt. Việc tính toán kiểm tra xuất phát từ điều kiện bảo đảm sao cho sau khi bị nứt và tải trọng tạm thời ngắn hạn đã qua đi thì dưới tác dụng của ứng suất trước trong cốt thép, khe nứt phải được khép kín lại.

Điều kiện này được thoả mãn nếu đảm bảo hai yêu cầu sau:

$$\sigma_{sp} + \sigma_{s} \le 0.8R_{s,ser} \tag{8.50}$$

trong đó: σ_s độ tăng ứng suất trong cốt thép thường, tính theo (8.49) $\sigma_{\rm sp}$ ứng suất trước trong cốt thép ứng lực trước sau khi đã tính đến tất cả các ứng suất hao.

2) Tại thớ ngoài cùng của miền chịu kéo của cấu kiện do tác dụng của tải trọng thường xuyên, tải trọng tạm thời ngắn hạn, tải trọng tạm thời dài hạn cần phải tồn tại ứng suất nén σ_b không nhỏ hơn 0,5MPa khi cấu kiện chỉ có tải trọng tĩnh và tải trọng dài hạn tác dụng. σ_b được xác định như đối với vật thể dàn hồi chịu tác dụng của ngoại lực và ứng suất nén trước.

e. Kiểm tra cường độ cấu kiện ở giai đoạn chế tao

Khi buông cốt thép ứng lực trước, cấu kiện có thể bị ép hỏng, do đó cần kiểm tra cường độ của cấu kiện ở giai đoạn này (giai đoạn I4) theo công thức:

$$N \le \gamma_{b\sigma} R_{bp} A_b + R_s A_s , \qquad (8.51)$$

trong đó: N – lực nén bêtông khi buông cốt thép

với cấu kiện căng trước

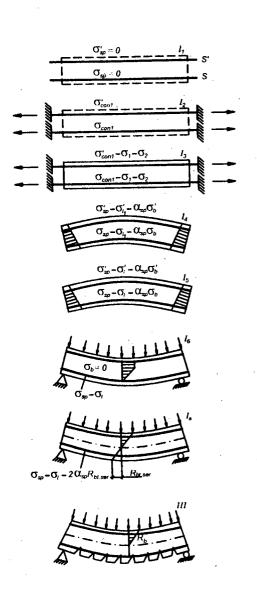
$$N = (1.1\sigma_{sp} - 300) A_{sp}; (8.52)$$

với cấu kiện căng sau

$$N = 1.5 \left(\sigma_{sp} - \alpha_{sp} \sigma_b \right) A_{sp} . \tag{8.53}$$

8.7. CẤU KIỆN CHỊU UỐN

8.7.1. Các giai đoạn của trạng thái ứng suất


a. Cấu kiện căng trước

Cũng giống như trong cấu kiện chịu kéo trung tâm, giai đoạn I được chia làm sáu giai đoạn trung gian, còn các giai đoạn khác tương tự như trong cấu kiện chịu uốn thông thường (h.8.20).

- Giai đoạn I₁: Đặt cốt thép S
 và S' vào khuôn.
- Giai đoạn I₂: Căng cốt thép bên dưới S và cốt thép bên trên S' tới ứng suất khống chế σ_{con1} và σ'_{con1} (thông thường σ_{con1} = σ'_{con1}) rồi cố định cốt thép vào bệ, tiến hành đổ bêtông.
- Giai đoạn I₃: Trong khi chờ đợi bêtông đông cứng đạt tới cường độ R_{bp} lúc này phát sinh các ứng suất hao σ₁ và σ₂ (nếu bêtông được đông cứng trong điều kiện dưỡng hô nhiệt).

$$\sigma_{sp1} = \sigma_{con1} - \sigma_1 - \sigma_2;$$

$$\sigma'_{sp1} = \sigma'_{con1} - \sigma_1 - \sigma_2$$
(8.54)

Hình 8.20. Sự thay đổi ứng suất của cấu kiện ứng lực trước chịu uốn (cấu kiện căng trước)

• Giai đoạn I_4 : Khi bêtông đạt cường độ R bắt đầu buông cốt thép. Do diện tích cốt thép S và S' không bằng nhau $(A_{sp} > A'_{sp})$ nên cấu kiện bị ép lệch tâm và vồng lên phía trên. Trong giai đoạn này phát sinh thêm ứng suất hao do từ biến nhanh σ_6 .

Do đó ứng suất hao đạt giá trị σ_{/1}

- Giai đoạn I_5 : Theo thời gian xảy ra các ứng suất hao do co ngót (σ_8) và từ biến (σ_9) của bêtông;
- Giai đoạn I₆: Tải trọng tác dụng, làm tăng ứng suất kéo trong cốt thép S và làm giảm ứng suất kéo trong cốt thép S'. Khi ứng suất nén trước của thó bêtông ở ngang vị trí trọng tâm cốt thép S bị triệt tiêu thì ứng suất trong cốt thép S là σ_{sp} σ_l.
- Giai đoạn I_a : Ứng suất trong miền bêtông chịu kéo đạt cường độ giới hạn $R_{bt,ser}$ bêtông sắp sửa nứt, ứng suất trong cốt thép S là $\sigma_{\rm sp}$ $\sigma_l + 2\alpha_{sp}R_{bt,ser}$. Giai đoạn này là cơ sở dùng để tính toán cấu kiện không cho phép hình thành khe nứt.
- Giai đoạn II: Khe nứt xuất hiện ở miền bêtông chịu kéo. Tất cả nội lực kéo đều do cốt thép chịu, nhưng ứng suất của cốt thép chịu kéo cũng như của bêtông chịu nén đều chưa đạt tới trị số giới hạn.
- Giai đoạn III: Khe nút mở rộng, ứng suất trong cốt thép chịu kéo và của bêtông chịu nén dều đạt tới trị số giới hạn, cấu kiện bị phá hoại.

Trong giai đoạn này, khi ứng suất nén của bêtông đạt tới trị số giới hạn thì ứng suất trong cốt thép S' là:

$$\sigma'_{sp1} = R'_{sp} - \gamma_{sp}(\sigma'_{con1} - \sigma'_l). \tag{8.55}$$

Trị số σ'_{spl} có thể dương (ứng suất nén) hoặc âm (ứng suất kéo). Nên thiết kế sao cho σ'_{spl} mang dấu dương vì trong trường hợp σ'_{spl} mang dấu âm thì sự có mặt của S' làm giảm khả năng chịu lực của cấu kiện ứng lực trước.

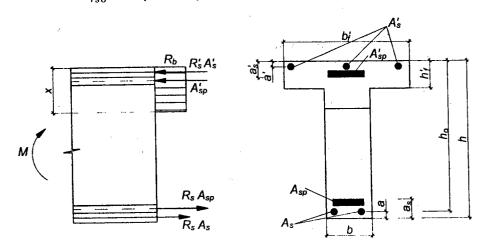
b. Cấu kiện căng sau

 \mathring{O} cấu kiện căng sau, trạng thái ứng suất từ giai đoạn I_1 chuyển ngay sang giai đoạn I_4 . Sau đó các giai đoạn của trạng thái ứng suất kế tiếp nhau xảy ra như trong cấu kiện căng trước.

8.7.2. Tính toán cấu kiện chịu uốn

a. Tính theo cường độ trên tiết diện thẳng góc

Cách tính toán tương tự như cấu kiện bêtông cốt thép thường, chỉ khác là ở các công thức cơ bản có thêm thành phần cốt thép ứng lực trước. Đối với tiết diện chữ T trục trung hòa đi qua sườn (h.8.21), điều kiện cường độ là


$$M \le R_b bx (h_o - 0.5x) + R_b (b'_f - b) h'_f (h_o - 0.5h'_c) +$$

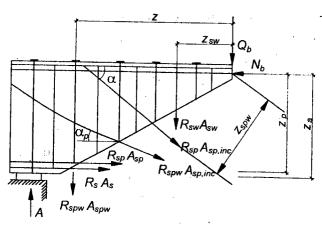
$$+ R'_s A'_s (h_o - a') + \sigma'_{sp1} A'_{sp} (h_o - a'_s).$$
(8.56)

với chiều cao vùng chịu nén x được xác định từ (8.24)

$$R [bx + (b'_f - b) h'_f] = \gamma_{s6} R_{sp} A_{sp} + R_s A_s - \sigma'_{sp1} A'_{sp} - R'_s A'_s, (8.57)$$

trong đó: σ'_{sp} – ứng suất trong cốt thép S' được xác định theo (8.55); γ_{s6} – hệ số kể đến điều kiện làm việc của cốt thép cường độ cao khi ứng suất cao hơn giới hạn chảy quy ước; γ_{s6} – được xác định theo tiêu chuẩn thiết kế.

Hình 8.21. Sơ đổ tính tiết diện chữ T, cánh nằm trong vùng nén, trục trung hòa đi qua sườn


b. Tính theo cường độ trên tiết diện nghiêng

Để chịu lực trên tiết diện nghiêng trong cấu kiện ứng lực trước chịu uốn ngoài cốt dọc, cốt xiên và cốt đai thường còn có cốt dọc và cốt ngang ứng

lực trước (h.8.22). Việt tính toán cường độ trên tiết diện nghiêng chịu cắt được tiến hành tương tự như cấu kiện chịu uốn thông thường (công thức (4.47)).

$$Q \le Q_b + Q_{sw} + Q_{s, inc} + \sum_{spw} R_{spw} + \sum_{spw} R_{spw} A_{sp,inc} \sin \alpha_p , \qquad (8.58)$$

trong đó: Q_b – khả năng chịu cắt của bêtông, tính theo công thức (4.48); R_{spw} – cường độ tính toán về cắt của cốt thép ứng lực trước.

Hình 8.22. Sơ đồ tính toán nội lực trên tiết diện nghiêng

c. Tính cường độ cấu kiện ở giai đoạn chế tạo

Tính toán cấu kiện ở giai đoạn chế tạo bao gồm

- Kiểm tra theo điều kiện về ứng suất nén giới hạn của bêtông (bảng 8.2) lúc bắt đầu buông cốt thép.
- Kiểm tra sự làm việc tổng thể của cấu kiện ở giai đoạn chế tạo. Việc kiểm tra được tiến hành như cấu kiện chịu nén lệch tâm thường mà ngoại lực là lực nén do cốt thép ứng lực trước gây ra.
- Kiểm tra về sự chịu lực cục bộ của bêtông ở khu vực neo. Nếu khả năng chịu lực của miền bêtông dưới neo không đủ thì phải gia cường bằng các lưới cốt thép hoặc đệm thép.

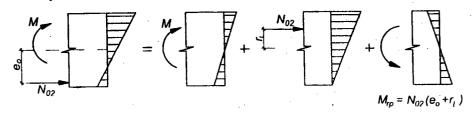
d. Tính toán không cho phép nút

Để bảo đảm cho cấu kiện không hình thành khe nút trên tiết diện thẳng góc thì phải thỏa mãn điều kiện:

$$M \leq M_{crc} , \qquad (8.59)$$

crong đó: M -- mômen uốn do ngoại lực gây ra. Đối với cấu kiện có tính chất chống nứt cấp I và II thì M là mômen tính toán; đối với cấu kiện có tính chống nứt cấp III thì M là mômen tiêu chuẩn: M_{crc} -- mômen mà cấu kiện chịu được ngay trước khi hình thành khe nứt. Cơ sở dùng để tính M_{crc} là giai đoạn I_a của trạng thái ứng suất biến dạng. Giá trị M_{crc} được tính theo công thức:

$$M_{crc} = R_{bt,ser} W_{pl} + M_{rp} . (8.60)$$


với $M_{rp} = N_{o2} (e_o + r_L)$ (8.61)

Để có được (8.60), có thể xuất phát từ sơ đồ lực như trên hình 8.23. Ứng suất kéo ở mép dưới của tiết diện khi lực dọc $N_{\rm o2}$ (lực căng trong cốt thép đã trừ tất cả các ứng suất hao) đặt ở mép trên của lõi sẽ bằng không. Do đó ứng suất kéo ở mép dưới của tiết diện sẽ là:

$$\sigma_t = \frac{M - M_{rp}}{W} \tag{8.62}$$

Khi sắp nứt σ_t đạt đến $R_{bt,\,\mathrm{ser}},\,W$ đạt đến W_{pl} (xem chương 7).

Từ (8.60) ta thấy $R_{bl.\ \rm ser}W_{pl}$ là mômen chống nứt của cấu kiện bêtông cốt thép thường. Mômen chống nứt của cấu kiện ứng lực trước được tăng lên nhờ M_{rp} do đó ta có thể điều chỉnh lực căng để cấu kiện không bị nứt.

Hình 8.23. Sơ đồ lực để xác định M_{rp}

e. Tính toán theo sự mở rộng và khép kín khe nữ

Việc tính toán theo sự mở rộng và khép kín khe nứt được tiến hành tương tư như cấu kiện chịu uốn thông thường và cấu kiện ứng lực trước chịu kéo trung tâm. Chỉ khác độ tăng ứng suất trong cốt thép σ_s được tính theo công thức

$$\sigma_s = \frac{M^c - N_{o2}(Z_1 - e_{sp})}{(A_s + A_{sp})Z_1}, \qquad (8.63)$$

trong đó: Z_1 khoảng cách giữa hợp lực vùng chịu nén và hợp lực vùng chịu kéo;

 $N_{
m o2}$ – lực nén trước bêtông ở giai đoạn sử dụng:

 e_{sp} – khoảng cách từ điểm đặt của lực $N_{\rm o2}$ đến trục đi qua trọng tâm diện tích cốt thép chiu kéo.

g. Tính toán kiểm tra độ võng

Việc tính toán kiểm tra độ võng được tiến hành phụ thuộc vào tính chất chống nứt của cấu kiện.

Đối với cấu kiện không cho phép nứt, khi tính độ võng người ta xem cấu kiện như vật thể dàn hồi và dùng các công thức đã nêu trong môn cơ học kết cấu để tính toán.

Đối với cấu kiện có khe nút ở vùng kéo, cách tính độ võng tương tự như cách tính đối với cấu kiện chịu uốn thông thường, chỉ khác là trong các công thức có thêm một vài số hạng để kể đến tác dụng của cốt thép ứng lực trước.

Trong đoạn dầm không có vết nứt trong vùng kéo, độ cong của dầm được xác định như sau:

trong đó

 $\left(\frac{1}{r}\right)_1, \left(\frac{1}{r}\right)_2$ - độ cong tương ứng do tác dụng ngắn hạn của toàn bộ tải

trọng và tải trọng thường xuyên, dài hạn (không xét đến lực căng trước):

$$\left(\frac{1}{r}\right)_{1} = \frac{M_{sh}}{\varphi_{b1}E_{B}I_{red}}, \quad \left(\frac{1}{r}\right)_{2} = \frac{M_{l}\varphi_{b2}}{\varphi_{b1}E_{b}I_{red}}$$
(8.65)

 $\left(\frac{1}{r}\right)_3$ – độ cong do tác dụng ngắn hạn của lực căng trước N

$$\left(\frac{1}{r}\right)_3 = \frac{N e_{op}}{\varphi_{b_1} E_b I_{\text{red}}} \tag{8.66}$$

 $\left(\frac{1}{r}\right)_4$ – độ cong do sự vồng lên do từ biến và co ngót của bêtông dưới tác dụng của ứng lực trước:

$$\left(\frac{1}{r}\right)_4 = \frac{\varepsilon_b - \varepsilon'_b}{h_o} \tag{8.67}$$

Với:
$$\varepsilon_b = \frac{\sigma_{sb}}{E_s} \; ; \quad \varepsilon'_b = \frac{\sigma'_{sb}}{E_s} \tag{8.67}$$

 σ_{sb} là tổng các hao ứng suất trong cốt thép căng trước do co ngót và từ biến của bêtông đối với cốt thép đặt ở vùng kéo. σ'_{sb} lấy tương tự cho cốt thép căng ở vùng nén.

Tổng
$$\left[\left(\frac{1}{r}\right)_3 + \left(\frac{1}{r}\right)_4\right]$$
 lấy không nhỏ hơn $\left(\frac{1}{r}\right)_3 \varphi_{b2}$,

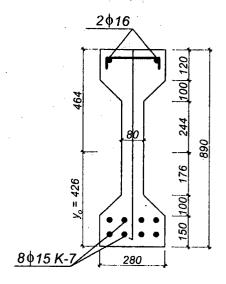
trong đó φ_{b2} là hệ số xét đến ảnh hưởng của tải trọng dài hạn. Khi trong vùng nén của cấu kiện có xuất hiện các vết nút ban đầu, (độ cong $\left(\frac{1}{r}\right)_1$, $\left(\frac{1}{r}\right)_2$, $\left(\frac{1}{r}\right)_3$ phải được tăng lên 15%, độ cong $\left(\frac{1}{r}\right)_4$ được tăng lên 25%.

8.7.3. Ví dụ tính toán

Cho dầm bêtông ULT (căng trước) lắp ghép có tiết diện không đổi (hình 8.24). Dầm có chiều dài là 12m với nhịp tính toán l=11,7m. Các tải trọng tập trung do cầu trục gây ra được thể hiện trên hình 8.25.

1. Các thông số chính

– Bêtông có cấp cường độ chịu nén B40 ($R_b = 22 \mathrm{MPa}$, $R_{bt} = 1,4 \mathrm{MPa}$ với

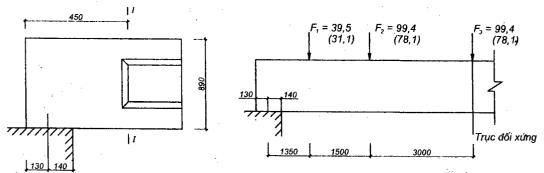

$$\gamma_{b2} = 1, R_{b,ser} = 29 MPa,$$

$$R_{bt, ser} = 2.1 \text{MPa}, E_b = 3.25.10^4 \text{MPa}.$$

Cường độ bêtông tại thời điểm buông cốt thép $R_{bp} = 25 \mathrm{MPa}$ ($R_b^p = 14,5 \mathrm{MPa}$, $R_{b,ser}^p = 18,5 \mathrm{MPa}$, $R_{bt}^p = 1,6 \mathrm{MPa}$, $E_b = 2,7.10^4 \mathrm{MPa}$).

Bêtông được dưỡng hộ nhiệt.

– Cốt thép ULT là nhóm K–7 với đường kính 15mm ($R_s=1080 {\rm MPa}$, $R_{s,ser}=1295 {\rm MPa}$, $E_s=1,8.10^5 {\rm MPa}$).



Hình 8.24.

Cốt thép thường trong vùng nén bố trí 2 ϕ 16 AIII ($A'_s=402$ mm²). Cốt đai sử dụng 1 ϕ 8 AIII ($R_{sw}=285$ MPa, $A_{SW}=50,3$ mm²), khoảng cách giữa các cốt đai S=150 mm.

2. Nôi lưc

Trọng lượng bản thân dầm với $\gamma_f = 1$ là $q_w = 3800$ N/m. Mômen tại giữa nhịp dầm do tất cả tải trọng gây ra với $\gamma_f > 1$ là $M_{II} = 703$ kNm, trừ tải trọng cần trục là $M_I = 649$ kNm.

Hinh 8.25. Tải trọng tập trung lên dầm (số trong ngoặc là tải trọng với $\gamma_t = 1$)

Với $\gamma_f = 1$, mômen do tất cả tải trọng gây ra là $M_{\rm tot} = 560$ KNm, do tải trọng thường xuyên, dài hạn là $M_l = 475$ (kNm).

Lực cắt lớn nhất tại gối tựa với $\gamma_f > 1$ là $Q_{II} = 211,9$ kN và $Q_I = 172,3$ KN. Khi $\gamma_f = 1$ ta có $Q_{tot} = 169,3$ kN.

Trong ví dụ chỉ trình bày phần tính toán kiểm tra sự làm việc của dầm trong giai đoạn sử dụng mà không kiểm tra giai đoạn sản xuất, lắp dựng.

3. Xác đinh các đặc trưng hình học của tiết diện

$$\alpha_p = \frac{E_{sp}}{E_b} = \frac{1,8.10^5}{3,25.10^4} = 5,55$$

$$\alpha_s = \frac{E_s}{E_b} = \frac{2.10^5}{3,25.10^4} = 6,15$$

$$A_{\text{red}} = A + \alpha_p A_{sp} + \alpha_s A'_s = (80 \times 890 + 200 \times 120 + 200 \times 150 + 4 \times 0,5.100.100)$$
$$+ 5.55 \times 1132 + 6.15 \times 402 = 154000 \text{ mm}^2$$

$$y_o = \frac{S + \alpha_p A_{sp} a_p + \alpha_s A'_s (h - a'_s)}{A_{red}} = 426 \text{ (mm)}$$

$$\begin{split} I_{red} &= I + \alpha_p A_{sp} y_{sp}^2 + \alpha_s A_s' y_s'^2 = \frac{80 \times 890^3}{12} + 80 \times 890(445 - 426)^2 + \\ &+ \frac{200 \times 120^3}{12} + 200 \times 12 \times (830 - 426)^2 + \frac{200 \times 150^3}{12} + \\ &+ 200 \times 150(426 - 75)^2 + 4 \times \frac{100 \times 100^3}{36} + 2 \times 0.5 \times 100 \times 100 \\ &\times (736, 7 - 426)^2 + 2 \times 0.5 \times 100 \times 100(736, 7 - 426)^2 + 5.55 \\ &\times 1132(426 - 72.5)^2 + 6.15 \times 402(845 - 426)^2 = 15064.10^6 \, (\text{mm}^4). \end{split}$$

4. Xác định lực căng trước và độ lệch tâm e_{op}

a) Ứng suất kéo trước trong thép ứng lực trước chọn giá trị lớn nhất cho phép:

$$\sigma_{sp} = 0.95 R_{s, ser} = 0.95 \times 1295 = 1230 \text{ MPa}$$

b) Xác định e_{op} tại tiết diện giữa nhịp dầm:

Xác định các hao ứng suất:

+ Các hao ứng suất nhóm thứ nhất:

$$\begin{split} &\sigma_1 = \left(0.22 \frac{\sigma_{sp}}{R_{s,ser}} - 0.1\right) \sigma_{sp} = \left(0.22 \cdot \frac{1230}{1295} - 0.1\right) 1230 = 134 \text{ MPa} \\ &\sigma_2 = 1.254 \text{t} = 1.25 \times 65 = 81 \text{ MPa} \\ &\sigma_3 = \frac{\Delta l}{l} \cdot E_s = \frac{3.5}{15000} \cdot 1.8 \cdot 10^5 = 42 \text{ MPa} \\ &(\Delta l = 1.25 + 0.15d = 1.25 + 0.15 \times 15 = 3.5 \text{ mm}) \\ &\sigma_4 = \sigma_5 = 0 \\ &\sigma_{\text{sp1}} = \sigma_{sp} - \sigma_1 - \sigma_2 - \sigma_3 = 1230 - 134 - 81 - 42 = 973 \text{ MPa} \\ &N_1 = \sigma_{sp1} A_{sp} = 973 \times 1132 = 1104 \cdot 10^3 \text{N} \end{split}$$

Độ lệch tâm của N_1 là : $e_{op} = y_{sp} = 426 - 72,5 = 353,5$ mm

Mômen do trọng lượng bản thân dầm:

$$M = \frac{q_w l^2}{8} = \frac{3.8 \times 11.7^2}{8} = 65 \text{ kNm}$$

Úng suất trong bêtông tại tâm cốt thép S là:

$$\begin{split} \sigma_{bp} &= \frac{N_1}{A_{red}} + \frac{N_1 \cdot e_{op} \ y}{I_{red}} - \frac{M \cdot y}{I_{red}} = \\ &= \frac{1104 \cdot 10^3}{154000} + \frac{1104 \cdot 10^3 \cdot 353,5^2}{15064 \cdot 10^6} - \frac{65 \cdot 10^6 \cdot 353,5^2}{15064 \cdot 10^6} = 14,8 \ \text{MPa}. \end{split}$$

Xác định hao ứng suất do từ biến nhanh của bêtông σ_6 :

$$\alpha = 0.25 + 0.025R_{bp} = 0.25 + 0.025 \times 25 = 0.875 > 0.8$$

Chọn
$$\alpha = 0.8$$
. Với $\frac{\sigma_{bp}}{R_{bp}} = \frac{14.8}{25} = 0.592 < \alpha = 0.8$ ta có:

$$\sigma_6 = \left(40 \frac{\sigma_{bp}}{R_{bp}}\right) \times 0.85 = 20.1 \text{ MPa}$$

(hệ số 0,85 cho bêtông dưỡng hộ nhiệt).

Tại trọng tâm của cốt thép trong vùng nén S':

$$\sigma_{bp} = \frac{N_1}{A_{red}} - \frac{N_1 e_{op}}{I_{red}} + \frac{M \cdot y}{I_{red}} = -1.9 \text{ MPa} < 0$$

nên $\sigma_6 = 0$ và $\sigma'_s = 0$.

Như vậy khi xét đến các hao ứng suất nhóm thứ nhất

$$\sigma_{sp1} = \sigma_{sp1} - \sigma_6 = 973 - 20.1 = 952.9 \text{ MPa}$$

$$N_1 = \sigma_{sp1} A_{sp} = 953 \times 1132 = 1078.8 \text{ kN}$$

Vì $\sigma'_s = 0$ nên độ lệch tâm của N_1 không đổi,

$$e_{op} = y_{sp} = 353,5 \text{ mm}$$

- + Các hao ứng suất nhóm thứ hai
- Do co ngót của bêtông $\sigma_8 = 40 MPa$
- Do từ biến của bêtông σ₉:

Vì
$$\frac{\sigma_{bp}}{R_{bp}} = 0.59 < 0.75$$
:

$$\sigma_9 = \left(150\alpha \frac{\sigma_{bp}}{R_{bp}}\right) \times 0.85 = 75.5 \text{ MPa}$$

Ta có:

$$\sigma_{sp2} = \sigma_{sp1} - (\sigma_8 + \sigma_9) = 952,9 - (40 + 75,5) = 837,4 \text{ MPa}$$

Vì ứng suất trong cốt thép S' chịu kéo nên $\sigma'_s = 0$.

$$N_2 = \sigma_{sp2} A_{sp} = 837.4 \times 1132 = 947.9 \cdot 10^3 \text{ N} = 947.9 \text{ kN}$$

5. Kiểm tra khả năng chịu lực trong giai đoạn sử dụng

a) Theo cường độ trên tiết diện thẳng góc:

Tại tiết diện giữa dầm:

$$Vi M_1 = 649 \text{ kNm} > 0.82 M_{II} = 0.82 \times 703 = 576.5 \text{ kNm}$$

nên R_b (với $\gamma_{b1}=1$) phải nhân thêm hệ số:

$$\gamma_{hi} = 0.9 \frac{M_{II}}{M_{I}} = 0.9 \times \frac{703}{649} = 0.975$$

. Như vậy:
$$R_b = 0.975 \times 22 = 21.45 \text{ MPa}$$

$$h_a = h - a = 890 - 72.5 = 817.5 \text{ mm}$$

$$h'_f = 120 + \frac{100}{2} = 170 \text{ mm}$$

$$b'_f = 280 \text{ mm}, \ b = 80 \text{ mm}$$

Kiểm tra vị trí trục trung hòa (với $\gamma_{s6} = 1.0$):

$$R_b b'_f h'_f + R_{sc} A'_s = 21,45 \times 280 \times 170 + 365 \cdot 402 =$$

= 1168 \cdot 10^3 N < $\gamma_{sc} R_s A_{sp} = 1080 \cdot 1132 = 1223 \text{ kN}$

Như vậy trục trung hòa đi qua sườn

$$\xi = \frac{R_s A_{sp} - R_b (b'_f - b) h'_f - R_{sc} A'_s}{R_b b h_o} =$$

$$\frac{1080.1132 - 21,45(280 - 80)170 - 365.402}{21,45.80.817.5} - 0.247$$

Với
$$\gamma_{b2}$$
 và $\frac{\sigma_{sp2}}{R_s} = \frac{753.7}{1080} = 0.698$ ta có $\xi_R = 0.38$

$$(\sigma_{sp2} = \gamma_{sp}\sigma_{sp2} = 0.9 \times 837.4 = 753.7 \text{ MPa})$$

Vì $\xi < \xi_R$ ta có:

$$\gamma_{s6} = \frac{2\eta - 1 + 2(\eta - 1)\frac{\alpha_{ov}}{\xi_R}}{1 + 2(\eta - 1)\frac{(\xi + \alpha_{ov})}{\xi_R}}$$

$$\eta = 1.15$$

$$\alpha_{ov} = \frac{R_b (b'_f - b)h'_f + R_{sc}A'_s}{R_b bh_o} = 0.624$$

$$\rightarrow \gamma_{s6} = 1,062.$$

Kiểm tra khả năng chịu lực theo điều kiện:

$$\begin{split} R_b bx & (h_o - 0.5x) + R_b & (b'_f - b) \ h'_f (h_o - 0.5h'_f) + R_{sc} A'_s (h_o - a') \geq M_{II} \\ 21.45.80.246.1 & (817.5 - 0.5.246.1) + 21.45.200.170 & (817.5 - 0.5.170) + \\ & + 365.402 & (817.5 - 45) = 940.9.10^6 \ \mathrm{Nmm} = 940.9 & (\mathrm{kNm}) > M_{II} = 703 \ \mathrm{kNm}. \end{split}$$
 Cấu kiện đảm bảo khả năng chịu lực trên tiết diện thẳng góc.

b) Kiểm tra cường độ trên tiết diện nghiêng theo lực cắt. Tại tiết diện gần gối tựa $Q_I = 172.3~\rm kN < 0.82~Q_H = 0.82.211.9 = 173.6~\rm kN$, ta có

$$R_b = \gamma_{b2}R_b = 1,1 \times 22 = 24 \text{ MPa}$$

$$\mu_W = \frac{A_{sw}}{bs} = \frac{50,3}{80.150} = 0,00419$$

$$\phi_{W1} = 1 + 5\alpha\mu_w = 1 + 5 \times 5,54 \times 0,00419 = 1,116$$

$$\beta = 0,01$$

$$\phi_{b1} = 1 \quad \beta R_b = 1 \quad 0,01 \times 24 = 0,76$$

$$0,3\phi_{W1}\phi_{b1}R_bbh_o = 0,3 \times 1,116 \times 0,76 \times 24 \times 80 \times 817,5 = 399,4 \times 10^3 \text{ N} > Q_H = 211,9 \text{ kN}$$

+ Tiết diện nghiêng đến lực tập trung đầu tiên C_1 = 1,35 (m). Vì Q_1 = 167 kN < 0,82 Q_{11} = 0,82.206,5 kN nên γ_{b2} = 1,1 và R_{bt} = 1,55 MPa. Ta có: b'_f – b = 280 – 80 = 200 mm < 3 h'_f = 510 mm

Xác định M_b và Q_b :

$$\begin{split} M_b &= \varphi_{b2} \left(1 + \varphi_f + \varphi_n \right) \\ \varphi_{b2} &= 2 \\ \varphi_f &= \frac{0.75 \left(b'_f - b \right) h'_f}{b h_o} = 0.39 < 0.5 \\ \varphi_n &= 0.1 \frac{P}{R_{ht} b h_o} = 0.1 \cdot \frac{(0.9 \times 939.9)}{1.55 \cdot 80 \cdot 817.5} = 0.83 > 0.5 \end{split}$$

Chọn
$$\varphi_n = 0.5$$

Vì
$$1 + \varphi_f + \varphi_n > 1.5$$
, chọn $1 + \varphi_f + \varphi_n = 1.5$

$$\Rightarrow M_b = 2 \times 1.5 \times 1.55 \times 80 \times 817.5^2 = 248.6 \times 10^6 \text{(Nmm)}$$

$$Q_b = \frac{M_b}{c} = \frac{248.6}{1.35} = 184.1 \text{ kN}$$

$$q_{SW} = \frac{R_{SW}A_{SW}}{S} = \frac{285.50,3}{150} = 95,6 \text{ N/mm}$$

$$> \frac{Q_{b,\text{min}}}{2h_a} = \frac{\varphi_{b3}}{2} (1 + \varphi_f + \varphi_n) R_{bt} b = 0.3 \times 1.5 \times 1.55 \times 80 = 55.8 \text{ N/mm}$$

$$C_o = \sqrt{\frac{M_b}{q_{SW}}} = \sqrt{\frac{248,6.10^6}{95,6}} = 1613 \text{ mm} = 1,6 \text{ m}$$

Vì
$$C_o = 1.6 \text{ m} > C_1 = 1.35 \text{ m}$$
, chọn $C_o = C_1 = 1.35 \text{ m} < 2h_o = 2 \times 0.8175$
= 1.635 m

Kiểm tra cường độ theo điều kiện:

$$Q_b + q_{SW} C_o = 184.1 \times 10^3 + 95.6 \times 1350$$

= 313.2 × 10³N > $Q_H = 206.5 \text{ kN}$

+ Tiết diện nghiêng với khoảng cách từ gối tựa đến lực tập trung thứ hai : $C_2 = 2.85 \text{ m}$.

$$C_2 > \frac{\phi_{b2}}{\phi_{b3}} h_o = \frac{2}{0.6} \times 0.8175 = 2.72 \text{ m}$$

Chọn $C_2 = 2{,}72 \text{ m}$

Vì $Q_I = Q_{II} = 161$ KN nên $\gamma_{b2} = 0.9$, $R_{bt} = 1.25$ MPa

$$M_b = \frac{1,25}{1,55}.248,6 = 200,5 \text{ KNm}$$

$$Q_b = \frac{200.5}{2.72} = 73.7 \text{ KN}$$

$$C_o = \sqrt{\frac{M_b}{q_{SW}}} = \sqrt{\frac{200,5}{95,6}} = 1,448 \text{ m}$$

Vì $C_o = 1,448 \text{ m} < C_2 = 2,85 \text{ m} \text{ và } C_o < 2h_o$

Chon $C_0 = 1,448 \text{ m}$

$$Q_b + q_w C_o = 73.7 \cdot 10^3 + 95.6 \cdot 1448 = 208.8 \cdot 10^3 \,\mathrm{N} > Q_1 = 161 \,\mathrm{kN}.$$

c) Kiểm tra cường độ trên tiết diện nghiêng theo mômen

Vì các cốt dọc không có các neo đặc biệt ở hai đầu cấu kiện nên cần phải kiểm tra tiết diện nghiêng nguy hiểm theo (4.93)

$$\gamma_{s5} = \frac{l_x}{l'_{s0}} = \frac{270}{1023} = 0,264$$

$$(l_x = 130 + 140 = 270 \text{ mm}, \text{lan} = 1023 \text{ mm})$$

$$R_s = \gamma_{s5}R_s = 0.264 \times 1080 = 285 \text{ MPa}$$

Chiều cao vùng nén được xác định như tiết diện hình chữ nhật với $\gamma_{s6} = 1,0, A'_s = 0, b = b'_f = 280$ mm:

$$x = \frac{R_s A_{sp}}{R_b b} = \frac{285 \times 1132}{22 \times 280} = 52,4 \text{ mm} < h_f = 170 \text{ mm}$$

Ta có $Z_s = h_o - 0.5x = 817.5 - 0.5$. 52.4 = 791.3 mm .

$$C = \frac{Q - F_1}{q_{SW} + q} = \frac{211.9 - 39.5}{95.6 + 4.18} = 1.73 \text{ m} > 1.35 \text{ m}$$

và C < 2,85 m – có nghĩa là tải trọng tập trung thứ nhất nằm trong tiết diện nghiêng phải xét, còn tải trọng tập trung thứ hai thì không.

Mômen tính toán tại mặt cắt cuối tiết diện nghiêng với khoảng cách (1,73+0,14)=1,87 m cách điểm đặt của phản lực gối tựa:

$$M = 211,9.1,87 - \frac{4,18.1.87^2}{2} - 39,5(1,87 - 1,35) = 368,4 \text{ kNm}$$

Kiểm tra khả năng chịu lực:

$$R_s A_{sp} Z_s + 0.5 q_{SW} C^2 = 285 \cdot 1132 \cdot 791.3 + 0.5 \cdot 95.6 \cdot 1730^2 =$$

= 398.35 \cdot 10^6 (Nmm) > $M = 368.4 \text{ kNm}$.

Như vậy cường độ trên tiết diện nghiêng theo mômen được đảm bảo.

6. Tính toán độ võng

Kết cấu thuộc cấp chống nứt cấp 2, do vậy $\gamma_f=1$ và $\gamma_{sp}=1$. Mômen tại giữa nhịp dầm cho tất cả tải trọng $M_{\rm tot}=560$ kNm. Xác định mômen kháng nứt $M_{\rm crc}$ trong giai đoạn sử dụng:

$$\begin{split} M_{crc} &= R_{bl, \, ser} \, W_{pl} + M_{rp} \\ M_{rp} &= N_{02} \, (e_{op} + r_L) \end{split}$$

Ta có: $N_{02} = 947.9 \text{ kN}$

$$r_L = \frac{W_{red}}{A_{red}} = \frac{\frac{I_{red}}{y_o}}{A_{red}} = \frac{15065.10^6}{426.154.10^3} = 230 \text{ mm}$$

Vây: $M_{rp} = 947.9 (0.3535 + 0.23) = 552.7 \text{ kNm}$

 $M_{\rm crc}=2.1$. 53,04 + 552,7 = 664 kNm > $M_{\rm tot}=560$ kNm như vậy có thể xác định độ cong của dầm theo tiết diện không nứt.

Vì độ võng của dầm được hạn chế do yêu cầu thẩm mỹ nên tính toán cho tải trọng thường xuyên, dài hạn với $\gamma_f=1$. Mômen tại giữa nhịp là $M_l=475~{\rm kNm}$

Ta có: $\varphi_{b2} = 2$, $\varphi_{b1} = 0.85$, $\varphi_{sp} = 1$:

$$\left(\frac{1}{r}\right)_2 = \frac{M_l \varphi_{b2}}{\varphi_{b1} E_b I_{red}} = \frac{475.10^6.2}{0.85.3,25.10^4.15065.10^6} = 0.228.10^{-5} \text{ (1/mm)}$$

$$\left(\frac{1}{r}\right)_3 = \frac{N_{02}e_{op}}{\varphi_{b1}E_bI_{red}} = \frac{947,9.10^3.353,5}{0,85.3,25.10^4.15064.10^6} = 0,0805.10^{-5}(1/\text{mm})$$

Độ cong $\left(\frac{1}{r}\right)_{4}$ được xác định:

$$\left(\frac{1}{r}\right)_{A} = \frac{\varepsilon_{b} - \varepsilon'_{b}}{h_{o}} = \frac{\sigma_{sb}}{2.105 h_{o}} = \frac{136,5}{2.10^{5}.817,5} = 0,0835.10^{-5} (1/\text{mm})$$

Trong đó:

$$\sigma_{sh} = \sigma_6 + \sigma_8 + \sigma_9 = 21 + 40 + 75,5 = 136,5 \text{ MPa}$$

$$\sigma'_{sh} = \sigma'_s = 0.$$

Với việc hình thành trong vùng nén các vết nứt đầu tiên, độ cong $\left(\frac{1}{r}\right)_2$ và

$$\left(\frac{1}{r}\right)_3$$
 phải được tăng lên 15%, độ cong $\left(\frac{1}{r}\right)_4$ tăng 25%.

$$\left(\frac{1}{r}\right)_2 = 1.15 \cdot 0.228 \cdot 10^{-5} = 2.62 \cdot 10^{-5} (1/\text{mm})$$

$$\left(\frac{1}{r}\right)_3 = 1.15 \cdot 0.0805 \cdot 10^{-5} = 0.0926 \cdot 10^{-5} (1/\text{mm})$$

$$\left(\frac{1}{r}\right)_4 = 1.25 \cdot 0.0835 \cdot 10^{-5} = 0.1044 \cdot 10^{-5} \text{ (1/mm)}$$

Độ cong toàn phần của dầm tại giữa nhịp là:

$$\left(\frac{1}{r}\right)_{m} = \left(\frac{1}{r}\right)_{2} - \left[\left(\frac{1}{r}\right)_{3} + \left(\frac{1}{r}\right)_{4}\right] = (0.262 - 0.197) \cdot 10^{-5} = 0.065 \cdot 10^{-5} (1/\text{mm})$$

Ta có độ võng f:

$$f = \left(\frac{1}{r}\right)_m \rho_m l^2 = 0.065 \cdot \frac{5}{48} \cdot 11700^2 = 9.27 \text{ mm}$$

Vậy:
$$\frac{l}{250} = \frac{11700}{250} = 46.8 > f = 9.27 \text{ mm}$$

7. Tính toán theo sự hình thành khe nứt trên tiết diện nghiêng

Kiểm tra sự hình thành khe nứt trên tiết diện thẳng góc được tiến hành tương tự như trong ví dụ 7.1 ở đây chỉ trình bày tính toán sự hình thành khe nứt tiết diện nghiêng. Ta có $\gamma_f = 1$ và lực nén trước có xét đến hệ số chính xác khi căng cốt thép $\gamma_{sp} = 0.9$.

Xác định chiều dài neo cốt thép:

$$l_p = \left(\frac{\sigma_{sp}}{R_{bp}} + \lambda_p\right) d$$

Lấy $\sigma_{sp}=\sigma_{sp1}=973$ MPa, $R_{bp}=25$ MPa, $\lambda_p=25$

Ta có:

$$l_p = \left(\frac{973}{25} + 25\right) 15 = 959 \,\mathrm{mm}^{-1}$$

Tại vùng neo cốt thép, ta có:

$$\sigma_{sp2} = \sigma_{sp1} - \sigma_6 - \sigma_8 - \sigma_9$$

$$\frac{\sigma_{bp}}{R_{bp}} = \frac{15,85}{25} = 0,634 < \alpha = 0,8:$$

$$\sigma_6 = 34 \cdot 0.634 = 21.55 \text{ MPa}$$

$$\sigma_9 = 128 . 0,634 = 81,55 \text{ MPa}$$

Vậy
$$\sigma_{sp2} = 973 - 21,55 - 40 - 81,55 = 830,2 \text{ MPa}$$

$$P_2 = \sigma_{sp2} A_{sp} = 830,2 \cdot 1132 = 939,9 \text{ kN}$$

Với $\gamma_{sp} = 0.9$:

$$P_2 = 0.9 \cdot 939.9 = 845.9 \text{ kN}$$

Xét tiết diện I–I (hình 8.25), lx = 450 mm

$$P_2 = 845,9 \cdot \frac{lx}{lp} = 845,9 \cdot \frac{450}{959} = 396,9 \text{ kN}$$

Úng suất σ_x tại trọng tâm tiết diện (y = 0) là

$$\sigma_x = \frac{P_2}{A_{red}} = \frac{396,9.10^3}{154.10^3} = 2,58 \text{ MPa}$$

Xác định ứng suất $\sigma_{y,loc}$ do tác dụng của phản lực gối tựa F.

Úng suất $\sigma_{y,loc}$ được xác định theo công thức của SBVL:

$$\sigma_{y,loc} = \frac{F}{bh} \frac{\beta^2}{1,57} \left[\frac{\beta}{(\alpha^2 + \beta^2)^2} - \frac{3 - 2\beta}{(1 + \alpha^2)^2} \right]$$

$$v\acute{\sigma}i \qquad \alpha = \frac{x}{h} \; , \; \beta = \frac{y}{h}$$

với
$$F = Q_{\text{max}} = 169.3 \text{ kN}$$

$$x = 450 - 130 = 320 \text{ mm}, \ y = y_0 = 426 \text{ mm}$$

$$\alpha = \frac{x}{h} - 0.36$$
, $\beta = \frac{y}{h} = 0.479$

ta có:
$$\sigma_{y,loc} = 0.747 \text{ MPa}$$

Lực cắt tại tiết diện I-I:

$$Q = 169.3 - \frac{320}{1350}(169.3 - 164.4) = 168.1 \text{ kN}$$

$$S_{\rm red} = \frac{80.464^{\,2}}{2} + 200.120 \bigg(464 - \frac{120}{2}\bigg) + 2.0, 5.100.100. \bigg(464 - 120 - \frac{100}{3}\bigg)$$

$$+6.15 \cdot 402 (464 - 45) = 23490 \cdot 10^{3} \text{ mm}^{3}$$

$$T_{xy} = \frac{QS_{red}}{I_{red}b} = \frac{168,1.10^3.23490.10^3}{15064.10^6.80} = 3.28 \text{ MPa}$$

Xác định ứng suất kéo chính và nén chính:

$$\sigma_{mt} = \begin{pmatrix} - \\ + \end{pmatrix} \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} =$$

$$= \left(\frac{1}{+}\right) \frac{2,58 + 0,747}{2} + \sqrt{\left(\frac{2,58 - 0,747}{2}\right)^2 + 3,28^2} =$$

$$= \left(\frac{1}{+},66 + 3,41\right) \text{ (MPa)}$$

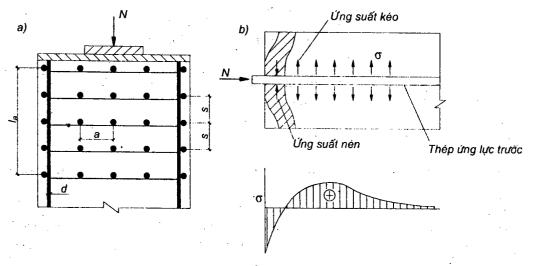
$$\sigma_{mt} = -1,66 + 3,41 = 1,75 \text{ (MPa)}$$

$$\sigma_{mc} = 1,66 + 3,41 = 5,07 \text{ MPa}$$

$$\alpha_b = 0,01, \quad \alpha_b B = 0,01 \cdot 40 = 0,4 > 0,3$$

$$\gamma_{b4} = \frac{1 - \frac{\sigma_{mc}}{R_{bt,ser}}}{0,2 + \alpha_b B} - \frac{1 - 5,07}{0,2 + 0,4} = 1,37 > 1$$

Chọn $\gamma_{b4}=1$, vậy γ_{b4} $R_{bt, ser}=2.1$ MPa > σ_{mt} do đó không xảy ra nút trên tiết diện nghiêng.



SỰ CHỊU LỰC CỰC BỘ

9.1. NÉN CỤC BỘ

Nén cục bộ là trường hợp lực nén N tác dụng lên một phần diện tích tiết diện trên bề mặt kết cấu. Nén cục bộ xảy ra do sự truyền phản lực ở gối dầm, gối dàn... (h.9.1a), ở vùng neo cốt thép ứng lực trước (h.9.1b).

Khi bêtông bị nén cục bộ, cường độ chịu nén được tăng lên do những phần xung quanh không trực tiếp chịu nén có tác dụng cản trở biến dạng ngang của phần trực tiếp chịu lực.

Hình 9.1. Nén cục bộ của cấu kiện bêtông cốt thép

9.1.1. Tính toán khi không đặt cốt thép ngang

Tính toán cấu kiện chịu nén cục bộ (ép mặt) khi không dặt cốt thép ngang cần thoả mãn diều kiện:

$$N \le \psi R_{b,loc} A_{loc1}, \tag{9.1}$$

trong đó: N-lực nén dọc do tải trọng cục bộ;

 A_{loc1} - diện tích chịu nén cục bộ (h.9.2);

ψ hệ số, phụ thuộc vào đặc điểm phân bố tải trọng cục bộ trên diên tích bị nén ép mặt, lấy như sau:

- * khi tải trong phân bố đều lấy bằng 1.0:
- * khi tải trọng phân bố không đều (dưới dầu dầm, xà gồ, lanh tô) đối với bêtông nặng lấy bằng 0,75

 $R_{b,loc}$ – cường độ chịu nén tính toán cục bộ của bêtông, xác dịnh

theo công thức: $R_{b,loc} = \alpha \, \varphi_b \, R_b \,, \tag{9.2}$

d d a y: αφ_b > 1;

 $\alpha=1$ đối với bêtông có cấp thấp hơn B25: $\alpha=13,5\frac{R_{bt}}{R_b}$ đối với bêtông có cấp B25 và lớn hơn; $\phi_b=\sqrt[3]{A_{loc2}/A_{loc1}}$

nhưng không lớn hơn các giá trị sau đối với bêtông nặng:

- * khi sơ đồ đặt lực theo hình 9.2a, c, d, e, h: bêtông có cấp lớn hơn B7,5 lấy bằng 2,5; cấp B3,5; B5; B7,5 lấy bằng 1,5
- * khi sơ đồ đặt lực theo hình 9.1b, d. g lấy bằng 1,0 A_{loc2} diện tích chịu nén cục bộ tính toán xác định như trên hình 9.2.

Diện tích tính toán A_{loc2} gồm cả các phần diện tích đối xứng qua diện tích bị ép (h.9.2).

Với tải trọng cục bộ do dầm, xà gồ, lanh tô và các cấu kiện chịu uốn khác, khi xác định diện tích A_{loc1} và A_{loc2} độ sâu tính từ mép gối tựa lấy không lớn hơn $20~\rm cm$.

9.1.2. Khi đặt cốt thép ngang bằng lưới thép

Dùng lưới thép ngang đặt vào bêtông sẽ có tác dụng cản trở sự nở ngang và do đó làm tăng cường độ chịu nén của bêtông.

a. Cấu tao lưới

Tại mỗi mút cấu kiện chịu nén cục bộ đặt ít nhất bốn lưới (h.9.1a) trong một đoạn l_a không nhỏ hơn 20d nếu cốt dọc là cốt trơn và 15d nếu là cốt có gờ (d là đường kính cốt dọc). Khoảng cách giữa các lưới s không lớn hơn 1/3 cạnh bé của tiết diện và thường lấy trong khoảng 60-150mm. Kích thước của mắt lưới chọn từ 45 đến 100mm. Đường kính thanh thép thường từ 3 đến 6mm hoặc có thể lớn hơn. Lưới thép nên sản xuất bằng cách hàn điểm tiếp xúc. Nhóm thép sử dụng có thể là CI, CII, CIII hay dây thép kéo nguội.

b. Tính toán

Tính toán kiểm tra theo điều kiện:

$$N \le R_{b,red} A_{loc1}, \tag{9.3}$$

trong đó: A_{loc1} – diện tích chịu nén cục bộ;

 $R_{b,red}$ – cường độ lăng trụ quy đổi của bêtông khi tính toán

chiu nén cục bộ, được xác định theo công thức:

$$R_{b,red} = R_b \, \varphi_b + \varphi \, \mu_{xy} \, R_{s,xy} \, \varphi_s, \qquad (9.4)$$

ở đây: $R_{s,xy}$ – cường độ tính toán của thanh trong lưới thép;

$$\mu_{xy} = \frac{n_x A_{sx} l_x + n_y A_{sy} l_y}{A_{ef} s}$$
 (9.5)

trong công thức trên: n_x , A_{sx} , l_x $(n_y$, A_{sy} , l_y) – tương ứng là số thanh, diện tích tiết diện ngang và chiều dài thanh trong lưới thép (tính theo khoảng cách giữa trục của các thanh cốt thép ngoài cùng) theo phương x (y);

ở đây:

Diện tích tiết diện của các thanh trong lưới thép hàn trên một đơn vị chiều dài theo phương này hay phương kia không được chênh lệch nhau quá 1,5 lần.

 A_{ef} – diện tích bêtông nằm trong phạm vi lưới thép;

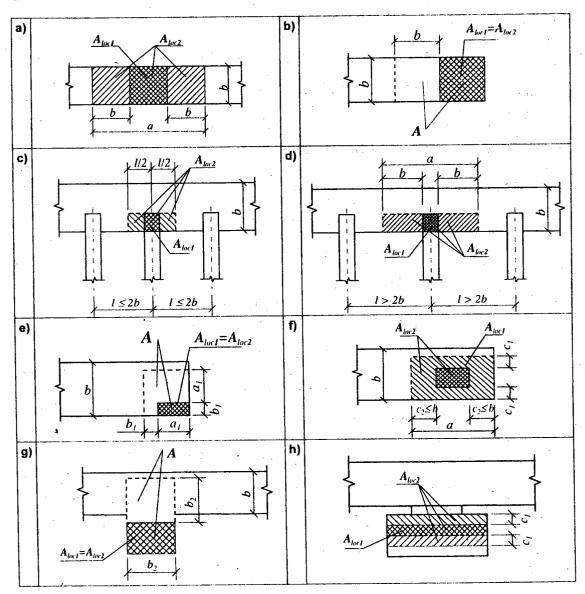
s – khoảng cách giữa các lưới thép;

 ϕ – hệ số kể đến ảnh hưởng của cốt thép gián tiếp, được xác định theo công thức:

$$\varphi = \frac{1}{0,23 + \psi},$$
 (9.6)

với
$$\psi = \frac{\mu_{xy} R_{s,xy}}{R_b + 10};$$
 (9.7)

 $R_{s.xv}$, R_b tính bằng MPa.


$$\varphi_b = \sqrt[3]{\frac{A_{loc2}}{A_{loc1}}} \le 3.5 \tag{9.8}$$

 φ_s – hệ số xét đến diện tích cốt thép gián tiếp trong vùng chịu nén cục bộ, đối với sơ đồ hình 9.2b, e, g lấy $\varphi_s=1$, trong đó cốt thép gián tiếp được đưa vào tính toán với điều kiện lưới thép ngang phải đặt trên diện tích không nhỏ hơn phần diện tích được giới hạn bởi đường nét đứt trên các sơ đồ tương ứng trong hình 9.2; đối với các sơ đồ hình 9.2a, c, d, f hệ số φ_s được xác dịnh theo công thức:

$$\varphi_s = 4.5 - 3.5 \frac{A_{loc1}}{A_{ef}}, \qquad (9.9)$$

 A_{ef} – diện tích bêtông nằm trong vùng giới hạn bởi các thanh ngoài cùng của lưới thép dùng làm cốt thép gián tiếp và phải thoả mãn điều kiện

$$A_{loc1} < A_{ef} \le A_{loc2}$$
.

Hình 9.2. Sơ đổ tính toán cấu kiện bêtông cốt thép chịu nén cục bộ

a) Khi tải trọng cục bộ đặt trên toàn bộ chiều rộng của cấu kiện; b) Khi tải trọng cục bộ đặt trên toàn bộ bề rộng nằm ở vùng mép cấu kiện; c, d) Khi tải trọng cục bộ tại chỗ gác xà gổ hoặc dầm; e) Khi tải trọng cục bộ đặt lên một phần chiều rộng và một phần chiều dài cấu kiện hoặc khi tải trọng cục bộ đặt lên phần lồi của tường hoặc mảng tường; g) Tải trọng cục bộ đặt lên trụ tường; h) Tiết diện có dạng phức tạp

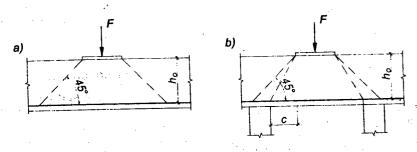
 A_{loc1} - diện tích chịu nén cục bộ; A_{loc2} - diện tích tính toán chịu nén cục bộ; A - diện tích tối thiểu phải đặt lưới thép, trong đó cốt thép gián tiếp được kể đến trong tính toán theo công thức (9.4)

9.2. NÉN THỦNG

Hiện tượng nén thủng xảy ra khi trên bề mặt bản có lực nén đặt lên một diện tích bé, ví dụ như lực nén truyền từ chân cột vào móng, vùng sàn nấm trên đỉnh cột.... Sự nén thủng xảy ra theo hình tháp có đáy nhỏ là phần bề mặt trực tiếp chịu nén, các mặt bên nghiêng với đáy góc 45° , đáy lớn lấy ở ngang mức cốt thép chịu lực (h.9.3a).

9.2.1. Khi không đặt cốt thép ngang

Tính toán chống nén thủng theo điều kiện:


$$N \le \alpha R_{bt} u_m h_0, \tag{9.10}$$

trong đó: N – lực nén thủng. Lực nén thủng N lấy bằng lực tác dụng lên tháp nén thủng F, trừ đi phần tải trọng chống lại nén thủng tác dụng vào đáy lớn hơn của tháp nén thủng (lấy tại mặt phẳng đặt cốt thép chịu kéo);

 α – hệ số, với bêtông nặng lấy bằng 1,0 ;

 u_m – giá trị trung bình của chu vi đáy trên và đáy dưới tháp nén thủng hình thành khi bị nén thủng, trong phạm vi chiều cao làm việc của tiết diện.

Khi xác định u_m và N giả thiết rằng sự nén thủng xảy ra theo mặt nghiêng của tháp có đáy nhỏ là diện tích chịu tác dụng của lực nén thủng, còn các mặt bên nghiêng một góc 45° so với phương ngang (h.9.3a).

Hình 9.3. Sơ đổ tính toán nén thủng cấu kiện bêtông cốt thép a) Khi mặt bên của tháp nén thủng nghiêng 45°, b) Khi mặt bên của tháp nén thủng nghiêng với góc lớn hơn 45°.

Nếu do sơ đồ gối tựa, sự nén thủng chỉ xảy ra theo mặt bên tháp có độ nghiêng lớn hơn 45° (h.9.2b), vế phải của điều kiện (9.10) được nhân với h_o/c nhưng không lớn hơn 2,5.

9.2.2. Khi có đặt cốt thép

Khi trong phạm vi tháp nén thủng có đặt các cốt thép đai thẳng góc với mặt bản, tính toán chống nén thủng theo điều kiện:

$$N \le F_b + 0.8 F_{sw} \tag{9.11}$$

nhưng không lớn hơn $2F_b$.

trong đó : F_b – lấy bằng vế phải của (9.10) ;

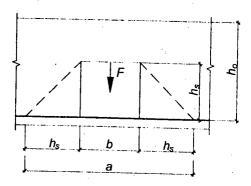
 F_{sw} – tổng toàn bộ lực cắt do cốt thép đai (cắt các mặt bên của khối tháp) chịu, được tính theo công thức:

$$F_{sw} = \sum R_{sw} A_{sw} , \qquad (9.12)$$

ở đây : R_{sw} không được vượt quá giá trị ứng với cốt thép CI, A-I. Khi kể đến cốt thép ngang, F_{sw} lấy không nhỏ hơn $0.5F_b$.

Khi bố trí cốt thép đai trên một phần hạn chế gần vị trí đặt tải trọng tập trung, cần thực hiện tính toán bổ sung theo điều kiện (9.10) cho tháp nén thủng có đáy trên nằm theo chu vi của phần có đặt cốt thép ngang.

 $\mathring{\mathbf{O}}$ vùng chịu nén thủng, cốt thép ngang được bố trí với khoảng cách không lớn hơn h/3 và 200 mm, chiều rộng vùng đặt cốt thép ngang không nhỏ hơn $1.5\,h$ (với h là chiều dày cấu kiện).


9.3. GIẬT ĐỨT (TÍNH CỐT TREO)

Hiện tượng giật đứt xảy ra khi có lực tập trung F đặt vào khoảng giữa chiều cao cấu kiện (hoặc lực kéo đặt lên mặt cấu kiện – hình 9.4). Sự phá hoại về giật đứt cũng xảy ra tương tự như trường hợp nén thủng, nhưng ở đây phải dùng cốt thép ngang để chịu lực.

Cần dặt cốt ngang kiểu cốt đại (gọi là cốt treo) hoặc cốt xiên kiểu vai bò để giữ cho phần bêtông ở dưới lực F không bị giật đứt ra khỏi cấu kiện.

Cấu kiện bêtông cốt thép bị giật đứt cần được tính toán theo điều kiện:

$$F\left(1 - \frac{h_s}{h_0}\right) \le \sum R_{sw} A_{sw} , \qquad (9.13)$$

Hình 9.4. Sơ đổ tính toán giật đứt cấu kiện bêtông cốt thép

trong đó:

F - lực giật đứt;

 h_s – khoảng cách từ vị trí đặt lực giật đứt đến trọng tâm tiết diện cốt thép dọc;

 $\sum R_{sw}A_{sw}$ - tổng lực cắt chịu bởi cốt thép treo đặt trong vùng giật đứt có chiều dài a bằng:

$$a = 2h_s + b (9.14)$$

ở đây: b – bề rộng của diện tích truyền lực giật đứt.

Thông thường chỉ cần đặt cốt treo để chịu lực F. Chỉ khi F khá lớn mới cần đặt thêm cốt xiên.

Giá trị h_s và b xác định tùy thuộc vào đặc tính và điều kiện đặt tắi trọng giật đứt lên cấu kiện.

9.4. GIÁ CỐ GÓC LÕM CỦA DẦM

Ở chỗ dầm gãy khúc (h.9.5a), dưới tác dụng của mômen dương, lực trong cốt thép chịu kéo và chịu nén sẽ tạo thành những hợp lực hướng ra ngoài.

Cần phải có cốt đai chịu những lực đó, giữ cho cốt dọc không bị kéo bật ra ngoài. Góc gãy α càng nhỏ thì hợp lực hướng ra ngoài càng lớn. Khi góc $\alpha < 160^0$ thì không những cần cốt đai gia cường mà còn phải cắt cốt dọc chịu kéo (toàn bộ hay một phần) để neo vào vùng bêtông chịu nén (h.9.5.c). Khi góc góc $\alpha \ge 160^0$ có thể uốn cho thép qua góc gãy và bố trí đủ cốt đai gia cố như hình 9.5.b.

Diện tích cốt đai để giằng cốt dọc phải được tính toán để chịu được :

 hợp lực trong cốt thép dọc chịu kéo không được neo vào vùng chịu nén:

$$F_1 = 2R_s A_{s1} \cos \frac{\alpha}{2}, {(9.15)}$$

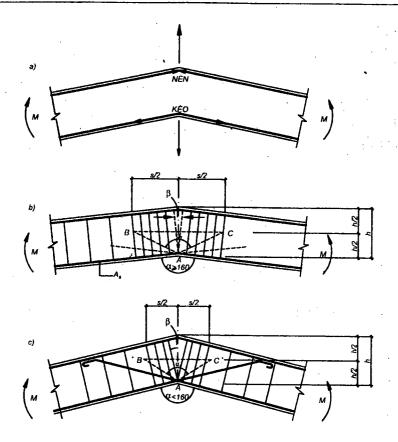
trong đó: A_{s1} – diện tích tiết diện ngang của toàn bộ các thanh cốt thép dọc chịu kéo không neo vào vùng nén;

α - góc lõm trong vùng chịu kéo của cấu kiện;

35% hợp lực trong tất cả các thanh cốt thép dọc chịu kéo:

$$F_2 = 0.7R_s A_{s1} \cos \frac{\alpha}{2} \,. \tag{9.16}$$

Cốt thép ngang yêu cầu theo tính toán từ những điều kiện trên cần được bố trí trên một khoảng có chiều dài $s = h \operatorname{tg} \frac{3\alpha}{8}$ (h.9.5b,c). s là khoảng cách


từ điểm B đến điểm C

Tổng hình chiếu của hợp lực do các thanh cốt thép ngang (cốt thép đai) nằm trên đoạn này lên đường phân giác của góc lõm không nhỏ hơn $(F_1 + F_2)$, nghĩa là:

$$\sum R_{sw} A_{sw} \cos \beta \ge \left(F_1 + F_2 \right) \tag{9.17}$$

trong đó: $\sum A_{sw}$ – tổng diện tích tiết diện của cốt thép ngang trong pham vi s;

 β – góc giữa phương của cốt đai và đường phân giác của góc $\alpha;$

Hình 9.5. Tính toán và cấu tạo đầm gãy khúc

9.4.1. Mối nối của kết cấu lắp ghép

Mối nối của kết cấu lắp ghép có thể là liên kết cứng hoặc khớp. Theo đặc điểm cấu tạo chia ra mối nối ướt và mối nối khô.

- Mối nối ướt được thực hiện bằng cách liên kết các cốt thép chịu lực của các bộ phận được nối và dùng bêtông chèn kín khe nối Khả năng chịu tải của mối nối chỉ đạt được khi bêtông chèn đủ cường độ, nội lực sẽ được truyền qua các thanh thép được nối và qua cả phần bêtông chèn. Tính toán các thanh thép để nối cốt chịu lực giống như tính toán tiết diện cấu kiện bêtông cốt thép thông thường.
- Môi nôi khô được thực hiện bằng các chi tiết thép đặt sẵn (gọi là chi tiết đặt sẵn), thường dùng cách hàn để liên kết các chi tiết đó.

Mối nối khô được tính toán như đối với liên kết của kết cấu thép, bao gồm việc tính toán kích thước các chi tiết thép đặt sẵn, tính chiều dài đường hàn...

a. Cấu tạo chi tiết đặt sẵn 🕟

Các bản thép nên dùng bằng thép mác CT3, chúng cần được bố trí sao cho không bị nhô ra mặt bên của cấu kiện và phải được hàn vào cốt thép chịu lực hoặc được neo chắc vào bêtông nhờ những thanh neo. Thanh neo làm bằng thép có gờ, đường kính được chọn tuỳ theo lực tác dụng vào đó, chiều dài cần được tính theo điều kiện neo chắc cốt thép.

Trên mỗi bản thép phải được hàn vào ít nhất bốn thanh neo. Chỉ được phép giảm số thanh xuống đến hai khi lực trượt tác dụng vuông góc với mặt phẳng chứa hai thanh ấy. Nếu bản thép được dùng để truyền lực song song với mặt phẳng của nó thì có thể hàn với cốt thép dọc của cấu kiện hoặc hàn với những thanh neo uốn xiên. Không dùng thanh neo uốn gập kiểu chữ U và hàn phần nằm ngang vào bản, trừ trường hợp thanh neo chỉ đặt theo cấu tạo, không chịu lực kéo.

Khoảng cách giữa trục các thanh neo lấy không lớn hơn 5d nếu nó chỉ chịu lực kéo và 7d nếu nó chỉ chịu lực trượt. Khoảng cách từ trục thanh neo đến mép ngoài cấu kiện không nhỏ hơn 3.5d.

b. Tính toán

Với mối nối chịu tác dụng của mômen uốn M, lực dọc N và lực cắt Q (h.9.6), tổng diện tích tiết diện của các thanh neo nằm ở hàng neo chịu lực lớn nhất A_{an} được xác định theo công thức:

$$A_{an} = \frac{1, 1\sqrt{N_{an}^2 + \left(\frac{Q_{an}}{\lambda \delta}\right)^2}}{R_s} , \qquad (9.18)$$

trong đó: N_{an} – lực kéo lớn nhất trong một hàng thanh neo:

$$N_{an} = \frac{M}{z} + \frac{N}{n_{an}}; (9.19)$$

ở dây: n_{an} - số hàng thanh neo dọc theo hướng lực trượt; nếu không đảm bảo truyền lực cắt Q đều lên tất cả các thanh neo, thì khi xác dịnh lực trượt Q_{an} chỉ kể đến không quá bốn hàng neo;

z - khoảng cách giữa các hàng thanh neo ngoài cùng: Q_{an} - lực trượt truyền cho một hàng thanh neo:

$$Q_{an} = \frac{Q - 0.3N_{an}}{n_{an}} \,. \tag{9.20}$$

ở dây: N'_{an} lực nén lớn nhất trong một hàng thanh neo, được xác định theo công thức:

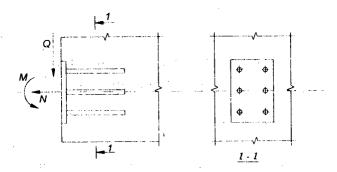
$$N_{an} = \frac{M}{z} \frac{N}{n_{an}} \tag{9.21}$$

 λ hệ số, được xác định theo công thức (9.22) khi các thanh neo có đường kính 8 mm đến 25 mm, đối với bêtông nặng, bêtông hạt nhỏ cấp từ B12,5 đến B50 và bêtông nhẹ cấp từ B12,5 đến B30, λ được xác định theo công thức:

$$\lambda = \frac{4,75\sqrt[3]{R_b}}{(1+0,15A_{an1})\sqrt{R_s}}\beta , \qquad (9.22)$$

nhưng lấy không lớn hơn 0,7; đối với bêtông nặng và bêtông hạt nhỏ cấp lớn hơn B50, hệ số λ lấy như đối với cấp B50; đối với bêtông nhẹ cấp lớn hơn B30 lấy như đối với cấp B30; ở đây, R_b , R_s có đơn vị là MPa;

 $\mathring{\sigma}$ đây: A_{an1} diện tích tiết diện thanh neo $\mathring{\sigma}$ hàng chịu kéo lớn nhất, cm²:


- β hệ số, đối với bêtông nặng: lấy bằng 1,0;
- δ hệ số, xác định theo công thức:

$$\delta = \frac{1}{\sqrt{1 + \omega}} \le 0.15; \tag{9.23}$$

ở đây:
$$\omega = 0.3 \frac{N_{an}}{Q_{an}}$$
 khi $N'_{an} \ge 0$ (có chiu nén);

$$\omega = 0.6 \frac{N}{Q}$$
 khi $N'_{an} \leq 0$ (không chịu nén).

Nếu trong các thanh neo không có lực kéo, hệ số δ lấy bằng 1.

Hình 9.6. Sơ đồ nội lực tác dụng lên chỉ tiết đặt sẵn

Diện tích tiết diện của các thanh neo trong các hàng còn lại phải lấy bằng diện tích tiết diện của hàng chịu kéo nhiều nhất.

Trong các công thức (9.19) và (9.21) lực N được coi là dương nếu hướng từ chi tiết đặt sẵn ra ngoài (h.9.6), là âm nếu hướng vào chi tiết đặt sẵn. Nếu lực N_{an} , N_{an} và lực trượt Q_{an} tính theo các công thức từ (9.19) đến (9.21) có giá trị âm, thì trong các công thức từ (9.16) đến (9.18) và (9.23) chúng được lấy bằng 0. Ngoài ra, nếu $N_{an} < 0$, thì trong công thức (9.20) lấy $N_{an} = N$.

Trong các chi tiết đặt sẵn có các thanh neo được hàn xiên với một góc từ 15 đến 30° , các thanh neo xiên này được tính chịu lực cắt (khi Q > N, với N là lực giật đứt) theo công thức:

$$A_{an,inc} = \frac{Q - 0.3N_{an}}{R_{\circ}}, \tag{9.24}$$

trong đó: $A_{an,inc}$ – tổng diện tích tiết diện của các thanh neo xiên. Khi đó cần đặt thêm các thanh neo thẳng góc, tính theo công thức (9.18) với $\delta = 1$, và giá trị Q_{an} lấy bằng 10% giá trị lực trượt xác định theo công thức (9.20).

Khi tính toán các bản và bản mã chịu lực giật đứt, thì coi như chúng liên kết khớp với các thanh neo thẳng góc. Ngoài ra, chiều dày bản của chi tiết đặt sẵn được hàn với các thanh neo cần được kiểm tra theo điều kiện:

$$t \ge 0.25 \, d_{an} \, \frac{R_s}{R_{sq}} \,, \tag{9.25}$$

trong đó: d_{an} – đường kính yêu cầu của thanh neo theo tính toán; R_{sq} – cường độ tính toán chịu cắt của bản thép.

9.5. CÔNGXON NGẮN

Gọi là dầm côngxon ngắn khi $l \le 0.9h_0$ (h.9.7). Côngxon ngắn thường là vai cột đỡ kèo, đỡ dầm cầu trục hoặc có thể là đài móng cọc. Để đảm bảo độ bền trên dải nghiêng chịu nén giữa vùng đặt tải và gối, cần thoả mãn điều kiện:

$$Q \le 0.8 \varphi_{w2} R_b b l_b \sin \theta \,, \tag{9.26}$$

với: $2.5R_{bt}bh_o \le Q \le 3.5R_{bt}bh_o$, (9.27)

trong đó: θ – góc nghiêng giữa dải chịu nén tính toán với phương ngang; b – bề rộng của dầm.

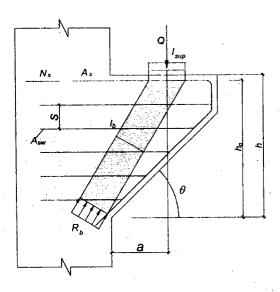
Chiều rộng của dải nghiêng chịu nén l_b được xác định theo công thức:

$$l_b = l_{\sup} \sin \theta \,, \tag{9.28}$$

trong đó: l_{sup} – chiều dài của vùng truyền tải dọc theo chiều dài vươn của côngxon.

Khi xác định chiều dài l_{sup} cần xét đến đặc điểm truyền tải trọng theo các sơ đồ gối tựa khác nhau của kết cấu lên côngxon (dầm tựa tự do hoặc dầm ngàm, được đặt dọc theo côngxon hay vuông góc với côngxon, v.v...)

Hệ số ϕ_{w2} , xét đến ảnh hưởng cốt thép đai đặt theo chiều cao côngxon, xác định theo công thức:


$$\Phi_{w2} = 1 + 5 \alpha \mu_{w1}, \qquad (9.29)$$

trong đó:

$$\alpha = \frac{E_s}{E_b}; \, \mu_{w1} = \frac{A_{sw}}{bs_w};$$

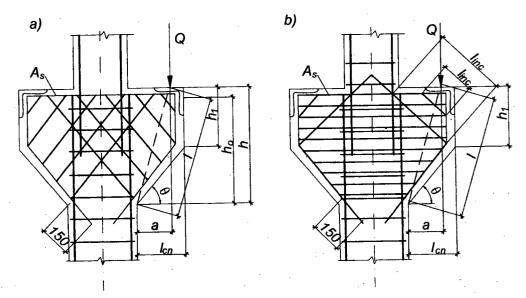
 A_{sw} – diện tích tiết diện của các cốt thép đai nằm trong cùng một mặt phẳng;

 s_w - khoảng cách giữa các cốt thép đai, theo phương vuông góc với chúng.

Hình 9.7. Sơ đồ tính toán côngxon ngắn

Khi đó cần phải kể đến các cốt thép đai ngang và các cốt thép đai nghiêng một góc không lớn hơn 45° so với phương ngang.

Cốt thép ngang của các côngxon ngắn được đặt theo phương ngang hoặc nghiêng một góc 45° . Bước cốt thép ngang phải không lớn hơn h/4 và không lớn hơn 150 mm.


Khi $h \le 2.5a$ dùng cốt đai nằm nghiêng đặt suốt cả chiều cao (h.9.8a).

Khi h > 2.5a dùng cốt đại nằm ngang đặt suốt cả chiều cao và các thanh cốt xiên (hình 9.8b). Nếu h > 3.5a và $Q < 2.5R_{bt}$ bh_o thì chỉ cần đặt cốt đại ngang mà không cần đặt cốt xiên.

Đường kính của các thanh cốt xiên không lớn hơn 25 mm và $\frac{1}{15}$ chiều dài đoạn xiên linc (hình 9.8b). Tổng diện tích tiết diện của các thanh cốt đai xiên hoặc các thanh cốt xiên cắt qua nửa trên của đoạn truyền lực l không được nhỏ hơn $0,002bh_o$.

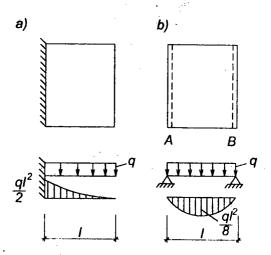
Cốt thép dọc A_s được tính toán như cấu kiện chịu uốn với môm
en uốn được tăng lên 25%

 $M = 1,25Q_a \tag{9.30}$

Hình 9.8. Cấu tạo cốt thép congxon ngắn

SÀN PHẨNG BẰNG BÊTÔNG CỐT THÉP

10.1. KHÁI NIỆM CHUNG


Kết cấu có dạng sàn phẳng bằng bêtông cốt thép được dùng hết sức rộng rãi trong xây dựng nhà cửa (sàn và mái), xây dựng cầu đường (bản mặt cầu, mặt cầu cảng) và trong nhiều bộ phận của các công trình thủy điện và thủy nông. Cấu kiện cơ bản của sàn phẳng là bản và dầm. Gối đỡ sàn có thể là tường hoặc cột: Móng bè là một loại sàn phẳng lật ngược. Tường và đáy của các bể chứa hình chữ nhật cũng có dạng sàn phẳng.

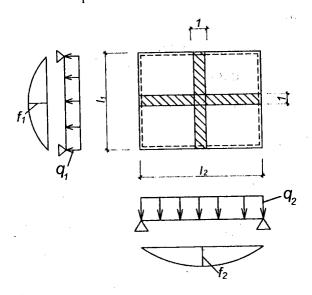
Trong hệ kết cấu nhà, sàn trực tiếp tiếp nhận tải trọng thẳng đứng để truyển xuống tường và cột, sau đó là xuống móng; đồng thời sàn còn có vai trò rất quan trọng là vách cứng nằm ngang tiếp nhận tải trọng ngang (gió, động đất) để truyền vào các kết cấu thẳng đứng (khung, vách), qua đó truyền xuống móng. Trong chương này chỉ đề cập đến vấn đề sàn chịu tải trọng thẳng đứng.

10.1.1. Bản dầm và bản kê bốn cạnh

Xét một bản tựa trên hai gối tựa đối diện A và B, chịu tải trọng phân bố đều trên toàn bộ mặt bản (h.10.1b). Khi chịu tải trọng phân bố đều, mặt bản sẽ biến dạng thành một mặt trụ. Phương l_1 bị cong còn phương l_2 vẫn thẳng. Mômen uốn chỉ xuất hiện trên phương l_1 . Ta nói rằng tải trọng chỉ truyền theo phương l_1 hoặc bản chỉ chịu lực theo một phương (l_1) . Khi đó bản làm việc như một dầm có nhịp là l_1 và ta gọi là bản dầm. Nếu xét một

bản bị ngàm một phía (h.10.1a) (giống như ô văng) thì khi chịu tải trọng phân bố đều q trên toàn mặt bản, nó cũng làm việc như một dâm côngxon có độ vươn là l_1 và đó cũng là bản dầm.

Hình 10.1. Bản dầm a) Bản có một cạnh ngàm; b) Bản có hai cạnh gối khớp.


Nếu xét một bản có kích thước $l_2 \times l_1$ như trên nhưng nó được tựa trên bốn cạnh (h.10.2) và cũng chịu tải trọng phân bố đều q thì mặt biến dạng của bản sẽ không phải là mặt trụ, bản bị cong theo cả phương l_1 và phương l_2 . Như vậy mômen uốn sẽ xuất hiện trên cả hai phương l_1 và l_2 . Ta nói tải trọng q được truyền về gối tựa theo cả hai phương hay bản làm việc theo cả hai phương. Nếu gọi tải trọng truyền theo phương l_1 là q_1 và truyền theo phương l_2 là q_2 , hãy tưởng tượng cắt hai dải ở chính giữa bản, mỗi dải có chiều rộng là một đơn vị chiều dài và tính độ võng ở giữa nhịp. Ta có:

$$f_1 = \frac{5}{384} \times \frac{q_1 l_1^4}{EJ};$$

 $f_2 = \frac{5}{384} \times \frac{q_2 l_2^4}{E_{cJ}}.$

Do hai dải bản phải dính chặt với nhau nên $f_1 = f_2$ và ta có

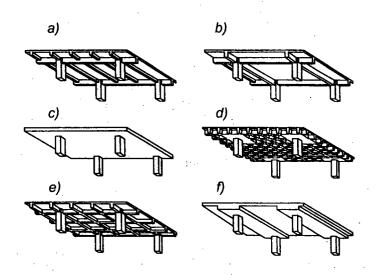
$$q_1 l_1^4 = q_2 l_2^4$$
 hoặc $q_1 = q_2 \left(\frac{l_2}{l_1}\right)^4$. (10.1)

Từ (10.1) có thể thấy rằng khi $\frac{l_2}{l_1} \ge 3$ thì $q_1 \ge 81q_2$, có nghĩa rằng trên 98,7% tải trọng q đã truyền theo phương l_1 . Như vậy khi $\frac{l_2}{l_1} \ge 3$, mặc dù bản kê trên bốn cạnh nhưng có thể xem nó như bản loại dầm (truyền lực theo một phương l_1). Trong thực tế thiết kế, để đơn giản tính toán mà vẫn phù hợp với các yêu cầu cấu tạo (cốt chịu lực và cốt phân bố) người ta vẫn tính như bản dầm khi $\frac{l_2}{l_1} \ge 2$.

Hình 10.2. Bản tựa trên bốn cạnh

Thực ra việc tính toán phân tải trọng theo hai phương l_1 và l_2 như trên chỉ để cung cấp khái niệm. Việc tính nội lực của bản phải được dựa trên các phương trình của lý thuyết đàn hồi đối với bản mỏng hoặc theo phương pháp cân bằng giới hạn sẽ được trình bày ở phần sau.

Khi $\frac{l_2}{l_1}$ < 2 tải trọng sẽ truyền theo cả hai phương của bản, người ta gọi bản như vậy là bản kê bốn cạnh.


10.1.2. Các loại sàn

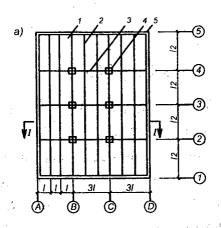
Theo phương pháp thi công có thể có sàn toàn khối, sàn lắp ghép và sàn nửa lắp ghép. Sàn nửa lắp ghép sẽ được trình bày trong phần kết cấu nhà cửa.

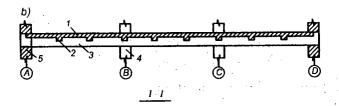
Theo sơ đồ kết cấu có sàn dầm (sàn sườn) và sàn không dầm (sàn nấm). (Xem hình 10.3).

Trong sơ đồ sàn có dầm (sàn sườn) lại có thể chia ra:

- Sàn sườn toàn khối có bản dầm (h.10.3a).
- Sàn sườn toàn khối có bản kê bốn canh (h.10.3b).
- Sàn dày sườn (sàn ô cờ) (h.10.3d).
- Sàn nhiều sườn (h.10.3e).
- Sàn có dầm bẹt (h.10.3f).
- Sàn panen (lắp ghép).

Hình 10.3. Các loại sản thường gặp


- a) Sàn có bản dầm; b) Sàn có bản kê bốn cạnh; c) Sàn nấm; d) Sàn dày sườn;
 - e) Sàn nhiều sườn; f) Sàn có đầm bẹt.


10.2. SÀN SƯỜN TOÀN KHỐI CÓ BẢN DẦM

10.2.1. Cấu tạo cơ bản

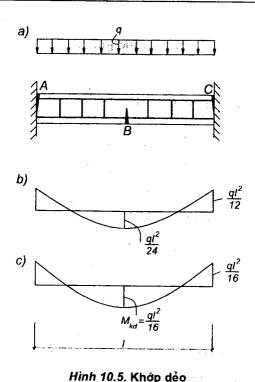
Hình 10.4 thể hiện mặt bằng và mặt cắt ngang của một sàn nhà có dạng sàn sườn toàn khối có bản dầm, trong đó chu vi nhà là tường chịu lực. Có thể thay tường chịu lực bằng cột và dầm, cụ thể là trên trục ① và ⑤ hệ dầm, cột sẽ giống như trên trục ②, ③ và ④, còn trên trục ⓐ và ① hệ dầm, cột sẽ giống như trên trục ⓑ và ⓒ. Nhìn trên sơ đồ có thể thấy rằng bản được gối lên dầm phụ, dầm phụ gối lên dầm chính, dầm chính gối lên cột và tường. Vì $\frac{l_2}{l_1} > 2$ nên thứ tự truyền lực sẽ là bản truyền tải

trọng cho dầm phụ, dầm phụ truyền tải trọng cho dầm chính, dầm chính truyền tải trọng xuống cột, cột truyền tải trọng xuống móng. Do đó tầm quan trọng của hệ kết cấu sẽ tăng dần từ móng đến cột, dầm chính, dầm phu đến bản sàn.

Hình 10.4. Sơ đổ kết cấu sàn sườn toàn khối có bản dầm a) Mặt bằng; b) Mặt cắt ngang; 1- bản; 2- dầm phụ; 3- dầm chính; 4- cột; 5- tường.

dễ dàng tính toán sơ bộ từ giá trị của tải trọng) và nhịp bản l_1 dao động trong khoảng 2 đến 4 m. Tuy vậy độ cứng trong mặt phẳng của sàn (với vai trò của vách cứng nằm ngang) lại lớn nhờ bản được liên kết toàn khối với hệ dầm trực giao. Nhịp của dầm phụ thường lấy từ 4 đến 6 m với chiều cao tiết diện vào khoảng $\left(\frac{1}{12} \div \frac{1}{20}\right)$ chiều dài nhịp. Nhịp của dầm chính bằng bêtông cốt thép thường có thể lấy trong khoảng 5 đến 8 m với chiều cao tiết diện vào khoảng $\left(\frac{1}{8} \div \frac{1}{15}\right)$ nhịp dầm. Chiều rộng b của tiết

Trong loại sàn này bản thường mỏng (chiều dày bằng 6 đến 10 cm, có thể


Sàn toàn khối có bản dầm tiết kiệm vật liệu, độ cứng lớn nhưng chiều cao kết cấu thường lớn vì phụ thuộc vào chiều cao dầm chính, không tạo được trần phẳng và công tác ván khuôn phức tạp. Muốn có trần phẳng phải làm thêm trần treo.

10.2.2. Khái niệm cơ bản về khớp dẻo

diện dầm thường lấy bằng $(0.3 \div 0.5)$ chiều cao h.

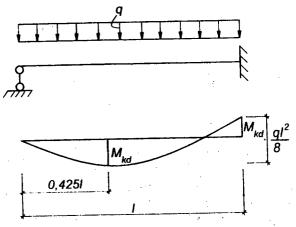
Hình 4.5d thể hiện trạng thái II_a của dầm chịu mômen uốn, khi đó ứng suất trong cốt thép đạt tới R_s và có thể xem như cốt thép bắt đầu chảy dẻo. Khi mômen tăng lên, ứng suất trong cốt thép vẫn giữ giá trị R_s , chỉ còn ứng suất trong bêtông tăng lên cùng với việc mở rộng khe nứt trong vùng kéo. Khi ứng suất trong bêtông đạt đến R_b thì tiết diện rơi vào trạng thái phá hoại (phá hoại dẻo) (xem hình 4.5e). Từ trạng thái II_a ($\sigma_s \to R_s$) chuyển đến trạng thái phá hoại ($\sigma_s = R_s$, $\sigma_b = R_b$) là một quá trình mở rộng khe nứt, tiết diện dường như bị quay quanh trục trung hòa; Tiết diện như vậy được gọi là khớp dẻo. Vậy khớp dẻo là một danh từ để thể hiện một tiết diện bêtông cốt thép có đặc điểm là:

- Chịu được một mômen nhất định M_{kd} ($M_{kd} = A_s R_s z_s$);
- Quay được một góc xoay hạn chế (tương đương với sự mở rộng khe nút).

a) Sơ đồ dầm; b) Biểu đồ M theo sơ đồ đàn hồi; c) Biểu đồ mômen khớp dẻo.

Xét một dầm BTCT bị ngàm hai đầu chịu tải trọng phân bố đều q tăng dần từ nhỏ đến khi dầm bị phá hoại. Hình 10.5b thể hiện biểu đồ mômen theo sơ đồ đàn hồi. Nếu đặt cốt thép chịu kéo ở các tiết diện A, B, C giống nhau, mômen khớp dẻo ở các tiết diện đó cũng giống nhau và ta có biểu đồ mômen theo sơ đồ khớp dẻo được thể hiện trên hình 10.5c. Có thể giải thích điều đó như sau: khi tải trọng còn nhỏ, có thể coi như dầm làm việc đàn hồi, mômen uốn ở các tiết diện A và C luôn luôn lớn hơn mômen uốn ở tiết diện B (hình 10.5b) do vậy cốt thép ở A và C sẽ bị chảy dẻo trước. Sau đó mômen ở A và C hầu như không tăng và có giá trị là M_{kd} trong khi tải trọng vẫn tăng, từ đây sự tăng tải trọng chỉ làm tăng mômen ở nhịp. Khi mômen ở B đạt đến giá trị M_{kd} (mômen khớp dẻo) thì kết cấu sẽ bị hỏng do biến hình tức thời. Điều kiện cân bằng tĩnh học yêu cầu về giá trị tuyệt đối:

$$\frac{M_A + M_c}{2} + M_B = \frac{q l_c^2}{8}.$$


Với $M_A = M_B = M_C = M_{kd}$ thì ta được giá trị tuyệt đối của các mômen như sau:

$$M_A = M_B = M_C = \frac{ql^2}{16} \,. \tag{10.2}$$

Lại xét một dầm có một đầu ngàm, một đầu khớp chịu tải trọng phân bố đều như trên hình 10.6. Nếu cốt chịu kéo ở gối ngàm và ở nhịp có giá trị bằng nhau, tức là có cùng một giá trị mômen khớp dẻo M_{kd} . Điều kiện cân bằng tĩnh học đòi hỏi về giá trị tuyệt đối:

$$M_A + 0.425 M_B = \frac{q l^2}{8} \,,$$

trong đó đã cho rằng mômen lớn nhất ở nhịp nằm trong khoảng 0,425l.

Hình 10.6. Sơ đổ dầm có một đầu ngàm một đầu khớp

Nếu cho $M_A = M_B = M_{kd}$ thì ta được $M_{kd} = \frac{ql^2}{11,4}$ và làm tròn số thiên về an

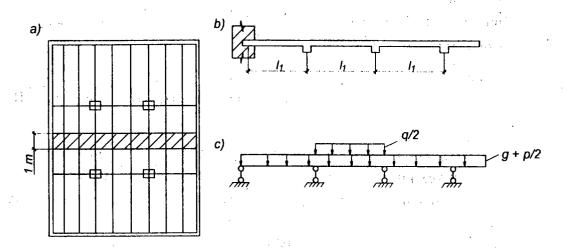
toàn ta có giá trị tuyệt đối của các mômen như sau:

$$M_A = M_B = \frac{ql^2}{11}. (10.3)$$

Qua hai ví dụ kể trên có thể thấy rằng biểu đồ mômen uốn trong sơ đồ khớp dẻo khác biểu đồ mômen uốn trong sơ đồ đàn hồi. Người ta nói khớp dẻo có tác dụng phân phối lại nội lực trong hệ siêu tĩnh. Người thiết kế có

thể lợi dụng tính chất đó của khớp dẻo để điều chỉnh nội lực (chủ yếu là mômen uốn) theo chiều hướng có lợi như chuyển bớt cốt thép ở gối tựa xuống phía dưới nhịp để dễ dàng cho việc đổ bêtông hoặc trong nhiều trường hợp có thể tiết kiệm cốt thép nhờ việc điều chỉnh biểu đồ bao mômen uốn. Tuy vậy việc điều chỉnh mômen uốn ở các tiết diện trong kết cấu siêu tĩnh không phải là tùy tiện mà phải có điều kiện:

- Cốt thép phải là loại có khả năng chảy dẻo, tức là có thèm chảy trên biểu đồ σ ε. Ví dụ các loại cốt thép CI, CII, CIII hoặc A-I, A-II, A-III có khả năng đó.
- Bêtông không bị phá hoại sớm, tức là phải xảy ra phá hoại dẻo, muốn vậy phải hạn chế lượng thép chịu kéo được dùng hoặc hạn chế chiều cao vùng chịu nén của bêtông. Nếu $\xi = \frac{x}{h_o} \leq \xi_R$ (công thức (4.4)) sẽ


xảy ra phá hoại dẻo. Quá trình chảy dẻo của cốt thép càng dài khi ξ càng nhỏ so với ξ_R , cũng có nghĩa là ξ càng nhỏ thì bêtông càng lâu bị phá hoại kể từ khi cốt thép bị chảy dẻo. Do vậy người ta vẫn có ý muốn hạn chế ξ nhiều hơn để tăng độ an toàn. Chỉ dẫn tính toán kết cấu siêu tĩnh bằng BTCT của Liên Xô cũ và quy phạm Anh quốc BS8110 – 1997 đều hạn chế $x \le 0.3h_v$.

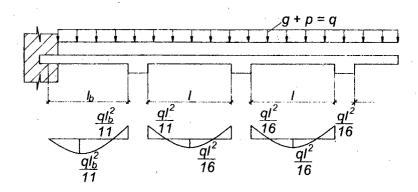
Bề rộng khe nút phải ở trong giới hạn cho phép. Có thể căn cứ vào giá trị mômen để tính toán và hạn chế bề rộng khe nút thẳng góc. Cũng có thể hạn chế độ lớn của a_{crc} bằng cách hạn chế sự cách biệt mômen uốn của sơ đồ khớp dẻo so với sơ đồ đàn hồi. BS8110 – 1997 yêu cầu mômen thiết kế không được giảm quá 20% so với mômen đàn hồi đối với nhà bốn tầng trở xuống và 10% đối với nhà trên bốn tầng. Theo các tài liệu của Nga thì mômen thiết kế không được giảm quá 30% giá trị của mômen đàn hồi tương ứng.

10.2.3. Tính toán bản

Bản là bản dầm, tải trọng chỉ truyền theo phương ngắn (phương l_1), do đó khi tính toán có thể tưởng tượng cắt ra một dải có chiều rộng một mét

theo phương ngắn để xác định nội lực và tính toán cốt thép chịu lực đặt theo phương l_1 ; cốt thép đặt theo phương vuông góc (phương l_2) sẽ là cốt phân bố (xem hình 10.7a).

Hình 10.7. Tính bản đẩm theo sơ đổ đàn hồi a) Mặt bằng sàn; b) Mặt cắt; c) Sơ đổ đàn hồi.


Tải trọng tác dụng lên bản gồm có trọng lượng bản thân và các lớp phủ gọi là g và tải trọng sử dụng (hoạt tải) gọi là p. Dải bản làm việc như một dầm liên tục có gối tựa là tường và các dầm phụ. Bản thường gối vào tường không ít hơn 12 cm và không ít hơn chiều dày của bản. Phản lực gối tựa của bản ở vị trí kê lên tường được lấy một cách quy ước là nằm cách mép trong của tường một đoạn bằng $\frac{h}{2}$ (h – chiều dày bản). Bản gối vào tường được coi là gối tựa khớp. Thực ra sẽ xuất hiện một giá trị mômen âm nhỏ nào đó ở tiết diện sát tường và sẽ được chịu bởi cốt thép cấu tạo (ϕ 6 cách nhau 20 cm).

Hình 10.7c là sơ đồ tính bản (theo sơ đồ đàn hồi). Để xét đến khả năng chống xoắn của dầm làm giảm mômen trong bản, trong tính toán nội lực, người ta tăng tải trọng tĩnh và giảm hoạt tải. Hoạt tải sẽ là $p' = \frac{p}{2}$ và tĩnh tải sẽ là $g' = g + \frac{p}{2}$. Từ lý thuyết tính toán dầm liên tục có thể thấy

rằng các giá trị của biểu đồ bao nội lực (M, Q) đối với tải trọng quy ước g' và p' sẽ nhỏ hơn đối với tải trọng thực g và p.

Từ biểu đồ bao nội lực có thể tính được cốt thép cho bản.

Hình 10.8 là sơ đồ tính bản có kể đến sự xuất hiện của khớp dẻo (sơ đồ khớp dẻo) đối với bản đều nhịp hoặc chiều dài các nhịp không khác nhau quá 10%.

Hình 10.8. Tính bản dầm theo sơ đổ khớp dẻo

Ở các tiết diện gối tựa, khớp dẻo hình thành ở sát mép tiết diện dầm, do vậy nhịp tính toán của bản được tính từ mép tiết diện dầm phụ (xem hình 10.8).

Cốt thép chịu lực của bản sẽ được tính với các giá trị mômen uốn đã tính được và tiết diện có bề rộng là 100 cm, chiều cao h bằng chiều dày bản. $\mathring{\mathbf{O}}$ gối tựa thứ hai dùng giá trị mômen lớn hơn (ứng với giá trị nhịp biên hoặc nhịp giữa lớn hơn) dể tính cốt thép.

10.2.4. Tính toán dầm phụ

Dầm phụ gối lên dầm chính; ở đầu dầm phụ, gối tựa có thể là tường có chiều dày không nhỏ hơn 220 mm.

Tải trọng tác dụng lên dầm phụ là tải trọng phân bố đều bao gồm trọng lượng bản thân dầm, trọng lượng bản và các lớp phủ, lớp trát, hoạt tải sử dụng.

Khi tính toán dầm phụ phải vẽ được biểu đồ bao mômen và lực cắt.

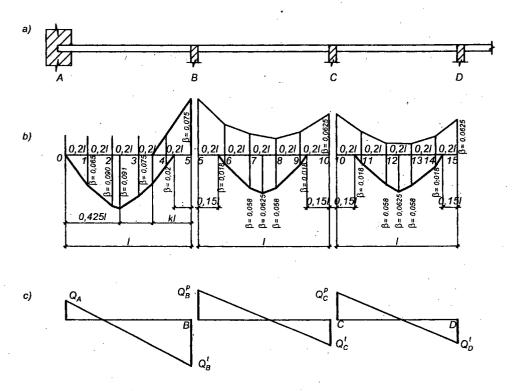
Nếu tính nội lực theo sơ đồ đàn hồi thì phải tổ hợp hoạt tải để vẽ được biểu đồ bao mômen và lực cắt, điều này tương tự như đối với dầm chính, sẽ được thuyết minh kỹ ở phần sau. Để xét đến khả năng chống xoắn của dầm chính làm giảm nội trong dầm phụ, người ta tăng tĩnh tải và giảm hoạt tải. Hoạt tải sẽ là $p' = \frac{3}{4}p$ và tĩnh tải sẽ là $g' = g + \frac{1}{4}p$.

Nếu tính nội lực theo sơ đồ khớp dẻo, nhịp tính toán được tính là khoảng cách giữa hai mép tiết diện dầm chính. Có thể có nhiều phương án điều chỉnh nội lực đáp ứng các yêu cầu của việc xuất hiện khớp dẻo, người thiết kế phải chọn phương án có lợi nhất, kinh tế nhất.

Quy trình tính toán kết cấu siêu tĩnh bằng BTCT có kể đến sự phân phối lại nội lực của Liên Xô cũ cho phép tính mômen đối với dầm phụ đều nhịp (hoặc nhịp sai khác nhau không quá 10%) ở các tiết diện như sau:

• Mômen dương ở giữa nhịp giữa
$$M = +\frac{ql^2}{16} = +0,0625 ql^2$$
.

• Mômen âm ở gối tựa giữa
$$M=-rac{ql^2}{16}=-0,0625\,ql^2\,.$$


• Mômen dương lớn nhất nhịp biên
$$M = +\frac{ql^2}{11} \approx +0,091 q l^2$$
. tiết diện có giá trị mômen lớn nhất nằm cách gối tự do một đoạn lấy bằng khoảng $0,425l$.

• Mômen âm ở gối tựa thứ hai
$$M = -\frac{ql^2}{14} \approx -0.0715 ql^2$$
.

Cần lưu ý rằng khi tính mômen âm ở gối tựa thứ hai có giá trị bằng $\frac{ql^2}{14}$ là đã đảm bảo sự cân bằng tĩnh học nhưng người ta đã chấp nhận điều chỉnh giá trị mômen khớp dẻo giảm quá 30% so với giá trị mômen đàn hồi tương ứng, tức là nghiêng về phía không an toàn. Do đó khi chọn cốt thép cho tiết diện này không nên giảm so với tính toán.

Biểu đồ bao mômen của dầm phụ lấy những giá trị mômen ở các tiết diện đặc thù như trên. Giá trị mômen ở những tiết diện khác sẽ tính như sau:

Nhánh dương của biểu đồ bao mômen có dạng đường parabol và có giá trị bằng không ở cách mép gối tựa một đoạn 0,15*l* (xem hình 10.9).

Hình 10.9. Biểu đồ bao mômen và lực cắt của dầm phụ a) Sơ đổ dầm; b) Biểu đồ bao mômen; c) Biểu đồ bao lực cắt.

Tung độ của biểu đồ bao mômen được viết dưới dạng

$$M = \beta (g + p) l^2, \qquad (10.4)$$

trong đó giá trị β của nhánh dương được cho trên hình (10.9).

Hệ số β của nhánh âm được xác định bằng phương pháp treo biểu đồ mômen của dầm đơn giản trên hai gối tựa có mômen âm. Ví dụ đối với nhịp BC

$$M_{x} = -M_{B} + \frac{M_{B} - M_{c}}{l} x + g' \frac{x(l - x)}{2}, \qquad (10.5)$$

trong đó: $g' = g + \frac{p}{4}$ như đã trình bày ở trên;

$$M_B = 0.091 (g + p) l^2$$
;

$$M_c = 0.0625 (g + p) l^2$$
.

Rõ ràng rằng hệ số β của nhánh âm phụ thuộc vào tỷ số $\frac{p}{g}$. Để tiện cho

việc tính toán thiết kế, khi vẽ biểu đồ bao mômen có thể kết hợp sử dụng những số liệu trong hình 10.9 và trong bảng 10.1.

Nhánh âm của biểu đồ bao mômen ở nhịp một, sát gối tựa thứ hai được coi là đường thẳng và có giá trị bằng không ở cách mép gối tựa một doạn kl với k được xác định như sau:

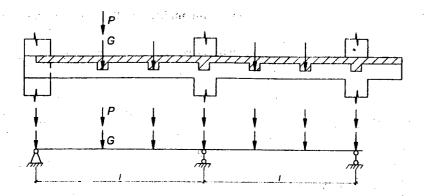
$$k = \frac{(g+p)}{8\left(g+\frac{p}{4}\right)}. (10.6)$$

Nếu gọi $\alpha = \frac{p}{g}$ thì

$$k = \frac{(1+\alpha)}{8\left(1+\frac{\alpha}{4}\right)}. (10.6a)$$

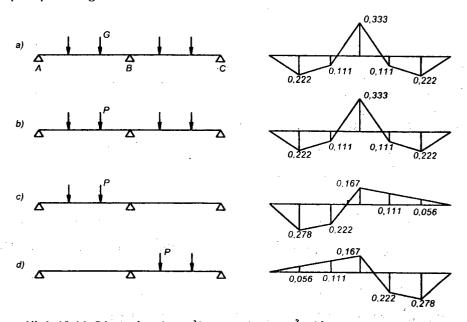
Biểu đồ bao lực cắt của dâm phụ được lấy đơn giản theo hình 10.9c, trong đó lực cắt ở mép phải gối A là $Q_A = 0.4 (g+p) l$, lực cắt ở bên trái gối B là $Q_B' = 0.6(g+p)l$ ở bên phải gối B: $Q_B'' = 0.5(g+p)l$, lực cắt ở mép các gối tựa phía trong đều lấy bằng 0.5 (g+p) l.

Dầm phụ dược đổ bêtông liền khối với bản nên dầm dược tính như tiết diện chữ T. Ở nhịp ứng với mômen dương cánh chữ T nằm trong vùng chịu nén. Ở vùng gối tựa có xuất hiện mômen âm. cánh chữ T nằm trong vùng chịu kéo. Việc tính cốt thép dọc và cốt đại được tiến hành như đối với cấu kiên chiu uốn có tiết diện chữ T (xem chương 4).


Bảng 10.1. Hệ số $\beta \times 10^2$ và k để vẽ nhánh âm biểu đồ bao mômen của dầm phụ

p/g	Giá trị tại các tiết diện											- Hệ
	5	6	7	8	9	10	11	12	. 13	14	15	số k
≤0,5	-7,51	-1,0	+2,2	+2,4	-0,4	-6,25	-0,3	+2,8	+2,8	+3,0	-6,25	0,167
1,0	-7,15	-2,0	+1,6	+0,9	-14	-6,25	-1,3	+1,3	+1,3	-1,3	-6,25	0.200
1.5	-7,15	-2,6	-0.3	0	-2,0	-6.25	-1,9	+0.4	+0,4	-1,9	-6,25	0,228
2,0	-7,15	-3,0	-0,9	-0,6	-2,4	-6,25	-2,3	-0,3	-0,3	-2,3	-6,25	0,250
2,5	-7,15	-3,3	-1,2	-0,9	-2,7	-6,25	-2,5	-0,6	-0.6	-2,5	-6,25	0,270
3,5	-7,15	-3,5	-1,6	-1,4	-2,9	-6,25	-2.8	-1,0	-1,0	-2,8	-6,25	0,285
3,5	-7,15	-37	-1.9	-1,7	-3,1	-6,25	-2,9	-1,3	-1,3	-2.9	-6,25	0.304
4,0	-7,15	-3,8	-2,1	-1,8	-3,2	-6,25	-3,0	-1,5	-1,5	-3,0	-6,25	0,314
4,5	-7,15	-3.9	-2,2	-2,0	-3,3	-6,25	-3,2	~1,6 ·	-1,6	-3.2	-6.25	0,324
5,0	-7,15	-4,0	-2,4	-2,1	-3,4	-6,25	-3,3	-1,8	-1,8	-3,3	-6,25	0,333

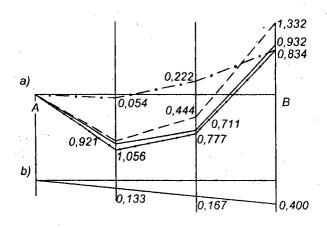
10.2.5. Tính toán dầm chính


Dầm chính có thể kê lên tường ngoài và các cột ở phía trong nhà. Trong nhiều trường hợp, gối tựa ngoài cùng của dầm cũng là cột. Cột và dầm chính thường được đổ bêtông liền khối tạo nên khung bêtông cốt thép với liên kết giữa cột và dầm là liên kết cứng. Khi độ cứng dơn vị của dầm khá lớn so với độ cứng đơn vị của cột (có thể tham khảo một số liệu cụ thể: $\frac{i_d}{i_c} \ge 8$) thì có thể coi như cột có liên kết khớp với dầm (xem hình 10.10).

Dầm chính có thể được tính toán theo sơ đồ đàn hồi hoặc sợ đồ khớp dẻo. Sơ đồ đàn hồi của dầm được thể hiện trên hình 10.10.

Hình 10.10. Sơ đổ tính toán của dầm chính

Trước hết cần phải vẽ biểu đồ bao mômen theo sơ đồ đàn hồi. Có nhiều cách để tạo lập biểu đồ bao mômen. Ở đây trình bày phương pháp chồng biểu đồ thành phần. Lấy trường hợp dầm hai nhịp đều nhau chịu hai tải trọng tập trung cách gối tựa một đoạn $\frac{l}{3}$ với P=3, G=1 và l=1 làm ví dụ. Ta phải vẽ được các biểu đồ cho trường hợp tĩnh tải G và các trường hợp hoạt tải P có khả năng gây ra các giá trị mômen cực đại ở các tiết diện đặc trưng như trên hình 10.11.


Hình 10.11. Các trường hợp tải trọng và các biểu đồ mômen thành phần

Tĩnh tải G tác dụng thường xuyên lên dầm, còn hoạt tải P có thể tác dụng ở nhịp này hoặc nhịp khác. Ta có một trường hợp tĩnh tải và ba trường hợp hoạt tải.

Hình 10.11a thể hiện sơ đồ tải trọng tĩnh và biểu đồ mômen tương ứng. Hình 10.11b thể hiện sơ đồ hoạt tải gây ra mômen âm cực đại ở gối tựa B. Hình 10.11c hoạt tải gây ra mômen dương cực đại ở nhịp một và mômen âm cực đại ở nhịp hai.

Hình 10.11d hoạt tải gây ra mômen âm cực đại ở nhịp một và mômen dương cực đại ở nhịp hai.

Để có biểu đồ bao mômen ta cộng biểu đồ mômen do tĩnh tải gây ra (h.10.11a) với lần lượt các biểu đồ mômen ở các hình còn lại, ta sẽ được ba biểu đồ mômen thể hiện các trường hợp nguy hiểm ở các tiết diện khác nhau. Vẽ chập ba biểu đồ đó vào một trục với cùng một tỷ lệ, đường vành ngoài chính là biểu đồ bao mômen (xem hình 10.12).

Hình 10.12. Biểu đô bao mômen cho một nửa dầm a) Các nhánh của biểu đồ bao mômen; b) Biểu đồ mômen phụ.

Trên hình 10.12, đường — \bullet ứng với giá trị mômen dương cực đại ở nhịp (một và hai); đường — \bullet ứng với giá trị mômen âm cực đại ở gối tựa B; đường — \bullet — \bullet — ứng với giá trị mômen âm cực đại ở nhịp.

Dùng các giá trị cực đại của biểu đồ bao mômen để tính cốt thép dọc $A_{\rm s}$. Ở nhịp, tiết diện dầm là tiết diện chữ T cánh trong vùng nén, bề rộng của cánh đưa vào trong tính toán được lấy theo chương 4. Ở gối tựa, tiết diện tính toán là tiết diện chữ nhật (thực tế là tiết diện chữ T có cánh trong vùng kéo); mômen dùng để tính cốt thép dọc ở gối tựa được lấy là giá trị mômen ở mép gối tựa (mép cột).

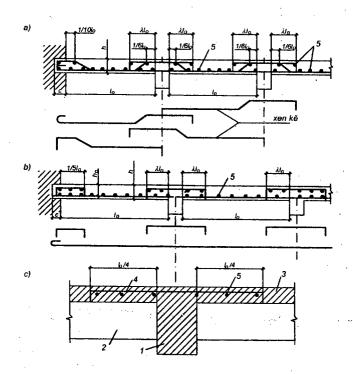
Căn cứ vào độ dốc ở các nhánh của biểu đồ bao mômen có thể xác định dược giá trị lực cắt lớn nhất xuất hiện ở các tiết diện xung quanh gối tựa. Dùng các giá trị lực cắt đó để tính toán cốt đai và cốt xiên.

Việc cắt và uốn cốt thép dọc sẽ căn cứ vào biểu đồ bao mômen như đã trình bày trong chương 4.

Xem xét hình 10.12 ta thấy rằng khi xuất hiện mômen cực đại ở gối tựa B (1,332) ứng với trường hợp hoạt tải b (h.10.11b) thì giá trị mômen ở nhịp lại nhỏ (0,888) so với trường hợp hoạt tải c (với giá trị 1,056). Nếu đặt cốt thép để chịu hết mômen cực đại ở gối tựa B (1,332) và mômen cực đại ở nhịp (1,056) theo sơ đồ đàn hồi thì sẽ lãng phí vì hai giá trị mômen cực đại đó không xuất hiện ở cùng một trường hợp tải trọng. Dựa vào lý thuyết về sự phân phối lại nội lực do sự xuất hiện của khớp dẻo như đã trình bày ở trên ta có thể điều chỉnh biểu đồ mômen như sau.

Giảm mômen âm ở gối tựa B một lượng bằng 30% giá trị mômen theo sơ dồ đàn hồi (30% là lượng giảm tối đa cho phép) từ 1,332 xuống còn 0,932. Mômen ở các tiết diện ở nhịp sẽ tăng lên theo nguyên tắc cân bằng tĩnh học, có thể tính được bằng cách cộng nhánh — — ở hình 10,12a với biểu đồ mômen phụ thể hiện trên hình 10.12b. Ta đã điều chỉnh đường — thành đường

Biểu dồ bao mômen sau khi điều chỉnh sẽ là đường và một phần của đường • đối với mômen âm ở nhịp.


Ta thấy rằng việc giảm mômen ở gối tựa B kéo theo việc giảm cốt thép ở đó nhưng không làm tăng giá trị mômen tính toán ở nhịp (vì 1,056 > 0,921), có nghĩa là không làm tăng cốt thép ở nhịp. Điều đó vừa có ý nghĩa kinh tế vừa có ý nghĩa kỹ thuật trong việc giảm bớt cốt thép ở gối tựa vốn đã khá dày, vì thế dễ đổ bêtông.

Tùy theo tỷ số $\frac{P}{G}$ mà còn có thể có những phương án điều chỉnh khác vừa đạt yêu cầu kỹ thuật (điều chỉnh dưới 30% giá trị mômen đàn hồi) vừa đạt yêu cầu kinh tế, không nhất thiết phải điều chỉnh đúng 30% như ở trên đã làm.

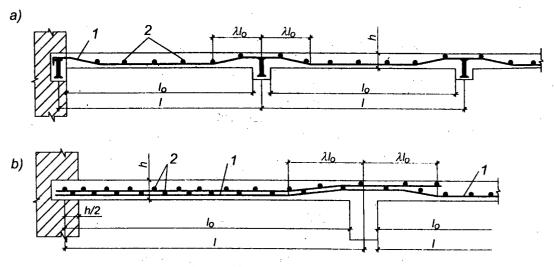
Phương pháp tính toán cốt thép của dầm chính cũng giếng như đối với dầm phụ.

10.2.6. Bố trí cốt thép trong bản dầm

Hình 10.13 thể hiện việc bố trí cốt thép trong bản dầm khi dùng cốt buộc, trong đó cốt thép đặt theo phương của nhịp l là cốt chịu lực; thẳng góc với chúng là cốt phân bố.

Hình 10.13. Bố trí cốt thép trong bản dầm bằng cốt buộc

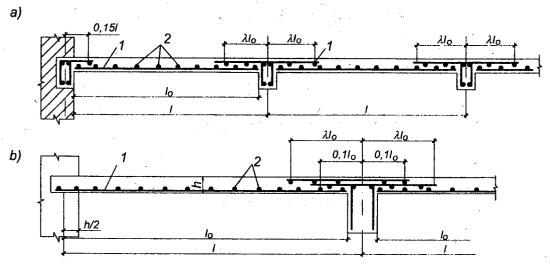
a) Phương án uốn cốt thép; b) Phương án dùng cốt mũ; c) Cốt mũ phía trên dầm chính;


1- dầm chính; 2- dầm phụ; 3- bản; 4- cốt mũ phía trên dầm chính; 5- cốt phân bố;

c > h > 120 mm.

Phương án uốn cốt thép từ nhịp lên gối tựa (h.10.14a) được dùng cho bản có chiều dày tương đối lớn, phương án này tiết kiệm thép nhưng chi phí gia công, lắp đặt cốt thép sẽ nhiều hơn so với phương án được thể hiện trên hình 10.13b. Phương án trên hình 10.13b có thể áp dụng cho bản có chiều dày nhỏ và cả đối với bản có chiều dày lớn. Khoảng cách từ mép dầm phụ đến mút của cốt mũ được lấy bằng λl_o (l_o là khoảng cách giữa hai mép dầm phụ). Giá trị λ lấy bằng $\frac{1}{4}$ khi $\frac{p}{g} < 3$ và lấy bằng $\frac{1}{3}$ khi $\frac{p}{g} \ge 3$.

 \mathring{O} khu vực giao nhau giữa bản và dầm chính (h.10.13c) cần phải đặt cốt thép để chịu mômen âm. Vì mômen nhỏ nên chỉ cần đặt theo cấu tạo: không ít hơn $8\phi 6$ trên 1m dài và không ít hơn $\frac{1}{3}$ cốt thép chịu lực ở nhịp.

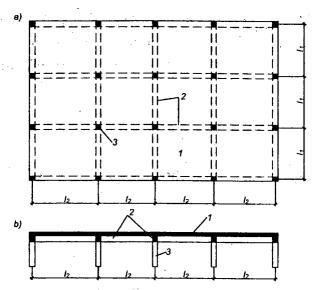

Độ vươn của cốt mũ phía trên dầm chính không nhỏ hơn $\frac{1}{4}$ khoảng cách giữa hai dầm phụ $(0,25l_1)$. Cần lưu ý rằng các phương án bố trí cốt thép này thích ứng với tải trọng thẳng đứng (đặt cốt thép theo biểu đồ mômen do tải trọng thẳng đứng). Nếu bêtông có suất co ngót lớn, sàn dễ bị nứt ở khu vực mút cốt mũ. Trong nhà nhiều tầng, sàn còn đóng vai trò của vách cứng ngang; điều đó cũng phải được xét đến trong thiết kế sàn.

Hình 10.14. Bố trí lưới cuộn trong bản dầm

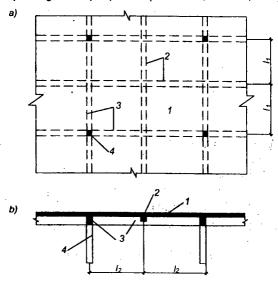
a) Một lớp lưới; b) Có lớp lưới bổ sung ở nhịp biên, gối thứ hai
1- cốt chịu lực; 2- cốt phân bố.

Hình 10.14 thể hiện cấu tạo cốt thép trong bản dầm khi dùng lưới cuộn. Ở nhịp một và gối tựa thứ hai, mômen uốn có giá trị lớn nên có thể đặt hai lớp lưới. Hình 10.15 thể hiện cấu tạo cốt thép trong bản dầm khi dùng lưới phẳng.

Hình 10.15. Bố trí lưới phẳng trong bản dầm a) Một lưới ở trên gối tựa; b) Hai lưới trên gối tựa 1- cốt chịu lực; 2- cốt phân bố.


10.3. SÀN SƯỜN TOÀN KHỐI CÓ BẢN KỆ BỐN CẠNH

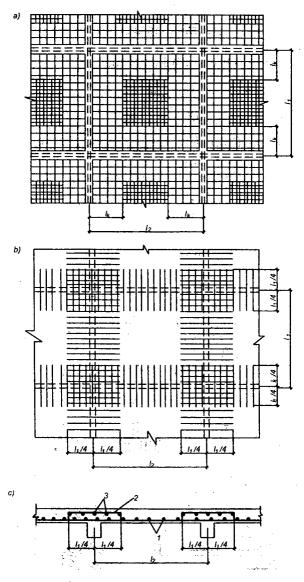
10.3.1. Sơ đồ bố trí kết cấu


Hình 10.16 thể hiện sơ đồ bố trí kết cấu của sàn toàn khối có bản kê bốn cạnh, trong đó cột trực tiếp đỡ hệ dầm; Biên của sàn cũng là dầm và cột. Tỷ số $\frac{l_2}{l_1} < 2$, thông thường tỷ số đó dao động trong khoảng 1 đến 1,5.

Kích thước ô bản vào khoảng 4 đến 8 m. Chiều dày của bản có thể lấy khoảng $\frac{1}{40} l_1$ đến $\frac{1}{50} l_1$.

Hình 10.17 thể hiện sơ đồ kết cấu của sàn toàn khối có bản kê bốn cạnh với sự có mặt của dầm phụ. Chiều cao tiết diện dầm phụ nhỏ hơn chiều cao tiết diện dầm chính.

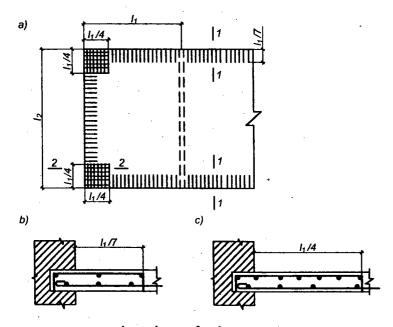
Hình 10.16. Sơ đồ kết cấu sàn sườn có bản kê 4 cạnh a) Mặt bằng sàn; b) Mặt cắt dọc: 1- bản; 2- dầm; 3- cột



Hình 10.17. Sơ đổ sản có dẩm phụ a) Mặt bằng; b) Mặt cắt: 1- bản; 2- dầm phụ; 3- dầm chính; 4- cột.

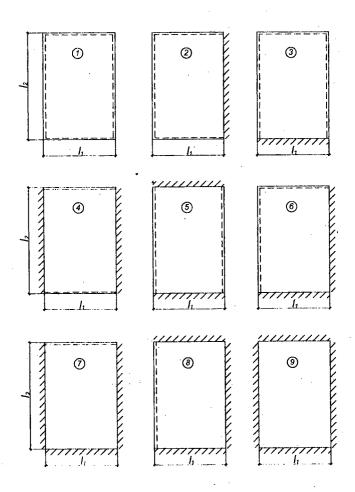
Khi lưới cột lớn, khoảng cách cột có thể đạt tới 8 đến 10 m, người ta thêm nhiều dầm phụ với khoảng cách từ 1 đến 2 m, chiều cao dầm chính có thể giảm bớt (với bề rộng đủ để chịu cắt), đôi khi chiều cao dầm chính và dầm

phụ bằng nhau. Sàn kiểu ấy được gọi là sàn ô cờ. Sàn ô cờ thi công phức tạp nhưng giảm được chiều cao kết cấu.


10.3.2. Bố trí cốt thép trong sàn có bản kê bốn cạnh

Hình 10.18. Bố trí cốt thép trong sàn có bản kê bốn cạnh
a) Cốt thép ở mặt dưới; b) Cốt thép ở mặt trên;
1- cốt chịu mômen dương; 2- cốt mũ chịu mômen âm; 3- cốt phân bố.

Hình 10.18 thể hiện việc bố trí cốt thép trong sàn sườn có bản kê bốn cạnh. Mômen dương ở giữa bản là lớn nhất nên cốt thép được đặt dày hơn (nhiều hơn). Ở gần gối tựa, mômen nhỏ nên có thể cắt bởt cốt thép. Tuy vậy khi $l_1 \leq 2,5$ m thì việc giảm cốt thép ở biên không mang lại hiệu quả kinh tế đáng kể. Giá trị l_k được lấy bằng $\frac{1}{4}$ chiều dài nhịp l_1 khi bốn cạnh của bản có gối tựa là ngàm hoặc ngàm đàn hồi và lấy bằng $\frac{1}{8}$ chiều dài nhịp l_1 khi có dù chỉ một cạnh kê tự do.


Khi bản được gối vào tường gạch, trong tính toán người ta thường xem như gối tựa tự do. Tuy vậy vẫn xuất hiện mômen âm (mômen uốn) ở gối tựa và phải đặt cốt thép cấu tạo với số lượng không ít hơn $\frac{1}{3}$ cốt chịu lực ở nhịp và không ít hơn ϕ 6 cách nhau 200 mm (h.10.19b). Ở góc bản xuất hiện mômen xoắn và cũng phải đặt cốt thép cấu tạo để chịu mômen xoắn đó. Số lượng cốt thép theo một phương không ít hơn $\frac{1}{3} \div \frac{1}{2}$ cốt thép ở nhịp và không ít hơn $\frac{1}{3} \div \frac{1}{2}$ cốt thép ở nhịp và không ít hơn $\frac{1}{3} \div \frac{1}{2}$ cốt thép ở nhịp

Hình 10.19. Bố trí cốt thép ở gối tựa tự do (tường)
a) Mặt bằng cốt thép bổ sung; b) Cốt chịu mômen uốn phụ; c) Cốt chịu mômen xoắn.

10.3.3. Tính toán bản đơn theo sơ đồ đàn hồi

Hình 10.20 thể hiện chín loại bản đơn với những gối tựa lý tưởng là khớp và ngàm. Bản loại 1 có bốn cạnh tựa khớp, bản loại 9 có bốn cạnh ngàm. Giả thiết các bản đều chịu tải trọng phân bố đều q.

Hình 10.20. Chín loại bản đơn

Để tìm được mômen và lực cắt trong bản theo hai phương x và y (phương l_1 và phương l_2), theo lý thuyết đàn hồi cần phải giải phương trình Sophie Germain – Lagrange để tìm ra độ võng của mặt trung gian:

$$\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} = \frac{\partial^4 w}{\partial y^4} = \frac{q}{D} , \qquad (10.7)$$

trong đó: $w_{(x,y)}$ – hàm độ võng của mặt giữa;

$$D = \frac{Eh^3}{12(1-v^2)} - \text{độ cứng trụ của bản};$$

h - chiều dày của bản;

 ν - hệ số poisson. Trong tính toán bản và vỏ mỏng bêtông cốt thép có thể lấy $\nu=0$.

Quan hệ giữa nội lực và độ võng như sau:

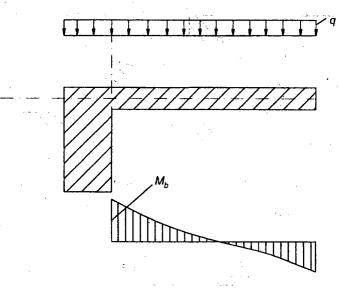
$$M_{x} = D\left(\frac{\partial^{2} w}{\partial x^{2}} + v \frac{\partial^{2} w}{\partial y^{2}}\right);$$

$$M_{y} = D\left(\frac{\partial^{2} w}{\partial y^{2}} + v \frac{\partial^{2} w}{\partial x^{2}}\right);$$

$$M_{xy} = D(1 - v) \frac{\partial^{2} w}{\partial x \partial y};$$

$$Q_{x} = \frac{\partial M_{x}}{\partial x} + \frac{\partial M_{xy}}{\partial y};$$

$$Q_{y} = \frac{\partial M_{y}}{\partial y} + \frac{\partial M_{x,y}}{\partial x}.$$

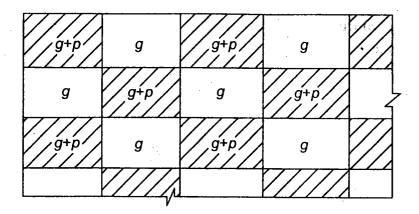

Bạn đọc có thể tìm phương pháp giải phương trình vi phân đạo hàm riêng (10.7) thỏa mãn các điều kiện biên đối với các bản trên hình (10.19) trong các tài liệu chuyên khảo về tấm mỏng đàn hồi.

Bản được xem là tựa khớp khi nó gối vào tường hoặc kê tự do trên dầm. Khi bản kê trên dầm, cho độ võng của bản ở gối tựa bằng không (khớp, hoặc ngàm) chỉ là gần đúng. Thực ra điều kiện biên phải là độ võng ở biên của bản bằng độ võng của dầm.

Mép biên của bản có thể được xem là ngàm khi mép biên đó nằm trên gối của một bản liên tục, ở đó chuyển vị xoay khá nhỏ.

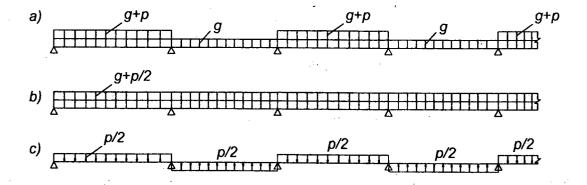
Khi bản được đổ bêtông liền khối với dầm ở mép biên tự do và có cốt thép liên kết với dầm, sẽ xuất hiện mômen âm ở vùng gần dầm biên (h.10.21). Độ lớn của M_b phụ thuộc vào độ cứng chống xoắn của dầm biên. Trong

tính toán có thể coi là khớp nhưng phải đặt một lượng cốt thép nào đó để chịu mômen âm $M_{\rm h}$.


Hình 10.21. Mômen ở mép biên

Phụ lục 17 cho phép xác định giá trị mômen cực ở bản chữ nhật chịu tải trọng phân bố đều theo sơ đồ đàn hồi đối với chín loại bản trên hình 10.20.

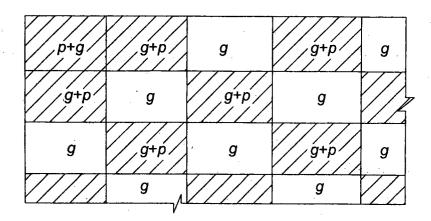
10.3.4. Tính sàn có các ô bản liên tục theo sơ đồ đàn hồi


Hình 10.22 thể hiện mặt bằng các ô bản và bố trí hoạt tải p để đạt được giá trị mômen dương cực đại ở nhịp của các ô bản có gạch chéo và mômen âm cực đại ở nhịp của các ô bản để trắng.

Qua hình 10.23 ta thấy rằng nội lực trong sơ đồ trên hình 10.23 với hoạt tải xếp cách ô (ô cờ) sẽ bằng nội lực với $\frac{p}{2}$ xếp trên tất cả các ô cộng với nội lực do $\frac{p}{2}$ xếp phản đối xứng chen kẽ giữa các ô (như trên hình 10.23c). (Nghĩa là các ô có gạch chéo được xếp $\frac{p}{2}$ hướng xuống dưới còn các ô để trắng được xếp $\frac{p}{2}$ hướng lên trên).

Hình 10.22. Sơ đồ bố trí hoạt tải cho $|M_{max}|$ ở nhịp

Hình 10.23 thể hiện mặt cắt ngang qua một số ô bản nào đó.



Hinh 10.23. Sơ đổ phân tích tải trọng

Ở sơ đồ trên hình 10.23b góc xoay ở các gối giữa khá nhỏ và có thể coi gần đúng là bằng không (không xoay) do đó ta có thể cát bản liên tục thành các bản đơn; các ô bản ở giữa sẽ có sơ đồ bốn cạnh ngàm, còn các ô bản ở biên sẽ lấy các sơ đồ thích hợp trong chín sơ đồ trên hình 10.20.

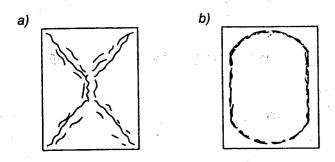
Ở sơ đồ trên hình 10.23c, do tính chất phản đối xứng, ta có thể cắt thành các bản đơn với bốn cạnh tựa khớp.

Hình 10.24 thể hiện sơ đồ bố trí hoạt tải p để đạt được giá trị mômen âm cực đại ở gối tựa thứ hai, từ đó có thể suy ra sơ đồ bố trí hoạt tải để đạt mômen âm cực đại ở các gối tựa khác.

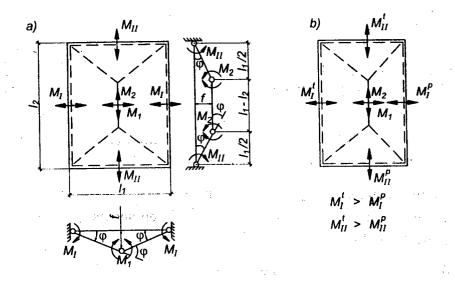
Hình 10.24. Sơ đồ bố trí hoạt tải cho $M_{\scriptscriptstyle max}$ ở gối tựa thứ hai

Nếu bỏ qua ảnh hưởng của các ô tải trọng ở xa các gối tựa đang xét (gối tựa thứ hai) thì với việc xem góc xoay của bản ở tiết diện gối tựa là không đáng kể, ta có thể tách thành bản đơn để tính mômen ở gối tựa; các bản đơn sẽ có dạng của các bản trên hình 10.20 (ngoại trừ sơ đồ 1).

10.3.5. Tính bản kê bốn cạnh theo sơ đồ khớp dẻo

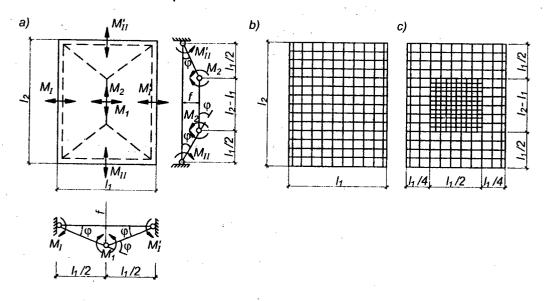

Chất tải thí nghiệm một bản kê bốn cạnh cho đến phá hoại, người ta nhận được các kết quả như sau:

- Khi tải trọng là phân bố đều, bốn cạnh tựa khớp, các khe nứt phát triển ở mặt dưới có dạng như trên hình 10.25a.
- Khi tải trọng là phân bố đều nhưng bốn cạnh bản bị ngàm, sơ đồ khe nút ở mặt dưới cũng có dạng như trên hình (10.25a), sơ đồ khe nút ở mặt trên có dạng như trên hình 10.25b.


Ở những vùng xuất hiện khe nứt, khi cốt thép đạt tới giới hạn chảy, khớp dẻo được hình thành, người ta biểu diễn khớp dẻo bằng những đường đứt nét như trên hình 10.26.

Hình 10.26a thể hiện khớp dẻo xuất hiện ở bản kê bốn cạnh chịu tải trọng phân bố đều khi liên kết ở biên là đối xứng, nghĩa là mômen âm ở hai gối tựa đối diện bằng nhau. Hình 10.26b thể hiện khớp dẻo xuất hiện khi liên

kết ở biên là không đối xứng, nghĩa là mômen âm ở hai gối tựa đối diện không bằng nhau, khi đó khớp dẻo sẽ không có hình dạng đối xứng. Tuy vậy, để đơn giản tính toán mà cũng không ảnh hưởng đến tình trạng an toàn của kết cấu, giáo sư A. A. Gvôzđev đã đề nghị lấy sơ đồ khớp dẻo đối xứng như trên hình 10.25a để tính toán cho mọi trường hợp liên kết biên và mọi tỉ lệ độ lớn cửa mômen ở các gối tựa. Đề nghị đó đã được giới kỹ thuật các nước chấp nhận.



Hinh 10.25. Sơ đổ khe nút ở bản kê bốn cạnh chịu tải trọng phân bố đều a) Khe nút ở mặt dưới; b) Khe nút ở mặt trên.

Hình 10.26. Sơ đổ khớp dẻo trên bản kê bốn cạnh chịu tải trọng phân bố đều a) Liên kết biên đối xứng; b) Liên kết biên không đối xứng.

Sơ đồ tính toán tổng quát với sự khác nhau của mômen gối tựa ở hai phía đối diện thể hiện trên hình 10.27.

Hình 10.27. Sơ đồ tính bản kê bốn cạnh với sự xuất hiện của khớp dẻo a) Sơ đồ tổng quát; b) Bố trí cốt thép đều; c) Bố trí cốt thép không đều

Trong tính toán bản theo sơ đồ khớp dẻo người ta cho rằng khớp dẻo chia bản thành những miếng cứng không biến dạng, tạo thành một hệ biến hình tức thời. Với một chuyển vị khả dĩ f và các góc xoay φ tương ứng của các miếng cứng (hình 10.27a), viết phương trình cân bằng công khả dĩ của nội và ngoại lực ta sẽ được mối liên hệ giữa nội lực và tải trọng q. Cụ thể như sau:

Công khả dĩ của ngoại lực q sẽ là:

$$C_q = q \int_F y \, dF \,. \tag{10.8}$$

trong đó: y – dịch chuyển khả dĩ tương ứng của q.

Giá trị trong dấu tích phân chính là thể tích của hình tháp chuyển vị khả dĩ:

$$\int_{F} y \, dF = \frac{f \, l_1}{2} (l_2 - l_1) + \frac{1}{3} f \, l_1^2 = \frac{f \, l_1}{6} (3l_2 - l_1) \tag{10.9}$$

Công khả dĩ của nội lực là tổng công của mômen khớp dẻo trên dịch chuyển khả dĩ là các góc xoay tương ứng. Gọi M_i là mômen khớp dẻo tính trên một đơn vị bề rộng của bản thì

$$C_{M_i} = \sum \varphi M_i l_i$$

Khi cốt thép rải đều theo phương l_1 và l_2 như trên hình (10.27b) (cốt thép theo phương l_1 , l_2 phía dưới và phía trên có thể khác nhau) và các mép biên đều xuất hiện khớp dẻo, công khả dĩ của nội lực sẽ là

$$C_{M} = \sum_{i} \varphi_{i} M_{i} l_{i} = (2\varphi M_{1} + \varphi M_{1} + \varphi M_{1}) l_{2} + (2\varphi M_{2} + \varphi M_{11} + \varphi M_{11}) l_{1} \quad (10.10)$$

Từ hình 10.27a thấy rằng:

$$\varphi \approx \text{tg}\varphi = \frac{f}{0.5 \, l_1} = 2 \frac{f}{l_1}$$
 (10.11)

Cân bằng công khả dĩ của nội và ngoại lực $(C_M = C_q)$, kết hợp các biểu thức $(10.8) \div (10.11)$ ta được:

$$q\frac{h^{2}(3l_{2}-l_{1})}{12}=(2M_{1}+M_{I}+M_{I})l_{2}+(2M_{2}+M_{H}+M_{I})l_{1}. \qquad (10.12)$$

Khi cốt thép trên các gối tựa được rải đều, cốt thép ở lớp dưới rải không đều như trên hình 10.27c ($l_k = 1/4l_1$), gọi M_1 và M_2 là mômen khớp dẻo ứng với vùng đặt cốt thép dày, ở vùng có bề rộng là $l_k = 1/4l_1$ cốt thép giảm còn một nửa nên mômen khớp dẻo chỉ còn là $0.5M_1$ và $0.5M_2$. Trên cơ sở đó, phương trình cân bằng mômen khớp dẻo và tải trọng sẽ như sau:

$$q\frac{l_1^2(3l_2-l_1)}{12} = (2M_1 + M_I + M_I)l_2 + (2M_2 + M_{II} + M_{II})l_1 - (M_1 + M_2)\frac{l_1}{2}.$$
(10.13)

Ta chỉ có một phương trình (hoặc là (10.12) hoặc là (10.13)) nhưng trong trường hợp tổng quát có tới sáu ẩn số mômen ở nhịp và trên các gối tựa. Người ta căn cứ vào các nghiên cứu lý thuyết và thực nghiệm để đưa ra các tỷ số có tính chất hướng dẫn sử dụng như trong bảng 10.2 đối với tỷ số mômen $\frac{M_2}{M_1}$.

				** 1 ·		• *
l ₂ /l ₁	1	1,1	1,2	1,3	1,4	1,5
M_2/M_1	1 - 0,8	0,9 - 0,7	0,8 - 0,6	0,7 - 0,5	0,6 - 0,4	0,65 - 0,35
l ₂ /l ₁	1,6	1,7	1,8	1,9		2
M_2/M_1	0,5 - 0,3	0,45 - 0,25	∂0,4 – 0,2	0,35 - 0),2	0,2 - 0,15

Bảng 10.2. Tỷ số M_2/M_1 khi tinh bản kê bốn cạnh theo sơ đồ khớp dẻo

Cũng có thể lấy tỷ số $\frac{M_2}{M_1} = \left(\frac{l_1}{l_2}\right)^2$.

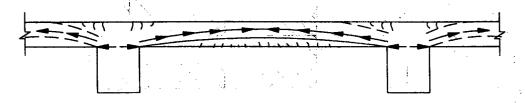
Tỷ số các mômen $\frac{M_I}{M_1}$; $\frac{M_I'}{M_1}$; $\frac{M_{II}}{M_2}$; $\frac{M_{II}'}{M_2}$ có thể lấy trong khoảng 1,5

đến 2,5 khi các gối tựa được coi là ngàm.

Biết các tỷ số mômen như trên, ta có thể đưa các phương trình 10.12 hoặc 10.13 về phương trình có một ẩn số là M_1 .

Khi chọn tỷ số giữa mômen gối tựa và mômen nhịp cần lứu ý rằng những ô bản ở phía trong (nằm trong vùng có gạch chéo của hình 10.28) được nối liên tục với xung quanh, chuyển vị xoay của gối tựa có thể xem là rất nhỏ tức là gần với liên kết ngàm cứng, mômen ở gối tựa có giá tri lớn.

Hình 10.28. Vùng bản được xem như có liên kết ngàm bốn cạnh


Ở biên của sàn, bản có thể gối lên tường (được xem là tựa khớp) hoặc liên kết toàn khối với dầm (được xem là liên kết đàn hồi). Nếu biên sàn là dầm thì sẽ xuất hiện mômen có giá trị đáng kể ở bản, tỷ số mômen âm (gối tựa) này và mômen nhịp được xác định tùy thuộc vào độ cứng chống xoắn của dầm. Để phù hợp với yêu cầu cấu tạo, tỷ lệ giữa mômen gối tựa biên và mômen nhịp tương ứng có thể lấy khoảng 0,10 đến 0,30.

Khi chọn tỷ số giữa mômen gối tựa và mômen nhịp cũng còn có thể tham khảo các số liệu trong phụ lục 17 đối với bản làm việc đàn hồi.

Tính bản (kể cả dầm, khung siêu tĩnh) theo sơ đồ khớp dẻo có thể tiết kiệm 20-30% cốt thép, phương pháp tính toán đơn giản, kết quả tính toán khá phù hợp với tình trạng làm việc thực tế của kết cấu đồng thời có thể điều chỉnh hợp lý việc bố trí cốt thép để giải quyết tình trạng cốt thép đặt quá dày ở một tiết diện nào đó. Vì vậy khi thiết kế bản và hệ thanh siêu tĩnh bằng bêtông cốt thép cần phải tận lượng sử dụng phương pháp này.

Tuy vậy phương pháp tính theo sơ đồ khóp dẻo không áp dụng cho kết cấu chịu tải trọng động lực và tải trọng lắp đi lắp lại (trùng phục), cũng không áp dụng đối với kết cấu không được phép xuất hiện khe nứt hoặc có những hạn chế nghiêm khắc đối với sự khai triển khe nứt.

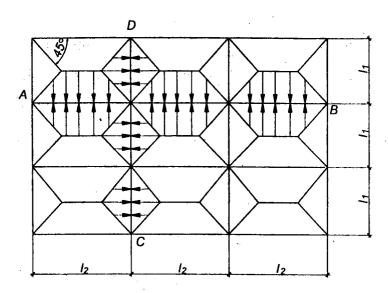
Đối với những ô bản có dầm vây quanh, dưới tác dụng của mômen dương, phía dưới bản sẽ phát sinh khe nứt, dưới tác dụng của mômen âm, phía trên gối tựa (dầm) sẽ phát sinh khe nứt, phần bêtông không bị nứt sẽ hình thành kết cấu tương tự như vòm; Lực đẩy ngang của vòm sẽ làm giảm mômen trong bản. Người ta gọi đó là hiệu ứng vòm (xem hình 10.29).

Hình 10.29. Hiệu ứng vòm

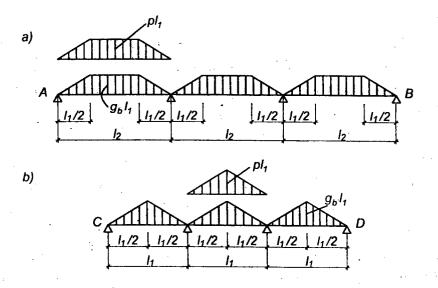
Để xét đến ảnh hưởng có lợi của hiệu ứng vòm, đối với bản có dầm vây quanh, người ta giảm bốt mômen uốn dùng để tính toán cốt thép. Cụ thể như sau (xem hình 10.28).

- Đối với những ô bản ở giữa sàn (kể cả bản dầm) (nằm trong vùng có gạch chéo trên hình 10.28) được giảm 20% mômen tính toán.
- Đối với những ô bản nằm ở vành ngoài của sàn (nằm trong vùng không có gạch chéo trên hình 10.28): giảm 20% mômen khi $\frac{l_b}{l} < 1,5$; giảm 10% khi $1,5 \le \frac{l_b}{l} \le 2$, trong đó l_b là cạnh ô bản nằm ở mép sàn, l cạnh ô bản thẳng góc với mép sàn.
- Không được giảm mômen đối với bản ở góc (bản A trên hình 10.28).

10.3.6. Tính toán dầm sản có bản kê bốn cạnh

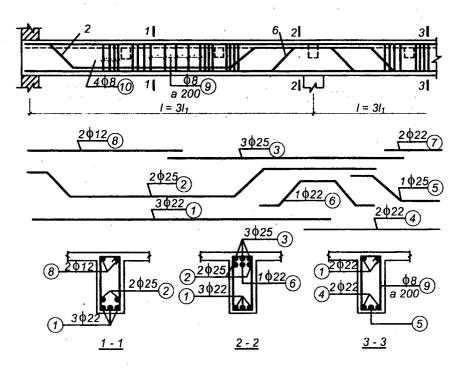

Dầm đỡ sàn có bản kê bốn cạnh có thể là dầm đơn giản hay dầm liên tục, cũng có thể là xà ngang của kết cấu khung. Các bước và phương pháp tính dầm này cũng giống với cách tính dầm của sàn sườn có bản dầm, khác nhau chỉ ở chỗ phân tải từ bản vào dầm.

Hình 10.30 thể hiện sơ đồ phân tải từ bản vào dầm, qua đó ta thấy rằng dầm AB sẽ chịu tải trọng phân bố theo hình thang (từ trọng lượng bản thân của bản và hoạt tải) và dầm CD sẽ chịu tải trọng phân bố theo hình tam giác.


Hình 10.31 thể hiện sơ đồ tải trọng tác dụng lên dầm, không kể phần trọng lượng bản thân của dầm, trong đó g_b – trọng lượng bản thân một mét vuông của bản: p – hoạt tải trên một mét vuông diện tích sàn.

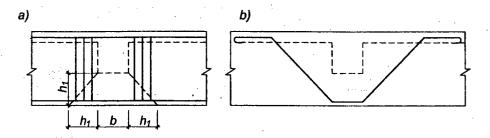
Việc tổ hợp tải trọng, vẽ biểu đồ bao nội lực hoặc điều chỉnh biểu đồ bao nội lực theo sự xuất hiện của khớp dẻo được tiến hành giống như đã nói ở phần trên. Nếu dùng tải trọng tương đương để chuyển tải trọng hình thang hoặc hình tam giác thành tải trọng phân bố đều (ví dụ tải trọng ở đỉnh tam giác là q thì tải trọng phân bố đều tương đương là $\frac{5}{8}q$ như nhiều tài liệu đã viết) thì nên lưu ý rằng đó chỉ là sự tương đương của

mômen ở ngàm của dầm một nhịp có hai đầu ngàm, các giá trị khác của nội lực và chuyển vị không tương đương, do đó không thể dùng tải trọng phân bố đều tương đương đó để tính toán những bước tiếp theo.

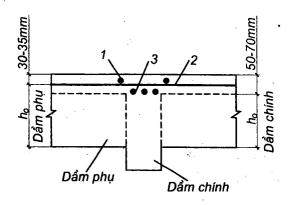


Hình 10.30. Sơ đổ phân tải cho dầm đỡ bản kê bốn cạnh

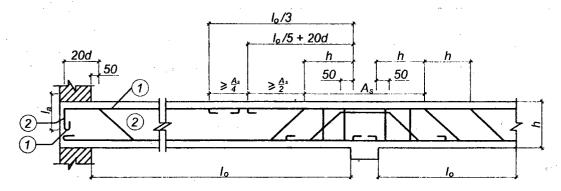
Hình 10.31. Sơ đổ tải trọng tác dụng trên dầm sàn có bản kê bốn cạnh a) Tải phân bố hình thang trên dầm AB; b) Tải phân bố hình tam giác trên dầm CD.


10.3.7. Bố trí cốt thép trong dầm

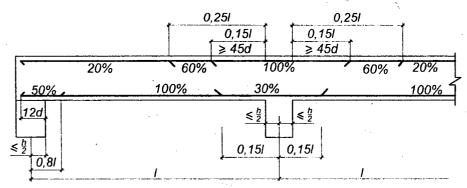
Hình 10.32. Bố trí cốt thép trong dầm dùng cốt buộc


Hình 10.32 thể hiện sơ đồ bố trí cốt thép trong một dầm chính với hai dầm phụ ở mỗi nhịp, dùng phương án cốt buộc có uốn cốt xiên. Lợi dụng cốt dọc số ② chịu kéo ở nhịp một uốn lên gối thứ hai làm cốt chịu kéo và đoạn cốt xiên có tác dụng chịu cắt, vị trí uốn phụ thuộc vào việc bố trí cốt xiên chịu cắt và phải phù hợp với biểu đồ vật liệu. Làm như vậy sẽ tiết kiệm cốt thép. Tuy vậy việc uốn cốt xiên cũng gây khó khăn cho việc gia công và lắp đặt cốt thép khi thi công, do vậy người ta cũng thường dùng phương án không có cốt xiên, toàn bộ lực cắt do cốt đai chịu và khi mômen uốn giảm nhỏ thì cắt bớt cốt dọc chịu kéo. Khi uốn và cắt cốt dọc phải bảo đảm sự đối xứng đối với trục thẳng đứng đi qua chính giữa tiết diện ngang. Không nên cắt ở một tiết diện quá nhiều cốt thép dọc làm cho khả năng chịu mômen của tiết diện thay đổi quá dột ngột. Ở chỗ dầm phụ kê lên dầm chính cần phải có cốt đai hoặc cốt xiên (treo) gia cố để tránh

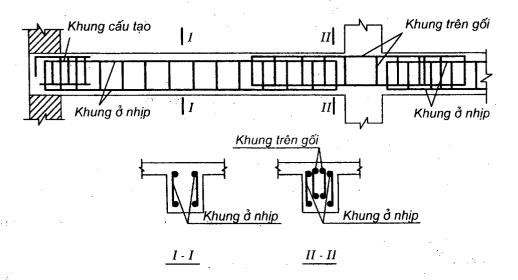
phá hoại cục bộ vùng chịu kéo của dầm chính như trên hình 10.33. Số lượng cốt đai hoặc cốt xiên đặt trong khoảng $b + 2h_1$ được xác định theo tính toán.


Hình 10.33. Cốt đai, cốt xiên gia cố dưới dầm phụ a) Cốt đai gia cố; b) Cốt xiên gia cố.

Hình 10.34 thể hiện vị trí tương đối của cốt thép trong bản, dầm phụ và dầm chính ở chỗ chúng giao nhau.



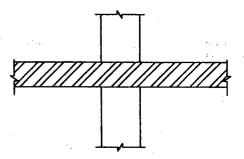
Hình 10.34. Vị trí tương đối của cốt thép chỗ giao nhau 1- cốt thép của bản; 2- cốt thép của dầm phụ; 3- cốt thép của dầm chính.


Về nguyên tắc, việc bố trí cốt thép dọc trong dầm phải căn cứ vào biểu đồ bao mômen. Tuy vậy, trong một số trường hợp người ta có thể cắt cốt thép theo một mẫu đã được tính toán trước và thiên về an toàn. Hình 10.35 là một mẫu bố trí cốt thép lấy trong [10]; mẫu này áp dụng cho dầm phụ, nhịp khác nhau không quá 20%, tỷ số giữa hoạt tải và tĩnh tải $\frac{p}{g} \le 3$.

Hình 10.35. Bố trí cốt thép cho dầm phụ

Hinh 10.36. Bố trí cốt thép trong dầm chịu tải trọng phân bố đều; gối tựa ngoài cùng là gối tựa tự do; các số phần trăm là tính theo giá tị cốt thép tính toán ở nhịp và gối tựa

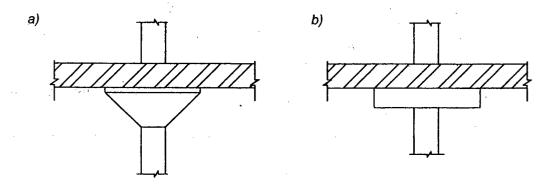
Hình 10.37. Sơ đồ bố trí cốt thép trong dầm bằng khung cốt hàn


Hình 10.36 là một mẫu bố trí cốt thép khác được lấy trong [9]. Mẫu này được áp dụng cho dầm chịu tải trọng phân bố đều, nhịp dầm sai khác không quá 10%.

Hình 10.37 thể hiện sơ đồ bố trí cốt thép của dầm khi dùng khung cốt hàn.

10.4. SÀN NẤM

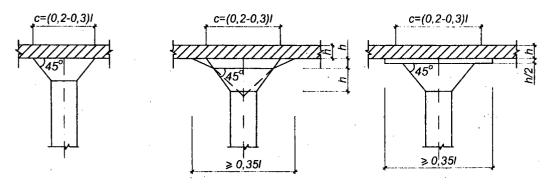
10.4.1. Khái niệm chung


Sàn nấm là sàn không có dầm, bản sàn tựa trực tiếp lên cột (h.10.38). Dùng sàn nấm sẽ giảm được chiều cao kết cấu, việc làm ván khuôn đơn giản và dễ dàng bố trí cốt thép. Sàn nấm có mặt dưới phẳng nên việc chiếu sáng và thông gió tốt hơn sàn có dầm. Nếu có xảy ra hỏa hoạn thì việc thoát nhiệt cũng thuận lợi. Ngoài ra việc ngăn chia các phòng trên mặt sàn linh hoạt và rất thích hợp với các bức tường ngăn di động.

Hình 10.38. Bản sàn tựa trực tiếp lên cột 1- bản sàn; 2- cột; 3- mặt đâm thủng.

Khi chịu tải trọng thắng đứng, bản sàn có thể bị phá hoại về cắt theo kiểu bị cột đâm thủng. Để tăng cường khả năng chịu cắt, có thể tạo ra mũ cột (h.10.39a) hoặc tạo ra bản đầu cột có chiều dày lớn hơn (h.10.39b).

Bản đầu cột phải có bề dày được tăng thêm ít nhất $\frac{1}{4}$ chiều dày của bản ở giữa ô và cạnh nhỏ của bản đầu cột phải không nhỏ hơn $\frac{1}{3}$ cạnh nhỏ của ô bản (hai trục của bản đầu cột trùng với trục lưới cột).



Hình 10.39. Mũ cột và bản đầu cột a) Mũ cột; b) Bản đầu cột

1- bản; 2- mũ cột; 3- cột; 4- bản đầu cột.

Bản có chiều dày lớn trên đầu cột còn có tác dụng tăng cường khả năng chịu mômen vì tiết diện sát đầu cột, mômen uốn trong bản đạt giá trị lớn nhất.

Mũ cột có thể có những hình thức khác nhau như trên hình 10.40.

Hình 10.40. Các hình thức khác nhau của mũ cột

Chiều rộng nhịp thích hợp với sàn nấm thường là 4 đến 8m đối với bêtông cốt thép thường, khi nhịp của bản từ 7m trở lên nên có cốt thép ứng lực trước để có thể giảm chiều dày bản và giảm độ võng.

Chiều dày của bản sàn nấm không có ứng lực trước có thể lấy khoảng 1/10 nhịp hoặc tính sơ bộ theo công thức sau đối với sàn không có bản đầu cột [12]

$$\frac{l_2}{h_b} \le 55 \left[\left(\frac{l_2}{l_1} \right) \frac{1}{q k_1} \right]^{\frac{1}{3}} , \qquad (10.14)$$

trong đó: l_2 , l_1 nhịp nội của bản (khoảng cách giữa hai mép cột) theo phương dài và phương ngắn;

q – tải trọng toàn phần (kPa) bao gồm cả hoạt tải và trọng lượng bản thân;

 $k_l = 1$ đối với ô bản giữa;

 $k_l = 1,3$ đối với ô bản nằm ngoài và có dầm bo;

 $k_l = 1,6$ đối với ô bản nằm ngoài và không có dầm bo;

 h_b - chiều dàu của bản sàn.

Đối với sàn có bản đầu cột được tăng chiều dày thì h_b được tính theo công thức:

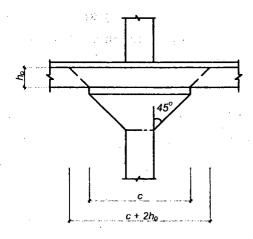
$$\frac{l_2}{h_b} \le 65 \left[\left(\frac{l_2}{l_1} \right) \frac{1}{qk_1} \right]^{\frac{1}{3}}. \tag{10.15}$$

Đối với bản sàn nấm có cốt thép ứng lực trước, chiều dày của bản có thể sơ bộ giả thiết không nhỏ hơn $\frac{1}{42}$ cạnh lớn của lưới cột đối với bản sàn có không dưới hai nhịp.

Chiều dày của bản hoặc chiều dày của bản đầu cột phải được tính toán kiểm tra để loại trừ khả năng bản bị đâm thủng. Theo tiêu chuẩn thiết kế TCXDVN356-2005 thì phải thỏa mãn điều kiện sau:

$$P \le R_{bl}bh_o \tag{10.16}$$

trong đó: P tải trọng gây nên sự phá hoại theo kiểu đâm thủng. Giả thiết mặt phá hoại nghiêng một góc 45° như hình 10.41: giả sử lưới cột là $l_1 \times l_2$ và q là tổng tải trọng phân bố đều trên bản (kể cả trọng lượng bản thân), kích thước mũ cột là $c \times c$ thì:


$$P = q[l_1 l_2 - (c + 2h_o)^2]. (10.17)$$

ở đây: h_o - chiều dày hữu ích của bản;

b - chu vi trung bình của mặt đâm thủng

$$b = 4(c + h_o)$$

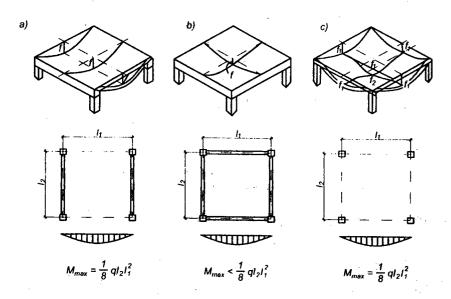
 R_{bt} – cường độ chịu kéo của bêtông.

Hình 10.41. Mặt phá hoại theo kiểu đâm thủng

Bản sàn nấm truyền tải trọng trực tiếp vào cột không thông qua dầm. Để hiểu sự làm việc của bản loại này, thử so sánh ba loại bản đơn chịu tải trọng phân bố đều q như trên hình 10.42. Hình 10.42a thể hiện bản dầm tựa trên hai dầm ở hai phía đối diện. Dễ dàng thấy rằng mômen cực đại ở giữa bản là:

$$M_{1\text{max}} = \frac{1}{8}ql_2l_1^2$$
.

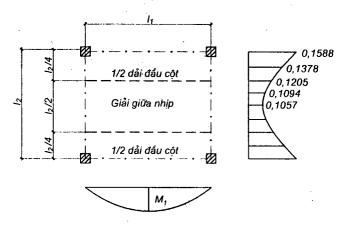
Hình 10.42b thể hiện bản kê bốn cạnh với bốn dầm vây quanh. Ta có thể thấy ngay rằng:


$$M_{1\text{max}} < \frac{1}{8}ql_2l_1^2$$

vì tải trọng q được truyền về hai phương.

Hình 10.42c thể hiện bản được kê trực tiếp lên bốn cột, không thông qua dầm, nếu xét phương l_1 thì

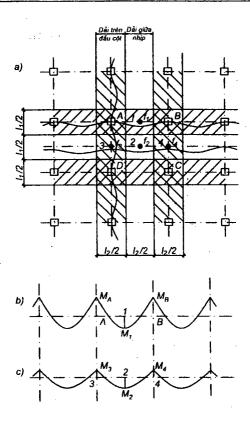
$$\boldsymbol{M}_{1\text{max}} = \frac{1}{8} \boldsymbol{q} \boldsymbol{l}_2 \boldsymbol{l}_1^2.$$


Qua đó có thể đi đến kết luận rằng bản sàn không dầm làm việc khá giống với bản dầm, chỉ có điều là đối với bản dầm thì bản chịu uốn theo một phương (mọi tiết diện theo phương l_2 đều biến dạng như nhau) còn dầm chịu uốn theo phương còn lại; trong khi đó thì ở bản sàn không dầm, bản sàn chịu uốn theo cả hai phương và dọc theo phương l_2 (h.10.42c) nội lực và biến dạng ở mọi tiết diện đều khác nhau.

Hình 10.42. So sánh các loại bản a) Bản dầm; b) Bản kê bốn cạnh; c) Bản sàn không dầm.

Hình 10.43 thể hiện sự phân bố của mômen M_1 dọc theo phương l_2 đối với bản sàn không dầm, một nhịp (bản đơn) chịu tải trọng phân bố đều. Các giá trị trên biểu đồ là kết quả của các phép tính theo lý thuyết dàn hồi. Nếu tổng mômen lớn nhất ở giữa nhịp l_1 là $M_o = \frac{1}{8}ql_2l_1^2$ thì dọc theo phương l_2 giá trị mômen đó được phân bố theo một đường cong, ở vùng giữa của l_2 mômen uốn có giá trị nhỏ còn ở vùng hai đầu của l_2 (vùng gần gối tựa theo phương l_2) mômen uốn có giá trị lớn. Nếu chia bản theo

phương l_2 thành hai loại dải: dải giữa nhịp có chiều rộng bằng $\frac{l_2}{2}$ và dải trên đầu cột có chiều rộng bằng $\frac{l_2}{4}$ thì từ hình 10.43 ta thấy dải giữa nhịp chịu xấp xỉ $0.45M_o$ còn hai nửa dải trên đầu cột chịu xấp xỉ $0.55M_o$.



Hình 10.43. Sự phân bố của mômen M, theo phương I,

Trong tính toán và cấu tạo bản sàn nấm người ta thường chia bản ra thành dải trên đầu cột và dải giữa nhịp, hai dải này có chiều rộng bằng $\frac{1}{2}$ bước cột như hình 10.44.

Giả sử tải trọng trên bản sàn là phân bố đều, xem xét biến dạng của dải trên đầu cột A1B ta thấy tại vị trí đầu cột (A, B) độ võng của bản bằng không, tại vị trí giữa nhịp (1) độ võng là lớn nhất. Từ đường đàn hồi (độ võng) ta suy ra dạng của biểu đồ mômen uốn ở dải trên đầu cột như hình 10.44b, trong đó M_A và M_B là mômen âm, M_1 là mômen dương.

Đối với dải giữa nhịp 324, độ võng tại vị trí 3 là f_3 sẽ nhỏ hơn độ võng ở vị trí 2 là f_2 . Có thể tưởng tượng rằng dải giữa nhịp 324 giống như một dầm liên tục kể lên các gối tựa là các dải trên đầu cột A3D, B4C v.v. Từ đó suy ra dạng của biểu đồ mômen uốn trên hình 10.44c, trong đó M_3 , M_4 là mômen âm và M_2 là mômen dương. Hoàn toàn tương tự có thể suy ra hình ảnh biến dạng và mômen uốn của dải trên đầu cột và dải giữa nhịp của phương vuông góc.

Hình 10.44. Hình ảnh biến dạng và mômen trong các dải bản a) Hình ảnh biến dạng của dải trên đầu cột và dải giữa nhịp; b) Mômen của dải lên đầu cột; c) Mômen của dải giữa nhịp.

10.4.2. Tính toán nội lực

Vấn đề đặt ra là cần phải tính được các giá trị mômen uốn trong các dải bản trên đầu cột và dải bản giữa nhịp theo cả hai phương của hệ lưới cột.

Để tính được các giá trị nội lực ở một tiết diện nào đó của bản có thể dùng nhiều cách khác nhau dựa trên lý thuyết đàn hồi hoặc lý thuyết cân bằng giới hạn, có thể dùng các phương pháp giải tích hoặc phương pháp số. Ở đây chỉ trình bày cách tính hay được dùng trong thiết kế.

Người ta thường sử dụng phương pháp phân phối trực tiếp và phương pháp khung thay thế.

Phương pháp phân phối trực tiếp là xác định trực tiếp các giá trị nội lực ở các dải giữa nhịp và dải trên đầu cột. Tài liệu của các nước cho hệ số phân phối khác nhau tùy theo quan niệm về tính chất làm việc đàn hồi dẻo của vật liệu và sự phân phối lại nội lực trong kết cấu.

Dưới đây trình bày một cách tính toán khá đơn giản của nước Anh [11]. Theo đó, phương pháp phân phối trực tiếp chỉ được áp dụng khi:

- ổn định ngang của hệ kết cấu không phụ thuộc vào sự làm việc của bản và liên kết giữa cột và bản;
- Giá trị của hoạt tải không vượt quá 0,5 t/m² và không được vượt quá 1,25 lần giá trị của tĩnh tải;
- Sàn phải có ít nhất ba khoang của bản với nhịp xấp xỉ nhau theo phương đang xét.

Các giá trị mômen và lực cắt được phân phối cho bản (cả ô bản với kích thước $l_1 \times l_2$) và cho cột cho trong bảng 10.3.

	Gối tựa biên		Nhịp thứ nhất	Gối tựa thứ hai	Nhịp giữa	Gối tựa giữa
	Cột	Tường		,,,,,,		g
– Mômen uốn	- 0,04FL	- 0,02FL	-0,083FI	- 0,063FL	0,071FL	- 0,055FL
- Lực cắt	0,45F	0,4F	- ,	0,6F	. – .	0,5F
- Mômen uốn của cột	0,04FL	_ 4.		0,022FL	-	0,022FL

Bảng 10.3. Mômen uốn và lực cắt của sàn nấm

Chú thích: F – tổng tải trọng tác dụng lên một ở bản (F = (g + p) I_1I_2);

L - nhịp tính toán theo phương đang xét,

$$L=I-\frac{2h_c}{3};$$

h_c - cạnh của cột hoặc mũ cột.

Giá trị mômen uốn của bản được phân phối cho các dải bản trên đầu cột và giữa nhịp theo tỷ lệ cho trong bảng 10.4.

Bảng 10.4

·	Dải trên đầu cột	Dải giữa nhịp
Mômen âm	75%	25%
Mômen dương	55%	45%

Khi không có bản đầu cột, việc chia dải giữa nhịp và dải trên đầu cột được thực hiện theo hình 10.44. Tuy vậy, theo tài liệu [11], bề rộng của dải trên đầu cột của cả hai phương đều lấy bằng $\frac{1}{2}$ nhịp nhỏ hơn. Khi có bản

đầu cột và cạnh nhỏ của bản đầu cột nhỏ hơn $\frac{1}{3}$ cạnh nhỏ của ô bản (tính

theo trực cột) thì bỏ qua sự có mặt của bản đầu cột. Trong trường hợp ngược lại thì bề rộng của dải trên đầu cột lấy bằng bề rộng của bản đầu cột. Khi đó bề rộng của dải trên đầu cột và bề rộng của dải giữa nhịp có thể sẽ không bằng nhau, việc phân phối mômen cho hai dải này sẽ theo bảng 10.4 đồng thời còn phải tỷ lệ với bề rộng của dải.

Mômen phân phối cho cột theo bảng 10.3 cần phải được chia cho cột trên và cột dưới theo tỷ lệ độ cứng của chúng.

Để so sánh, dưới đây trình bày thêm phương pháp trực tiếp để xác định mômen uốn của Úc [12]. Phương pháp này áp dụng khi sự khác nhau về nhịp theo một phương (bước cột) không quá 10%. Việc phân chia các dải giữa nhịp và dải trên đầu cột lấy theo hình 10.44a. Theo từng phương, người ta tính giá trị mômen uốn M_o như trên hình 10.45.

 M_o là giá trị mômen uốn cho một bản kê tự do trên đầu cột với giả thiết gần đúng rằng phản lực gối tựa nằm cách trục cột một đoạn bằng 2/3 (c/2) với c là bề rộng quy ước của mũ cột. Như vậy ta được:

$$M_o = \frac{q l_1 l_o^2}{8} \tag{10.18}$$

trong đó: q - tải trọng toàn phần phân bố trên một đơn vị diện tích mặt bản. Khi tính theo phương vuông góc, phải hoán vị l_1 và l_2 .

Goi:

 M_G - tổng mômen âm trên gối tựa giữa của ô bản;

 M_N - tổng mômen dương ở giữa nhịp giữa của ô bản;

 M_{GB} – tổng mômen âm trên gối tựa thứ hai (gối tựa B) của ô bản;

 M_{NB} - tổng mômen dương ở giữa nhịp biên của ô bản;

 M_{GA} – tổng mômen âm ở gối tựa thứ nhất (gối tựa A) của ô bản.

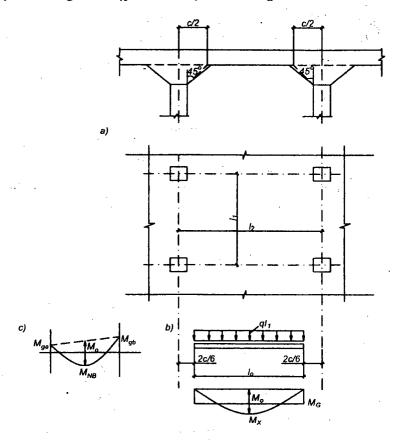
Việc phân phối mômen M_o cho gối và nhịp được tiến hành như sau:

• Đối với các ô bản ở bên trong

$$M_N = 0.35 M_o$$
;

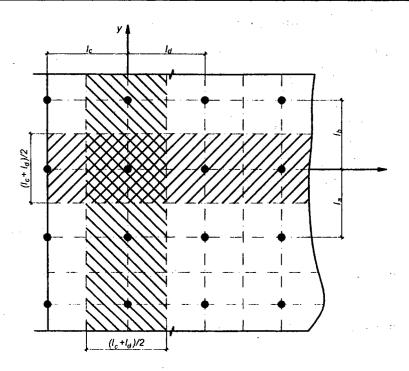
$$M_G = -0.65 M_o$$
.

• Đối với các ô bản ở biên (ở phía ngoài) thì phân phối theo bảng 10.5.


Tình trạng gối tựa biên	M_{GA}/M_o	M _{NB} /M _o	M _{GB} /M _o
Tựa tự do	0	0,60	0,80
Tựa trên cột	0,25	0,50	0,75
Tựa trên cột và dầm biên	0,30	0,50	0,70
Ngàm hoàm toàn	0,65	0,35	0,65

Bảng 10.5. Phân phối mômen cho ô bản ở biên

Việc phân chia các giá trị mômen âm và dương cho các dải trên đầu cột và giữa nhịp cũng theo tỉ lệ cho trong bảng 10.4.


Phương pháp khung thay thế được dùng để xác định nội lực (mômen uốn và lực cắt) cho bản sàn và cột khi chịu tải trọng thẳng đứng và tải trọng ngang, nhịp của bản có thể là đều hoặc không đều. Người ta coi sàn như ghép từ hai hệ khung phẳng vuông góc với nhau để tính toán nội lực một cách riêng biệt, cột khung là cột nhà còn xà ngang khung là bản sàn với chiều rộng bằng khoảng cách giữa hai trục của hai ô bản lân cận với cột. Hình 10.45 cho một ví dụ về việc xác định bề rộng của bản tham gia vào xà ngang của khung thay thế theo hai phương x và y. Có thể dùng các phương pháp cơ học kết cấu khác nhau để xác định mômen uốn trong ô

bản và cột. Tải trọng trên mỗi khung thay thế là toàn bộ tải trọng tác dụng lên sàn. Việc phân chia các giá trị mômen tính được cho các dải trên đầu cột và dải giữa nhịp có thể lấy theo bảng 10.4.

Hình 10.45. Sơ đổ tính toán a) Sơ đổ tính mômen của bản M_o ; b) Phân phối mômen ở nhịp giữa; c) Phân phối mômen ở bịp biên.

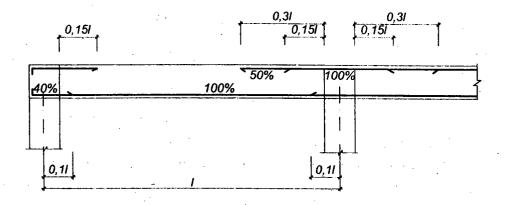
Thực ra chỉ có một phần bản liền kề với cột có cùng chuyển vị góc với cột ở chỗ nút khung (được xem là khung phẳng). Phần bản ở xa cột sẽ có góc xoay nhỏ hơn và chúng phải cùng làm việc với cột thông qua biến dạng xoắn của bản. Vì vậy, nếu giảm bớt độ cứng của cột hoặc giảm bớt bề rộng của bản sàn tham gia vào khung theo một cách nào đó thì sẽ nhận được kết quả thích hợp hơn.

Hình 10.46. Xác định bể rộng của xà ngang trong khung thay thế

Cần lưu ý rằng ở hàng cột thứ nhất của khung tương đương, giá trị mômen uốn (mômen âm) sẽ làm cho ứng suất cắt trong bản không phân bố đều theo chu vi cột, điều đó sẽ gây nguy hiểm cho bản ở góc độ bị đâm thủng và phải được đề cập đến trong tính toán. Ở những hàng cột phía trong, phần mômen không cân bằng ở hai nhịp lân cận cũng làm cho ứng suất cắt trong bản phân bố không đều theo chu vi cột. Mômen không cân bằng sẽ lớn khi chất hoạt tải cách nhịp (cách ô), mômen đó sẽ đặc biệt nguy hiểm khi có sự chênh lệch đáng kể về nhịp của bản và nếu chỉ tính toán theo các biểu thức 10.16 và 10.17 thì không dủ. Có thể tham khảo phần tính toán này trong [3].

10.4.3. Tính toán cốt thép dọc trong bản sàn

Từ các giá trị mômen uốn trong các dải bản trên đầu cột và dải bản giữa nhịp có thể xác định được diện tích cốt thép dọc trong bản sàn theo các công thức của chương 4. Để xét đến những sai lệch thiên về an toàn trong

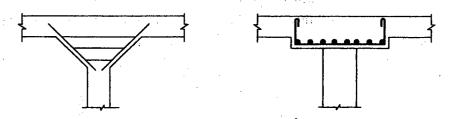

tính toán nội lực và tính toán tiết diện, có thể giảm bớt cốt thép dọc trong bản theo biểu thức:

$$F_a = \frac{0.7M}{\gamma h_a R_a} \,. \tag{10.19}$$

Có thể lấy gần đúng $\gamma = 0.9$.

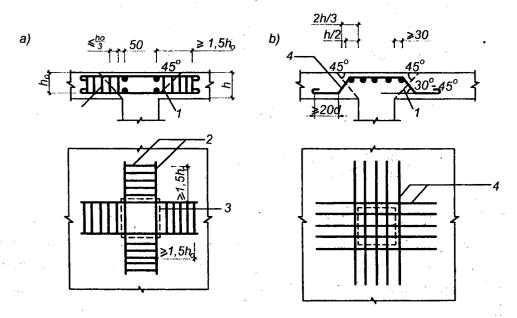
Cần phân biệt chiều cao h_o của bản đối với phương có cốt thép đặt dưới và phương có cốt thép đặt trên. Khi có bản mũ cột, chiều cao h_o lấy theo chiều dày của bản và bản mũ cột. Cốt thép chịu mômen âm của dải trên đầu cột sẽ được đặt $\frac{2}{3}$ trên băng chạy qua đỉnh cột có chiều rộng bằng $\frac{1}{2}$ chiều rộng của dải trên đầu cột, $\frac{1}{3}$ còn lại đặt sang hai bên.

10.4.4. Bố trí cốt thép trong bản sàn nấm



Hình 10.47. Bố tri cốt thép trong bản sàn nấm

Việc bố trí cốt thép và cắt cốt thép đối với bản chịu tải trọng phân bố đều có thể theo quy tắc đơn giản và an toàn [11] thể hiện trên hình 10.47.

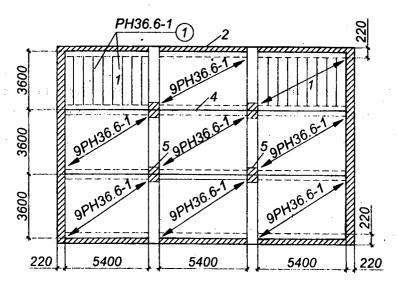

10.4.5. Bố trí cốt thép trong mũ cột và bản đầu cột

Bố trí cốt thép trong mũ cột và bản đầu cột được thể hiện trên hình 10.48.

Hình 10.48. Bố trí cốt thép trong mũ cột

Đối với những sàn không có mũ cột hoặc không có bản đầu cột, nếu điều kiện (10.16) về khả năng chống đâm thủng bản không được thỏa mãn thì có thể đặt thêm cốt thép chịu cắt như trên hình 10.49 [8].

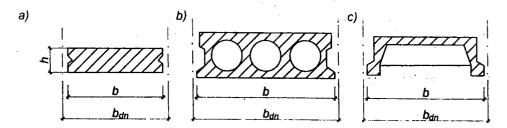
Hinh 10.49. Cốt thép chịu cắt


a) Dùng cốt đai để chịu cắt; b) Dùng cốt xiên để chịu cắt
 1- mặt đâm thủng; 2- cốt dọc; 3- cốt đai; 4- cốt vai bò, mỗi phương không ít hơn ba thanh.

10.5. SÀN PANEN LẮP GHÉP

10.5.1. Sơ đồ sàn

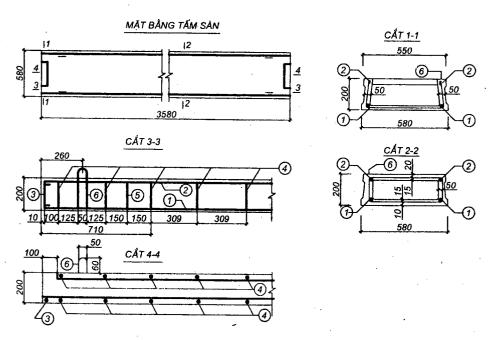
Hình 10.50 thể hiện sơ đồ mặt bằng sàn panen lắp ghép dùng loại panen định hình có tên gọi PH36.6-1, xung quanh là tường gạch, ở giữa có cột và


dầm bêtông cốt thép. Panen PH36.6-1 được thể hiện trên hình 10.52. Panen I tiếp nhận tải trọng, làm việc như một dầm đơn giản, truyền tải trọng vào dầm 4, dầm 4 truyền tải trọng vào cột 5. Về nguyên tắc dầm và cột có thể là kết cấu đổ tại chỗ hoặc lắp ghép từ những cấu kiện đúc sẵn.

Hình 10.50. Sơ đổ mặt bằng sản panen lắp ghép 1- panen; 2- tường; 3- dầm giằng; 4- dầm đỡ panen; 5- cột.

10.5.2. Các loại panen sàn

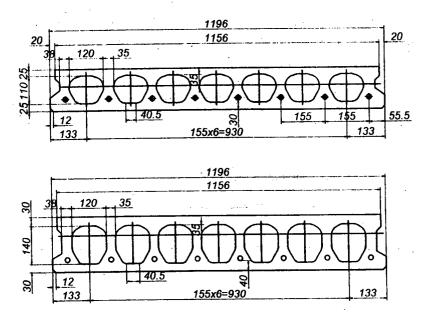
Panen sàn là một loại cấu kiện đúc sẵn, làm việc như một dầm đơn giản, tựa hai đầu trên dầm hoặc tường. Sự khác nhau của panen sàn chủ yếu là ở tiết diện ngang của chúng. Hình 10.51 thể hiện ba loại tiết diện ngang cơ bản.



Hinh 10.51. Ba loại tiết diện ngang cơ bản của panen sản a) Bản đặc; b) Panen rỗng; c) Panen sườn.

Panen có tiết diện ngang đặc dễ chế tạo nhưng chỉ dùng khi nhịp nhỏ (thường dưới 2 mét) với chiều cao tiết diện trong khoảng 8 đến 12cm. Người ta có thể chế tạo panen đặc gồm ba lớp vật liệu (lớp dưới là bêtông (cốt thép) nặng, lớp giữa là bêtông nhẹ và lớp trên là bêtông nặng) để tăng chiều cao tiết diện (do đó tăng được nhịp panen) mà không làm tăng đáng kể trong lượng bản thân (tính trên 1m²) của panen.

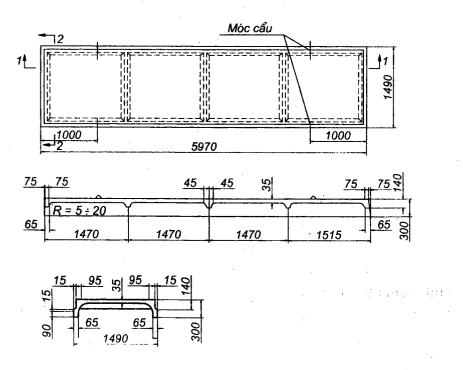
Panen rỗng được dùng khá phổ biến vì tiết kiệm vật liệu, có độ cứng lớn, tạo được trần phẳng. Lỗ rỗng có nhiều hình thức khác nhau nhưng phổ biến nhất là lỗ tròn, chữ nhật và bầu dục.


Hình 10.52 thể hiện một loại panen định hình của Việt Nam đã được sử dụng nhiều trong thời gian trước đây và còn đang được sử dụng cho đến nay.

Hình 10.52. Một loại panen định hình của Việt Nam

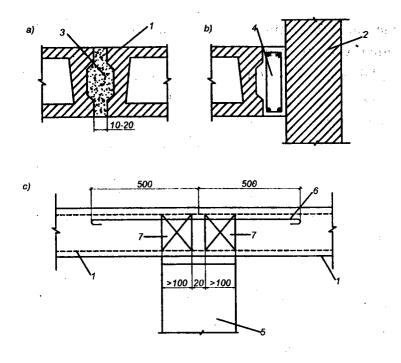
Hình 10.53 thể hiện mặt cắt ngang của một số loại panen sàn bằng bêtông cốt thép ứng lực trước được sản xuất bằng kỹ thuật đổ bêtông liên tục trên khuôn trượt với bệ căng cốt thép có chiều dài 120m tại tỉnh Bình

Dương. Người ta dùng cưa chuyên dụng để cắt (cả bêtông và cốt thép cùng một lúc) thành các tấm panen có chiều dài theo yêu cầu của người thiết kế. Do sử dụng kỹ thuật khuôn trượt để vừa tạo lỗ dọc panen vừa hình thành đường bao bên ngoài của tiết diện nên trong tiết diện không thể có cốt thép ngang, lực cắt hoàn toàn do bêtông chịu. Cốt thép ứng lực trước là loại sợi cường độ cao.



Hình 10.53. Mặt cắt ngang của panen rỗng bằng BTCT ứng lực trước

Panen sườn có hai sườn dọc và một số sườn ngang. Hình 10.54 thể hiện kích thước hình học của một loại panen sườn có kích thước trên mặt bằng là 1,5 m × 6 m. Tùy theo tải trọng trên sàn, chiều dày của bản mặt có thể lấy từ 30 đến 50 mm. Chiều cao của sườn dọc cũng thay đổi theo tải trọng và nhịp của panen, thường dao động trong khoảng 250 đến 450 mm. Panen sườn không tạo được trần phẳng nên thường được dùng trong nhà công nghiệp.


Trên hình 10.51 cần phân biệt hai loại kích thước, trong đó b là bề rộng thực tế của panen, b_{dn} là bề rộng danh nghĩa. Hiệu số của b_{dh} và b là kẽ hở giữa hai tấm panen liền kề khi lắp ghép. Kẽ hở đó phải có để đề phòng

việc chế tạo không chính xác có thể dẫn đến khả năng không lắp lọt các tấm panen vào sàn. Tùy theo độ chính xác của việc chế tạo, kẽ hở có thể lớn bé khác nhau. Trong điều kiện thi công thủ công thì kẽ hở phải có bề rộng khoảng 10 đến 20mm (xem hình 10.55a). Bề rộng và nhịp của panen quyết định trọng lượng của nó. Người ta xác định trọng lượng của panen theo khả năng vận chuyển và cẩu lắp. Bề rộng càng lớn càng tốt vì sẽ giảm được kẽ hở tiếp giáp, giảm được khối lượng bêtông chèn kẽ phải đổ tại hiện trường. Mép của panen và bêtông chèn kẽ phải được thi công tốt để tạo điều kiện truyền tải từ tấm panen này sang tấm panen khác và tránh vết nứt trên trần nhà dọc theo kẽ panen.

Hình 10.54. Kích thước hình học của một loại panen sườn

Tại vị trí panen tiếp giáp với tường nên cấu tạo một dầm mỏng như hình 10.55b. Để tăng cường liên kết trong mặt phẳng sàn, người ta nối hai đầu panen ở hai phía của dầm đỡ bằng thép ¢6 thông qua các móc cẩu hoặc đặt thêm ¢6 vào kẽ panen như trên hình 10.55c.

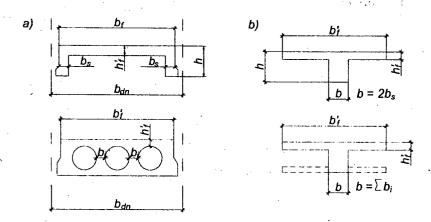
Hình 10.55. Một số chi tiết cấu tạo

 a) Chèn kẽ bằng bêtông sỏi nhỏ; b) Panen tiếp giáp với tường; c) Đầu panen kê lên tường hoặc dầm 1- panen; 2- tường; 3- bêtông sỏi nhỏ; 4- dầm mỏng; 5- dầm hoặc tường đỡ panen;
 6- thép φ6 đặt trong kẽ dọc nối đầu panen; 7- khối xây gạch lấp đầu panen.

Ở đầu các panen rỗng, tại vị trí gối lên tường hoặc dầm cần phải có khối xây gạch lấp đầu pạnen để tránh phá hoại bản mặt khi chịu tải cục bộ như tải trọng truyền từ các tường ngăn hoặc tường chịu lực xây trên đó – xem hình 10.55c. Chiều dài thực tế của panen phải nhỏ hơn chiều dài danh nghĩa 20 đến 40mm.

10.5.3. Tính toán panen sàn

Panen sàn phải được tính toán theo cường độ, biến dạng và khe nứt.

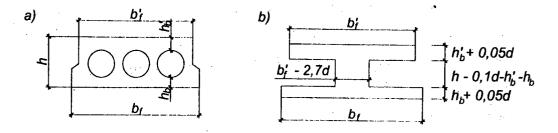

a. Tính toán theo cường độ

Khi panen sàn có sườn dọc và sườn ngang như trên hình 10.54 thì bản mặt tiếp nhận tải trọng rồi truyền vào sườn ngang và sườn dọc theo nguyên tắc truyền tải của bản kê bốn cạnh hoặc bản dầm. Do đó bản mặt

sẽ được tính toán như bản của sàn sườn có bản kê bốn cạnh hoặc sàn sườn có bản dầm như đã trình bày ở trên. Cần lưu ý rằng bản mặt có chiều dày nhỏ (30-50 mm) nên cốt thép thường được đặt vào giữa chiều dày bản.

Sườn ngang là dầm một nhịp tựa trên hai sườn dọc. Khi bản mặt nằm phía trên, sườn ngang có tiết diện chữ T cánh trong vùng nén.

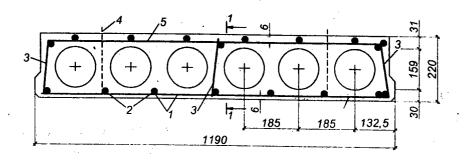
Đối với panen có lỗ rỗng hình tròn thì không cần tính cường độ của bản mặt. Về tổng thể thì panen là một dầm đơn giản có tiết diện ngang là một hình phức tạp, khi tính toán theo cường độ người ta quy đổi thành những tiết diện có hình đơn giản (xem hình 10.56). Cần lưu ý rằng khi tính toán panen về uốn tổng thể cần phải đưa trọng lượng bêtông chèn kẽ vào tải trọng tĩnh và tải trọng từ các lớp phủ mặt sàn và hoạt tải sử dụng truyền vào panen phải được tính theo bề rộng danh nghĩa (b_{dn}) .



Hình 10:56. Tiết diện quy đổi để tính toán theo cường độ a) Tiết diện thực; b) Tiết diện quy đổi.

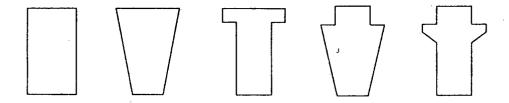
b. Tính toán biến dang và khe nứt

Tính độ võng và bề rộng khe nứt của dầm dơn giản có tiết diện quy đổi là chữ T hoặc chữ I. Quy đổi tiết diện theo nguyên tắc giữ nguyên vị trí trọng tâm, diện tích và mômen quán tính của lỗ rỗng (mômen quán tính đối với trục đi qua trọng tâm của lỗ rỗng và thẳng góc với mặt phẳng uốn). Trên nguyên tắc như vậy, lỗ rỗng tròn sẽ được quy đổi thành tiết diện vuông với cạnh $b \approx 0.9d$ (d là đường kính của lỗ tròn). Tiết diện quy

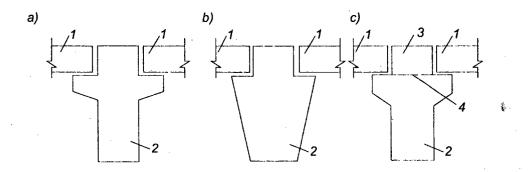

đổi của panen có lỗ rỗng tròn dùng trong tính toán biến dạng và khe nứt được thể hiện trên hình 10.57.

Hình 10.57. Tiết diện quy đổi dùng trong tính biến dạng và nứt a) Tiết diện thực; b) Tiết diện quy đổi

c. Bố trí cốt thép trong panen sàn


Trong bản mặt của panen sườn, lưới cốt thép chịu lực thường được đặt ở giữa chiều dày bản; lưới đó vừa chịu mômen dương vừa chịu mômen âm do trọng lượng bản thân và tải trọng sử dụng gây ra. Đối với panen có lỗ tròn, lưới thép ở mặt trên thường được đặt theo yêu cầu cấu tạo. Cốt thép chịu uốn tổng thể được đặt trong sườn, gồm có cốt dọc và cốt ngang (đai). Hình 10.58 thể hiện cốt thép chịu lực và cốt thép cấu tạo cho một loại panen sàn có lỗ tròn, trong đó cách ba lỗ có một khung cốt hàn kết hợp với các cốt dọc đặt phía dưới các sườn để chịu uốn tổng thể.

Hình 10.58. Bố trí cốt thép cho panen có lỗ tròn 1- lưới phẳng ở mặt dưới; 2- cốt dọc chịu lực; 3- khung cốt hàn đặt đứng; 4- móc cẩu; 5- lưới phẳng ở mặt trên; 6- lớp bêtông bảo vệ.


d. Dầm đỡ panen

Dầm đỡ panen có thể có tiết diện ngang như trên hình 10.59.

Hình 10.59. Tiết diện ngang của dầm đỡ panen sàn

Tiết diện chữ nhật thường gặp ở các dầm hoặc xà ngang của khung đổ tại chỗ, ở đó người ta chỉ lắp ghép panen sàn. Các tiết diện khác dùng cho dầm lắp ghép hoặc nửa lắp ghép như được thể hiện trên hình 10.60.

Hình 10.60. Dầm lắp ghép và nửa lắp ghép để đỡ panen sàn 1- panen sàn; 2- dầm chế tạo sẵn (lắp ghép); 3- bêtông cốt thép đổ sau; 4- mặt tiếp giáp với bêtông đổ sau.

Trên hình 10.60c, dầm chế tạo sẵn chỉ có tiết diện chữ T, người ta để sẵn cốt đai (nằm ngoài phần chế tạo sẵn) và đặt thêm cốt dọc để tạo ra dầm có tiết diện cao hơn. Tính toàn khối của kết cấu nửa lắp ghép này khá hơn tính toàn khối của kết cấu lắp ghép.

÷ .

PHŲ LŲC

Phụ lục 1 MÔĐUN ĐÀN HỔI CỦA BẾTÔNG NẶNG $(E_6 \times 10^3)$

					Cấp độ l	bên chị	u nén				
	B121,5	B15	B20	B25	B30	B35	B40	B45	B50	<i>B55</i>	<i>B60</i>
Đóng rắn tự nhiên	21	23	27	30	32,5	34,5	36	37,5	39	39,5	40
Dưỡng hộ nhiệt ở áp suất khí quyển	19	20,5	24	27	29	31	32,5	34	35	35,5	36
Chưng áp	16	17	20	22,5	24,5	26	27	28	29	29,5	30

Phụ lục 2 CƯỜNG ĐỘ TIÊU CHUẨN CỦA BẾTÔNG NẶNG $R_{\rm bn}$, $R_{\rm btn}$ VÀ CƯỜNG ĐỘ TÍNH TOÁN CỦA BỆTÔNG NẶNG KHI TÍNH THEO TRẠNG THÁI GIỚI HẠN THỨ HAI $R_{b,ser}$, $R_{bt,ser}$ (MPa)

Trạng				Cấp	độ bền c	hịu nén	của bêtố	ing		-	
thái	B12,5	B15	B20	<i>B25</i>	B30	<i>B35</i>	B40	B45	<i>B50</i>	<i>B55</i>	<i>B60</i>
Nén dọc trục R _{bn} , R _{b,ser}	9,5	11,0	15,0	18,5	22,0	25,5	29,0	32,0	36,0	39,5	43,0
Kéo dọc trục R _{btn} , R _{bt, ser}	1,0	1,15	1,40	1,60	1,80	1,95	2,10	2,20	2,30	2,40	2,50

Phụ lục 3 CƯỜNG ĐỘ TÍNH TOÁN CỦA BÊTÔNG NẶNG R_{ν} R $_{\nu}$ R_{ν} KHI TÍNH THEO TRẠNG THÁI GIỚI HẠN THỨ NHẤT (MPa)

Trạng				Cấp	độ bền c	hịu nén	của bêtô	ing			
thái	B12,5	B15	B20	B25	B30	B35	B40	B45	<i>B50</i>	B55	<i>B60</i>
Nén dọc trục R₀	7,5	8,5	11,5	14,5	17,0	19,5	22,0	25,0	27,5	:30,0	33,0
Kéo dọc trục R _{bt}	0,66	0,75	0,90	1,05	1,20	1,30	1,40	1,45	1,55	1,60	1,65

Phụ lục 4 HỆ SỐ ĐIỀU KIỆN LÀM VIỆC CỦA BÊTÔNG

	Hệ số điều kiện	làm việc của bêtông
Các yếu tố cần kể đến hệ số điều kiện làm việc của bêtông	Ký hiệu	Giá trị
1. Tải trọng lặp	γ _{b1}	Xem tiêu chuẩn thiết kế
2. Tính chất tác dụng dài hạn của tải trọng:	γ _{b2}	
a) Khi kể đến tải trọng thường xuyên, tải trọng tạm thời dài hạn và tạm thời ngắn hạn, ngoại trừ tải trọng tác dụng ngắn hạn mà tổng thời gian tác dụng của chúng trong thời gian sử dụng nhỏ (ví dụ: tải trọng do cầu trục, tải trọng do thiết bị băng tải; tải trọng gió; tải trọng xuất hiện trong quá trình sản xuất, vận chuyển và lắp dựng, v.v); cũng như khi kể đến tải trọng đặc biệt gây biến dạng lún không đều, v.v		
 Đối với bêtông nặng, bêtông hạt nhỏ, bêtông nhẹ đóng rắn tự nhiên và bêtông được dưỡng hộ nhiệt trong điều kiện môi trường: 		
+ đảm bảo cho bêtông được tiếp tục tăng cường độ theo thời gian (ví dụ: môi trường nước, đất ẩm hoặc không khí có độ ẩm trên 75%)		1,00
+ không đảm bảo cho bệtông được tiếp tục tăng cường độ theo thời gian (khô hanh)		0,90
 Đối với bêtông tổ ong, bêtông rỗng không phụ thuộc vào điều kiện sử dụng 		0,85
b) Khi kể đến tải trọng tạm thời ngắn hạn (tác dụng ngắn hạn) trong tổ hợp đang xét hay tải trọng đặc biệt * không nêu trong mục 2a, đối với các loại bêtông.		1,10
3. đổ bêtông theo phương đứng, mỗi lớp dây trên 1,5m đối với:	γьз	
- bêtông nặng, bêtông nhẹ và bêtông hạt nhỏ		0,85
- bêtông tổ ong và bêtông rỗng		0,80
4. ảnh hưởng của trạng thái ứng suất hai trục "nén – kéo" đến cường độ bêtông	Y ₅₄	Xem tiêu chuẩn thiết kế
5. Đổ bêtông cột theo phương đứng, kích thước lớn nhất của tiết diênh cột nhỏ hơn 30cm	γ _{b5}	0,85

Các yếu tố cần kể đến hệ số điều kiện làm việc của bêtông	Hệ số điều kiện	làm việc của bêtông
cao yea to our ne den ne so dieu kien lain viet cua belong	Ký hiệu	Giá trị
a) Khi dùng thép sợi	1	
đối với bệtông nhẹ		1,25
đối với các loại bêtông khác		1,10
b) Dùng thép thanh		
đối với bêtông nhẹ		1,35
đối với các loại bêtông khác		1,20
7. Kết cấu bêtông	γьγ	0,90
8. Kết cấu bêtông làm từ bêtông cường độ cao khi kể đến hệ số Υ _Ρ γ	γ _{b8}	$0.3 + \omega < 1.$
107	•	Giá trị ω xem tiêu chuẩn thiết kế
9. Độ ẩm của bêtông tổ ong	γ _{b9}	
10% và nhỏ hơn		1,00
lớn hơn 25%		0,85
lớn hơn 10% và nhỏ hơn hoặc bằng 25%		Nội suy tuyến tính
10. Bêtông đổ chèn mối nối cấu kiện lắp ghép khi chiều rộng mối nối nhỏ hơn 1/5 kích thước của cấu kiện và nhỏ hơn 10cm	Y _{b10}	1,15

^{*} Khi đưa thêm hệ số diều kiện làm việc bổ sung trong trường hợp kể đến tải trọng đặc biệt theo chỉ dẫn của tiêu chuẩn tương ứng (ví dụ: khi kể đến tải trọng động đất) thì lấy $\gamma_{b2} = 1$

CHÚ THÍCH:

- 1.Hê số điều kiên làm việc:
- + lấy theo mục 1,2,7,9: cần được kể đến khi xác minh cường độ tính toán $R_{\rm b}$ và $R_{\rm bi}$
- + lấy theo mục 4: cần được kể đến khi xác định cường độ tính toán $R_{\mathrm{bt,ser}}$
- + còn theo các mục khác: chỉ kể đến khi xác định $R_{\rm b}$
- 2. Đối với kết cấu chịu tác dụng của tải trọng lặp, hệ số γ_{b2} được kể đến khi tính toán theo độ bền, còn γ_{b1} khi tính toán theo độ bền mỏi và theo điều kiện hình thành vết nứt.
- 3. Khi tính toán kết cấu chịu tải trọng trong giai đoạn ứng lực trước, hệ số γ_{b2} không cần tính đến.
- 4. Các hệ số điều kiện làm việc của bêtông được kể đến khi tính toán không phụ thuộc lẫn nhau, nhưng tích của chúng không được nhỏ hơn 0,45.
- 5. Các cường độ tính toán của bêtông khi tính toán theo các trạng thái giới hạn thứ hai $R_{\rm b,sor}$ và $R_{\rm bt,sor}$ đưa vào tính toán phải nhân với hệ số điều kiện làm việc $\gamma_{\rm bi} = 1$,

Phụ lục 5 CƯỜNG ĐỘ TÍNH TOÁN CỦA CỐT THÉP THANH KHI TÍNH THEO TRẠNG THÁI GIỚI HẠN THỨ NHẤT (MPa).

		Cường đ	<i>iộ chịu kéo,</i> MPa	
Nhóm thép t	hanh	Cốt thép dọc R	Cốt thép ngang (cốt thép đai, cốt thép xiên) R _{sw}	Cường độ chịu nén R _{sc}
CI, A I		225	175	225
CII, A II		280	225	280
A-III có đường kính , mm	· 6 ÷ 8	355	285*	355
CIII, A-III có đường kính, mm	10 ÷ 40	365	290*	365
CIV, AIV		510	405	450**
A ·V		680	545	500**
AVI		815	650	500**
A _r -VII	,: <u>, , , , , , , , , , , , , , , , , , </u>	980	785	500**
A III _B	Có kiểm soát độ gián dài và ứng suất	490	390	200
•	Chỉ kiểm soát độ gián dài	450	360	200

^{*} Trong khung thép hàn, đối với cốt thép đai dùng thép nhóm CIII, A III có đường kính nhỏ hơn 1/3 đường kính cốt thép dọc thì giá trị $R_{\rm sw}$ = 255 MPa.

^{**} Các giá trị $R_{\rm sc}$ nêu trên dược lấy cho kết cấu làm từ bětông nặng, bětông hạt nhỏ, bětông nhẹ khi kể đến trong tính toán các tải trọng lấy theo mục 2a trong phụ lục 4; khi kể đến các tải trọng lấy theo mục 2b trong phụ lục 4 thì giá trị $R_{\rm sc}$ = 400 MPa. Đối với kết cấu làm từ bětông tổ ong và bětông rỗng, trong mọi trường hợp lấy $R_{\rm sc}$ = 400MPa.

Phụ lục 6 CƯỜNG ĐỘ TÍNH TOÁN CỦA CỐT THÉP SỢI KHI TÍNH THEO TRẠNG THÁI GIỚI HẠN THỨ NHẤT, MPa

	·	Cường độ chị	iu kéo tính toán	
Nhóm thép sợi	Đường kính thép sợi, mm	Cốt thép dọc R _s	Cốt thép ngang (cốt thép đai, cốt thép xiên) R _{sw}	Cường độ chịu nén tính toán R _{sc}
BpI	3;4;5	410	290*	375**
B-II có cấp độ bền				
1500	3	1250	1000	
1400	4;5	1170	940	
1300	6	1050	835	
1200	7	1000	785	•
1100	8	915	730	
Bp-II có cấp độ bền	,	-		
1500	3	1250	1000	
1400	4;5	1170	940	500**
1300	6	1000	785	
1200	7	915	730	
1100	8	850	680	•
K-7 có cấp độ bên				
1500	6;9;12	1250	1000	
1400	15	1160	945	
K-19	14	1250	1000	

 $^{^{\}star}$ Khi sử dụng thép sợi trong khung thép buộc, giá trị $R_{
m sw}$ cần lấy bằng 325 MPa.

^{**} Các giá trị $R_{\rm sc}$ nêu trên được lấy khi tính toán kết cấu làm từ bêtông nặng, bêtông hạt nhỏ, bêtông nhẹ chịu các tải trọng lấy theo mục 2a trong phụ lục 4; khi tính toán kết cấu chịu tải trọng lấy theo mục 2b trong phụ lục 4 thì giá trị $R_{\rm sc}$ = 400 MPa cũng như khi tính toán các kết cấu làm từ bêtông tổ ong và bêtông rỗng chịu mọi loại tra trọng, giá trị $R_{\rm sc}$ lấy như sau: Đối với sợi thép Bp-I lấy bằng 340 MPa; đối với B-II, Bp-II, K-7, K-19: lấy bằng 400 MPa.

Phụ lục 7 MÔĐUN ĐÀN HÔI CỦA MỘT SỐ LOẠI CỐT THÉP

<u></u>	
Nhóm cốt thép	E _s . 10 ⁴, MPa
CI, A-I, CII, A-II	21
CIII, A-III	20
CIV, A–IV, A–V và A–VII	19
A-III	18
B-II, Bp-II	20
K-7, K-19	18
BPI	17

Phụ lục 8 CÁC GIÁ TRỊ ω, ξ_{R ,αR} ĐỐI VỚI CẤU KIỆN LÀM TỪ BÊTÔNG NĂNG

Hệ số điều		,				Cáp	độ bện c	Cấp độ bên chịu nén của bêtông	ủa bêtôn	_g			
kiện làm việc của bêtông Yb2	Nhóm cốt thép chịu kéo	Ký hiệu	B12,5	B15	B20	B25	B30	B35	B40	. B45	B50	B55	098
	Bất kỳ	. ω	962'0	0,789	0,767	0,746	0,728	0,710	0,692	0,670	0,652	0,634	0612
	CIII; A–III	ጜ	0,662	0,654	0,628	0,604	0,583	0,564	0,544	0,521	0,503	0,484	0463
	- (Ø10–40) và Bp–l (4,5)	α_{R}	0,443	0,440	0,431	0,421	0,413	0,405	966'0	0,385	0,376	0,367	0356
6'0	=	ξR	689'0	0,681	0,656	0,632	0,612	0,592	0,573	0,550	0,531	0,512	0491
	C.I. A-II	g	0,452	0,449	0,441	0,432	0,425	0,417	0,409	0,399	0,390	0,381	0370
	-	η <u>ς</u>	0,780	0,700	0,675	0,651	0,631	0,612	665'0	0/25'0	0,511	0,532	0511
	C, A_	g	0,457	0,455	0,447	0,439	0,432	0,425	0,417	0,407	0,399	0,391	0380
	Bất kỳ	3	0,790	0,782	0,758	0,734	0,714	0,694	0,674	0,650	0,630	0,610	0586
	CIII, A-III	ፖር	0,628	0,619	0,590	0,563	0,541	0,519	0,498	0,473	0,453	0,434	0411
	Bp-1 (4,5)	α R	0,431	0,427	0,416	0,405	966,0	0,384	0,374	0,361	0,351	0,340	0326
1,0	=	ኢ ጸ	099'0	0,650	0,623	0,595	0,573	0,552	0,530	0,505	0,485	0,465	0442
		α_{R}	0,442	0,439	0,429	0,418	0,409	0,399	0,390	0,378	0,367	0,357	0344
		ጥ ሕ	0,682	0,673	0,645	0,618	965'0	0,575	0,553	0,528	0,508	0,488	0464
	į	g.	0,449	0,446	0,437	0,427	0,419	0,410	0,400	0,389	0,379	0,369	0356

Phụ lục 8 (Tiếp theo)

Hệ số điều	3					Cáp	độ bên c	Cấp độ bên chịu nén của bêtông	ủa bêtôn	8			
kiện làm việc của bêtông Yez	Nhóm cốt thép chịu kéo	Ký hiệu	812,5	B15	B20	B25	B30	B35	B40	B45	B50	B55	B60
	Bất kỳ	8	0,784	0,775	0,749	0,722	00,700	0,808	0,810	0,630	909'0	0,586	0950
	CIII, AIII	ፖ <mark>ፌ</mark>	0,621	0,611	0,580	0,550	0,526	0,650	0,652	0,453	0,432	0,411	0386
	(Ø 10-40) va Bp-I (4,5)	ಹ	0,428	0,424	0,412	0,399	0,388	0,439	0,440	0,351	0,399	0,326	0312
1	= 4	አኢ -	0,653	0,642	0,612	0,582	0,558	0,681	0,683	0,485	0,463	0,442	0,416
	CII, A-II	కో .	0,440	0,436	0,425	0,413	0,402	0,449	0,450	0,367	0,356	0,344	0,330
		ౡ	0,675	999'0	0,635	909'0	0,582	0,703	0,705	0,508	0,486	0,464	0,438
	C. A-	გ 	0,447	0,444	0,433	0,422	0,412	0,456	0,456	0,379	0,368	0,368	0,342
		. 3	ω = 0,85 – 0,008 <i>R_b,</i> ξ _R =	,008 <i>R</i> ₆ , ^c	+	$\frac{R_s}{\sigma_{sc,u}} \left(1 - \frac{\omega}{11}\right)$	-	α _R = ξ _R (1 – 0,5ξ _R)	æ			•	
	Chú	ú thích: G	thích: Giá trị ω , ξ_{R} , α_{R} cho trong bảng không kể đến hệ số γ_{bl} cho trong phụ lục 4.	α _R cho tr	ong bảng l	chông kể đ	ến hệ số	γ _{bi} cho troi	on nud bu	. 4.			

Phụ lục 9 CÁC HỆ SỐ ξ , ζ , $\alpha_{\rm m}$

ξ	5	α_m	ξ	5	α_m	ξ	ζ	α_m
0,01	0,995	0,010	0,26	0,870	0,226	0,51	0,745	0,380
0,02	0,990	0,020	0,27	0,865	0,234	0,52	0,740	0,385
0,03	0,985	0,030	0,28	0,860	0,241	0,53	0,735	0,390
0,04	0,980	0,039	0,29	0,855	0,243	0,54	0,730	0,394
0,05	0,975	0,049	0,30	0,850	0,255	0,55	0,725	0,399
0,06	0,970	0,058	0,31	0,845	0,262	0,56	0,720	0,403
0,07	0,965	0,068	0,32	0,840	0,269	0,57	0,715	0,407
0,08	0,960	0,077	0,33	0,835	0,267	0,58	0,710	0,412
0,09	0,955	0,086	0,34	0,830	0,282	0,59	0,705	0,416
0,10	0,950	. 0,095	0,35	0,825	0,289	0,60	0,700	0,420
0,11	0,945	0,104	0,36	0,820	0,295	0,62	0,690	0,428
0,12	0,940	0,113	0,37	0,815	0,302	0,64	0,680	0,435
0,13	0,935	0,122	0,38	0,810	0,308	0,66	0,670	0,442
0,14	0,930	0,130	0,39	0,805	0,314	0,68	0,660	0,449
0,15	0,925	0,139	0,40	0,800	0,320	0,70	0,650	0,455
0,16	0,920	0,147	0,41	0,795	0,326	0,72	0,640	0,461
0,17	0,915	0,156	0,42	0,790	0,332	0,74	0,630	0,466
0,18	0,910	0,164	0,43	0,785	0,338	0,76	0,620	0,471
0,19	0,905	0,172 -	0,44	0,780	0,343	0,78	0,610	- 0,476
0,20	0,900	0,180	0,45	0,775	0,349	0,80	0,600	0,480
0,21	0,895	0,188	0,46	0,770	0,354	0,85	0,575	0,489
0,22	0,890	0,196	0,47	0,765	0,360	0,90	0,550	0,495
0,23	0,885	0,204	0,48	0,760	0,365	0,95	0,525	0,499
0,24	0,880	0,211	0,49	0,755	0,370	1,00	0,500	0,500
0,25	0,875	0,219	0,50	0,750	0,375			

Phụ lục 10 CÁP CHỐNG NỚT VÀ GIÁ TRỊ BỀ RỘNG VẾT NỚT GIỚI HẠN, ĐỂ ĐẨM BẢO HẠN CHẾ THẨM CHO KẾT CẦU

Điểu kiện làm việc c	ủa kết cấu	Cấp chống nứt và giá trị (mm) để đảm bảo hạ	bề rộng vết nứt giới hạn n chế kết cấu bị thấm
1. Khi kết cấu chịu áp lực của	Khi toàn bộ tiết diện chịu kéo	Cấp 1⁺	a _{crc1} = 0,3
chất lỏng hoặc hơi	Khi một phần tiết diện chịu nén	Cấp 3	a _{crc2} = 0,2
2. Kết cấu chịu áp lực của vật liệ	u rời	Cấp 3	a _{crc1} = 0,3
z. Net cau cijiu ap iúc cua vật hệ	u 101		$a_{crc2} = 0.2$

^{*} Cần ưu tiên dùng kết cấu ứng lực trước. Chỉ khi có cơ sở chắc chắn mới cho phép dùng kết cấu không ứng lực trước với cấp chống nứt yêu cầu là cấp 3.

Phụ lục 11 CẤP CHỐNG NÚT CỦA KẾT CẦU BỆTÔNG CỐT THÉP VÀ GIẢ TRỊ BỀ RỘNG VẾT NÚT GIỚI HẠN $a_{\rm crc1}$ VÀ $a_{\rm crc2}$, NHẪM BẢO VỆ AN TOÀN CHO CỐT THÉP

	Cấp c	hống nứt và các giá trị và	,mm
Điều kiện làm việc của kết cấu	Thép thanh nhóm Cl, A-l, Cll, A-ll, Clll, A-lll, A-lll _B , ClV A-lV Thép sợi nhóm B-l và Bp-l	Thép thanh nhóm A–V, A–VI Thép sợi nhóm B–II và Bp–II, K–7, K–19 có đường kính không nhỏ	Thép thanh nhóm A,—VII Thép sợi nhóm B–II và Bp–II và K–7 có đường kính nhỏ không lớn
		hơn 3,5 mm	hơn 3,0 mm
1. Ở nơi được che phủ	Cấp 3	Cấp 3	Cấp 3
	a _{crc1} = 0,4	ල a _{crc1} =0,3	a _{crc1} = 0,2
	$a_{crc2} = 0.3$	$a_{crc2} = 0.2$	a _{crc2} = 0,1
2. Ở ngoài trời hoặc	Cấp 3	Cấp 3	Cấp 2
trong đất, ở trên hoặc	a _{crc1} = 0,4	a _{cre1} = 0,2	a _{crc1} = 0,2
dưới mực nước ngắm	a _{crc2} = 0,3	a _{crc2} = 0,1	·
3. Ở trong đất có mực	Cấp 3	Cấp 2	Cấp 2
nước ngầm thay đổi	a _{cre1} = 0,3	a _{crc1} =0,2	a _{cre1} = 0,1
	a _{crc2} = 0,2		

Phụ lục 12 TẢI TRỌNG VÀ HỆ SỐ ĐỘ TIN CẬY VỀ TẢI TRỌNG $\gamma_{\rm f}$ ĐỂ TÍNH THEO SỰ HÌNH THÀNH VÀ MỞ RỘNG VẾT NỨT

Cấp chống	Tải trọng và hệ số độ	tin cậy khi tính toái	n theo điều kiện	
nứt của kết cấu bêtông	Hình thành vết nứt	Mở rộng	vết nứt	Khép kín vết
cốt thép	riiiii tilaiiii vet nut	Ngắn hạn	Dài hạn	nút
	Tải trọng thường xuyên; tải trọng tạm thời dài hạn và tạm thời ngắn hạn với γ > 1,0*	- :		
2	Tải trọng thường xuyên; tải trọng tạm thời dài hạn và tạm thời ngắn hạn với $\gamma_f > 1,0^*$ (tính toán để làm rõ sự cần thiết phải kiểm tra theo điều kiện không mở rộng vết nứt ngắn hạn và khép kín chúng)			Tải trọng thường xuyên; tải trọng tạm thời dài hạn với γ _r = 1,0*
3	Tải trọng thường xuyên; tải trọng tạm thời dài hạn và tạm thời ngắn hạn với $\gamma_t = 1.0^*$ (tính toán để làm rõ sự cần thiết phải kiểm tra theo điều kiện mở rộng vết nứt)	Như trên	Tải trọng thường xuyên; tải trọng tạm thời dài hạn với y _r = 1,0*	

^{*} Hệ số γ_r được lấy như khi tính toán theo độ bền.

GHI CHÚ:

Tải trọng đặc biệt phải được kể đến khi tính toán theo điều kiện hình thánh vết nứt trong trường hợp sự có mặt của vết nứt dẫn đến tình trạng nguy hiểm (nổ, cháy, v.v...)

Phụ lục 13 ĐỘ VÕNG GIỚI HẠN CỦA CẤU KIỆN SÀN

Cờu kiện của kết cấu	Độ võng giới hạn
1. Dầm cầu chạy	- -
- Cầu chạy điện	1/600
- Cầu chạy thủ công	1/500
2. Sàn có trần phẳng và các cấu kiện của mái (ngoại trừ mục 4) khi nhịp (m):	
1<6	1/200
6 ≤ 1 ≤ 7,5	3cm
1>7,5	1/250
3. Sàn có trần kết cấu sườn và các cấu kiện của cấu thang khi nhịp (m):	
1<5	1/200
5 ≤ <i>I</i> ≤ 20	2,5cm
/> 10	1/400
4. Các cấu kiện của mái nhà sản xuất nông nghiệp khi nhịp (m):	
1<6	1/150
6 ≤ <i>l</i> ≤ 10	4cm
<i>l</i> >10	1/250
5. Panen tường treo (khi tính uốn ngoài mặt phẳng) khi nhịp (m):	
<i>!</i> < 6	1/200 -
6 ≤ 1 ≤ 7,5	3cm
<i>⊳</i> 7,5	1/250

Phụ lục 14 BẢNG TRA DIỆN TÍCH VÀ TRONG LƯỢNG CỐT THÉP

Ф mm		Dię	ên tích tiể	ết diện ng	ang, cm²	' – ứng vo	ới số than	ih		Trọng lượng 1m, kG	Ф mm
	. 1	2	3 .	4	5	6	7	8	9		
6	0,283	0,57	0,85	1,13	1,42	1,70	1,98	2,26	2,55	0,222	6
8	0,503	1,00	1,51	2,01	2,51	3,02	3,52	4,02	4,53	0,395	8
10	0,785	1,57	2,36	3,14	3,92	4,17	5,50	6,28	707	0,617	10
12	1,131	2,26	3,39	4,52	5,65	6,79	7,92	9,05	10,18	0,888	12
14	1,539	3,08	4,62	6,16	7,69	9,23	10,77	12,31	13,85	1,208	14
16	2,011	4,02	6,03	8,04	10,05	12,06	14,07	16,08	18,1	0,578	16
18	2,545	5,09	7,63	10,18	12,72	15,27	17,81	20,36	22,9	1,998	18
20	3,142	6,28	9,42	12,56	15,71	18,85	21,99	25,14	28,27	2,466	20
22	3,801	7,6	11,4	15,2	19	22,81	26,61	30,41	34,21	2,984	22
25	4,909	9,82	14,73	19,63	24,54	29,45	34,36	39,27	44,18	3,853	25
28	6,158	12,32	18,47	24,63	30,79	36,95	43,10	49,36	55,42	4,834	28
30	7,069	14,14	21,21	28,28	35,34	42,41	19,48	56,55	63,62	5,549	30
32	8,042	16,08	24,12	32,17	40,21	48,25	56,3	64,34	72,38	6,313	32
36	10,18	20,36	30,54	40,72	50,9	61,08	71,26	81,44	91,62	7,99	36
40	12,56	25,12	37,68	50,24	62,8	75,36	87,92	100,4	113,0	9,87	40

Phụ lục 15 BẢNG TRA DIỆN TÍCH CỐT THÉP CỦA BẢN

Khoảng					Oường kín	nh cốt thể	p, mm			
cách, cm	5	6	6/8	8	8/10	10	10/12	12	12/14	14
7	2,81	4,04	5,61	7,19	9,20	11,21	13,68	16,15	19,06	21,98
8	2,45	3,54	4,91	6,29	8,05	9,81	11,97	14,13	16,68	19,23
9	2,18	3,14	4,37	5,59	7,16	8,72	10,64	12,56	14,83	17,10
10	1,96	2,83	3,93	5,03	6,44	7,85	10,03	11,31	13,35	15,39
11	1,78	2,57	3,57	4,57	5,85	7,14	8,71	10,28	24,27	13,99
12	1,63	2,36	3,27	4,19	5,37	6,54	7,98	9,42	11,12	12,82
. 13	1,51	2,18	3,02	3,87	4,95	6,04	7,37	8,70	10,26	11,83
14	1,40	2,02	2,81	3,59	4,60	5,61	6,84	8,07	9,53	10,99
15	1,31	1,89	2,62	3,35	4,29	5,23	3,38	7,54	8,90	10,26
16	1,23	1,77	2,46	3,14	4,03	4,91	5,98	7,06	8,33	9,61
17	1,15	1,66	2,31	2,96	3,79	4,62	5,63	6,65	7,85	9,05
18	1,09	1,57	2,18	2,79	3,58	4,63	5,45	6,28	7,41	8,55
19	1,03	1,49	2,07	2,65	3,39	4,13	5,04	5,95	7,02	8,10
20	0,98	1,41	1,96	2,50	3,22	3,92	4,78	5,65	6,67	7,69

Phụ lục 16 BẢNG TÍNH TUNG ĐỘ CỦA BIỂU ĐỔ M VÀ Q ĐỐI VỚI DẨM LIÊN TỤC

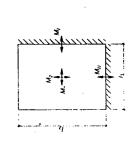
				Such a Suga		•
Sơ đồ đặt tải	M, Q và phần lực gối tựa	x 24.05	P P P P P P P P P P P P P P P P P P P	K=0.5pl	K=0.601	631 94 1031
			DÂM HAI NHIP			
	M.:	0,070pl²	0,222 <i>P</i> I	0,095k/	0,094kl	0,089
	M.2		0,111 <i>PI</i>			- 1
0,2001 0,2001	M. ₃		1			: ·
\$ 1 \$ 2 \$	M_{B} (min)	-0,125pP	-0,333 <i>PI</i>	-0,156Kl	-0,155 <i>kl</i>	-0,151 <i>kl</i>
2	$A = Q_{iA}$	0,375pl	0,667	0,344k	0,345k	0,349k
,	B(max)	1,250 <i>pl</i>	2,667P	1,312k	1,310 <i>k</i>	1,302k
	Q ₁₈ (min)	-0,625	-0,333 <i>P</i>	-0,656k	-0,655 <i>k</i>	-0,651k ₋
	M., (max)	0,096 <i>p</i> f	0,278 <i>PI</i>	0,129kl	0,126 <i>kl</i>	0,1211
·	M.2 (max)	1	0,222 <i>PI</i>	l	ı	
\$ 1 \$ 2 \$ \$	M-3 (max)	٠	l 			·
	M _B	0,063 <i>pf</i>	-0,167 <i>PI</i>	-0,078kl	-0,078 <i>kl</i>	-0,076 <i>kl</i>
N:	$A = Q_{A}$ (max)	0,438pl	0,833	0,422k	0,422k	0,424k
	M.; (min)	1	-0,056 <i>P</i>	-0,035 <i>kl</i>	-0,035kl	-0,034KI
	M.2 (min)	1	-0,111 <i>Pl</i>	1	ı	I
14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	M-3 (min)	1	ı I		I	I
	$A = Q_{1A}$ (min)	10,06301	0,167 <i>PI</i>	-0,078k	-0,078k	-0,076k

DÁM BA NHIP 0,080pf 0,025pf 0,067Pf 0,067Pf 0,067Pf 0,106Ff 1,100pf 0,244Pf 0,105Kf 0,067Pf							
of dat tai M, O value P					Dạng tại trọng	-	
DÂM BA NHIP M_{12} M_{13} M_{14} M_{15} M_{15} M_{15} M_{17} M_{18} M_{19} M	Sơ đổ đặt tải	M, Q và phản lực gối tựa	150405	P P P P P P P P P P P P P P P P P P P		P K=0.6pl	AUIII K-0.7pl
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				DÂM BA NHIP			
$M_{1,2}$ $M_{1,2}$ M_{2} M_{3} M_{2} M_{3} M_{1} M_{2} M_{1} M_{2} M_{2} M_{1} M_{2} M_{2} M_{1} M_{2} M_{2} M_{1} M_{2} M_{2} M_{2} M_{2} M_{2} M_{2} M_{2} M_{3} M_{2} M_{2} M_{2} M_{2} M_{3} M_{2} M_{2} M_{3} M_{2} M_{3} M_{2} M_{2} M_{3} M_{4} M_{2} M_{2} M_{2} M_{2} M_{3} M_{4} M_{2} M_{2} M_{2} M_{3} M_{4} M_{2} M_{2} M_{2} M_{2} M_{3} M_{4} M_{2} M_{2} M_{2} M_{3} M_{4} M_{2} M_{2} M_{3} M_{4} M_{2} M_{2} M_{3} M_{4} M_{2} M_{2} M_{3} M_{4} M_{2} M_{4} M_{5}		M.	0,080p	0,244PI	0,108 <i>kl</i>	0,107 <i>kl</i>	0,102 <i>kl</i>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		M:2	ı	0,156 <i>PI</i>	f.	1	I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		 M:3	ı	1	1	1	ı
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		M ₂ .	0,025pl ²	0,067 <i>P</i> !	0,042 <i>kl</i>	0,040k/	0,036k/
$M_{\rm B}$ $-0,100p^{R}$ $-0,267PI$ $A = Q_{\perp A}$ $0,400pI$ $0,733P$ $0.733P$ 0.8 $0.900pI$ $0.733P$ $0.900pI$ $0.733P$ $0.9000pI$ $0.9000P$		M ₂₂	1	0,067 <i>Pl</i>	ı	1	. 1
$A = Q_{c,c}$ $0,400pl$ $0,733P$ B $1,100pl$ $2,267P$ $Q_{c,B} = Q_{c,C}$ $-0,600pl$ $-1,267P$ $Q_{c,B} = Q_{c,C}$ $0,101pl^{p}$ $0,289Pl$ $M_{c,C}$ (max) $ 0,244Pl$ $M_{c,C}$ (min) $ M_{c,C}$ (min) $ -$	2 20.	M _B	$-0,100p^{R}$	-0,267 <i>PI</i>	-0,125k/	-0,124 <i>kl</i>	-0,1211/
B1,100 pl 2,267 P $Q_{2B} = Q_{2C}$ $-0,600pl$ $-1,267P$ $Q_{2B} = Q_{2C}$ $0,500pl$ $1,000P$ $M_{\cdot 2}$ (max) $0,101pl^{p}$ $0,289Pl$ $M_{\cdot 2}$ (max) $ 0,244Pl$ $M_{\cdot 2}$ (min) $ M_{2C}$ (min) $ M_{E}$ $ M_{E}$ $ -$		A = Q.4	0,400 <i>p</i> /	0,733P	0,375k	0,376k	0,379 <i>kl</i>
$Q_{2B} = Q_{2C}$ $-0,600pl$ $-1,267P$ $Q_{2B} = Q_{2C}$ $0,500pl$ $1,000P$ M_{1} (max) $0,101pl^{2}$ $0,289Pl$ M_{2} (max) $ 0,244Pl$ M_{2} (min) $ 0,050pl^{2}$ $-0,133Pl$ M_{2} (min) $ 0,050pl^{2}$ $ 0,133Pl$ M_{2}		8	1,100p/	2,267P	1,125 <i>k</i>	1,124k	1,121k
$Q_{2B} = Q_{2C}$ 0,500 ρl 1,000 ρ 0,101 ρl^{μ} 0,289 ρl 0,289 ρl 0,244 ρl 0		Ġ	/d009'0-	-1,267 <i>P</i>	-0,625 <i>k</i>	-0,624 <i>k</i>	-0,621 <i>k</i>
$M_{\cdot 2}$ (max) $0,101p^{\beta}$ $0,289PI$ $M_{\cdot 2}$ (max) $ 0,244PI$ $M_{\cdot 3}$ (max) $ M_{\cdot 2}$ (min) $ M_{\cdot 2}$ (min) $ M_{\cdot 2}$ (min) $ M_{\cdot 2}$ (min) $ -$		$Q_{2B} = Q_{2C}$	0,500	1,000 <i>P</i>	· 0,500k	0,500 <i>k</i>	0,500k
M_{2} (max) $-$ 0,244 PI M_{3} (max) $-$ 0,050 p^{2} $-$ 0,133 PI M_{2} (min) $-$ 0,050 p^{2} $-$ 0,133 PI M_{2} (min) $-$ 0,050 p^{2} $-$ 0,133 PI		M. (max)	0,101,08	0,289 <i>PI</i>	0,136 <i>kl</i>	0,134Kl	0,128 <i>kl</i>
M_{23} (max) $ 0,050pl^2$ $-0,133Pl$ M_{22} (min) $ 0,133Pl$ M_B $ 0,133Pl$ M_B		М.2 (тах)	الم يوميد	0,244 <i>PI</i>	1	1	
M_{22} (min) $-0,050pl^2$ $-0,133Pl$ M_{22} (min) $ -0,133Pl$ M_{2} $-0,133Pl$ M_{2}		M.3 (max)	1	. 1	1	1	
M ₂₂ (min) – – –0,133 <i>Pl</i> M _E –0,050 <i>pl</i> ² –0,133 <i>Pl</i>	\$ 1 \frac{1}{8} 2 \frac{1}{8} 3 \frac{1}{8}	M ₂ . (min)	-0,050pl	-0,133 <i>Pl</i>	-0,063 <i>kl</i>	-0,062 <i>kl</i>	-0,061kl
-0,050p/² -0,133P/		M ₂₂ (min)	ı	-0,133 <i>PI</i>			ì
C 1000 C				-0,133PI	-0,063 <i>kl</i>	-0,062 <i>kl</i>	-0,0611/
0,450p/ U,867P		A = Q., (max)	0,450p/	0,867 <i>P</i>	0,437k	0,438 <i>k</i>	0,439k

				Dạng tải trọng		
Sơ đồ đặt tải	M, Q và phán lực gối tựa ·	x 04.0.5	P P P P P P P P P P	P K=0.5pl	A (20,60)	K=0.704
	M., (min)	1	-0,0044 <i>PI</i>	-0,028 <i>kl</i>	-0,028 <i>kl</i>	-0,027 <i>kl</i>
	M ₁₂ (min)	. · ·	14680'0-			
	M ₁₃ (min)		ľ	I		
A 1 B 2 B 3 B	M ₂ ; (max)	0,075p ^p	0,200 <i>PI</i>	0,104 <i>kl</i>	0,102 <i>kl</i>	0,096
	M ₂₂ (max)	1	0,200	ļ	1	1
	M _B	-0,050pP	-0,133 <i>PI</i>	-0,063	-0,062 <i>kl</i>	-0,061k
	A = Q ₁₄ (min)	-0,050 <i>pl</i>	-0,133PI	-0,063k/	-0,062 <i>k</i>	-0,061 <i>k</i>
	M _B (min)	0,117p ^p	-0,311 <i>PI</i>	-0,146kl	-0,145 <i>kl</i>	-0,142ki
	M _c (max)	-0,033pP	-0,089 <i>PI</i>	-0,041kl	-0,041kl	-0,041KI
A 1 8 2 6 3 B	B (max)	1,200 <i>p</i> /	2,533 <i>P</i>	1,251 <i>k</i>	1,249 <i>k</i>	1,244k
	Q _{is} (min)	-0,617 <i>pl</i>	-1,311P	-0,646 <i>k</i>	-0,645k	-0,642k
	Q _{2B} (max)	0,583 <i>pl</i>	1,222 <i>P</i>	0,605k	0,604k	0,602k
	M _B (max)	0,017 <i>pP</i>	0,044PI	0,022 <i>kl</i>	0,0211/1	0,021kl
<u> </u>	Mc	−0,067 <i>p</i> β	-0,178 <i>PI</i>	-0,083 <i>kl</i>	-0,0831/1	-0,081k/
0 0	Q _{'8} (max)	0,017 <i>pl</i>	0,044	0,022 <i>k</i>	0,021k	0,021k
	Q ₂₈ (min)	-0,083 <i>pl</i>	-0,222 <i>P</i>	-,0105 <i>k</i>	-0,104k	-0,102 <i>k</i>

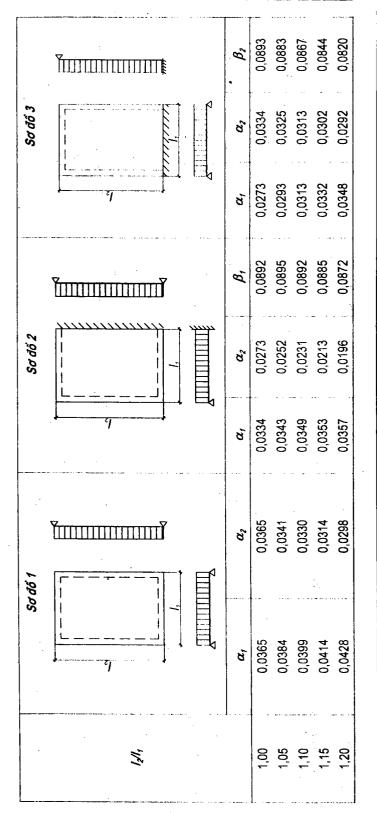
		-		Dạng tải trọng		
Sơ đô đặt tải	M, Q và phản lực gối tựa	x 04.05]	P P P P P P P P P P P P P P P P P P P	P K=0.5pl	0.41 [p.2], 0.41	Keo.7 bo
			DÂM BỐN NHỊP			
	. M.	0,077p ^p	0,238 <i>PI</i>	0,104KI	0,103KI	0.098
	M-2		0,143 <i>PI</i>	ı	1	1
	M.3	1	1	ı	1	I
	M ₂ .	0,037pP	/d6/0'0	0,056k/	0,053k/	0.049k/
	M ₂₂		0,111 <i>P</i> /	. 1		1
0 21131 0 20001	M ₂₃	1	l 	1	i	. 1
0,21051	M _B	-0,107pP	-0,286 <i>PI</i>	-0,134kl	-0,133K/	-0.130k/
A 1 B 2 C 3 C 4 E	Mc	-0,071pl	-0,190 <i>PI</i>	-0,089 <i>kl</i>	-0,088 <i>k</i> /	-0.086 <i>k</i> /
	A = Q.4	0,393 <i>p</i> /	0,714 <i>P</i>	0,366k	0,367k	0.370k
	8	1,14301	2,381 <i>P</i>	1,179k	1,178K	1,174K
	O	0,929	1,810 <i>P</i>	0,910k	0,910k	0,912k
	Ö.	ld709'0-	-1,286 <i>P</i>	-0,634k	-0,633 <i>k</i>	0,630 <i>k</i>
	, Q	0,536pl	1,095 <i>P</i>	0,545k	0,545k	0.544K
	Q_{2C}	-0,464 <i>pl</i>	-0,905 <i>P</i>	-0,455 <i>k</i>	-0,455k	-0,456k
	M (max)	$0,100p^{R}$	0,286 <i>PI</i>	0,134KI	0,132K/	0,126KI
	M. ₂ (max) ·		0,238 <i>PI</i>	ı	ı I	
	M.3 (max)	i	1	I	- 1	
	M ₂ . (min)		-0,127 <i>PI</i>	-0'056kj	-0.056k/	-0.055kl
A18263848	M ₂₂ (min)	l	-0,111 <i>Pl</i>	1	1	
	M_{23} (min)	ŀ	i.	I.		
	$M_{\rm B}$	$-0.054p^{R}$	-0,143 <i>PI</i>	-0,067 <i>kl</i>	-0,067 <i>kl</i>	-0.065k/
•	Μc	$-0.036p^{R}$	-0,095 <i>PI</i>	-0,045kl	-0,045KI	-0.044 <i>kl</i>
	A = Q. _z (max)	0,446 <i>pl</i>	0,857 <i>P</i>	0,433k	0,433K	0,425k

		,	-			
				Dạng tải trọng		
Sơ đổ đặt tải	M, Q và phản lực gối tựa	x 04.05	P P P	K=0.5pl	K=0.60/	(6.3) 6.4 (6.3)
	M (min)		-0,048 <i>P</i>	-0,030 <i>kl</i>	-0,030 <i>kl</i>	-0,029 <i>kl</i>
	: M. ₂ (min)	1	-0'095 <i>PI</i>	ı		ı
	. M.3 (min)					ļ
	M ₂ . (max)	0,080pf	0,206 <i>PI</i>	0,1111/	0,1081/1	0,102 <i>kl</i>
A 1 B 2 C 3 B 4 E	. <i>M</i> ₂₂ (max)	1	0,222 <i>PI</i>	1	1	ı
	M ₂₃ (max)			ľ	l ·	ı
	M _B	-0,054pl²	0,143 <i>PI</i>	-0,067 <i>kl</i>	-0,067 <i>kl</i>	_0,065 <i>k</i> /
	Mc	-0,036p ^p	-0,095 <i>PI</i>	-0,045Kl	-0,045k/	-0,044k/
	A = Q. ₄ (min)	-0,054 <i>pl</i>	-0,143 <i>P</i>	-0,067 <i>k</i>	-0,067 <i>k</i>	-0,065 <i>k</i>
22	M _B (min)	-0,121pP	-0,321 <i>PI</i>	0,151kl	-0,150K/	-0,146KI
	Mc	-0,018 <i>p</i> /²	-0,048 <i>PI</i>	-0,023	-0,022kl	-0,022 <i>kl</i>
K, K, K, K	M _D	-0,058pl	-0,155 <i>PI</i>	-0,072kl	-0,072kl	-0,070KI
전 2 년 4 년 12 12 년 4 년 14 14 14 14 14 14 14 14 14 14 14 14 14 1	B (max)	1,223pl	2,595 <i>P</i>	1,279k	1,278k	1,270k
	Q. _B (min)	-0,621 <i>pl</i>	-1,321P	-0,651k	-0,650 <i>k</i>	-0,646k
	О ₂₈ (max)	0,603	1,274P	0,628	0,628 <i>k</i>	0,624k
	M _B (max)	0,013pP	0,036 <i>PI</i>	0,017 <i>kl</i>	0,01714	0,016KI
	Mc	$-0.054p^{\mu}$	-0,143 <i>PI</i>	-0,066 <i>kl</i>	-0,066 <i>kl</i>	-0,064 <i>kl</i>
V V V V V V	Mo	$-0.049 \rho ^{ m p}$	-0,131 <i>PI</i>	-0,062k/	-0,061k/	-0,060 <i>kl</i>
A B C C D E	B (min)	-0,080 <i>PI</i>	-0,214P	-0,100 <i>k</i>	-0,100k	-0,096 <i>k</i>
	Q. _B (max)	0,013 <i>PI</i>	0,036P	0,017 <i>k</i>	0,017k	0,016k
	Q ₂₈ (min)	lq790,0—	-0,178 <i>P</i>	-0,083 <i>k</i>	-0,083 <i>k</i>	-0,080 <i>k</i>


## 0 v4 ## 1 v4 ##					Dạng tải trọng		
M _c (min) -0,036ρ ° -0,036ρ ° -0,045κ ° -0,133 ° -0,133 ° -0,133 ° -0,133 ° -0,133 ° -0,133 ° -0,133 ° -0,133 ° -0,133 ° -0,133 ° -0,133 ° -0,133 ° -0,136 °<	Sơ đồ đặt tải	M, Q và phản lực gối tựa	() () () () () () () () () ()	//3			6.31 0.41 (0.31)
Mc (min) -0,107 ρF -0,286 ρF -0,134 μ -0,133 μ C (max) 1,143ρI 2,381 ρ 1,176 κ 1,176 κ Q _{2c} (min) -0,571 ρI -1,191 ρ -0,589 κ -0,589 κ -0,588 κ M ₆ (max) 0,036 ρF 0,095 ρF 0,045 κI 0,045 κI 0,045 κI C (min) -0,214 ρI -0,571 ρ -0,286 κ -0,286 κ -0,286 κ Q _{2c} (max) 0,107 ρI 0,286 ρ 0,134 κ 0,133 κ -0,133 κ M ₁ 0,078 ρF 0,240 ρI 0,106 μI 0,104 μI -0,104 μI M ₁ - - - - - - M ₂ - - - - - - M ₂ - - - - - - - M ₃ 0,046 ρF 0,123 ρI - - - - - - M ₃ - - - - - - - - </th <th></th> <th>M_B</th> <th>~ _0,036pf</th> <th>ld960'0-</th> <th>-0,045kl</th> <th>-0,045<i>kl</i></th> <th>-0,044Kl</th>		M _B	~ _0,036pf	ld960'0-	-0,045kl	-0,045 <i>kl</i>	-0,044Kl
C (max) 1,143pl 2,381P 1,178k 1,176k		M _c (min)	-0,107 <i>p</i> P	-0,286 <i>P</i> /	-0,134Kl	-0,133KI	-0,130 <i>kl</i>
Q _{2c} (min) -0,571ρl -1,191Р -0,589k -0,588k M _B -0,071ρ ^β -0,190Pl -0,089kl -0,088kl M _C (max) 0,036ρ ^β 0,095Pl 0,045kl 0,045kl Q _{2c} (max) 0,107ρl -0,214ρl -0,571P -0,266k M ₁ 0,107ρl 0,286P 0,134k 0,133k M ₁ 0,078ρ ^β 0,240Pl 0,106kl 0,104kl M ₁ 0,078ρ ^β 0,076ρ ^β 0,076ρ ^β 0,050kl M ₁ 0,033ρ ^β 0,076ρ ^β 0,050kl 0,050kl M ₂ - - - - M ₃ 0,046ρ ^β 0,123Pl - - M ₈ - - - - - M ₃ - - - - - M ₃ - - - - -	A1826384E	C (max)	1,14301	2,381P	1,178k	1,176k	1,172k
M _B -0,071pF -0,190PI -0,089M -0,088M B 2 2 3 6 16 C (min) -0,214pI -0,571P -0,268K -0,086K M _C (max) 0,036pF 0,095PI 0,045KI 0,045KI 0,045KI DÂM NÂM NHIP DÂM NÂM NHIP DÂM NÂM NHIP -0,286P 0,106KI 0,104M M ₁₂ - - 0,146PI - - - M ₁₂ - - 0,146PI - - - M ₁₂ - - 0,146PI - - - M ₁₂ - - - - - - M ₁₂ - - - - - M ₁₂ - - - -		Q _{2c} (min)	-0,571pl	-1,191 <i>P</i>	-0,589 <i>k</i>	-0.588 <i>k</i>	-0,586 <i>k</i>
\$\hat{R}_{2}\$ = \$		Ma	-0,071pP	-0,190 <i>Pl</i>	-0,089 <i>kl</i>	-0,088 <i>kl</i>	0,086 <i>kl</i>
\$\frac{\text{P}}{\text{2}} \subseteq \frac{\text{P}}{\text{2}} \subseteq \frac{\text{P}}{\text{2}} \subseteq \frac{\text{C}}{\text{(max)}} 0,107pl 0,286P 0,134k 0,133k 0,133k 0,133k 0,133k 0,133k 0,133k 0,134k 0,133k 0,134k 0,133k \qu		M _c (max)	0,036pP	0,095P/	0,045 <i>kl</i>	0,045KI	0,044 <i>ki</i>
Q _{2c} (max) 0,107pl 0,286P 0,134k 0,133k M ₁₃ — DÂM NĂM NHIP — 0,106kl 0,104kl M ₁₃ — 0,034Pl 0,106kl 0,104kl O _{2240Pl} 0,052kl 0,050kl O _{2240Pl} 0,052kl 0,050kl O _{2240Pl} 0,052kl 0,050kl O _{2240Pl} 0,052kl 0,050kl O _{2240Pl} 0,050kl 0,050kl M ₃ 0,046pl 0,123Pl 0,066kl M ₆ -0,131kl -0,131kl -0,130kl M ₆ -0,105pl -0,211Pl -0,099kl -0,098kl	A-18-28-38-18	C (min)	-0,214pl	-0,571 <i>P</i>	-0,268k	-0,266 <i>k</i>	_0,260 <i>k</i>
DÂM NĂM NHIP DÂM NĂM NHIP DÂM NĂM NHIP 0,106k/I 0,104K/I M;2 — — 0,146P/I — M;2 — — — — — — — — — M;2 — — — — — — — — — — — — — — M;3 — — — — — — — —		Q _{2c} (max)	1,407pl	0,286	0,134 <i>k</i>	0,133 <i>k</i>	0,130 <i>k</i>
M.: 0,078pf 0,240Pl 0,106kl 0,104kl M.: - 0,146Pl - - M.: - - - - M.: - - - - 0,2200i M.: - - - 0,2200i M.: 0,033pf 0,050kl 0,050kl 0,2200i M.: - - - 0,2103i M.: 0,046pf 0,123Pl 0,066kl M.: - 0,123Pl - - M.: - - - - M				DÂM NĂM NHIP			
$M_{12} = 0.146PI = 0.0146PI = 0.0052kI = 0.0050kI$ $M_{2} = 0.033p^{2} = 0.003p^{2} = 0.0052kI = 0.0050kI$ $\frac{0.2000!}{0.2105!} M_{22} = 0.0099PI = 0.0052kI = 0.0050kI$ $\frac{0.2200!}{0.2105!} M_{23} = 0.0046p^{2} = 0.123PI = 0.066kI = 0.123PI = 0.0066kI = 0.123PI = 0.123PI = 0.0066kI = 0.130kI = 0.130kI = 0.0099kI = 0.00994kI = $		M.	0,078pP	0,240 <i>PI</i>	0,106 <i>kl</i>	0,104 <i>k</i> /	0,099 <i>kl</i>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Mız	ı	0,146 <i>PI</i>	ľ	1 .	ı
M_{2} 0,033pf 0,076P1 0,052kl 0,050kl M_{22} $-$ 0,099P1 $ -$. M ₁₃	i.	1	ı	ŀ	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		M ₂ .	0,033pP	0,076 <i>PI</i>	0,052 <i>kl</i>	0,050 <i>kl</i>	0,046 <i>KI</i>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,20001	M ₂₂	l	0,099 <i>Pl</i>	l	1	ţ
M_{32} 0,046pf 0,123Pl 0,066kl 0,066kl M_{32} - 0,123Pl - 0,123Pl - 0,130kl M_B -0,105pf -0,281Pl -0,131kl -0,099kl -0,098kl		M ₂₃	I	1		1	.)
$-$ 0,123 P_I $-$ 0,123 P_I $-$ 0,130 R_I $-$ 0,099 R_I $-$ 0,098 R_I	→ ~l	M ₃ .	0,046pP	0,123 <i>PI</i>	0,068 <i>kl</i>	0,066 <i>kl</i>	0,0611/1
$-0.105p^{\mu}$ $-0.281P^{\mu}$ $-0.131k^{\mu}$ $-0.130k^{\mu}$ $-0.079p^{\mu}$ $-0.211P^{\mu}$ $-0.099k^{\mu}$ $-0.098k^{\mu}$		M ₃₂	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	0,123 <i>PI</i>	ı		1
-0.079p ^p -0,211P! -0,099kl -0,098kl		M _B	-0,105pP	-0,281 <i>PI</i>	-0,13114	-0,130KI	-0,127 <i>k</i> J
		M c	₽d610,0—	-0,211 <i>Pl</i>	/4660'0 -	-0,098 <i>kl</i>	-0,096 <i>kl</i>

				Dạng tải trọng		
Sơ đồ đặt tải	M, Q và phần lực gối tựa	7 50+05 x	P P P P	K=0.5pl	K=0.60/	(6.34 . 0.41) 9.34)
	A = Q.A	0,395p/	0,719 <i>P</i>	0,369k	0,370 <i>k</i>	0,373 <i>k</i>
	В	1,132 <i>pl</i>	2,351 <i>P</i>	1,163 <i>k</i>	1,162k	1,158 <i>k</i>
	S.	0,974p/	1,930 <i>P</i>	0,968	0,968 <i>k</i>	0,969 <i>k</i>
	Q,	-0,605p/	-1,281p	-0,631k	-0,630k	-0,627 <i>k</i>
	Q _{2B}	0,526p/	1,070 <i>P</i>	0,532 <i>k</i>	0,532 <i>k</i>	0,531k
	Q_{2C}	-0,474 <i>p</i> I	-0,930 <i>P</i>	-0,468 <i>k</i>	-0,468 <i>k</i>	-0,469k
	Q _{3c}	0,500 <i>pl</i>	1,000 <i>P</i>	0,500	0,500%	0,500k
: :	M (max)	0,100p/² -	0,287 <i>PI</i>	0,135k/	0,132 <i>k</i>	0,126k
	M. ₂ (max)	}	0,240 <i>PI</i>	ł		1
	M-3 (max)	ł	I	ı		
	M ₂ . (min)	· ·	-0,129 <i>PI</i>	-0,058 <i>kl</i>	-0,058k/	-0,056 <i>kl</i>
	M_{22} (min)	· ·	-0,117 <i>PI</i>	1	1	1
A 18 C D E F	M_{23} (min)			l	1	1
	<i>M</i> ₃ , (max)	0,086pf	0,228 <i>PI</i>	0,117/4/	0,117 <i>kl</i>	0,109 <i>ki</i>
in a	. M ₃₂ (max)	1	0,228 <i>PI</i>	1	1	
	MB	-0,053pP	-0,140 <i>PI</i>	-0,066 <i>kl</i>	-0,066 <i>kl</i>	-0,064 <i>kl</i>
	Μc	$-0.039p^{\mu}$	-0,105 <i>PI</i>	-0,050 <i>kl</i>	-0,050kl	-0,048 <i>kl</i>
	$A = Q_{A}$ (max)	0,447 <i>pl</i>	0,860P	0,434k	0,434k	0,436k

M, c Sơ đồ đặt tải phả gố				Dạng tải trọng		
	M, Q và phần lực gối tựa	x 0.4.0.5	P P P P P P P P P P	P K=0.5pl	P K=0.5pl	(0.3) (0.3)
M ₁₁ (min)	(u		-0,047 <i>PI</i>	-0,030 <i>kl</i>	-0,030 <i>kl</i>	-0,029 <i>kl</i>
M ₁₂ (min)	Ē.	1	-0,094 <i>PI</i>	Ι .	1	1,
M ₁₃ (min)	(i.	1	1 -	1	ŀ	Ι.
M ₂₁ (max)	ax)	0,079p ^p	0,205PI	0,109 <i>kl</i>	0,106 <i>kl</i>	0,101 <i>kl</i>
M ₂₂ (max)	iax)	ı	0,216 <i>PI</i>	· · · · · · · · · · · · · · · · · · ·	ı	1
Δ 1Δ2 Δ 3 Δ 4 Δ 5 Δ M ₂₃ (max)	ax)		l		l	ı
	(iji	1	-0,105 <i>PI</i>	-0,050kl	-0,050 <i>kl</i>	-0,048 <i>kl</i>
M., (min)	ii)	ı	-0,105 <i>PI</i>	i	ı	ŀ
W		-0,053pP	-0,140 <i>PI</i>	-0,066kl	-0,066 <i>kl</i>	-0,064 <i>kl</i>
· W		-0,039pP	-0,105P/	-0,050kl	-0'020 <i>Kl</i>	-0,048 <i>kl</i>
) *\O = \V = \O .	, (min)	-0,053pP	-0,140 <i>P</i>	-0,066 <i>k</i>	-0,066k	-0,064k
M.(min)	(E	-0.120pP	-0,319 <i>PI</i>	-0,149 <i>kl</i>	-0,148 <i>kl</i>	-0,144 <i>kl</i>
W	ì	-0,022p ^p	-0,057 <i>PI</i>	-0,027 <i>ki</i>	-0,027 <i>kl</i>	, -0,027kl
); W		-0,044pP	-0,118 <i>Pl</i>	-0,055 <i>kl</i>	-0,055kl	_0,053 <i>kl</i>
		-0,051pP	0,137 <i>PI</i>	-0,064 <i>kl</i>	-0,063 <i>kl</i>	_0,062 <i>kl</i>
A B C D E F F B (max)	(X	1,218p/	2,581	1,271k	1,269 <i>k</i>	1,261k
(min) 0.0	(iii	-0,620 <i>p</i> /	-1,319P	-0,649k	-0,648 <i>k</i>	-0,644k
Q _{2a} (max)	nax)	1,598р/	1,262 <i>P</i>	0,622 <i>k</i>	0,621k	0,617k


So đổ đặt tải phản lực $\frac{\rho}{g \hat{\sigma} i}$ tựa $\frac{\rho}{ x_{04-0.5} }$ $M_B(\max)$ $\Delta T \Delta Z $				
M ₆ (max) M _c M _b M _E B (min) Q ₁₈ (max) Q ₂₈ (min) M ₈		F K=0,5pl	A K=0.6pl	K=0.70 0.31 0.41 0.31
M _C M _D M _E B (min) Q _{1B} (max) Q _{2B} (min) M _B M _C (min)	JP 0,038PI	0,018KI	0,018k/	0,017kl
M _D ME B (min) Q ₁₈ (max) Q ₂₈ (min) M _B M _C (min)	of -0,153PI	-0,072Kl	-0,071kl	-0,069 <i>k</i> /
M _E B (min) Q ₁₈ (max) Q ₂₈ (min) M _B	of -0,093P/	-0,044 <i>Kl</i>	-0,043K/	-0,04381
•	oP -0,144PI	/V290,0—	-0,067 <i>kl</i>	-0,065k/
-	pl0,230P	-0,108 <i>k</i>	-0,108 <i>k</i>	-0,103k
	o'038P	0,018 <i>k</i>	0,018k	0,017 <i>k</i>
_	pl —0,191 <i>P</i>	,09,90 <i>k</i>	-0,089k	-0,086 <i>k</i>
	19 -0,093PI	-0,044ki	-0,043KI	-0,042kl
	of -0,297PI	-0,139 <i>kl</i>	-0,138KI	-0,134k/
M _p −0,020p ^p	of -0,054PI	-0,025k/	-0,025kl	-0,024 <i>kl</i>
A 1 1 2 2 3 3 4 4 5 5 A ME -0,057 pP	of -0,153Pl	-0,071 <i>kl</i>	-0,071 <i>kl</i>	-0,069 <i>kl</i>
C (max) 1,167pl	i 2,447P	1,209k	1,208 <i>k</i>	1,202k
Q _{2c} (min) -0,576 <i>pl</i>	ol -1,204P	-0,595 <i>k</i>	-0,595k	-0,592k
Q _{3c} (max) 0,591 <i>pl</i>	1,242P	, 0,614k	0,613k	0,610k
M_B $-0.071p^R$	P -0,188PI	-0,087 <i>kl</i>	-0,087 <i>kl</i>	-0,085 <i>kl</i>
M_c (max) 0,032 p^{μ}	P 0,086P/	0,040 <i>kl</i>	0,040Kl	0,038
M_D $-0.059p^{\mu}$	np -1,156Pl	-0,074k/	-0,073KI	-0,072kl
Q 1 Q 2 Q 3 Q 4 Q 5 Q ME -0,048pl	of -0,128Pl	-0,060 <i>kl</i>	-0,059kl	-0,058 <i>kl</i>
C (min)0,194 <i>pl</i>	ol —0,517P	-0,241k	-0,240k	-0,233k
. Q _{2c} (max) 0,103 <i>pl</i>		0,127 <i>k</i>	0,127k	0,123k ·
Q _{3c} (min) -0,091 <i>pl</i>	ol —0,242P	-0,114k	-0,113k	-0,110k

GIÁ TRỊ MÔMEN CỰC ĐẠI Ở BẢN CHỮ NHẬT CHỊU TẢI TRỌNG PHẬN BỐ ĐỀU arrhoTÍNH THEO SƠ ĐỔ ĐẢN HỔI Phụ lực 17

 M_i và M_2 – giá trị mômen lớn nhất ở nhịp xuất hiện theo phương l_i và l_2 . M_i và M_i – giá trị mômen lớn nhất ở gối tựa xuất hiện theo phương l_i và l_2 .

 $M_1 = \alpha_1 q I_1 I_2$; $M_2 = \alpha_2 q I_2 I_2$; $M_1 = -\beta_1 q I_1 I_2$; $M_6 = -\beta_2 q I_1 I_2$

	Ymmmmmm t	β,	0,0791	0,0760	0,0726	0,0688	0,0654	0,0620	0,0585	0,0553	0,0519	0,0489	0,0460	0,0432	0,0407	0,0332	0,0359	0,0338
So độ 3		α' ▷	0,0280	0,0269	0,0258	0,0248	0,0237	0,0228	0,0219	0,0208	0,0198	0,0190	0,0181	0,0172	0,0165	0,0157	0,0149	0,0142
		\$ B	0,0363	0,0378	0,0391	0,0401	0,0411	0,0420	0,0427	0,0433	0,0437	0,0441	0,0443	0,0444	0,0445	0,0445	0,0444	0,0443
		β,	0,0859	0,0843	0,0827	0,0808	0,0790	0,0772	0,0754	0,0735	0,0718	0,0701	0,0685	0,0668	0,0653	0,0638	0,0624	0,0610
Sơ đó 2		a ²	0,0179	0,0165	0,0152	. 0,0140	0,0128	0,0119	0,0109	0,0101	0,0093	9800'0	0,0080	0,0075	6900'0	0,0064	0900'0	0,0056
	4	α,	0,0359	0,0359	0,0358	0,0357	0,0353	0,0350	0,0346	0,0341	0,0338	0,0333	0,0329	0,0326	0,0321	0,0316	0,0310	0,0303
३० वर्छ १		\dag{a}	0,0282	0,0268	0,0253	0,0240	0,0225	0,0214	0,0201	0,0189	0,0179	0,0169	0,0158	0,0148	0,0140	0.0133	0,0125	0,0118
SO		α,	0,0440	0,0452	0,0461	0,0469	0,0475	0,0480	0,0484	0,0485	0,0186	0,0488	0,0486	0,0485	0,0484	0,0480	0,0476	0,0473
	1//	1	1,25	1,30	1,35	1,40	1,45	1,50	1,55	1,60	1,65	1,70	. 1,75	1,80	1,85	1,90	1,95	2,00

	β_2	0,0625	0,0590	0,0522	0,0488	0,0454	0,0421	0,0391	0,0361	0,0334	0,0310	0,0286	0,0265	0,0245	0,0228	0,0211	0,0196	0,0183	0,0169	0,0169	0,0147
So dó 6	β,	0,0625	0,0655	0,0691	0,0703	0,0710	0,0711	0,0711	0,0709	0,0703	0,0695	9890'0	8/90'0	0,0668	0,0657	0,0645	0,0635	0,0622	0,0612	0,0599	0,0588
So	a,	0,0269	0,0255	0,0228	0,0214	0,0202	0,0188	0,0176	0,0165	0,0154	0,0144	0,0134	0,0125	0,0117	0,0109	0,0097	9600'0	0,0089	0,0084	0,0078	0,0074
	α,	0,0269	0,0282	0,0232	0,0309	0,0314	0,0319	0,0320	0,0323	0,0324	0,0324	0,0323	0,0321	0,0319	0,0316	0,0313	0,0308	9080'0	0,0302	0,0299	0,0294
	β,	0,0694	60/0,0	0,0710	0,0707	0,0700	6890'0	9/90'0	0990'0	0,0641	0,0621	0,0599	0,0577	0,0555	0,0534	0,0507	0,0484	0,0464	0,0439	0,0418	0,0397
So dô 5	α,	0,0267	0,0265	0,0258	0,0254	0,0248	0,0242	0,0235	0,0229	0,0222	0,0214	0,0207	0,0200	0,0193	0,0186	0,0179	0,0172	0,0165	0,0158	0,0152	0,0146
7	α,	0,0180	0,0199	0,0216	0,0254	0,0274	0,0287	0,0302	0,0316	0,0329	0,0341	0,0352	0,0362	0,0369	0,0376	0,0383	0,0388	0,0393	0,0396	0,0398	0,0400
T IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	β,	0,0694	0,0680	0,0650	0,0633	0,0616	0,0599	0,0582	0,0565	0,0550	0,0534	0,0519	9050'0	0,0493	0,0476	0,0466	0,0454	0,0443	0,0432	0,0422	0,0412
20464	8	0,0180	0,0161	0,0146	0,0118	0,0106	0,0097	0,0088	0,0080	0,0072	9900'0	0,0060	0,0056	0,0051	0,0047	0,0043	0,0040	0,0037	0,0034	0,0032	0,0030
francisco de de la constante d	'α'	0,0267	0,0267	0,0260	0,0261	0.0257	0,0254	0,0250	0,0245	0,0240	0,0235	0,0230	0,0226	0,0221	0,0217	0,0212	0,0208	0,0204	0,0199	0,0196	0,0193
1/4/1		1,00	5,05	1, 10 15	1,10	1.25	1,30	1,35	1,40	1,45	1,50	1,55	1,60	1,65	1,70	1,75	1,80	1.85	1.90	1,95	2,00
					· · · · · · · · · · · ·								** *****								

$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Sơ đố	dő 7			SOL	Sơ đồ 8		ļ ,	Sou	Sơ độ 9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15/1	'	de la constante de la constant	Transition of the state of the	Y	• 1		40000000000000000000000000000000000000		· · · · · · · · · · · · · · · · · · ·		1	
a, a, b, b, a, b, b,<				, , , , , , , , , , , , , , , , , , , ,					,				•
0,0226 0,0198 0,0556 0,0417 0,0198 0,0256 0,0417 0,0198 0,0560 0,0450 0,0221 0,0450 0,0545 0,0231 0,0184 0,0560 0,0356 0,0226 0,0212 0,0461 0,0545 0,0234 0,0169 0,0565 0,0350 0,0226 0,0212 0,0481 0,0530 0,0236 0,0164 0,0560 0,0359 0,0226 0,0206 0,0501 0,0236 0,0142 0,0560 0,0228 0,0189 0,0549 0,0489 0,0236 0,0120 0,0545 0,0224 0,0266 0,0189 0,0447 0,0236 0,0120 0,0242 0,0266 0,0189 0,0447 0,0447 0,0236 0,0120 0,0256 0,0266 0,0279 0,0189 0,0447 0,0237 0,0102 0,0256 0,0202 0,0279 0,0146 0,0549 0,0228 0,0206 0,0266 0,0279 0,0146 0,0599 0,04		ά,	a,	β,	β_2	a,	α_2	β,	β_2	α,	α_{2}	β,	β_2
0,0231 0,0184 0,0566 0,0356 0,0226 0,0226 0,0226 0,0481 0,0545 0,0234 0,0169 0,0565 0,0350 0,0226 0,0206 0,0481 0,0530 0,0236 0,0169 0,0564 0,0319 0,0206 0,0507 0,0511 0,0236 0,0142 0,0560 0,0292 0,0249 0,0189 0,0549 0,0491 0,0236 0,0132 0,0552 0,0242 0,0266 0,0189 0,0549 0,0491 0,0236 0,0102 0,0556 0,0242 0,0266 0,0181 0,0544 0,0447 0,0237 0,0102 0,0556 0,0222 0,0272 0,0172 0,0447 0,0447 0,0238 0,0102 0,0266 0,0186 0,0282 0,0162 0,0444 0,0444 0,0289 0,0162 0,0444 0,0228 0,0096 0,0486 0,0186 0,0289 0,0159 0,0299 0,0459 0,0444 0,0442 0,0289 <td< td=""><td>100</td><td>0.0226</td><td>0,0198</td><td>0,0556</td><td>0,0417</td><td>0,0198</td><td>0,0226</td><td>0,0417</td><td>0,0556</td><td>0,0179</td><td>0,0179</td><td>0,0417</td><td>0,0417</td></td<>	100	0.0226	0,0198	0,0556	0,0417	0,0198	0,0226	0,0417	0,0556	0,0179	0,0179	0,0417	0,0417
0,0234 0,0169 0,02664 0,0319 0,0226 0,0206 0,0481 0,0530 0,0236 0,0154 0,0564 0,0319 0,0238 0,0206 0,0507 0,0511 0,0236 0,0142 0,0560 0,0292 0,0249 0,0189 0,0530 0,0491 0,0236 0,0120 0,0267 0,0266 0,0189 0,0549 0,0491 0,0235 0,0120 0,0267 0,0266 0,0189 0,0447 0,0447 0,0236 0,0120 0,0266 0,0272 0,0272 0,0189 0,0447 0,0230 0,0102 0,0526 0,0202 0,0279 0,0162 0,0447 0,022 0,0024 0,0566 0,0185 0,0279 0,0162 0,0568 0,0447 0,0221 0,0096 0,0165 0,0289 0,0154 0,0599 0,0332 0,021 0,0073 0,0484 0,0142 0,0289 0,0130 0,0599 0,0342 0,021 0,027	1.05	0,0231	0,0184	0,0560	0,0385	0,0213	0,0221	0,0450	0,0545	0,0187	0,0171	0,0437	0,0394
0,0236 0,0154 0,0349 0,0238 0,0206 0,0507 0,0511 0,0336 0,0142 0,0260 0,0292 0,0249 0,0188 0,0530 0,0491 0,0236 0,0132 0,0567 0,0267 0,0268 0,0189 0,0549 0,0470 0,0235 0,0120 0,0545 0,0242 0,0266 0,0189 0,0447 0,0233 0,0110 0,0546 0,0222 0,0272 0,0172 0,0447 0,0238 0,0102 0,0546 0,0202 0,0279 0,0169 0,0447 0,0228 0,0102 0,0546 0,0185 0,0282 0,0164 0,0588 0,0400 0,0228 0,0094 0,0566 0,0185 0,0285 0,0164 0,0599 0,0377 0,0221 0,0079 0,0485 0,0189 0,0189 0,0599 0,0374 0,0214 0,0079 0,0447 0,0142 0,0289 0,013 0,0599 0,034 0,0206 0,0462	1.10	0,0234	0,0169	0,0565	0,0350	0,0226	0,0212	0,0481	0,0530	0,0194	0,0161	0,0450	0,0372
0,0336 0,0142 0,0560 0,0292 0,0298 0,0198 0,0530 0,0491 0,0236 0,0132 0,0565 0,0267 0,0268 0,0189 0,0549 0,0470 0,0235 0,0120 0,0242 0,0266 0,0181 0,0565 0,0447 0,0233 0,0110 0,0536 0,0222 0,0272 0,0172 0,0577 0,0447 0,0228 0,0094 0,056 0,0185 0,0272 0,0154 0,0588 0,0400 0,0228 0,0094 0,0516 0,0185 0,0282 0,0146 0,0593 0,0400 0,0229 0,0096 0,0169 0,0289 0,0136 0,0599 0,0337 0,0221 0,0079 0,0495 0,0145 0,0289 0,0136 0,0599 0,0332 0,0214 0,0079 0,0473 0,0142 0,0290 0,0136 0,0599 0,0332 0,0210 0,0067 0,0473 0,0112 0,0290 0,0139 0,0599 0,020	1,15	0,0236	0,0154	0,0564	0,0319	0,0238	0,0206	0,0507	0,0511	0,0200	0,0150	0,0461	0,0349
0,0236 0,0132 0,0265 0,0266 0,0189 0,0569 0,0470 0,0236 0,0120 0,0242 0,0266 0,0181 0,0565 0,0447 0,0233 0,0110 0,0536 0,0222 0,0272 0,0172 0,0577 0,0447 0,0230 0,0102 0,0222 0,0279 0,0162 0,0588 0,0400 0,0228 0,0094 0,0516 0,0185 0,0282 0,0154 0,0593 0,0400 0,0228 0,0078 0,0169 0,0285 0,0164 0,0597 0,0377 0,0221 0,0079 0,0495 0,0169 0,0289 0,0136 0,0599 0,0354 0,0218 0,0073 0,0484 0,0142 0,0289 0,0136 0,0599 0,0399 0,0218 0,0073 0,0473 0,0131 0,0290 0,0133 0,0594 0,0299 0,0206 0,0462 0,0120 0,0290 0,0116 0,0594 0,0594 0,0294 0,0206 <td>1.20</td> <td>0,0336</td> <td>0,0142</td> <td>0,0560</td> <td>0,0292</td> <td>0,0249</td> <td>0,0198</td> <td>0,0530</td> <td>0,0491</td> <td>0,0204</td> <td>0,0142</td> <td>0,0468</td> <td>0,0325</td>	1.20	0,0336	0,0142	0,0560	0,0292	0,0249	0,0198	0,0530	0,0491	0,0204	0,0142	0,0468	0,0325
0,0235 0,0120 0,0545 0,0242 0,0266 0,0181 0,0565 0,0447 0,0233 0,0110 0,0536 0,0222 0,0272 0,0172 0,0577 0,0424 0,0230 0,0102 0,0526 0,0202 0,0282 0,0162 0,0588 0,0400 0,0228 0,0094 0,0516 0,0185 0,0285 0,0146 0,0593 0,0374 0,0221 0,0079 0,0495 0,0145 0,0286 0,0138 0,0394 0,0354 0,0218 0,0079 0,0495 0,0145 0,0289 0,0138 0,0599 0,0332 0,0214 0,0073 0,0495 0,0142 0,0289 0,0138 0,0599 0,0342 0,0214 0,0067 0,0462 0,0139 0,0139 0,0594 0,0293 0,0206 0,0462 0,0129 0,0290 0,0116 0,0594 0,0594 0,0294 0,0206 0,0462 0,0102 0,0288 0,0103 0,0594 0,02	1,25	0,0236	0,0132	0,0552	0,0267	0,0258	0,0189	0,0549	0,0470	0,0207	0,0133	0,0473	0,0303
0,0233 0,0110 0,0526 0,0222 0,0272 0,0162 0,0588 0,0404 0,0230 0,0102 0,0526 0,0202 0,0279 0,0162 0,0588 0,0400 0,0228 0,0094 0,0516 0,0185 0,0282 0,0154 0,0593 0,0377 0,0225 0,0086 0,0506 0,0169 0,0285 0,0146 0,0597 0,0332 0,0221 0,0079 0,0495 0,0169 0,0289 0,0138 0,0599 0,0332 0,0214 0,0073 0,0484 0,0131 0,0289 0,0138 0,0599 0,0342 0,0214 0,0067 0,0473 0,0131 0,0290 0,013 0,0594 0,0294 0,0216 0,0067 0,0462 0,013 0,0290 0,016 0,0594 0,0274 0,0206 0,0068 0,0462 0,012 0,0290 0,016 0,0594 0,0284 0,0200 0,0050 0,0442 0,0102 0,0286 0,0097 <td>1.30</td> <td>0,0235</td> <td>0,0120</td> <td>0,0545</td> <td>0,0242</td> <td>0,0266</td> <td>0,0181</td> <td>0,0565</td> <td>0,0447</td> <td>0,0208</td> <td>0,0123</td> <td>0,0475</td> <td>0,0281</td>	1.30	0,0235	0,0120	0,0545	0,0242	0,0266	0,0181	0,0565	0,0447	0,0208	0,0123	0,0475	0,0281
0,0230 0,0102 0,0526 0,0202 0,0279 0,0162 0,0588 0,0400 0,0228 0,0094 0,0516 0,0185 0,0282 0,0154 0,0593 0,0377 0,0225 0,0086 0,0506 0,0169 0,0285 0,0146 0,0597 0,0332 0,0221 0,0079 0,0495 0,0169 0,0289 0,0130 0,0599 0,0332 0,0214 0,0067 0,0484 0,0131 0,0290 0,0130 0,0599 0,0342 0,0214 0,0067 0,0462 0,0131 0,0290 0,0116 0,0594 0,0294 0,0210 0,0062 0,0462 0,0120 0,0290 0,0116 0,0594 0,0274 0,0206 0,0065 0,0442 0,0120 0,0290 0,0109 0,0589 0,026 0,0200 0,0050 0,0442 0,0102 0,0286 0,0103 0,0576 0,0286 0,0099 0,0676 0,0097 0,0276 0,0097 0,0676	1,35	0,0233	0,0110	0,0536	0,0222	0,0272	0,0172	0,0577	0,0424	0,0210	0,0115	0,0474	0,0262
0,0228 0,0094 0,0516 0,0185 0,0285 0,0146 0,0593 0,0377 0,0225 0,0086 0,0506 0,0169 0,0285 0,0146 0,0597 0,0354 0,0221 0,0073 0,0484 0,0142 0,0289 0,0130 0,0599 0,0332 0,0218 0,0073 0,0473 0,0142 0,0289 0,0130 0,0597 0,0342 0,0214 0,0067 0,0473 0,0131 0,0290 0,0123 0,0597 0,0293 0,0210 0,0067 0,0462 0,0120 0,0290 0,0116 0,0594 0,0294 0,0206 0,0068 0,0462 0,0112 0,0290 0,0109 0,0594 0,0294 0,0206 0,0058 0,0442 0,0102 0,0288 0,0103 0,0583 0,0240 0,0200 0,0046 0,0442 0,0096 0,0096 0,0097 0,0576 0,0576 0,0576 0,0576 0,0576 0,0576 0,0576 0,0187 <td< td=""><td>140</td><td>0,0230</td><td>0,0102</td><td>0,0526</td><td>0,0202</td><td>0,0279</td><td>0,0162</td><td>0,0588</td><td>0,0400</td><td>0,0210</td><td>0,0107</td><td>0,0473</td><td>0,0240</td></td<>	140	0,0230	0,0102	0,0526	0,0202	0,0279	0,0162	0,0588	0,0400	0,0210	0,0107	0,0473	0,0240
0,0225 0,0086 0,0506 0,0169 0,0285 0,0146 0,0597 0,0354 0,0221 0,0079 0,0495 0,0155 0,0289 0,0138 0,0599 0,0332 0,0218 0,0073 0,0484 0,0142 0,0289 0,0130 0,0599 0,0342 0,0214 0,0067 0,0473 0,0131 0,0290 0,0123 0,0597 0,0293 0,0210 0,0062 0,0462 0,0120 0,0290 0,0116 0,0594 0,0274 0,0206 0,0068 0,0462 0,0112 0,0290 0,0116 0,0594 0,0274 0,0206 0,0058 0,0462 0,0102 0,0290 0,0109 0,0589 0,0274 0,0200 0,0054 0,0442 0,0102 0,0286 0,0097 0,0576 0,0225 0,0196 0,0046 0,0432 0,0086 0,0284 0,0057 0,0576 0,0576 0,0198 0,0192 0,0043 0,04413 0,0280 0,0	1.45	0,0228	0,0094	0,0516	0,0185	0,0282	0,0154	0,0593	.0,0377	0,0209	0,0100	0,0469	0,0223
0,0221 0,0495 0,0155 0,0289 0,0138 0,0599 0,0332 0,0218 0,0073 0,0484 0,0142 0,0289 0,0130 0,0599 0,0342 0,0214 0,0067 0,0462 0,0131 0,0290 0,0123 0,0594 0,0293 0,0210 0,0062 0,0462 0,0120 0,0290 0,0116 0,0594 0,0274 0,0206 0,0058 0,0442 0,0112 0,0290 0,0109 0,0589 0,026 0,0203 0,0054 0,0442 0,0102 0,0288 0,0103 0,0589 0,0240 0,0200 0,0050 0,0432 0,0086 0,0286 0,0097 0,0576 0,0225 0,0192 0,0043 0,0082 0,0284 0,0097 0,0576 0,0198 0,0192 0,0043 0,0082 0,0282 0,0056 0,0198 0,0192 0,0043 0,0082 0,0286 0,00576 0,0198 0,0192 0,0043 0,0042 <td>1,50</td> <td>0,0225</td> <td>9800'0</td> <td>0,0506</td> <td>0,0169</td> <td>0,0285</td> <td>0,0146</td> <td>0,0597</td> <td>0,0354</td> <td>0,0208</td> <td>0,0093</td> <td>0,0464</td> <td>0,0206</td>	1,50	0,0225	9800'0	0,0506	0,0169	0,0285	0,0146	0,0597	0,0354	0,0208	0,0093	0,0464	0,0206
0,0218 0,00484 0,0142 0,0289 0,0130 0,0599 0,0342 0,0214 0,0067 0,0473 0,0131 0,0290 0,0123 0,0597 0,0293 0,0210 0,0062 0,0462 0,0120 0,0290 0,0116 0,0594 0,0274 0,0206 0,0058 0,0452 0,0112 0,0290 0,0109 0,0589 0,0256 0,0203 0,0054 0,0442 0,0102 0,0286 0,0103 0,0589 0,0240 0,0200 0,0050 0,0432 0,0096 0,0286 0,0097 0,0576 0,0225 0,0196 0,0042 0,0088 0,0284 0,0092 0,0570 0,0225 0,0192 0,0043 0,0082 0,0282 0,0096 0,0570 0,0198 0,0192 0,0043 0,0082 0,0282 0,0086 0,0570 0,0198	1.55	0,0221	0,0079	0,0495	0,0155	0,0289	0,0138	0,0599	0,0332	0,0206	9800'0	0,0459	0,0191
0,0214 0,0067 0,0473 0,0131 0,0290 0,0123 0,0597 0,0293 0,0210 0,0062 0,0462 0,0120 0,0290 0,0116 0,0594 0,0274 0,0206 0,0058 0,0442 0,0112 0,0290 0,0109 0,0589 0,0256 0,0203 0,0054 0,0442 0,0102 0,0288 0,0103 0,0583 0,0240 0,0200 0,0050 0,0432 0,0095 0,0286 0,0097 0,0576 0,0225 0,0192 0,0042 0,0088 0,0284 0,0097 0,0576 0,0225 0,0192 0,0043 0,0042 0,0082 0,0282 0,00562 0,0198 0,0192 0,0043 0,0413 0,0082 0,0282 0,0086 0,0562 0,0198	. 9	0,0218	0,0073	0,0484	0,0142	0,0289	0,0130	0,0599	0,0342	0,0205	0,0080	0,0452	0,0177
0,0210 0,0062 0,0462 0,0120 0,0290 0,0116 0,0594 0,0274 0,0206 0,0058 0,0452 0,0112 0,0290 0,0109 0,0589 0,0266 0,0203 0,0054 0,0442 0,0102 0,0288 0,0103 0,0583 0,0240 0,0200 0,0050 0,0432 0,0096 0,0286 0,0097 0,0576 0,0225 0,0192 0,0042 0,0088 0,0284 0,0092 0,0570 0,0212 0,0192 0,0043 0,0082 0,0282 0,0086 0,0570 0,0212 0,0192 0,0043 0,0043 0,0082 0,0282 0,0086 0,0570 0,0198 0,0192 0,0043 0,0043 0,0082 0,0282 0,0086 0,0562 0,0198	.65	0,0214	2900'0	0,0473	0,0131	0,0290	0,0123	0,0597	0,0293	0,0202	0,0074	0,0446	0,0164
0,0206 0,0058 0,0442 0,0112 0,0280 0,0103 0,0583 0,0256 0,0203 0,0054 0,0442 0,0102 0,0288 0,0103 0,0583 0,0240 0,0200 0,0050 0,0432 0,0095 0,0286 0,0097 0,0576 0,0225 0,0196 0,0042 0,0088 0,0284 0,0092 0,0570 0,0212 0,0192 0,0043 0,0413 0,0082 0,0282 0,0086 0,0562 0,0198 0,0192 0,0043 0,0041 0,0076 0,0086 0,0562 0,0198	1.70	0,0210	0,0062	0,0462	0,0120	0,0290	0,0116	0,0594	0,0274	0,0200	6900'0	0,0438	0,0152
0,0203 0,0054 0,0442 0,0102 0,0288 0,0103 0,0583 0,0240 0,0200 0,0050 0,0432 0,0095 0,0286 0,0097 0,0576 0,0225 0,0196 0,0042 0,0088 0,0284 0,0092 0,0570 0,0212 0,0192 0,0043 0,0413 0,0082 0,0282 0,0086 0,0562 0,0198 0,0403 0,044 0,044 0,044 0,044 0,044 0,044 0,044	1.75	0,0206	0,0058	0,0452	0,0112	0,0290	0,0109	0,0589	0,0256	0,0197	0,0064	0,0431	0,0141
0,0200 0,0050 0,0432 0,0095 0,0286 0,0097 0,0576 0,0225 0,0196 0,0046 0,0422 0,0088 0,0284 0,0092 0,0570 0,0212 0,0192 0,0043 0,0413 0,0082 0,0282 0,0086 0,0562 0,0198		0,0203	0.0054	0,0442	0,0102	0,0288	0,0103	0,0583	0,0240	0,0195	0900'0	0,0423	0,0131
0,0196 0,0046 0,0422 0,0088 0,0284 0,0092 0,0570 0,0212 0,0192 0,0043 0,0413 0,0082 0,0282 0,0086 0,0562 0,0198 0,0480 0,0404 0,0076 0,0280 0,0081 0,0555 0,0187	185	0.0200	0,0050	0,0432	0,0095	0,0286	2600'0	0,0576	0,0225	0,0192	9500'0	0,0415	0,0122
0,0192 0,0043 0,0413 0,0082 0,0282 0,0086 0,0562 0,0198	6.00	0,0196	0,0046	0,0422	0,0088	0,0284	0,0092	0,0570	0,0212	0,0190	0,0052	0,0408	0,0118
0.000 0.000	1.95	0,0192	0,0043	0,0413	0,0082	0,0282	0,0086	0,0562	0,0198	0,0186	0,0049	0,0400	0,0107
0,010	2.00	0,0189	0,0040	0,0404	9/0000	0,0280	0,0081	0,0555	0,0187	0,0183	0,0046	0,0392	0,0098

Phụ lục 18 HỆ SỐ 7 ĐỂ TÍNH W

TÀI LIỆU THAM KHẢO

- Nguyễn Đình Cống, Ngô Thế Phong, Huỳnh Chánh Thiên. Kết cấu bêtông cốt thép (phần Kết cấu nhà cửa).
 Nxb. Đại học và Trung học chuyên nghiệp, Hà Nội, 1978.
- 2. Nguyễn Đình Cống, Nguyên Xuân Liên, Nguyễn Phấn Tấn. Kết cấu bêtông cốt thép Nxb. Xây dựng, Hà Nội, 1984.
- 3. **Đinh Chính Đạo.**Báo cáo tổng kết đề tài nghiên cứu khoa học "Ứng dụng kết cấu

bêtông cối thép ứng lực trước trong các kết cấu sàn nhịp lớn" Mã số B200-34 -77.

Bộ giáo dục và đào tạo, Hà Nội, 2001.

- Phạm Sĩ Liêm, Ngô Thế Phong, Nguyễn Phấn Tấn.
 Kết cấu bêtông cốt thép (phần cấu kiện cơ bản).
 Nxb. Đại học và Trung học chuyên nghiệp, Hà Nội, 1969.
- 5. Ngô Thế Phong, Nguyễn Đình Cống, Trịnh Kim Đạm, Nguyễn Xuân Liêm, Nguyễn Phấn Tấn. Kết cấu bêtông cốt thép (phần cấu kiện cơ bản). Nxb. Khoa học và kỹ thuật, Hà Nội, 2001.
- 6. Ngô Thế Phong, Lý Trần Cường, Trịnh Kim Đạm, Nguyễn Lê Ninh.

Kết cấu bêtông cốt thép (phần kết cấu nhà cửa). Nxb. Khoa học và kỹ thuật, Hà Nội, 1998.

- 7. Tiêu chuẩn thiết kế kết cấu bêtông cốt thép TCXDVN 356 2005.
- 8. Tiểu chuẩn thiết kế kết cấu bêtông cốt thép GB50010 2002 (bản tiếng Trung). Nước Cộng hoà nhân dân Trung Hoa.
- Kết cấu bêtông và bêtông cốt thép. Quy phạm Anh.quốc BS8110 1997 (bản tiếng Việt).
 Nxb. Xây dựng, Hà Nội, 2003.
- 10. Chu Khắc Vinh, Cố Tường Lâm, Tô Tiểu Tốt. Kết cấu bêtông cốt thép (phần thiết kê) (bản tiếng Trung). Nxb. Đại học Đồng Tế, Thượng Hải, 2001.
- 11. W.H.Mosley, J.H.Bungey.

 Reinforced concrete Design.

 Hong kong, 1993.
- 12. R.F.Warner, B.V.Rangan, A.S.Hall, K.A.Faulkes.

 Concrete structures.

 Melbourn, 1998.
- 13. **E.G.Nawy.**Prestressed Concrete.

 Prentice Hall, 2003.
- 14. RF Warner, KA Faulkes.Prestressed Concrete.Longman Cheshire, 1992.
- 15. T.Y.Lin, Ned H.Burns.

 Design of PretresseConcrete structures.

 John Wiley & sons, 1982.
- 16. R.Park, T.Paulay.

 Reinforced concert structures.

 John Wiley & sons, 1975.

- 17. В.М. Бондаренко, Р.О. Бакнров, В.Г. Назаренко, В.И. Римшин. Железодетонные и Каменные Конструкции. Издателство "Вышая школа", Москва, 2004.
- 18. А.Б. Голышев, В.Я. Ачинский, В.П. Полищук, А.В. Харченко, И.В. Руденко.

 Проектирование Железобетонных констреукций (Справочное пособие).

 "Вудивельник", Киев. 1985.
- 19. Бетоппые и Желзодетонные констреукций, Снип 2.03.01-84*. Строительные норы и правила, Москва, 1998.
- 20. Пособие па проектированию бетонных и железобетонных констреукций из тжелых и легких бетонов без предварителыеого Напряжения арматуры (К Снип 2.03.01.84), Москва, 1984.
- 21. Пособие ио проектированию предварительно Напряженных железобетонных констреукций из тяжелых и легких бетонов. (К Снип 2.03.01.84), Москва, 1988.

LỜI	NÓI	ĐẦU	3
		Chương 1 KHÁI NIỆM CHUNG	
,	1.1. 1.2. 1.3. 1.4.	Thế nào là bêtông cốt thép (BTCT) Phân loại Ưu và nhược điểm của bêtông cốt thép Sơ lược lịch sử phát triển	
		Chương 2 TÍNH CHẤT CƠ LÝ CỦA VẬT LIỆU	
Α.	Bêtô 2.1. 2.2. 2.3. 2.4. 2.5.	ng Thành phần, cấu trúc và các loại bêtông Cường độ của bêtông Giá trị trung bình và giá trị tiêu chuẩn của cường độ Cấp độ bền và mác của bêtông Biến dạng của bêtông	13 15 22 24
B.	Cốt t 2.6. 2.7. 2.8.	hép Các loại cốt thép Một số tính năng cơ học của cốt thép Phân loại (nhóm) cốt thép	31 32
C.	2.9. 2.10	ng cốt thép Lực dính giữa bêtông và cốt thép Sự làm việc chung giữa bêtông và cốt thép Sự phá hoại và hư hỏng của bêtông cốt thép	38
		Chương 3 NGUYÊN LÝ TÍNH TOÁN VÀ CẤU TẠO	
	3:1. 3.2.	Nội dung và các bước thiết kế kết cấu bêtông cốt thép Tải trọng	

	3.3.	Nội lực	48
	3.4.	Phương pháp tính toán về bêtông cốt thép	51
	3.5.	Nguyên lý cấu tạo	54
	3.6.	Thể hiện bản vẽ kết cấu BTCT	64
		Chương 4	
. :		CẤU KIỆN CHỊU UỐN (TÍNH TOÁN THEO CƯỜNG ĐỘ)	
	4.1.	Đặc điểm cấu tạo	67
	4.2.	Sự làm việc của dầm	
	4.3.	Trạng thái ứng suất biến dạng của tiết diện thẳng góc	71
	4.4.	Tính toán cấu kiện chịu uốn có tiết diện chữ nhật theo cường độ	
		trên tiết diện thẳng góc	73
	4.5.	Tính toán cấu kiện có tiết diện chữ T theo cường độ trên tiết diện	
t i		thẳng gócTính toán cường độ trên tiết diện nghiêng	85
	4.6.	Tính toán cường độ trên tiết diện nghiêng	91
		Chương 5	
		CẤU KIỆN CHỊU NÉN	
	5.1.	Đại cương về cấu kiện chịu nén	123
	5.2.	Cấu tạo cốt thép	
	5.3.	Tính toán cấu kiện chịu nén đúng tâm	130
	5.4.	Sự làm việc của cấu kiện nén lệch tâm	
	5.5.	Tính toán cấu kiện có tiết diện chữ nhật	139
	5.6.	Tính toán cấu kiện có tiết diện tròn	165
Sec.		Chương 6	,
		CẤU KIỆN CHỊU KÉO VÀ CHỊU XOẮN	
Α.		kiện chịu kéo	
	6.1.	• • • • • • • • • • • • • • • • • • • •	
		Tính toán cấu kiện kéo đúng tâm	
	6.3.	Tính toán cấu kiện kéo lệch tâm bé	
	6.4.	Tính toán cấu kiện lệch tâm lớn tiết diện chữ nhật	
В.		kiện chịu xoắn	
	6.5.	Đại cương về cấu kiện chịu xoắn	
	6.6.		
	6.7.	Tính toán với sơ đồ 1	179

	6.8.	Tính toán với sơ đồ 2	. 186
	6.9.	Tính toán với sơ đồ 3	. 188
		Chương 7	
		TÍNH TOÁN CẤU KIỆN BỆTÔNG CỐT THÉP	
		THEO TRẠNG THÁI GIỚI HẠN THỨ ḤAI	
A.	Tính	toán về sự hình thành và mở rộng khe nứt	. 190
	7.1.	Khái niệm chung	
	7.2.	Tính toán về sự hình thành khe nứt	
	7.3.	Tính toán cấu kiện bêtông cốt thép thường theo sự mở rộng khe nứt	
В.	Tính	toán biến dạng của cấu kiện	. 208
	7.4.	Nguyên tắc chung	. 208
	7.5.	Độ cong của cấu kiện không có khe nứt trong vùng kéo	. 209
٠,	7.6.	Độ cong của cấu kiện bêtông cốt thép đối với đoạn có khe nứt	
		trong vùng kéo	. 210
		Chương 8	
		KẾT CẦU BỆTÔNG ỨNG LỰC TRƯỚC	
	8.1.	Khái niêm chung	. 229
	8.2.	Các phương pháp tính toán cấu kiện bêtông ƯLT	. 235
	8.3.	Các phương pháp gây lực trước	
	8.4.	Các chỉ dẫn về cấu tạo	
	8.5.		
	8.6.	Cấu kiện chịu kéo trung tâm	. 260
	8.7.	Cấu kiện chịu uốn	. 266
.,	•	Chương 9	•
		sń сніл глс слс во	
	9.1.	Nén cục bộ	287
	9.2.	Nén thủng	
:	9.3.	Giật đứt (tính cốt treo)	
	9.4.	Gia cố góc lõm của dầm	294
1.	9.5.	Côngxon ngắn	
-	0.0.		500

Chương 10 SÀN PHẨNG BẰNG BÊTÔNG CỐT THÉP

10.1.	Khái niệm chung	. 303
10.2.	Sàn sườn toàn khối có bản dầm	. 307
	Sàn sườn toàn khối có bản kê bốn cạnh	
	Sàn nấm	
10.5.	Sàn panen lắp ghép	. 355
	PHŲ LŲC	
Phụ luc 1.	Môđun đàn hồi của Bêtông nặng (E₅ x 10⁻³)	365
Phụ lục 2.	Cường độ tiêu chuẩn của bêtông nặng R_{bn} , R_{bln} và cường độ	. 303
	tính toán của bêtông nặng khi tính theo trạng thái giới hạn thứ hai	
	$R_{b,ser}$, $R_{bt,ser}$ (MPa)	265
Phụ lục 3.	Cường độ tính toán của bêtông nặng R_b , R_{bt} R_{bt} khi tính	. 303
	theo trạng thái giới hạn thứ nhất (MPa)	265
Phụ lục 4.	Hệ số điều kiện làm việc của bêtông	366
Phụ lục 5.	Cường độ tính toán của cốt thép thanh khi tính theo trạng thái	. 300
• •	giới hạn thứ nhất (Mpa)	368
Phụ lục 6.	Cường độ tính toán của cốt thép sợi khi tính theo trang thái	. 500
	giới hạn thứ nhất, MPa	360
Phụ lục 7.	Môđun đàn hồi của một số loại cốt thép	370
Phụ lục 8.	Các giá trị ω, ξ _R ,α _R đối với cấu kiện làm từ bêtông nặng	
Phụ lục 9.	Các hệ số ξ , ζ , α_m	373
Phụ lục 10.	Cấp chống nứt và giá trị bề rộng vết nứt giới hạn, để đảm bảo	. 0. 0
-	hạn chế thẩm cho kết cấu	374
Phụ lục 11.	Cấp chống nứt của kết cấu bêtông côt thép và giá trị bề rộng	
	vết nút giới hạn a_{crc1} và a_{crc2} , nhằm bảo vệ an toàn cho cốt thép	374
Phụ lục 12.	Tải trọng và hệ số độ tin cậy về tải trọng γ _t để tính theo	
	sự hình thành và mở rộng khe nứt	375
Phụ lục 13.	Độ võng giới hạn của cấu kiện sàn	376
Phụ lục 14.	Bảng tra diện tích và trọng lượng cốt thép	377
Phụ lục 15.	Bảng tra diện tích cốt thép của bản	378
Phụ lục 16.	Bảng tính tung độ của biểu đồ M và Q đối với dầm liên tục	379
Phụ lục 17.	Giá trị mômen cực đại ở bản chữ nhật chịu tải trọng phân bố đều q	-
	tính theo sơ đổ đàn hồi	388
Phụ lục 18.	Hệ số γ để tính $W_{\rm pl}$	392
TÀI LIỆU	THAM KHẢO	393

Pgs, Ts. PHAN QUANG MINH (chủ biên) Gs, Ts. NGÔ THẾ PHONG – Gs, Ts. NGUYỄN ĐÌNH CỐNG

KẾT CẦU BỆTÔNG CỐT THÉP PHẦN CẦU KIỆN CƠ BẢN

Chiu trách nhiệm xuất bản

Biên tập

Sửa bản in

Trình bày bìa

Pgs, Ts. TÔ ĐĂNG HẢI

THANH ĐỊNH

THANH NGA

THU VÂN

NHÀ XUẤT BẢN KHOA HỌC VÀ KỸ THUẬT 70 TRẦN HƯNG ĐAO - HÀ NỘI

In 1000 bản, khổ 18 x 24 cm, tại Nhà in Khoa học và công nghệ. Quyết định xuất bản số : 136-2006/CXB/420.1-06/KHKT cấp ngày 5/10/2006. In xong và nộp lưu chiếu tháng 10 năm 2006.