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We formulate a multi-objective MILP model to find the optimal choice of suppliers and
their order quantity allocation under disruption risk. Suppliers are evaluated and ranked,
based on the preference values obtained using a hybrid fuzzy AHP-fuzzy PROMETHEE.
Multi-objective Particle Swarm Optimization is then applied to yield a set of Pareto-
optimal solutions for the choice of suppliers and their order allocation. Numerical experi-
mentation suggests that the supplier failure probability affects the expected total cost
more than supplier flexibility and loss cost. Sensitivity analysis is performed on the failure
probability, the output flexibility, and loss cost of the suppliers.
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1. Introduction

The risks in today’s supply chain are numerous and are constantly evolving from sources within and outside of the supply
chain. In a survey conducted by Deloitte, 71 percent of the respondents view supply chain risk as a crucial factor in their
firm’s strategic decision-making (Marchese and Paramasivam, 2013). The literature categorizes supply chain risk as either
operational or disruption risk (Tang, 2006). Operational risk refers to the inherent uncertainties such as uncertain customer
demand, supply, and cost. Disruption risk refers to the major disruptions caused by natural and man-made disasters. The
efforts to identify and mitigate supply chain risk have traditionally focused on operational risk as disruption risk were
viewed to be (probabilistically speaking) rare events. In recent years, disruption risks have been occurring more frequently
and are receiving greater attention as suppliers, particularly those in Asia, tend to be clustered within a single locale for
economies of supply. Succumbing to disruption risk can thus lead to a loss in productivity, quality, market share, and rep-
utation for the suppliers and the supply chain (Chopra and Sodhi, 2014). This also leads to an increase in the purchasing and
logistics cost as the manufacturers are often compelled to seek and select fresh suppliers quickly from elsewhere and to
expedite the shipping to maintain service levels. The twin disasters (Japanese tsunami and Thailand flood) in 2011 attest
to this effect. These two events have forced many leading automotive and computer makers to reassess their supply network
strategies to effectively mitigate the risks arising from the clustering of suppliers in the two locations, in an attempt to con-
tain costs of transportation and logistics, and to maintain customer service levels. Sourcing under disruption risk is a chal-
lenging task for the purchasing firms as it involves a trade-off between minimizing the expected loss of supplier disruption
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and maximizing the utility of the suppliers based on their cost, flexibility, and other criteria. We formulate this problem as
the multi-objective Supplier Selection and Order Allocation (SSOA) model under disruption risk.

The research on SSOA under disruption risk is scant (Meena and Sarmah, 2014; Sawik, 2014a; Hamdi et al., 2015). For
instance, Knemeyer et al. (2009) apply a proactive planning process to identify the key locations for catastrophic risk in a
supply chain and to estimate the probability of its occurrence and impact. Chai et al. (2013) review the decision-making
techniques in supplier selection. Li et al. (2015) have investigated the effects of decision sequence on a decentralized supply
chain in which a supplier faces disruption risk. As such, our contribution to the body of knowledge is to develop a realistic
multi-objective model that captures the associated effects arising from disruption risk at the upstream end of the supply
chain, which will clearly affect the related transportation and logistics costs. We choose to focus on SSOA particularly in Asia
as Asia is the sourcing hub of the global supply chain, and any disruption at this level would have a knock-on effect on the
rest of the chain.

This paper is organized as follows. Section 2 reviews the SSOA literature under disruption risk and the methods of fuzzy
AHP, fuzzy PROMETHEE, and MOPSO. Section 3 describes the problem and model formulation. Section 4 details the solution
approach. Section 5 contains an illustrative example. Section 6 discusses the results. Section 7 concludes the paper.
2. Literature review

2.1. SSOA under disruption risk

Researchers have modeled supply disruption as either a super, semi-super, or unique event (Sarkar and Mohapatra, 2009).
A super event causes the suppliers at all locations to be disrupted and cannot deliver the committed quantity to a manufac-
turer, hence they fail. A semi-super event causes all suppliers at a location to fail while a unique event causes only one sup-
plier at a location to fail. Much of the literature on supply disruption risk concern super and unique events with equal and
unequal failure probabilities. Recently, there have been studies considering the region specific supply disruptions due to a
semi-super event (Sawik, 2014a, 2014b, 2014c; Kamalahmadi and Mellat-Parast, 2015). Sawik (2014a, 2014b, 2014c) pro-
posed a stochastic Mixed Integer Programming (MIP) approach to integrated supplier selection and customer order schedul-
ing in the presence of supply chain disruption risks. Kamalahmadi and Mellat-Parast (2015) present a two-stage MIP model
to minimize the total network cost by integrating SSOA with transportation channel selection. Table 1 shows some recent
SSOA models under supply disruption risk. Typically, supply disruption risks are measured by the expected monetary loss
(Heckmann et al., 2015). All the SSOAmodels studied so far are limited to a single objective of either expected total cost min-
imization, expected worst-case cost minimization (Sawik, 2014c) or profit maximization (Ray and Jenamani, 2016).

Clearly, multi-objective models for SSOA under disruption need further study. Though the decision tree approach is the
most common solution method for capturing the different scenarios to help determine the optimum supply base, typically
an arbitrary allocation of orders is proposed in increments of 10% (Ruiz-Torres and Mahmoodi, 2006; Meena et al., 2011;
Meena and Sarmah, 2016) or 1% (Lee, 2015) for computational expediency. The reason for this is that the computational
complexity for SSOA increases with the number of suppliers, locations, failure probabilities, supply capacity, and supplier
flexibility. Meena and Sarmah (2013) have shown that SSOA under supply disruption risk is NP-hard and proposed a Genetic
Algorithm (GA) for solution. Particle Swarm Optimization (PSO), drawn from swarm intelligence, is another preferred
algorithm given its simplicity and performance over the GA (Poli, 2008). In our study, we apply a PSO algorithm to solve
a multi-objective SSOA under supply disruption due to super, semi-super, and unique events, in order to reflect a more real-
istic situation of supplier management under disruption. By employing MOPSO with time varying parameters, our proposed
approach is novel as the current literature has yet to provide any evidence of multi-objective supplier selection under
disruption using MOPSO.
2.2. Multi-objective SSOA under disruption risk

Several studies have modeled multi-objective SSOA without considering disruption risk (Sawik, 2010; Mafakheri et al.,
2011; Jolai et al., 2011; Amin and Zhang, 2012; Azadnia et al., 2015). Torabi et al. (2015) developed a bi-objective mixed pos-
sibilistic, two-stage stochastic programming model to build a resilient supply base under operational and disruption risks
considering the suppliers’ business continuity plans, fortification of the suppliers, and contract with back-up suppliers.
Nooraie and Mellat-Parast (2015) developed a multi-objective model to study the relationship among supply chain visibility,
supply chain risk, and supply chain cost for a new product under probabilistic demand. Nooraie and Mellat-Parast (2016)
further proposed a multi-objective stochastic model to determine the trade-off among the investments in improving supply
chain capability and reducing the supply chain risks and to minimize the cost of supply chain disruptions. Khalili et al. (2016)
presented a multi-objective mixed possibilistic, two-stage scenario based stochastic programming model to handle SSOA
under operational and disruption risks.

However, all of the above studies are limited to the scenarios of individual supplier failures and did not consider region
specific supply disruptions. Recently, on region specific supply disruptions, Sawik (2014b) proposed a bi-objective stochastic
MIP to optimize the expected value and the expected worst-case value of the cost or customer service of a global supply
chain network. Sawik (2016) extended his previous works on stochastic MIP for a bi-objective coordinated selection of



Table 1
Some recent SSOA models under supply disruption risk.

Source Model description

Model details Decision variables Model Parameters Solution
methodology

Objectives Number
of supplier

Order
allocation
among
suppliers

Cost Supply failure Output
flexibility of
suppliers

Single Multiple Equal Unequal FC PC LC PD Su Se Uq

Equal Unequal

Berger et al.
(2004)

ETC – d – – d – d – d – d – – Decision tree

Zeng et al.
(2005)

ETC – d – – d – d – d – d – –

Ruiz-Torres and
Mahmoodi
(2006)

ETC – d – d d d d d – – d d d Decision tree and
arbitrary order
allocation

Ruiz-Torres and
Mahmoodi
(2007)

ETC – d – – d – d – d – d d d Decision tree

Sarkar and
Mohapatra
(2009)

ETC – d – – d d d – d d d – – Decision tree and a
tabular method

Meena et al.
(2011)

ETC – d d – d d d – d – d – d Problem specific
algorithm

Meena and
Sarmah
(2013)

ETC – d – d d d d d d – – d d GA

Ruiz-Torres et al.
(2013)

ETC – d d d d d – – – d d Decision tree and
excel solver

Meena and
Sarmah
(2014)

ETC – d – d d d d d d – – d d GA, BONMIN solver

Sawik (2014a) ETC/
CSL

– d – d d d d – – d – d – Stochastic MIP

Sawik (2014c) EWC/
WCSL

– d – d – d d – d d – d – Stochastic MIP

Lee (2015) ETC – d – d d d d d d d – d d Decision tree and
arbitrary order
allocation

Meena and
Sarmah
(2016)

ETC – d – d d d d d d – – d d Problem specific
algorithm

Ray and
Jenamani
(2016)

ETP – d – d – d d d – – – d – Problem specific
algorithm

Note: ETC – Expected Total Cost, EWC – Expected Worst-Case Cost, WCSL – Worst-Case Service level, ETP – Expected Total Profit, CSL – Customer Service
Level, FC – Fixed Cost, PC – Purchase Cost, LC – Loss Cost, PD – Price Discount, Su – Super event, Se – Semi-super event, Uq – Unique event, BONMIN – Basic
open-source Mixed Integer Non-Linear programming.
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supply portfolio and scheduling of production and distribution under supply disruptions. Sawik (2014b, 2016) combined the
bi-objective model into a single objective using a weighted sum aggregation approach and reported a subset of Pareto opti-
mal solutions. Meta-heuristics such as GA, PSO are found to be efficient in finding a set of Pareto optimal solutions for multi
objective optimization.

In our study, we formulate an MILP model to determine the choice of suppliers and the order quantity allocation of the
suppliers considering individual and geography-specific regional failures of the suppliers. The objectives are to minimize the
expected total cost (ETC) and to maximize the total purchase value (TPV). ETC includes the logistics cost of supplier manage-
ment, the cost of acquiring rawmaterials from the suppliers, and the expected supplier loss. TPV represents a manufacturer’s
utility function based on the preference values (weights) of different suppliers (Mafakheri et al., 2011). TPV is the weighted
sum of the order quantities obtained by multiplying the supplier’s preference value with the corresponding order quantity.
The preference value is a subjective measure used to rank the suppliers considering cost, customer service, and risk. Among
the MCDM methods, the outranking approaches are appropriate for ranking applications. PROMETHEE (Preference Ranking
Organization Method for Enrichment Evaluation) is reportedly more stable among the outranking methods (Brans and
Mareschal, 2005). Implementing PROMETHEE requires the information on the criteria weights and the choice of preference
functions with their parameters. Macharis et al. (2004) have proposed a hybrid AHP (Analytic Hierarchy Process) and PRO-
METHEE by combining the favorable characteristics of both approaches. To obtain the preference values of the suppliers, we
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follow Macharis et al. (2004). We use fuzzy AHP (Saaty, 1990) to obtain the criteria and sub-criteria weights and fuzzy PRO-
METHEE II to rank the suppliers based on preference values. Multi-objective Particle Swarm Optimization (MOPSO) is then
used to find the trade-off between minimizing ETC and maximizing TPV.
2.3. Overview of techniques

Fuzzy AHP: Fuzzy AHP is an MCDM tool developed by combining Saaty’s (1990) AHP with fuzzy set theory (Zimmermann,
2010). In fuzzy AHP, the linguistic variables or fuzzy numbers are used, as human preferences are often subjective, imprecise,
and ambiguous. A fuzzy number is illustrated by a membership function that is a real number between 0 and 1. These mem-
bership functions can take several shapes (Ishizaka and Nguyen, 2013). In practice, triangular and trapezoidal membership
functions prevail. Several methods have been proposed to handle the fuzzy comparison matrices. Among them is the extent
analysis method proposed by Chang (1996) which is commonly used, given its simplicity. Studies have used extent analysis
on fuzzy AHP for supplier selection (Lee, 2009; Kilincci and Onal, 2011; Shaw et al., 2012; Kannan et al., 2013; Li et al.,
2013; Viswanadhamand Samvedi, 2013).Wang et al. (2008) improved the extent analysismethod to estimate the trueweights
from a fuzzy comparison matrix. Zouggari and Benyoucef (2012) have used the improved extent analysis method for supplier
selection. In our paper, similarly, we employ Wang et al.’s (2008) method to obtain the criteria and sub-criteria weights (see
Appendix A).

Fuzzy PROMETHEE: PROMETHEE is an outranking method that ranks the alternatives according to conflicting criteria
(Brans and Mareschal, 2005). Implementing PROMETHEE requires the criteria weights that express the importance of each
criterion inside the family of criteria and a decision maker’s preference function for each considered criterion. In fuzzy
PROMETHEE, the performance of each alternative with respect to each criterion is denoted as a fuzzy number. These fuzzy
numbers are then compared and ranked. The maximizing set and minimizing set methods (Chen, 1985) and the centroid
method using Yager’s index (Goumas and Lygerou, 2000) are some approaches commonly used to rank fuzzy numbers.
We will use Yager’s ranking index in fuzzy PROMETHEE (Tuzkaya et al., 2010; Yilmaz and Dağdeviren, 2011). Appendix B
details the steps of the fuzzy PROMETHEE method.

MOPSO: PSO, developed for continuous optimization, have been applied to multi-objective problems (Lalwani et al.,
2013). Kamali et al. (2011) applied PSO on multi-objective buyer-vendor coordination. Che (2012) uses PSO to solve an
unbalanced multi-echelon supply chain planning problem. PrasannaVenkatesan and Kumanan (2012a) propose a multi-
objective binary PSO algorithm on sourcing under price and exchange rate risks. There is little work thus far on MOPSO
for SSOA under disruption. We now detail the steps of MOPSO.

Step 1 Swarm and velocity initialization: The position and velocity of each particle are initialized randomly. A set of feasible
particles represents the swarm.

Step 2 Fitness evaluation and ranking: The fitness values of the particles are calculated during the iterations and the non-
dominated solutions are stored in an external archive. The density of points around each non-dominated solution in the
archive is computed using the crowding distance operator and the solutions in the archive are ranked in descending order
of the density values.

Step 3 Local guide (pBest) selection: In MOPSO, the individual experience of the particle is captured in the pBest attribute
that corresponds to the best performance attained by a particle in its flight. At the first iteration (t), the current position of
particle pi[t] is set as the pBest particle, pBesti[t]. In subsequent iterations, pBesti[t] is replaced if pi[t] dominates pBesti[t]. If
both are mutually non-dominating, then pBesti[t] is selected arbitrarily.

Step 4 Global guide (gBest) selection: The convergence and diversity of the solutions are highly influenced by the global
guide selection. The gBest (gi[t]) for each particle is selected randomly from a specified top portion of the ranked non-
dominated solutions in the archive. Doing so, all elements within the specified top portion have an equal probability to
be the guide for the particle.

Step 5 Velocity and position update: The velocity and position update equations are used to update the velocity and position
of each particle during the iterations.
3. Problem description and model development

Firms keep a set of preferred suppliers based on cost, quality, and service level. Typically, as shown in Fig. 1, these sup-
pliers tend to be clustered in regions, for reasons of pooling of labor, technology, and others. The disruptions mentioned ear-
lier in this paper have forced the firms to develop contingency plans to mitigate the consequences of the risks due to the
geographic clustering of the suppliers. Siting reliable alternative suppliers and sourcing from both preferred and alternate
suppliers is practised to minimize the ETC. The ETC includes supplier management cost, purchasing cost, and an expected
loss cost (ELC) if a supplier fails due to disruption. Sourcing from preferred suppliers maximizes TPV (Araz et al., 2007;
Mafakheri et al., 2011; Jolai et al., 2011; Amin and Zhang, 2012) as a firm tends to allocate as much order quantity as possible
to the preferred suppliers. Should these preferred suppliers suffer a disruption, then the ELC incurred by the manufacturer is
high albeit the supplier management cost is low. If a part of the order is allocated to alternate suppliers, then ELC is reduced
but this may reduce the TPV. The conflicting goals of minimizing the ETC and maximizing the TPV thus require a
multi-objective optimization approach.
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Model formulation: A multi-objective MILP model is formulated to determine the choice of suppliers and the order allo-
cation among these suppliers, subject to the constraints on capacity and demand. The objectives are to minimize the ETC and
to maximize the TPV.

We assume the following in our model:

1. Single product with no quantity discount and a single period planning horizon;
2. Demand of the manufacturer is deterministic;
3. Number of suppliers and their geographical regions, capacities are known and fixed;
4. Cost of acquiring and transporting raw materials from suppliers to manufacturer is known and fixed;
5. A semi-super event is region specific and each region has its disruption probability;
6. Undisrupted supplier(s) will make up the shortfall in the ordered units at no extra cost (Meena and Sarmah, 2013);
7. Each supplier has a different capacity, unique event probability, and compensation potential (which is the ability of the

supplier to make up for the shortfall in supply);
8. We estimate the disruption probability of super, semi-super, and unique events by combining the decision maker’s opin-

ion with historical data (Knemeyer et al., 2009);
9. Logistics cost of managing suppliers increases with the number of suppliers;
Indices

s
 Supplier (s = 1, 2, . . . , S)

l
 Region (l = 1, 2, . . . , L); spsl denotes supplier s in region l
Parameters

D
 Total demand of raw materials for the planning period

Cs
 Capacity of supplier s

tsl
 Total number of suppliers in region l

Fs
 Fixed cost of managing supplier s

rs
 Purchasing cost per item from supplier s

r0
 Financial loss per item due to the failure of a supplier(s) to deliver

psu
 Probability of a super event causing all suppliers to fail due to disruption

pse
l
 Probability of a semi-super event causing all suppliers in region l to fail
puq
s
 Probability of a unique event causing supplier s to fail due to disruption
Qmin
s
 Minimum order for supplier s as a proportion of the total demand
BðfÞ
 Set of all non-empty subsets of regions l in which all suppliers are disrupted due to a semi-super event with
BðfÞ ¼ fBðf1Þ;Bðf2Þ; . . . ;BðfLÞg where Bðf1Þ is the subset containing each of a single region in which all suppliers
are disrupted; Bðf2Þ is the subset containing all combinations of any two regions where all suppliers are
disrupted;

The total number of subsets of regions that can be affected by a semi-super event is (2L � 1), this being the
number of subsets of the set of regions {1, 2, . . . , L} and assuming at least one supplier from a region is selected
(Sarkar and Mohapatra, 2009). If three regions l1, l2, l3 are disrupted, then B(f1) = {{l1}, {l2}, {l3}}, B(f2) = {{l1, l2},{l1,
l3},{l2, l3}} and B(f3) = {{l1, l2, l3}}
B0ðf 0Þ
 Set of all subsets of regions in which all suppliers are not disrupted due to a semi-super event where
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B0ðf 0Þ ¼ fB0ðf 01Þ;B0ðf 02Þ; . . . ;B0ðf 0LÞg and B0ðf 01Þ = subset containing undisrupted regions when all the suppliers in one
region are disrupted; B0ðf 02Þ = subset containing undisrupted regions when all suppliers in two regions are
disrupted; For example, B0ðf 01Þ = {{l2, l3}, {l1, l3}, {l1, l2}}; B

0ðf 02Þ = {{l3}, {l2}, {l1}} and B0ðf 03Þ = {}.

A(f)
 Set of all non-empty subsets of suppliers who are disrupted due to a unique event, AðfÞ ¼ fAðf1Þ;Aðf2Þ; . . . ;AðfSÞg

where Aðf1Þ = subset containing each of a single supplier who is disrupted; and Aðf2Þ = subset containing each of
two suppliers who are disrupted, etc. The total number of subsets composed of fs suppliers that can be subjected
to a unique event is S!

fs !ðS�fsÞ! where S ¼PL
l¼1tsl (Ruiz-Torres and Mahmoodi, 2007). With 8 suppliers, A(f1) = {{1},

{2}, {3}, {4}, {5}, {6}, {7}, {8}}; and A(f2) will have 28 elements with only two suppliers who are disrupted.

A0ðf 0Þ
 Set of all subsets of suppliers who are undisrupted due to a unique event, A0ðf 0Þ ¼ fA0ðf 01Þ;A0ðf 02Þ; . . . ;A0ðf 0sÞg,

where A0ðf 01Þ = subset of undisrupted suppliers when one of S suppliers is disrupted;

A0ðf 01Þ will have 8 elements with 7 undisrupted suppliers in each.

A0ðf 02Þ = subset of undisrupted suppliers when any two of S suppliers are disrupted, etc.
ws
 Preference value of supplier obtained from fuzzy PROMETHEE II net flow (Araz et al., 2007);

os
 Supply flexibility index for supplier s
Decision variables

Xs
 1, if supplier s is selected; 0, else

Qs
 Proportion of the total demand assigned to supplier s

qs
 Compensation received from an undisrupted supplier s
Objectives
Min ðf1Þ ¼
XS
s¼1

FsXs þ
XS
s¼1

rs QsDþ ELC ð1Þ
where ELC ¼ fELCsu þ ELCse þ ELCuqgDr0, with ELCsu ¼ psu
ELCse ¼ð1�psuÞ

I X
i2Bðf1Þ

 Xtsi
s¼1

Qs

!
i

�
X

j2B0 ðf 01Þ

 Xtsj
s¼1

qs

!
j

P 0

! X
i2Bðf1Þ

Xtsi
s¼1

Qs

 !
i

�
X

j2B0 ðf 01Þ

Xtsj
s¼1

qs

 !
j

0@ 1A P Q
i2Bðf1Þ

pse
i

Q
j2B0 ðf 01Þ

1�pse
j

� � ! !0BBBBB@

1CCCCCAþ

I X
i2Bðf2Þ

 Xtsi
s¼1

Qs

!
i

�
X

j2B0 ðf 02Þ

 Xtsj
s¼1

qs

!
j

P0

! X
i2Bðf2Þ

Xtsi
s¼1

Qs

 !
i

�
X

j2B0 ðf 02Þ

Xtsj
s¼1

qs

 !
j

0@ 1A P Q
i2Bðf2Þ

pse
i

Q
j2B0 ðf 02Þ

1�pse
j

� � ! !0BBBBB@

1CCCCCA

þ�� �þ I X
i2BðfLÞ

 Xtsi
s¼1

Qs

!
i

P0

! X
i2BðfLÞ

Xtsi
s¼1

Qs

 !
i

0@ 1A P Q
i2BðfLÞ

pse
i

 ! !0BBBB@
1CCCCAwhere i– j

0BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCA

ELCuq ¼ ð1� psuÞ
YL
l¼1

ð1� pse
l Þ

�

I X
m2Aðf1Þ

ðQsÞm �
X

n2A0 ðf 01Þ
ðqsÞn P 0

! X
m2Aðf1Þ

ðQsÞm �
X

n2A0ðf 01Þ
ðqsÞn

0@ 1A P Q
m2Aðf1Þ

puq
m

Q
n2A0 ðf 01Þ

ð1� puq
n Þ

 ! !0BBBB@
1CCCCAþ

I X
m2Aðf2Þ

ðQsÞm �
X

n2A0 ðf 02Þ
ðqsÞn P 0

! X
m2Aðf2Þ

ðQsÞm �
X

n2A0ðf 02Þ
ðqsÞn

0@ 1A P Q
m2Aðf2Þ

puq
m

Q
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ð1� puq
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! !0BBBB@

1CCCCA
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! X
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0@ 1A P Y
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Max ðf2Þ ¼
XS
s¼1

ws QsD ð2Þ
subject to
QsD 6 CsXs; 8s ð3Þ
XS
s¼1

Qs ¼ 1 ð4Þ
Qs P Qmin
s P 0; 8s ð5Þ
0 6 qs 6 ksXs; where ks ¼ ðCs=D� QsÞos; 8s ð6Þ

In Eq. (1), the loss due to a super, semi-super, and unique event is denoted as ELCsu, ELCse, and ELCuq respectively which

are formulated following Meena et al. (2011). TPV shown in Eq. (2) is the weighted sum of the order quantities from the dif-
ferent suppliers which aims to utilize the suppliers based on their preference values (weights) as defined in Araz et al. (2007).
The weights denote the preference values of the suppliers obtained using fuzzy AHP and fuzzy PROMETHEE. To maximize
TPV, the preferred suppliers are assigned as much orders as possible which results in a higher ELC when a disruption occurs.
Eqs. (3) and (4) are the capacity and demand satisfaction constraints for the suppliers respectively. Eq. (5) states that the
fraction of the total demand assigned to supplier s must be no less than the minimum order assigned to the same supplier.
Each undisrupted supplier can compensate a quantity more than its original allocation by an amount ks = (Cs/D � Qs)os.
Hence, the compensation received from an undisrupted supplier cannot exceed the compensation potential ks of that sup-
plier as given in Eq. (6). Further, following Meena and Sarmah (2013), we assume that an undisrupted supplier will compen-
sate the shortfall at no extra cost. i.e. undisrupted supplier(s) compensate the unmet demand by supplying an extra amount
(qs) at the same unit purchase cost of the disrupted supplier and the disrupted supplier is not penalized for that. We have
made this simplifying assumption so as to formulate a tractable model. The supply flexibility index os in Eq. (6) refers to a
supplier’s ability to compensate for the shortfall should the other suppliers be disrupted (Ruiz-Torres and Mahmoodi, 2006).
This index could be measured based on the suppliers’ production, logistics capability, capacity commitment to other cus-
tomers, and geographical proximity. An indicator function Iy is used; Iy = 1 if ‘y’ holds, 0 else.

We show a possible outcome of supplier disruption with 2 regions (l1, l2) and 2 suppliers in each region
(sp1

1; sp
2
1; sp

1
2 and sp2

2Þ; as shown in Table 2. We assume that the total demand is divided equally among the suppliers. The
capacities are set to 0.4, 0.3, 0.4, and 0.3 of the total demand (Cs/D) for suppliers sp1

1; sp
2
1; sp

1
2; and sp2

2 respectively. The vol-
ume flexibility index of the suppliers is set to 1 and hence the compensation received from the four suppliers (if undisturbed)
is 0.15, 0.05, 0.15, and 0.05 respectively. The ELC is Psu ⁄ D ⁄ r0 when all the suppliers are disrupted due to a super event. If all
suppliers in a single region are disrupted due to a semi-super event, then the ELC is the product of the failure probability and
the quantity loss. In this illustration, the demand allotted to suppliers of Regions 1 and 2 is 0.5 and 0.5 respectively. The loss
in the event of a regional disruption of suppliers is computed, after subtracting the order allotted to the suppliers in the dis-
rupted region from the compensation received from the undisrupted region. In short, when the suppliers from Region 1 are
disrupted, 0.3 (=0.25 + 0.25 � 0.15 � 0.05) is the actual loss after a compensation of 0.2 is received from the undisrupted
Region 2 suppliers. Here, ELC is zero as the undisrupted suppliers can compensate the shortfall when a single supplier is dis-
rupted due to a unique event. The proposed model needs a heuristic as finding the solution considering all possible outcomes
of supplier disruptions is computationally cumbersome given the number of suppliers, locations, failure probabilities, sup-
plier capacity and flexibility.
outcome for supplier disruption with 2 regions (l1, l2) and 2 suppliers in each region.

t Set of suppliers Probability ELC

Disturbed Undisturbed

r All None Psu Psu ⁄ D ⁄ r0

i-super B(f1) = {{l1}, {l2}} B0ðf 01Þ ¼ ffl2g; fl1gg ð1� PsuÞPse
l1ð1� Pse

l2Þ þ ð1� PsuÞð1� Pse
l1ÞPse

l2 fð1� PsuÞPse
l1ð1� Pse

l2Þð0:5� 0:2Þ
þð1� PsuÞð1� Pse

l1Þ
Pse
l2ð0:5� 0:2ÞgDr0

ue Aðf1Þ ¼ ffsp11g; fsp21g;
f; sp12g; fsp22gg

A0ðf 01Þ ¼ ffsp21; sp12 and sp22g;
fsp11; sp12 and sp22g;
fsp11; sp21 and sp22g;
fsp11; sp21 and sp12gg

ð1� PsuÞð1� Pse
l1Þð1� Pse

l2ÞðPuq
1 Þ

ð1� Puq
2 Þð1� Puq

3 Þð1� Puq
4 Þ

þ � � � þ ð1� PsuÞð1� Pse
l1Þð1� Pse

l2Þ
ðPuq

4 Þð1� Puq
1 Þð1� Puq

2 Þð1� Puq
3 Þ

where 1, 2, 3 and 4 denote the four
suppliers in set A(f1) respectively.

0
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4. Method

Fig. 2 shows the flowchart for the proposed approach. The suppliers are evaluated and ranked based on the preference
value obtained using the hybrid fuzzy AHP-fuzzy PROMETHEE in Phase I. In Phase II, anMOPSO is developed to find the choice
of suppliers and the order allocation among them. The fuzzy AHP, fuzzy PROMETHEE, and MOPSO are coded in Matlab 7.10.

4.1. Proposed fuzzy AHP

The supplier evaluation and ranking involves alternatives ða1; . . . ; aAÞ and criteria ðc1; . . . ; cCÞ. The alternatives denote a
finite number of suppliers to be ranked. The criteria refer to the decision factors that are used to evaluate the suppliers.
The criteria weights ðW1; . . . ;WcÞ denote the relative importance of each criterion.

Identification of goal, criteria, and alternatives: Fig. 3 shows the decision hierarchy of supplier evaluation and ranking. From
the literature, three main criteria and thirteen sub-criteria are identified (Lee, 2009; Mafakheri et al., 2011; Zouggari and
Benyoucef, 2012; Kannan et al., 2013; Osiro et al., 2014).

Determine criteria and sub-criteria weights: The linguistic variables shown in Table 3 are used to carry out pair-wise com-
parisons between the criteria and sub-criteria (Jolai et al., 2011). The fuzzy pair-wise comparison matrices are converted into
crisp matrices and the consistency of each matrix is verified. The criteria and sub-criteria weights are then determined using
the improved extent analysis method (Wang et al., 2008).

4.2. Proposed fuzzy PROMETHEE

Construct fuzzy evaluation matrix: The linguistic variables shown in Table 4 are used to evaluate the suppliers considering
each criterion (Yilmaz and Dağdeviren, 2011). In this paper, fuzzy numbers are presented in the form x = (n,a,b)LR as
proposed by Dubois and Prade (1978) which is equivalent to the conventional tuple form of triangular numbers ðl;m;uÞ such
that ðl;m; uÞ ¼ ½n� a;n;nþ b�. The corresponding membership function is given by Fig. 4. The defuzzified form of the given
fuzzy number is then computed using the centroid method (Goumas and Lygerou, 2000).

Apply preference functions with threshold for each criterion: The linear preference function, commonly found in the
literature, with preference p and indifference threshold q is selected for all the criteria. The linear preference function for
the alternatives (a1,a2) is defined as shown in Eq. (7). When using the fuzzy numbers in PROMETHEE, the membership func-
tion shown in Fig. 4 can be converted to Eq. (7). In Eq. (7), the values of p and q are crisp numbers and the magnitude of the
triangular fuzzy number is calculated using the Yager index. The outranking flows are then computed and the suppliers are
ranked based on the PROMETHEE II net flow (Appendix B).
Pjða1; a2Þ ¼
0; if ðn� a1Þ 6 q
ðn;a1; a2Þ � q=p� q; if q < ðn� a1Þ and ðnþ a2Þ 6 p
1; if ðnþ a2Þ > p

8><>: ð7Þ
4.3. MOPSO

The parameters of the proposed MOPSO algorithm are swarm size (N), maximum number of iterations (max_it), external
archive size (ex_ar), inertia weights, and acceleration coefficients.
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Fig. 2. Flow chart of proposed approach.
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Fig. 3. Decision hierarchy structure for supplier evaluation.

Table 3
Linguistic variables for pair-wise comparison of criteria and sub-criteria.

Linguistic variable Triangular fuzzy number

Equal importance (1,1,3)
Moderately more important (1,3,5)
Strongly more important (3,5,7)
Very strongly important (5,7,9)
Extremely more important (7,9,9)

Table 4
Linguistic variables for evaluating suppliers.

Very Bad (VB) Triangular fuzzy number

Bad (B) (0,0,0.15)LR
Weak (W) (0.15,0.15,0.15)LR
Medium (M) (0.30,0.15,0.20)LR
Good (G) (0.50,0.20,0.15)LR
Very Good (VG) (0.80,0.50,0.20)LR
Excellent (E) (1,0.20,0)LR
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Particle representation and swarm initialization: In the MOPSO algorithm, each particle is a feasible allocation of demand to
the suppliers. The length of a particle depends on the number of suppliers and each bit of a particle represents the fraction of
demand assigned to a supplier. An example of a particle for eight suppliers located in three regions is shown in Fig. 5. There
are three suppliers each in Regions 1 and 2, and two suppliers in Region 3. The maximum demand is then allocated to sup-
plier 1 in Region 1 but supplier 2 in Region 3 is not selected. The fitness values of the particles are calculated and the non-
dominated solutions (NDS) are stored in an external archive (ex_ar). A single pBest is maintained based on the dominance
relation among the current position of a particle (Pi[t]) and the previous best. The gBest for each particle is selected randomly
from a subset of the NDS ranked using the crowding distance method.



f(x) 

0.00         0.15           0.30       0.50 0.65       0.80 1.00 

VB B        W M         G VG         E 

Fig. 4. Membership functions of triangular fuzzy numbers.

0.25960 0.10664 0.15973 0.17165 0.10238 0.10000 0.10000 0.00000 

Region 2 

Region 1 Region 3 

Fig. 5. Representation of a particle for proposed problem.
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Velocity and position update: The velocity update relation is given in Eq. (8) where r1 and r2 are uniformly distributed on
(0,1). The inertia weight xt is allowed to decrease linearly with iteration, from the initial value x1 to the final value x2 (see
Eq. (9)). This ensures global exploration of the search space at the initial stages and local exploration at the later stages. C1t is
allowed to decrease from its initial value of C1i to a final value C1f as shown in Eq. (10). C2t is allowed to increase from its
initial value of C2i to a final value C2f as shown in Eq. (11). The particle’s position is updated using Eq. (12). After a position
update, the particles are evaluated for feasibility. Infeasible particles are repaired subject to the constraints on demand,
capacity, and minimum order allocation.
Vi½tþ1� ¼ xtV i½t� þ r1C1tðpBesti½t� � Pi½t�Þ þ r2C2tðex ar½gBesti½t� � Pi½t��Þ ð8Þ
xt ¼ ðx1 �x2Þðmax it � tÞ=ðmax itÞ þx2 ð9Þ
C1t ¼ ðC1f � C1iÞðt=max itÞ þ C1i ð10Þ
C2t ¼ ðC2f � C2iÞðt=max itÞ þ C2i ð11Þ
Pi½tþ1� ¼ Pi½t� þ Vi½tþ1� ð12Þ
5. Numerical example

We now demonstrate the proposed model, using data drawn from the literature where possible and available. A manu-
facturer plans to procure materials from a set of suppliers based in three regions. The suppliers in Region 1 are established
with a good market reputation and are the primary procurement source for the materials. To avoid depending on a single
supply region, the manufacturer decides to consider suppliers from Regions 2 and 3, as Region 1 is prone to supply disruption
risks. The suppliers in Region 3 are located nearer the manufacturer albeit new and are more expensive than the other
regions. The suppliers in Regions 1 and 2 are located outside the manufacturer’s geographical proximity. Total demand
for the manufacturer is set at 8000 units. The minimum order quantity for any supplier is set at 10% of the total demand
(Ruiz-Torres and Mahmoodi, 2006). Table 5 shows the capacity, failure probabilities, supply flexibility index of the suppliers,
supplier management cost, and unit cost of the materials.

Region 1 has established suppliers with higher capacities. Region 3 has new suppliers and hence the cost of meetings,
negotiation and monitoring the quality results in a higher logistics cost on supplier management. The failure probability val-
ues for the super, semi-super, and unique events are taken from the literature and presented in Table 1. The loss per unit is
set to vary between 2 and 4 times of the purchase cost of the material (Ruiz-Torres and Mahmoodi, 2006). The fuzzy pair-
wise comparisons matrices for the main- and sub-criteria are constructed using the linguistic variables reported in Sec-
tion 4.1. The value of kmax and the consistency ratio are computed for all the matrices as shown in Table 6. The suppliers
are evaluated on the criteria using the linguistic variables reported in Section 4.2 and Table 7 shows the evaluation matrix.



Table 5
Data.

Supplier Supplier
capacity

Failure probability of event Output flexibility
index

Supplier management
cost ($)

Unit purchase
cost ($)

Super Semi-super Unique

Region 1 sp1
1 3000 0.010 0.030 0.050 0.7 2000 12

sp2
1 2400 0.100 1.0 1500 13

sp3
1 3200 0.150 0.8 1000 14

Region 2 sp1
2 1600 0.025 0.100 0.7 2000 15

sp2
2 1200 0.150 0.7 2500 18

sp3
2 1800 0.050 0.5 1200 16

Region 3 sp1
3 1500 0.020 0.060 0.4 3500 18

sp2
3 1200 0.030 0.4 2500 15

Table 6
Fuzzy pair-wise comparison matrix of supplier evaluation criteria and sub-criteria.

Main criteria: Supplier evaluation

Criteria Cost Customer service Risk

Cost (1,1,1) (1,3,5) (1,1,3)
Customer Service (1/5,1/3,1) (1,1,1) (1,1,3)
Risk (1/3,1,1) (1/3,1,1) (1,1,1)

kmax = 3.0536 CR = 0.04623

Sub-criteria: Cost

Sub-criteria C1 C2 C3

C1 (1,1,1) (1,3,5) (5,7,9)
C2 (1/5,1/3,1) (1,1,1) (3,5,7)
C3 (1/9,1/7,1/5) (1/7,1/5,1/3) (1,1,1)

kmax = 3.0092 CR = 0.00793

Sub-criteria: Customer service

Sub-criteria S1 S2 S3 S4

S1 (1,1,1) (1,1,3) (3,5,7) (1,3,5)
S2 (1/3,1,1) (1,1,1) (5,7,9) (5,7,9)
S3 (1/7,1/5,1/3) (1/9,1/7,1/5) (1,1,1) (1,1,3)
S4 (1/5,1/3,1) (1/9,1/7,1/5) (1/3,1,1) (1,1,1)

kmax = 4.2216 CR = 0.08299
Sub-criteria: Risk

Sub-criteria R1 R2 R3 R4 R5 R6

R1 (1,1,1) (3,5,7) (3,5,7) (1,1,3) (1,1,3) (3,5,7)
R2 (1/7,1/5,1/3) (1,1,1) (3,5,7) (1/5,1/3,1) (1/7,1/5,1/3) (1,3,5)
R3 (1/7,1/5,1/3) (1/7,1/5,1/3) (1,1,1) (1/5,1/3,1) (1/7,1/5,1/3) (1,1,3)
R4 (1/3,1,1) (1,3,5) (1,3,5) (1,1,1) (1,3,5) (1,3,5)
R5 (1/3,1,1) (3,5,7) (3,5,7) (1/5,1/3,1) (1,1,1) (1,3,5)
R6 (1/7,1/5,1/3) (1/5,1/3,1) (1/3,1,1) (1/5,1/3,1) (1/5,1/3,1) (1,1,1)

kmax = 6.5568 CR = 0.089085
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6. Results and discussion

6.1. Supplier evaluation using fuzzy AHP and fuzzy PROMETHEE

Fuzzy AHP: The proposed fuzzy AHP is applied to the main criteria yielding the results found in Appendix A, where eSi (i = 1,
2, 3) corresponds to the fuzzy synthetic extant value and ‘V’ the minimum degree of possibility.

eS1 ¼ ð0:2727;0:4839;0:6995Þ; eS2 ¼ ð0:1549;0:2258;0:5172Þ,eS3 ¼ ð0:1064;0:2903;0:3659Þ
VðeS1 P eS2; eS3Þ=min (1, 1) = 1; VðeS2 P eS1; eS3Þ = min (0.4865, 0.8643) = 0.4865;

VðeS3 P eS1; eS2Þ = min (0.3249, 1) = 0.3249.

The weights for the main criteria are then computed. The proposed approach is repeated for all sub-criteria. Table 8
provides the weights of the main- and sub-criteria obtained using fuzzy AHP. The results suggest that product price [C1],



Table 7
Supplier linguistic evaluations.

Alternative Criteria

C1 C2 C3 S1 S2 S3 S4 R1 R2 R3 R4 R5 R6

sp1
1 E VG M G G G VG G VG E W W G

sp2
1 VG VG M VG M G G G VG G M B G

sp3
1 G VG G E M E VG G VG VG W M VG

sp1
2 G G M G G M G M VG G M G G

sp2
2 G M M G M G VG M VG M M G M

sp3
2 VG G M VG G G G G VG G W M G

sp1
3 M VG W E E E E M B W B VG G

sp2
3 W M W G G G G W B M B G G

Table 8
Weights of criteria and sub-criteria for supplier evaluation.

Main criteria Weight of main criteria (a) Sub-criteria Local weight of sub-criteria (b) Global weight of sub-criteria c = (a) ⁄ (b)

Cost 0.55207 C1 0.56411 0.31143
C2 0.18546 0.10239
C3 0.25043 0.13825

Customer service 0.26859 S1 0.28471 0.07647
S2 0.57783 0.1552
S3 0.03280 0.00881
S4 0.10466 0.02811

Risk 0.17934 R1 0.29990 0.05378
R2 0.17281 0.03099
R3 0.00716 0.00128
R4 0.24311 0.04360
R5 0.26269 0.04711
R6 0.01433 0.00257
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delivery reliability [S2], and supply flexibility of suppliers [R1] are significant among the criteria cost, customer service, and
risk respectively.

Fuzzy PROMETHEE: The supplier linguistic evaluation matrix is converted to triangular fuzzy numbers using the scale
reported in Table 4. The difference between the alternatives for each criterion is then computed, and the magnitude of
the difference is calculated using the Yager index. In this paper, the preference and indifference thresholds for the linear pref-
erence functions are set as 0.6 and 0 respectively, following Yilmaz and Dağdeviren (2011). The aggregated preference
indices are then computed using the sub-criteria weights. The positive (U+), negative (U�), and net (U) outranking flows
for the alternatives are found from the aggregated preference indices.

Table 9 contains the results. Based on the net flow, the complete ranking of the suppliers is obtained. Suppliers sp1
1, sp

3
1,

and sp1
2 are ranked as the top three preferred suppliers followed by sp2

2, sp
3
2, sp

1
3, sp

2
1, and sp2

3.
6.2. Supplier order allocation using MOPSO

The parameters of the proposed algorithm are described below.
Swarm size: Deb (2001) has reported that the population (swarm) size increases exponentially with the number of objec-

tives in a multi-objective optimization problem. In our paper, the swarm size is set as 500 considering the best values of the
two objectives obtained during the search.

Maximum number of iterations: The maximum number of iterations is set at 3000 considering the archive growth and vari-
ations in the extreme values of the two objectives during the search. Based on random trials, the inertia weight is set to vary
linearly from 0.3 to 1.0, and the acceleration coefficients are set as C1i = 1.5, C1f = 0.5, C2i = 0.5, C2f = 1.5. For the multi-
objective optimization algorithm, the ratio of population (swarm) size to the maximum size of the archive is frequently
set as 4 to 1 (Lei, 2008). In this paper, the maximum archive size is set to half the swarm size considering the archive growth.

Global guide selection from the archive: The global guide is selected from the top 75% of the ranked archive to enable the
swarm to move towards the sparsely populated regions of the search space (PrasannaVenkatesan and Kumanan, 2012b). If
there is no change in the extreme values of the Pareto optimal solutions for 50 consecutive iterations, then 20% of the par-
ticles in the swarm are randomly replaced with newly generated particles. This avoids a premature convergence to the local
Pareto optimal solutions.

Pareto optimal solutions: Table 10 shows the Pareto optimal solutions obtained for the example using the proposed algo-
rithm. ETC varies from $176,707 to $205,811 and TPV from �6.365 to 451.424. In the minimum cost solution, to avoid a loss



Table 10
Pareto optimal solutions using proposed MOPSO.

ETC TPV Demand allocation to suppliers

Region 1 Region 2 Region 3

sp1
1 sp2

1 sp3
1 sp1

2 sp2
2 sp3

2 sp1
3 sp2

3

176,707 �6.365 0.10093 0.14414 0.10039 0.11892 0.12137 0.13351 0.1153 0.10693
205,811 451.424 0.29842 0.10010 0.35963 0.14185 0.10000 0 0 0
184,691 118.699 0.23662 0.10000 0.15973 0.10065 0.10131 0.10019 0.1015 0.10000
187,748 335.015 0.25960 0.10664 0.15973 0.17165 0.10238 0.10000 0.10000 0
191,698 391.436 0.29824 0.10372 0.23153 0.14385 0.12266 0.10000 0 0
200,179 442.226 0.36731 0.11519 0.27611 0.14139 0.10000 0 0 0
201,486 448.923 0.37201 0.11339 0.31400 0.10060 0.10000 0 0 0
188,200 357.383 0.34610 0.13946 0.13336 0.12974 0.15136 0.10000 0 0
180,154 8.4060 0.24814 0.10000 0.10000 0.10000 0.10000 0.10000 0.10367 0.14819
180,513 46.5100 0.25848 0.10000 0.10000 0.10000 0.10000 0.10000 0.11166 0.12986
180,567 92.804 0.28350 0.10000 0.10000 0.10000 0.10000 0.10000 0.10467 0.11183
182,540 116.889 0.26026 0.10000 0.11418 0.12171 0.10303 0.10000 0.10059 0.10024
189,510 390.797 0.30602 0.10784 0.20978 0.17637 0.10000 0.10000 0 0
180,724 116.750 0.29233 0.10000 0.10000 0.10000 0.10000 0.10000 0.10656 0.10111
189,566 391.281 0.32141 0.11344 0.22539 0.13976 0.10000 0.10000 0 0
180,357 18.6814 0.24930 0.10320 0.10000 0.10000 0.10000 0.10000 0.10534 0.14215
180,238 17.0600 0.25036 0.10000 0.10000 0.10000 0.10000 0.10182 0.10379 0.14403

Table 9
Positive, negative, and net flows for alternatives using fuzzy PROMETHEE.

Alternative sp1
1 sp2

1 sp3
1 sp1

2 sp2
2 sp3

2 sp1
3 sp2

3 U+

sp1
1 0 0 0 0 0.0013 0 0.3127 0.3665 0.0972

sp2
1 0 0 0 0 0 0 0.0013 0.0538 0.0079

sp3
1 0 0 0 0.0088 0 0 0.1383 0.5036 0.0929

sp1
2 0.0471 0.0471 0 0 0 0 0.0013 0.3114 0.0581

sp2
2 0.0471 0.0471 0 0 0 0 0 0.3114 0.0580

sp3
2 0 0 0 0 0 0 0.0013 0.0538 0.0079

sp1
3 0 0.1552 0.1552 0.0088 0.1552 0 0 0 0.0678

sp2
3 0.047 0.0471 0 0 0 0 0 0 0.0135

U� 0.0202 0.0424 0.0222 0.0025 0.0224 0 0.0650 0.2286
U 0.0770 �0.0345 0.0708 0.0556 0.0356 0.0079 0.0028 �0.2152
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due to disruption, all suppliers are used and 37.38% of the total demand is assigned to the suppliers in Region 2 though the
unit purchasing cost is higher than the Region 1 suppliers. The suppliers in Regions 1 and 3 are assigned 34.55% and 22.22%
of the total demand respectively. In the minimum cost solution, the top 3 preferred suppliers are underutilized as more
demand is assigned to suppliers sp2

1, sp
3
2 and sp2

2 resulting in a negative TPV. In the maximum TPV solution, 35.96% of the
total demand is assigned to supplier sp3

1 ranked second followed by supplier sp1
1 who scored the highest preference value

using the fuzzy PROMETHEE net flow.
With 50–80% of the total demand assigned to the top 3 preferred suppliers, TPV varies between 335.015 and 451.424.

Table 9 shows that there are solutions in the non-dominated set which has a marked improvement in ETC with only a small
reduction in TPV. Similarly, there are solutions in the non-dominated set, which have a large improvement in TPV with a
slight increase in ETC. Fig. 6 shows the Pareto frontier of the MOPSO algorithm.

6.3. Sensitivity analysis

From the non-dominated solutions, two extreme solutions are selected and a sensitivity analysis is performed to study
the effect of variations in failure probability, supply flexibility, and the loss cost of the suppliers on ETC.

Failure probability: The failure probability of the suppliers is varied at four levels while the other parameters presented in
Table 4 are kept constant. The individual and combined effect of mis-estimating the failure probability of super event (psu),
semi-super event (pse), and unique event (puq) on ETC are analyzed. Figs. 7a and 7b show that the combined effect of all the
events yields a larger deviation in ETC. puq has more impact on ETC than the other two events. Larger deviations in ETC are
observed when the error in estimating the failure probability is more than 50% in either direction. Further, underestimating
the failure probability leads to a slightly larger deviation than over estimating the failure probability. In Fig. 7a, the deviation
in ETC is less as compared to the deviation in Fig. 7b as more suppliers are selected for a minimum cost solution.

Supply flexibility: The supply flexibility index of the suppliers is varied at four levels while the other parameters reported
in Table 4 are kept constant. The flexibility index of supplier sp2

1 is unchanged as the value is set at 1. In the minimum cost
solution of Fig. 8a, ETC is robust to changes in supply flexibility as demand is allocated to all suppliers to minimize the
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Fig. 6. Pareto frontier for illustrative example using MOPSO algorithm.
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Fig. 7b. Effect of mis-estimating supplier failure probability on ETC for maximum TPV.
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Fig. 7a. Effect of mis-estimating supplier failure probability on ETC for minimum cost.
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expected loss under disruption. The deviation in ETC is slightly higher in the maximum TPV solution as shown in Fig. 8b.
Suppliers in Region 3 are not selected and hence the deviation in ETC is zero in the maximum TPV solution. The changes
in the flexibility index of suppliers in Region 2 have slightly more impact on ETC, as compared to Regions 1 and 3. This is
so as the failure probability of the suppliers in Region 1 is high and the capacity of the suppliers in Region 3 is low compared
to those in Region 2.
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Loss cost: The loss cost of the suppliers is varied at four levels while the other parameters reported in Table 4 are kept
constant. In the minimum cost solution of Fig. 9a, the deviation in ETC increases when the loss cost of all the suppliers is
increased. The suppliers from each Regions 1 and 2 are assigned nearly 35% of the demand and hence the deviation in
ETC of both regions is almost the same. The deviation in ETC shown in Fig. 9b is slightly higher in the maximum TPV solution
as the suppliers located in a single region are assigned nearly 75% of the demand. Suppliers in Region 3 are not selected and
hence the deviation in ETC is zero in the maximum TPV solution. Thus, the increase in loss cost results in a higher deviation
in ETC when the order is allocated to fewer suppliers.
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Fig. 9a. Effect of loss cost on ETC for minimum cost.
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Fig. 8a. Effect of supplier output flexibility on ETC for minimum cost.
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Fig. 9b. Effect of loss cost on ETC for maximum TPV.
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7. Conclusion

We develop a multi-objective MILP model to determine the choice of suppliers and order quantity allocation under dis-
ruption risk. A two-phase solution approach is proposed where the suppliers are first ranked based on the preference value
obtained using fuzzy AHP and fuzzy PROMETHEE. Then MOPSO is used to obtain a set of Pareto-optimal solutions with the
choice of suppliers and order allocation among them. The results suggest that, to minimize the ETC, suppliers located in
regions that are less prone to disruption are assigned more demand even though their preference value is smaller. This find-
ing agrees with the results of Kamalahmadi and Mellat-Parast (2015). Similarly, to maximize the TPV, the suppliers located
in a single region are assigned more demand considering their preference values which lead to higher ETC. Our numerical
experiments suggest that the supplier failure probability affects ETC more than supplier flexibility and loss cost. The Pareto
optimal solutions obtained enable us to evaluate a number of decision alternatives. A sensitivity analysis on the minimum
ETC and maximum TPV solutions shows that the effect of mis-estimating the failure probability on ETC is less when more
suppliers are chosen. ETC is also found to be less sensitive to the variation in the supply flexibility of the suppliers when
multiple suppliers are selected. Keeping the other factors constant, an increase in loss cost results in a higher deviation in
ETC when the order is allocated to a few suppliers.

In view of the present limitations of our model, such as deterministic demand, constant purchase price, zero supplier
premiums for compensating the quantity loss, several extensions of this work are possible. Our model can be extended to
include stochastic demands and discounts in the purchase cost. We have assumed that the undisrupted suppliers can com-
pensate the shortfall at no extra cost. In practice, these suppliers may charge a premium to supply over the original allocation
(Ruiz-Torres et al., 2013; Kamalahmadi and Mellat-Parast, 2015) and disrupted suppliers who fail to deliver the stipulated
amounts may be penalized or be required to return a portion of the received purchasing cost. Other multi-objective meta
heuristics could be developed to compare the results. A model for a multi-tier supply network considering multiple items
with different shipment policies and for multiple periods considering the disruption duration can also be developed.
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Appendix A. Steps of fuzzy AHP

Step 1: Construct a fuzzy pair-wise comparison matrix using a decision maker’s opinion. Consider the triangular fuzzy
comparison matrix
~Acxc ¼
ð1;1;1Þ � � � ðl1;c;m1;c;u1;cÞ
� � � � � � � � �
ðlc;1;mc;1;uc;1Þ � � � ð1;1;1Þ

264
375
Step 2: Defuzzify each triangular fuzzy number in the pair-wise comparison matrix using ~Acrisp ¼ ð4�mþ lþ uÞ=6: Com-
pute the consistency index using the method in crisp AHP.
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Step 3: Sum each row of the fuzzy pair-wise comparison matrix ~A i.e.
RSi ¼
X

~aij ¼
Xc
j¼1

lij;
Xc
j¼1

mij;
Xc
j¼1

luij

 !
ðA:1Þ
Step 4: Normalize the rows by the row sums
eSi ¼ RSiPc
j¼1RSj

¼
Pc

j¼1lijPc
j¼1lij þ

Pc
k¼1;k–i

Pc
j¼1ukj

;

Pc
j¼1mijPc

k¼1

Pc
j¼1mkj

;

Pc
j¼1uijPc

j¼1uij þ
Pc

k¼1;k–i

Pc
j¼1lkj

 !
; i ¼ 1; . . . ; c: ðA:2Þ
Step 5: Compute the degree of possibility of esi P esj

Vðesi P esjÞ ¼ 1; if mi P mj

ui�uj
ðui�miÞþðmj� ljÞ ; if lj 6 ui; i; j ¼ 1; . . .n; j – i

0; others

8><>: ðA:3Þ
Step 6: Calculate the degree of possibility of eSi over all other fuzzy numbers through
Vðesi P esj jj ¼ 1; . . . ; c; j– iÞ ¼ min
j2f1;...;cg;j–i

Vðesi P esjÞ; i ¼ 1; . . . ; c: ðA:4Þ
Step 7: Define the priority vector W ¼ ðw1; . . . ;wcÞT of the fuzzy comparison matrix
wi ¼ Vðesi P esj jj ¼ 1; . . . ; c; j– iÞPc
k¼1Vð esk P esj jj ¼ 1; . . . ; c; j– kÞ ðA:5Þ
Appendix B. Steps of fuzzy PROMETHEE

Step 1: Construct the fuzzy evaluation matrix by comparing the alternatives based on each criterion using a suitable lin-
guistic scale. The fuzzy PROMETHEE formulas are based on the representation of a triangular fuzzy number (TFN) as
x ¼ ðn; a; bÞLR. In this notation, when the variable x has value n, it belongs to the specific class and its membership function
is f(x) = 1. For values smaller than (n � a) and larger than (n + b), it does not belong to the specific class. In the interval
[n � a < x < n + b], its membership degree is given by the membership function that varies between 0 and 1. L and R indicate
the change of f(x) with x to the left and right of n respectively.

Step 2: Compare fuzzy numbers and compute the Yager index. The defuzzified form of the given fuzzy number is calcu-
lated by the function Fðn; a; bÞ ¼ ð3n� aþ bÞ=3: This process converts the fuzzy evaluation matrix into a crisp matrix.

Step 3: Apply preference functions with threshold for each criterion. Six types of preference functions are proposed in the
literature, namely, uniform, U shape, V shape, level, linear and Gaussian (Tuzkaya et al., 2010). Let
Pjða1; a2Þ ¼ Fj½djða1; a2Þ�; 8a1; a2 2 A be the preference function showing how much alternative ‘a1’ is preferred to alternative
‘a2’ with respect to criterion ‘j’ where 0 6 Pjða1; a2Þ 6 1.

Step 4: Compute the aggregated preference indices using
Qða1; a2Þ ¼

PJ
j¼1WjPjða1; a2Þ where Wj denotes the weight asso-

ciated with criteria ‘j’ and 0 6
Qða1; a2Þ 6 1;

Qða1; a2Þ denotes the degree with which alternative ‘a1’ is preferred over ‘a2’
considering all criteria simultaneously.

Step 5: Calculate the outranking flows. The positive outranking flow expresses how alternative ‘a’ outranks all others and
is computed using
UþðaÞ ¼ 1
ðA� 1Þ

X
x2A

Y
ða; xÞ ðB:1Þ
A negative outranking flow represents how an alternative ‘a’ is outranked by all others and is computed using
U�ðaÞ ¼ 1
ðA� 1Þ

X
x2A

Y
ðx; aÞ: ðB:2Þ
All alternatives are completely ranked (PROMETHEE II) using the net flow which is computed from
UðaÞ ¼ UþðaÞ �U�ðaÞ: ðB:3Þ
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