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ABSTRACT

Condition-based maintenance via vibration signal processing plays an important role to
reduce unscheduled machine downtime and avoid catastrophic accidents in industrial
enterprises. Many machine faults, such as local defects in rotating machines, manifest
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themselves in the acquired vibration signals as a series of impulsive events. The spectral
kurtosis (SK) technique extends the concept of kurtosis to that of a function of frequency
that indicates how the impulsiveness of a signal. This work intends to review and
Keywords: summarize the recent research developments on the SK theories, for instance, short-time
Spectral kurtosis Fourier transform-based SK, kurtogram, adaptive SK and protrugram, as well as the
?ﬁ“ﬁ grgz;zl;;nes corresponding applications in fault detection and diagnosis of the rotating machines. The

potential prospects of prognostics using SK technique are also designated. Some examples

Frognostics have been presented to illustrate their performances. The expectation is that further
research and applications of the SK technique will flourish in the future, especially in the
fields of the prognostics.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Condition-based maintenance (CBM) is a maintenance program that recommends maintenance decisions based on the
information collected through condition monitoring [1]. Diagnostics and prognostics are two important aspects in a CBM
program. CBM plays an important role to reduce unscheduled machine downtime and avoid catastrophic accidents in
industrial enterprises.

A variety of methods have been developed and summarized for rotating machinery fault diagnostics, such as vibration
analysis [2], acoustic emission (AE) [3], temperature trend analysis [4] and wear debris analysis [5]. Commonly used
technique for fault detection is vibration-based signature analysis. Signal processing in vibration-based monitoring of
rotating machinery offers very important information about anomalies formed internally in the structure of the machinery
[6]. Hundreds of papers in this field, including theory and practical applications, appear every year in academic journals,
conference proceedings and technical reports. Space lacks for a detailed description of all these methods, interested readers
can refer to some review works in the field of the vibration-based fault detection and diagnosis using the wavelet transform
[7], multiwavelet transform [8], empirical model decomposition [9] and time-frequency analysis [10], etc. Moreover, all
these fault diagnosis methods mentioned above have been used not only on the test rig of the bearings or gears, but
extensively in practical equipments, such as helicopters [11], wind turbine [12-14], induction machines [15,16] and
permanent magnet machines [17].

Diagnostics is conducted to investigate or analyze the cause or nature of a condition, situation or problem, whereas prognostics is
concerned with calculating or predicting the future as a result of rational study and analysis of available pertinent data [18].
Prognostics has the potential to give the greatest economic benefits from the condition monitoring, but it is probably the least
developed technique compared with fault detection and diagnostics methods. The information gained from vibration signal analysis
enables us to plan a maintenance action [19]. Based on this analysis, the health assessment at the various stages of degradation is
crucial for predicting failure and making maintenance decisions. Therefore, some methodologies in prognostics have been broadly
developed based on the approaches of statistical reliability, data-driven evolutionary trend, dynamic systems, physics-based
modeling, etc. Most of these methodologies and their applications in prognostics of rotary machines have been introduced in the
corresponding review works [1,18,20,21].

Spectral kurtosis (SK) is one of the powerful techniques for vibration signal analysis. In recent years, SK has been paid a
considerable amount of attention to the fault diagnosis of rotating machines. Knowledge of this prior works is also necessary
for any future research efforts to be conducted. However, there is not a comprehensive overview that states the previous and
ongoing efforts of SK. This paper thus attempts to summarize the development of SK, especially on the algorithms and their
applications for fault detection, diagnosis of rotating machinery. Through the literature review, some increasing trends
appear in the research field of machine prognostics using the SK technique are also discussed.

The remaining part of the paper is organized as follows. Section 2 briefly introduces the development of SK theory.
Different algorithms for SK and its estimations are given in Section 3. Section 4 shows the applications of the SK in fault
detection and diagnosis of the crucial parts in rotating machine, namely bearings and gears. The two prospects of SK in the
prognostics using SK are presented in Section 5. Finally, Section 6 concludes the paper and provides a short list of references
for applications of SK in other fields.

2. A brief history

Diagnostics and prognostics are the two important aspects of time series analysis, which individually uses signal
processing and prediction technique. The higher order statistics (HOS) is an important branch of time series analysis, and
has been conducted an extensive research in the past few years. Many works lead to several HOS analysis, complementary to
classical second order methods. In 1983, frequency domain kurtosis (FDK) was first developed as the kurtosis of its
frequency components in the frequency domain by Dwyer [22], and then it was used as a complement to the power spectral
density to detect “randomly occurring signals” in [23,24]. In 1994, Pagnan and Ottonello proposed a modified definition
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Nomenclature HOS higher order statistics
ICA independent component analysis

AE acoustic emission IMF intrinsic mode function
AR autoregressive KABS kurtosis-based adaptive bandstop
ARMPT adaptive redundant multiwavelet packet KR kurtosis ratio

transform MED minimum entropy deconvolution
SK adaptive spectral kurtosis MFB multirate filter-bank
BPFO  ball passing frequency, outer race MPDM  multiple-point defect model
BPFI ball passing frequency, inner race OMA  operational mode analysis
BSS blind source separation PDF probability density function
CBM condition-based maintenance PSD power spectral density
Cl computational intelligence QAWTF discrete quasi-analytic wavelet tight frame
CNS conditionally nonstationary signal REB rolling element bearing
CMWT complex Morlet wavelet transform RUL remaining useful life
CSA cyclostationary analysis SA simulated annealing
DFT discrete Fourier transform SK spectral kurtosis
EEMD ensemble empirical model decomposition SR stochastic resonance
EKF extended Kalman filter STFT short time Fourier transform
EOT envelope order tracking SVM support vector machine
FDK frequency domain kurtosis TLSAE tachometer-less  synchronously averaged
FFT fast Fourier transform envelope
GA genetic algorithm TQWT tunable-Q wavelet transform
HHT Hilbert Huang transform WPT wavelet packet transform

based on the normalized fourth-order moment of the magnitude of short-time Fourier transform (STFT) [25,26]. They also
showed that SK could be used as a filter to recover random signals even when they are severely corrupted by additive
stationary noise. This conclusion actually builds the foundation for the applications of SK in the future. In 1996, a formal
definition of SK via the theory of HOS was given by Capdevielle [27]. The SK was explicitly defined as the normalized fourth-
order cumulant of the Fourier transform, i.e., as a slice of the tricoherence spectrum. Accordingly, SK technique can be
considered as a good complementary spectral analysis tool to the traditional power spectrum density [28]. Moreover, a
parallel formalization on nonstationary signals of the SK was creatively developed by means of the World-Cramer
decomposition in 2004, and later a theoretical framework and properties were investigated in detail by Antoni [29]. As such,
a sound definition of SK was derived from the theoretical framework, but it was no longer a slice of the tricoherence
spectrum which was different from the definition in [27]. This theoretical framework is also very helpful for designing the
new estimators of the SK, which is a necessary step for connecting theoretical results with the real life practice. Some
improvements on the SK to the practical applications have been conducted during the next few years.

Recently, the statistical properties of the SK estimator were thoroughly investigated, and all the moments of its probability
density function (PDF) were analytically determined by Gelu and Dale in [30]. It was shown that the first SK standard moments
met the conditions required by a Pearson type-IV PDF [30]. In addition, the SK estimator in its original form must be developed
from the instantaneous power spectral density (PSD) estimates, and thus it cannot be employed as a radio frequency interference
excision tool downstream of the data pipeline in existing instruments. Gelu and Dale [31] also developed a generalized estimator
with wider applicability for both instantaneous and averaged spectral data. In order to use the SK in a Gaussianity test to check
whether signal points were presented as a set of STFT points, the SK of complex circular random variables as well as its
relationship with the kurtosis of the real and imaginary parts were investigated in [32].

As can be seen from the development of SK, SK has become an actual research of great interest in the past decade. Its
theory and different estimating methods will be introduced in detail in the following section.

3. Theoretical background of spectral kurtosis
3.1. Kurtosis
Kurtosis is a measure of peakedness, and hence it is a good indicator of signal impulsiveness in the context of fault

detection for rotating components. Kurtosis is expressed as

) E{(x—p)*

kurtosis(x) = w -3 )
o

where y and ¢ are the mean and standard deviation of time series x, respectively, while E{ -} is the expectation operation.

The “minus 3” at the end of this formula is to make the kurtosis of the normal distribution equal to zero. The kurtosis

indicates the peakedness of the probability distribution associated to the instantaneous amplitudes of the time-series
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measurements. Kurtosis was commonly considered as an object function for fault diagnosis of rotating machinery [33-36].
As such, kurtosis-based indexes have been often used to select the proper band for the applications of envelope-based
demodulation techniques. Kurtosis has also been widely applied for prognostic and condition monitoring of rolling element
bearings (REBs), because it was considered as a standalone tool for a fast indication of the development of faults [37].

Based on the kurtosis in time domain, some new indexes and methodologies have been lately proposed. The envelope
kurtosis (EK) [38] was a technique for selecting an optimal frequency and bandwidth window for the envelope analysis.
Recently, a new scalar indicator kurtosis ratio (KR), specially designed to quantify the amount of random impulses generated
by this noise, was provided to enhance vibration signals measured by laser Doppler vibrometry [39]. Indeed, the KR was a
ratio of the standard kurtosis and a robust estimate of kurtosis; thus KR of the band-pass filtered signal is still related to the
SK. Similarly, Wang et al. proposed an energy kurtosis demodulation (EKD) method for signal denoising and bearing fault
detection in [40], based on the maximum kurtosis deconvolution technique.

3.2. Definition of the SK

To localize transients or hidden non-stationarity, Dwyer firstly applied kurtosis to the real and imaginary parts of STFT,
and consequently introduced the concept of frequency domain kurtosis (FDK) in [10]. The SK was initially defined as the
kurtosis of its frequency components and was compared the variability in amplitude of the different spectral frequencies.
Thus, this statistical parameter indicated how the impulsiveness of a signal varies with frequency [41]. Instead, Antoni
defined SK based on the Wold-Cramer decomposition which described any stochastic nonstationary process Y(t) as the
output of a causal, linear and time-varying system [29]:

+ o0
Vo= [ erHE paxe) @
where dX(f) is an orthogonal spectral process of unit variance and H(t, f) is the time-varying transfer function interpreted as
the complex envelope of process Y(t) at frequency f. Indeed, the fundamental assumption of SK under which it applied is
that the process is conditionally nonstationary (CNS). Some examples of CNS processes were introduced in [42]. It has been
demonstrated that a large class of CNS processes have the fundamental property characterized by non-Gaussian PDFs [42].
The SK is then clearly expressed as the energy-normalized fourth-order spectral cumulant of a CNS process

Say(f)
SKy(f) = -2, f#0 3)
! Say(H
where the 2n-order spectral moments is given by
Szv() = E{HE.NHdX (D)™ } = E{ [HE.H)[™"} - Szux “@

Spectral cumulants of order 2n > 4 have the interesting property that is non-zero for non-Gaussian processes.
Practical vibration signals are often corrupted with additive noise, thus they are CNS in nature. When N(t) represents an
additive stationary noise, for a CNS process Z(t) = Y(t)+N(t), SK is written as

Ky(f)  p(fy’Kn
A+p(F)? " A+p(f)”
where p(f) = Son(f)/Say(f) is the noise-to-signal between N(t) and Y(t). More specifically, when N(t) is an additive stationary
Gaussian noise independent of Y(t), the SK of Z(t) is simplified as

Ky(f)
A+p(f)*
It can be found that the basic idea behind the SK is to get a quantity that can ideally take the high values when the signal

is transient, and will be zero when the signal is stationary Gaussian. Moreover, the FDK technique is presented much earlier
than SK, and the comparison between them is then first given as follows.

SKz(f) = f#0 (5)

SKz(f) = f#0 (6)

3.3. FDK vs. SK

Frequency domain kurtosis is defined [22,24] as follows:
E{ X(0.F))*}
{ [x(a.5,"]"}

FDKx(Fp) = )

in which

h M-1 .
X(q.Fp) = \/% x(k,q)- e e €]
0

k=
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and x(k,q)=x[(k+(q—1M)h], k=0, 1,.., M—1,9=1,2,..,n and F, =%’,p=0, 1,...M—1. The x(k,q) represents the
discrete data and h is the interval between successive observations of the process. As such, FDK and SK are both defined
as the ratio of the fourth-order moment of the STFT magnitude of a signal to the squared second-order moment of the STFT
magnitude. The one important difference is that FDK is based on computing the kurtosis of the real and imaginary parts of
the Fourier coefficients, whereas the SK is optimally defined for handling complex Fourier coefficients. As such, the results of
FDK and SK are represented differently. In addition, SK is of great interest when the signal is cyclostationary (a special case
of stationary). In the category of SK, some different approaches and implementations have recently been carried out based
on filter bank estimator of the SK.

3.4. Calculation of STFT-based SK

An estimator of the SK based on the STFT was originally suggested in [22-27], while its explicit deduction from a time-
frequency approach was given in [29,42,43]. For a process Y(t) with an analysis window w(n) of length N,, and a given
temporal stepsize P, the STFT is written as

Yw(kP,f) = i Y(mw(n — kP)e —27f o

n=—oo

The 2n-order empirical spectral moment of Y,,(kP,f) is defined as
Sarth) = (|YwkP.HP™"), (10)

with (), standing for the time-average operator over index k. Similar to Eq. (3), the STFT-based estimator of the SK can be
defined as
f<y(f)=§‘2”7(f)72, If — mod(1/2)| > N,,! 11
4y

Bias and variance of the estimator of STFT-based SK in detail are given in [29]. It should be mentioned that the analyzed signal should
be local stationary, if the STFT-based estimator is unbiased. Moreover, two important conditions that the analyzed signal should meet
were given in [43]. In other words, the non-stationarity of the signal should have slow temporal evolutions, as compared to the
window length of the STFT. More precisely, the correlation length of the signal should be shorter than the analysis window of the
STFT. However, most of the fault signals are nonstationary and are associated with the rapid impulses. Hence, this STFT-based SK
estimation technique greatly depends on the window length used in the STFT.

3.5. Kurtogram and the fast kurtogram

As mentioned in Section 3.4, N,, truly affects the STFT-based SK, thus its value should be optimally selected in practical
applications. The frequency f and the window length N,, could be found in maximizing the STFT-based SK over all possible
choices. The map formed by the STFT-based SK as a function of fand N,, is called kurtogram [43]. Fig. 1 shows a kurtogram of
a rolling element bearing signal with an outer race fault, where the global maximum is achieved for f*=12.5 Hz and
Ni, =44 [43]. An optimal bandpass filter for the envelope analysis was determined from the maximum of the SK with
optimal Ny,. Thus, the optimal central frequency f, and bandwidth of the band-pass filter B; can be determined with which
jointly maximize the kurtogram.

To yield the “true” center frequency and bandwidth, all possible window widths should be enumerated, which is
computationally expensive and may not be realistic in real applications. Based on the multirate filter-bank structure (MFB)
and quasi-analytic filters, the fast kurtogram was further developed to fast compute and figure out the results of SK by
Antoni in [44]. The results of the fast kurtogram are very similar to those of kurtogram, which can be seen in Fig. 9 in [44].
The fast kurtogram can be computed more quickly than the kurtogram, thus it has been widely used and almost considered
as a benchmark technique for mechanical fault diagnosis. Without confusion, we simply use kurtogram to represent the fast
kurtogram in the following work.

The principle of the kurtogram algorithm is based on an arborescent MFB structure. A 1/2-binary tree kurtogram
estimator is shown in Fig. 2, where center frequency and bandwidth can be automatically determined. Those colors shown
in different squares in Fig. 2 clearly indicate the values of SK. Therefore, the maximum value can be easily found by some
simple searching technique.

3.6. Adaptive SK

The purpose of the adaptive SK (ASK) method is to determine the center frequency and bandwidth (window length) via a
simple greedy approach. ASK is implemented by right-expanding a given window along the frequency axis through
successive attempts to merge it with its subsequent neighboring windows and thus finally maximizing the SK value.
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The ASK technique successively attempts to right-expand a given window along the frequency axis. Therefore, the
original signal is first transformed to the frequency domain:

N-1

Xnj=>" x[K] e~k (12)

k=0

where X[ - ] is the Fourier sequence of the signal and N is the length of the signal. The windowed signals in frequency domain
based on the current window wj' and its translated version T;,w are respectively written as

Ti+T1
&, [n] = Mniwj(n) = 3~ X[mwin—za] .
X [Nl =K[n] - Ti;wn] = Xnjw{n—la] a4

where | =r;+r+1. Similarly, the windowed signal based on the superposition of w} and T;,w windows is
AT ! ~
Xy, [ =Xnwji[n] = > X[nw[n—za) (15)
T=rj

Then, filtered signals can be obtained by inverse FFT, i.e

. 1 .
xo M = 2 Z K et 1o

where w; indexes wy,wr, and w4 is the overlap ratio, and G(4,r) is the gain of the filter resulting from the superposed
window. The estimate of G(4,r) and the performance of different local window function superposition are given in [45].

Frequency [kHz]

Fig.1. SK computed with different N, and f (Fig. 13 in [44]).

Level (A1),
0o T2
1+ 14
2 418
3 4116
4 +132
k 9kl
A\ 4
} " } } —>
0 /8 1/4 3/8 12

Fig. 2. Combinations of center frequency and bandwidth for the 1/2-binary tree kurtogram estimator .
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The kurtosis of the filtered signals using window w;,wr, or w; as a bandpass filter can be computed by

N-1 4
S (x, [kl — (xy,
K [ = o ()| —2 a7

i < _ 2
(oo )

where w; indexes wy,wr, and w;,( -) is mean operator, k[ - ] is the r;th adaptive windowed SK, and constant “-2” comes from
the fact that x(,‘vc [k] is complex. As can be seen in Eq. 17, kurtosis is practically derived from a temporal signal xC’v:. However,
signal Xﬁ,{ results from a frequency window, and thus the kurtosis corresponding to the frequency domain can be also
obtained. That is why the ASK technique is named as adaptive SK. The process of merge is accepted only if it leads to higher
or equal spectra kurtosis, i.e.,

Kr,[Xw,] = max {Kr[xw,], Kr, [XWTr]} (18)

where subscripts w;, wr, and w; represent the current window, the immediate translated neighboring window, and the
merged window, respectively. If the above condition is not satisfied, an attempt will be made to merge the next window
with its immediate right-translated window. This process repeats until all windows have been tested for merging. Fig. 3
represents the above mentioned window merging process, where each dot (—o—) in Fig. 3 stands for the SK value derived
from an initial window. Actually, Fig. 3 also shows the adaptive paving of the time-frequency plane using the window
merging.

Provided that the initial width of window w is M, the central frequency and bandwidth deduced from the windowed data )2;",, are
mostly located in [r;a, (r+1;)a+M/2]. For more details about the ASK technique, interested readers should refer to Ref. [46].

The comparison between the ASK and the STFT-based SK are given in Fig. 4. As can be seen in Fig. 4(a), different window
lengths resulted in different results (center frequency and bandwidth) when the STFT-based SK method is applied.
Nevertheless, the optimal filter parameters could be determined without enumerating all possible window lengths by using
the ASK method, as is depicted in Fig. 4(b).

| b | I} : ' |
i ol q*‘L I
] S q |t . i i
/Ml' I I Mﬂ“ ‘M@y‘l‘%‘w ‘W;Wm i MH NLJ; ‘ J‘JH‘, AL M
S S N N A ==
k- ;
.

SK

0.5
04
0.3
0.2
0.1

STFT-based SK

SK

Adaptive Windowing

A . . | . |
200 300 400 500 600 700 800 900 1000

Frequency (Hz)

.
0 100

Fig. 4. The STFT-based SK and the proposed adaptive SK (Fig. 3 in [46]).
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3.7. The protrugram

Protrugram was proposed based on the kurtosis of the envelope spectrum amplitudes of the narrowband envelope
signals calculated in the frequency domain via Hilbert transform in [47], which is different from on the computation of the
kurtosis of the filtered time signal. However, this practice did not give theoretical justification. Actually, the protrugram can
be considered as the special case of the ASK and more details can be seen in the work [46]. Because protrugram is computed
based on the envelope spectrum of Xnq, i.e. Xw,, = F(|Xw,, +jH(Xw,,)|), where H(-) is the Hilbert transform operator, F(-) is the
Fourier transform operator and |- | is the modulus of the signal. It can be written in theory as follows

N=1 5 4
> ‘XWnn[k]_<XWna>
k=0

(19)

R [Xwe| =

-2, n=0,1,2,..., FS_MJ

N-1 L\ 2a
3 R K= (R )|
K=0

The calculation of the protrugram requires the additional parameter - the size of the step of scanning, i.e., how much the
central frequency is shifted on the frequency axis after each iteration. Fig. 5 shows three protrugrams for constant BW with
variable step size.

In short, several different approaches have been investigated to measure the kurtosis of a signal as a function of
frequency. Results of SK technique in nature are the output of a series of bandpass filters covering a wide frequency range.
Vibration signals are known to be highly nonstationary, especially when a fault occurs in a rotating machine, which will
provoke a series of impacts. SK technique is very powerful in detecting those impulsive signatures from signals even buried
with great noises. The applications of SK in the fields of fault detection, diagnosis of rotating machines are given in the next
section, where some improvements on the SK are mentioned as well. The thorough comparisons among the diverse SK
approaches are beyond the scope of this work; however, the comparisons among the kurtogram, ASK and protrugram in
identifying the multiple signatures of bearings are given in [48].

4. Applications of SK in rotating machine fault diagnosis

It is desirable to derive the signatures of interest from vibration signals picked up around the machine components with
localized faults, such as REBs and gears. Hence, these applications of SK are mainly illustrated in the following two aspects.

4.1. Applications in detecting bearing faults
REBs are the common components in rotating machinery, and thus they have received great attention in the fields of

condition monitoring. Signals resulted from the localized faults in bearings are impulsive, at least at the source, thus SK has
been mostly utilized to identify the frequency bands in which this impulsivity is most marked [49]. For instance, SK was

a
400 r T T T T
g 200 | CF =4500 Hz |
=]
<
0 I | 1 l 1 | 1 1 1
0 2000 4000 6000 8000 10000 12000
b
1000 T T T T T
) ) S
2 | CF=4100Hz
£ 500 I ‘ ‘ d
2 N
0 ll”‘ autls ’J H | 1-'11. 1 1 1
0 2000 4000 6000 8000 10000 12000
C
1000 - T T T T
2 P& cF = 4068 Hz
8 s00 | \ _
2 /o
0 n'/L_,‘_/x/ 1 \’\ L L "
0 2000 4000 6000 8000 10000 12000
Frequency [Hz]

Fig. 5. Protrugrams for constant BW=500 Hz and varying stepsize: (a) 1 kHz, (b) 100 Hz and (c) 1 Hz (Fig. 11 in [48]).
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directly applied to the REB fault detection in an asynchronous machine in [50]. Professor Randall systematically introduced
the applications of SK in machine diagnostics and he also early gave some trends for SK in the fields of prognostics [51]. The
kurtogram has now also been used for feature extraction of gear/bearing dynamic model in the presence of bearing faults
[52], as well as real-time automatic detection of REB fault in induction machine [53].

4.1.1. Improvements on the time-frequency frame used in the SK
Many signal time-frequency decomposition methods have ever been adopted to perform the different multirate filter-
bank structures used in the SK technique. Complex Morlet wavelet transform (CMWT) was applied as a filter bank with

Table 1
Different time-frequency decomposition methods used in the improved SK techniques.

Time-frequency Decomposition method SK References Comments
technique
CMWT STFT-based [54,56] Uniform resolution on a logarithmic frequency scale
SK
WPT Kurtogram  [57,75] More dedicated division of the time-frequency plane
Adaptive superposition widows in frequency ASK [46] Adaptive time-frequency decomposition
domain
ARMPT Kurtogram  [58] Adaptive construction of multiwavelet using two-scale similarity transform
TQWT Similar to  [59] More flexible for the Q-factor of the WT
ASK
QAWTF Kurtogram  [60] Quasi-analytic wavelet tight frame as the detection filters
KABS ASK [34] Remove sinusoidal interferences
Multiwavelet transform Kurtogram  [62] Customized construction of Multiwavelet
Morlet wavelet ASK [55] Morlet wavelet used as filter bank and center frequency defined by wavelet

correlation filtering
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Fig. 6. The case for bearing fault detection with ASK. (a) Original signal collected from bearing interaction with gear; (b) its spectrum; (c) the SK using ASK;
(d) the optimal filter resulted from the ASK method; (e) the filtered signal; (f) the Fourier spectrum of the signal envelope in (e).
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uniform resolution on a logarithmic frequency bandwidth in [54]. Liu et al. developed an adaptive kurtosis filtering
technique based on Morlet wavelet, in which Morlet transform was used a filter bank [55]. For the envelope analysis,
different banks were applied to select the best filter that maximized the SK. Envelope analysis of the wavelet-filter based SK
was mentioned for bearing health monitoring [56]. An improved kurtogram based on the wavelet packet transform (WPT)
was developed for extracting fault characteristics of REBs in [57]. Recently, some newly developed wavelet transforms have
been adopted in the SK technique, such as an adaptive redundant multiwavelet packet transform (ARMPT) was introduced
into the SK, and it was then applied to the fault detection of REB and gear [58]. A kurtosis-guided adaptive demodulation
technique for bearing fault detection based on tunable-Q wavelet transform (TQWT) was given in [59]. Discrete quasi-
analytic wavelet tight frame (QAWTF) expansion methods were incorporated as the detection filters used in SK [60]. Since
the QAWTF is constructed based on dual tree complex wavelet transform, the vibration transient signature extracting ability
of SK technique is further improved compared with other wavelet transform [61]. In addition, a bearing fault detection
method based on kurtosis-based adaptive bandstop filtering (KABS) and iterative autocorrelation was developed in [34]. The
multiwavelet transform based on lifting scheme was used as the filters used in SK and multiwavelet SK was then applied for
rolling bearing fault diagnosis [62]. All those mentioned different time-frequency decomposition methods along with the
used SK techniques are summarized in Table 1. It is worth noting that adaptive superposition widows derived by using ASK
can be considered as an improved time-frequency decomposition for SK technique, for ASK is inspired by adaptive time-
frequency analysis method [63].

Gears and bearings are always two inseparable parts in most of rotating machines in the industry today. It is still very
challenging for fault diagnosis of a rotating machine due to the contemporary presences of more than one cyclostationary
source and additive noise in the acquired vibration signal, for example, signals acquired in a gearbox. Here, an example is
given below to detect bearing outer-race fault using ASK. We want to use this case to show the effectiveness of ASK on
detecting bearing fault under the influence of gears. The vibration signal was sampled at 20,000 samples/s and the shaft
speed was set at 1422 RPM (f,=23.7 Hz) leading to bearing fault characteristic frequency 72 Hz (BPFO =3.052f,). The
original signal and its corresponding spectrum are given in Fig. 6(a) and (b), respectively. As can be seen in Fig. 6(b), the
spectrum of the measured signal is dominated by frequency components associated with the gearbox meshing frequency
(MF=166.3 Hz) and its harmonics. The SK values and the corresponding optimal filter derived by using ASK are shown in
Fig. 6(c) and (d). Based on the optimal band-pass filter, the filtered signal and its envelope spectrum are illustrated in Fig. 6
(e) and (f). As can be easily seen in (f), the outer race fault characteristic frequency and several of its harmonics can be clearly
detected from envelope spectrum.

4.1.2. Combinations with other methods for bearing fault detection

In the early introduction of SK, it was exploited in bearing fault detection individually, without using other methods.
Nevertheless, the combination of SK with other techniques has recently attracted much more attention. SK is very useful as a
filter function to filter out that part of the signal with the highest level of impulsiveness [49], as such SK can be also used as a
preprocessing for other techniques. In addition, the SK technique can be enhanced by some preprocessing technique, such
as, an autoregressive (AR) model as a prewhitening [51]. A hybrid signal processing method that combines SK with
ensemble empirical mode decomposition (EEMD) was developed to diagnose the status of bearings through vibration signal
analysis [64]. A procedure combining the customary HHT with kurtogram was developed to extract high-frequency features
from several kinds of faulty signals, where the kurtogram was applied to locate the nonstationary intra- and inter-wave
modulation components in the original signals and produced more monochromatic intrinsic mode functions (IMFs) [65].
Based on segmentation thresholds by autocorrelation analysis of WPT coefficients, a noise reduction method was proposed
for bearing early fault diagnosis combined with SK [66]. Rotating machinery vibration analysis involves a convolute mixture
due to the propagation medium and environmental disturbances. A fault feature extracting method for rotating machinery
vibration was given in [67], based on SK and blind deconvolution techniques. An algorithm for enhancing the surveillance
capability of SK in rolling element bearings by using the minimum entropy deconvolution (MED) technique [68]. The MED
technique is one of the blind deconvolution techniques and can well deconvolve the effect of the transmission path and
clarifies the impulses. Vibration signals collected from bearings often corrupted with gear signals which are usually
represented as modulated sinusoidal components. Based on the optimized SK for initializing series of extended Kalman
filters (EKF), an automatic method for removing modulated sinusoidal components in signals was developed in [69]. It
should be mentioned this application in [69] is different from the others, because SK was used to track and remove
sinusoidal components rather than to detect impulsive features from signals. By applying both cyclostationary analysis (CSA)
and SK for the selection of a frequency band in which variations in vibration patterns are most expressed, improperly
lubricated bearings from vibration patterns can be successfully detected when records from short operating periods are
available [70]. Based on the kurtogram and the parameter of the non-Gaussian alpha-stable model, a method for bearing
fault detection was given in [71]. An envelope order tracking (EOT) analysis scheme was proposed for the fault detection of
rolling element bearing under varying-speed running condition in [72], where the kurtogram algorithm was utilized to
obtain both optimal center frequency and bandwidth of the band-pass filter. By means of the determination of the center
frequency and bandwidths, a system defined by the Duffing equation in the presence of defective bearing signal was
developed in [73], where the state changes of the rolling element bearing can be identified using the phase plane
trajectories and Lyapunov exponents of Duffing equation. SK combined with AR model was applied to the fault diagnosis
and condition monitoring of bearings [74]. An enhanced kurtogram was proposed to determine the resonance frequency
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Table 2
Major methods combined with a SK technique for bearing fault detection.

Technique SK technique References Comments

AR model STFT-based SK [51,74] Filtering of the residual signal

EEMD STFT-based SK [64] SK used as optimal band-pass filter (preprocessing)

Blind deconvolution Kurtogram [67] SK posterior to BS (postprocessing)

MED CMWT-based SK [68] MED prior to SK and sharpens impulses

EKF Optimized SK [69] Optimized SK for initializing series of EKF

CSA CMWT-based SK [70] SK for the selection of a frequency band

Alpha-stable model Kurtogram [71] Kurtogram was generated using « parameter

EOT Kurtogram [72] Kurtogram was used as preprocessing to determine signatures
Duffing equation STFT-based SK [73,74] For selection of central frequency and bandwidth using SK
GA Kurtogram [76] SK for initial estimates and GA for final optimization

SA Kurtogram [77] Kurtogram was used to yield a starting point and SA was used to maximize the SK

bands in [75], where kurtosis values calculated based on the power spectrum of the envelope of the signals extracted from
wavelet packet nodes at different depths. In the enhanced kurtogram technique, the sparse representation of the signals was
defined by the power spectrum of the envelope of the signals, whose sparseness was measured by kurtosis. This technique
can be further considered as an improvement on the protrugram.

Moreover, in order to determine an optimal band-pass filter parameters (i.e., center frequency and bandwidth), some
optimization techniques were applied to select the filter