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In urban logistics, the last-mile delivery from the warehouse to the consumer’s home has
becomemore and more challenging with the continuous growth of E-commerce. It requires
elaborate planning and scheduling tominimize the global traveling cost, but often results in
unattended delivery as most consumers are away from home. In this paper, we propose an
effective large-scale mobile crowd-tasking model in which a large pool of citizen workers
are used to perform the last-mile delivery. To efficiently solve the model, we formulate it
as a network min-cost flow problem and propose various pruning techniques that can
dramatically reduce the network size. Comprehensive experiments were conducted with
Singapore and Beijing datasets. The results show that our solution can support real-time
delivery optimization in the large-scale mobile crowd-sourcing problem.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Cargo transportation via rail networks and container ships is considered as the most cost-effective manner in urban
logistics. However, when the goods arrive at the high-capacity warehouses, they must then be transported to the final
destinations. This last leg of the supply chain is less efficient and comprises up to 28% of the total delivery cost.1 Worse still,
most consumers are not present when the deliveries are made. The unattended parcels may require multiple times of
attempt-delivery and have become a significant issue among logistic companies.

To mitigate the situation, the concept of pop-station (pick-own-parcel station) has been adopted by some logistic
companies such as Singapore Post.2 The idea is that the parcels are directly delivered to the pop-stations. Then, consumers will
be notified and collect their own parcels via mobile apps. If a parcel is not collected within 5 days,3 it is considered as a failed
delivery. To ensure that the model works, it requires expensive infrastructure costs because a large number of pop-stations have
to be built to benefit residents in different areas of the city and minimize their walking distance for self-collection. In addition,
the problem of reducing the parcel turnaround time for fast delivery is not well solved in this model. Many parcels may be kept
in the lockers of pop-stations for several days.
, Xi Yuan
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In this paper, we investigate how to utilize the power of crowd-workers to enhance the last-mile delivery. In particular,
we treat the delivery job of each parcel from its pop-station to the consumer as a crowd-task. A certain amount of money will
be rewarded to a worker for the delivery according to the additional travel cost from his/her historical trajectory patterns.
Our objective is to assign all the parcels in the pop-stations to the most convenient workers so as to minimize the total
reward paid by the logistic companies. The underlying principles are similar to other sharing-economy applications to
maximize the resource (crowd-worker in this application) utilization. With the availability of a large pool of citizen
crowd-workers, the infrastructure expenses can be cut down as the crowd-delivery model requires much fewer number
of pop-stations than the model of self-collection. In addition, both the parcel turnaround time and failure rate can be
significantly reduced because the crowd-workers are more active in collecting the parcels and delivering them to the
consumers.

Since there could be a huge number of parcels and workers in an urban city, our crowd-delivery model is essentially a
large-scale assignment optimization problem. Our solution is to model it as a network min-cost flow problem and use it
as the baseline for performance evaluation. Then, we propose various effective pruning strategies that can significantly
reduce the network size. Comprehensive experiments were conducted with Singapore and Beijing datasets. The results show
that after the network reduction, the performance achieves a speedup by 2–3 orders of magnitude. It takes less than 10 s to
find the optimal assignment of 2000 parcels to a pool of 500,000 crowd-workers.

To sum up, the contributions of the paper include:

� We formulate an interesting crowd-logistics optimization problem that utilizes a large pool of citizen workers to perform
the last-mile delivery.
� We formally show that the proposed model is equivalent to the network min-cost flow problem.
� We propose three types of pruning rules that can significantly reduce the network size, and hence improve the
performance.
� We conduct comprehensive experiments using Singapore and Beijing datasets to verify the efficiency of our proposed
methods.

The rest of the paper is organized as follows. We present the problem definition in Section 2 and review related
literature in Section 3. The problem is formally reduced to a minimum cost flow problem in Section 4. Various
pruning techniques are proposed in Section 5 to significantly reduce the network size. We conduct an extensive
performance study in Section 6 to evaluate the performance of our proposed solutions. Section 7 concludes the paper
with future work.
2. Problem definition

2.1. Background

In our crowd-delivery model, there are a bunch of pop-stations distributed around the city and a large pool of workers
who are ready to accept the delivery tasks from pop-stations to the consumers’ addresses. As shown in Fig. 1, we can split
the city into voronoi cells according to the locations of pop stations. The logistic companies only need to be focused on the
scheduling optimization of delivering parcels to the pop-stations. Intuitively, each parcel will be sent to the nearest
pop-station according to its consumer’s address. In other words, the final delivery address and the associated pop-station
will be located within the same voronoi cell. Thereafter, the parcels at the pop-stations will be assigned to the
crowd-workers and eventually reach the consumers.

When a worker accepts a task via a mobile app (similar to an Uber driver accepting a riding request), he/she can
collect the parcel from the pop-station with a one-time-password. After that, the system notifies the consumer that
the parcel has been taken, and starts tracking the real-time locations of the worker. When the parcel is safely
delivered, a confirmation message is sent from the consumer and this transaction completes. To improve the system
reliability and service quality, the identifies of crowd-workers have to be verified, which is common in apps like
Uber and GrabTaxi.

We also note that UberRush4 has provided parcel delivery service, using the drivers as workers. The major difference is that
UberRush processes on-demand delivery requests and sends them to nearby drivers. It’s one-time processing and there is no
complex optimization issue. In contrast, we focus on the last-mile delivery to improve the efficiency of the whole supply chain.
Our method is to leverage a large pool of crowd-workers to finish the last leg of delivery with any possible transportation
means. In other words, we treat the transportation means as a black-box and these crowd-workers can walk, take a bus/train
or drive a car to complete the delivery task.

When compared with conventional collaborative or synchronized approaches, as shown in Fig. 2, our system
demonstrates the superiority from the following perspectives.
4 https://rush.uber.com/how-it-works.

https://rush.uber.com/how-it-works


Fig. 1. Crowdsourcing for the last-mile delivery.

Fig. 2. Comparison of the crowd-delivery with the conventional synchronized-delivery.
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� Parallelism. It is obvious that the number of available workers in the crowd-delivery model is much higher than the
number of delivery vehicles in the synchronized-delivery model, incurring much higher parallelism in job execution. Even
though the collaborative model can improve the resource utilization, each vehicle still has to handle a large number of
parcels per day and requires elaborate planning.
� Communication. In our model, each worker only handles a small number of parcels and the communication channel
between delivery workers and parcel receivers are much more effective. Even if a parcel is unattended when the receiver
is not available, its effect on the subsequent delivery is minimized. In contrast, when such case occurs in the synchronized
delivery, all the subsequent deliveries by the same vehicle may be delayed.
� Eco-Friendliness. Our crowd-delivery model is considered as more eco-friendly because it can help reduce the operation
costs and carbon emission. The impact to conventional urban logistics could be similar to that of Uber to the conventional
Taxi industry.

2.2. Model and objective function

Intuitively, a parcel should be sent to a worker with the minimum additional efforts. For example, suppose Alice is a clerk
in a shopping mall and lives at Andersen street. If there is parcel in a pop-station located in the same shopping mall and to be
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delivered to Andersen street, then Alice is a very good candidate to take the task. Based on the criterion, we formulate our
crowd-delivery model with the following simplified assumptions:

� Each worker is associated with a travel pattern represented by A! B. Take Alice as an example, her motion pattern would
be ‘‘shopping mall!Andersen street”.
� The reward for the delivery of a parcel is dependent on the additional efforts for a crowd-worker. For simplicity, we use
additional travel distance as an estimation. For example, when a parcel pi is delivered from pop-station s to destination
t by a worker wj with a travel pattern A! B, its cost cðpi;wjÞ is measured by the additional travel distance:
cðpi;wjÞ ¼ dðA; sÞ þ dðs; tÞ þ dðt;BÞ � dðA;BÞ ð1Þ
where dð�; �Þ refers to the Euclidean distance between two locations; dðA; sÞ þ dðs; tÞ þ dðt;BÞ is the distance incurred for
the delivery; and dðA;BÞ is the travel distance if the worker does not take the task.
� For simplicity, we assume that the delivery of different parcels is independent. Then, the total payment for a worker is the
sum of each delivery cost.
� We assume that each worker has a delivery capacity C to determine the maximum number of parcels that he/she can
carry.
� The time constraints of consumers are not taken into account in the model. We simply assume that the delivery time is
negotiated between the consumer and the assigned worker.

With these simplified assumptions, we can build a large-scale crowd-delivery model that can be solved with feasible
computational cost. Our objective is to assign all the parcels to the best candidate workers with the minimum expense.
Let xðpi;wjÞ ¼ 1 denote parcel pi is assigned to wj and xðpi;wjÞ ¼ 0 for the opposite case. Formally, our model minimizes
X

pj

X

wj

cðpi;wjÞxðpi;wjÞ ð2Þ
subject to

X

pi

xðpi;wjÞ 6 C ð3Þ
X

wj

xðpi;wjÞ ¼ 1 ð4Þ
Constraint (3) restricts the number of parcels assigned to a worker must be no greater than C. Constraint (4) means each
parcel must be assigned to one worker.

The crowd-delivery system is often much more complex in reality. For example, when a worker refuses to take the
assigned task, the system needs to find another replacement or offer higher price. This process may require multiple rounds
of communication with the workers before the task can be finally assigned. Other challenging issues include better pricing
strategy and system service reliability. All these issues are interesting research problems for the crowd-based last-mile
delivery. Our work in this paper can be viewed as initial efforts to formulate the model with simplified assumptions. By
solving the model, we obtain a good assignment for each parcel. These assignments can be further refined by subsequent
optimization steps, which are considered as our future works.

3. Related work

In this section, we conduct a literature review about last-mile delivery and mobile crowdsourcing.

3.1. Last-mile delivery

In recent years, there have been several efforts attempting to improve the efficiency of the last-mile delivery. We
summarize the applied strategies into two major categories. In the first category, the concept similar to the pop-station
was adopted. It can effectively solve the headache of unattained parcels when the consumer is not home during the delivery.
The parcels are stored in pop-stations with lockers in various size. The consumers are then notified to collect the parcels by
themselves with a one-time-password. For instance, in DellAmico and Hadjidimitriou (2012), Modular BentoBox System
(M-BBX) was proposed to deliver goods to bentobox where they are stored until the customer picks them up. Logistic
operators such as DHL and Austrian Post also adopted the idea and introduced the Packstation system and the Post.24 Parcel
Machines respectively.

In the second category, the efficiency was improved by better consolidation and synchronization of existing resources.
The main idea is that multiple logistic companies can share the delivery vehicles and staff to improve the resource utilization
rate. It is similar to the codeshare agreement among different airline companies to reduce the operation expenses. In de
Souza et al. (2014), the authors proposed the concept of collaborative urban logistics and emphasized multi-party
collaboration from the perspective of Singapore Logistics. Their objective is to extend and optimize the respective parties
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resource portfolios and to reinforce their own market position via better resource coordination and data harmonization. In
Liakos and Delis (2015), an interactive freight-pooling service was proposed to reduce the undesirable effects and the cost of
freight transport in urban areas. The optimization model applied is similar to the capacitated vehicle routing problem
(Dantzig and Ramser, 1959) with the goal of synchronizing supply chains of multiple shippers and transferring the same
number of goods using significantly less resources. In Petrovic et al. (2013), the authors studied how to overcome the
communication barrier by allowing recipients to use smartphones to open a communication channel to logistics providers.
In Handoko et al. (2014), the last-mile delivery tasks are outsourced to urban consolidation centers and a profit-maximizing
auction mechanism was proposed to determine which demands are to be served.

3.2. Mobile crowdsourcing

In recent years, mobile crowdsourcing has been a hot research topic in various task domains due to the provenance of
smartphones and the booming of location-based services. When combining crowdsourcing with mobile devices, a large
number of interesting applications have emerged. For instance, GeoCrowd (Kazemi and Shahabi, 2012) assigns nearby tasks
to each worker. The objective is to maximize the overall number of assigned tasks because each task is assigned to one work
and all the constraints have to be satisfied. Three types of greedy heuristics were proposed to solve the optimization
problem. In Su et al. (2014) and Zhang et al. (2014), crowd workers are used for travel path recommendation. The research
challenge is how to effectively summarize the feedback from all the workers and provide constructive suggestion. An
entropy-based metric was proposed to capture the path selection hardness and the problem is transferred to an optimization
problem based on the new metric. In Cheng et al. (2015), an interesting problem to piece together a full story from different
crowd workers is studied.

Systems like CrowdSC (Benouaret et al., 2013) and gMission (Chen et al., 2014b) were developed towards building smart
cities with large-scale citizen participation. Ilarri et al. (2014) overviews the current status of research in the field of collab-
orative sensing for urban transportation such as parking spaces, traffic, and trajectories. Privacy issues was addressed in
Pournajaf et al. (2014) to protect the worker’s privacy. The most related work to our crowd-delivery model is the TRACCS
system (Chen et al., 2014a). The crowd-tasking platform assigns a sequence of tasks to each worker, taking into account their
trajectory patterns. It formulates the task assignment as an optimization problem with the objective of maximizing the total
payoff from all assigned tasks. An Integer Linear Programming model is presented, which unfortunately can handle very
small-scale problems. To improve the efficiency, greedy heuristics, without theoretical guarantee, were proposed. Its
experimental study only evaluates up to 1000 agents. In comparison, our crowd delivery platform requires a solution that
can handle million-scale workers in order to become profitable as more crowd workers can help reduce the price per task.

4. Minimum cost flow model

In this section, we formulate the optimization of the proposed crowd-delivery model as a minimum cost flow problem.
The notations frequently used in this paper are listed in Table 1 for quick reference.

4.1. Background

The min-cost flow model is a fundamental problem in the network flow domain (Ahuja et al., 1993). Given a directed
graph G ¼ ðV ; EÞ, each arc e 2 E is associated with a capacity ue and a unit transportation cost ce. Each node v furthermore
has a number bv representing its supply/demand. If bv > 0, node v is a surplus node; if bv < 0, node v is a demand node with
a demand value of �bv ; and if bv ¼ 0, node v is called a transshipment node. It is required that there are balances between the
supply and demand, i.e.,

P
v2Vbv ¼ 0.

Let NþðvÞ denote the out-neighborhood of v and N�ðvÞ denote the in-neighborhood of v. The min-cost flow problem
considers how to supply the demand nodes from the supply nodes by a flow in the cheapest possible way. The decision
variables of the problem are the arc flows, which are denoted by f e. Then, the problem can be formalized as an optimization
problem with the objective
min
X

e2E
cef e ð5Þ
subject to
f e 6 ue ð6Þ
bv ¼

X

e2NþðvÞ
f e �

X

e2N�ðvÞ
f e ð7Þ
Fig. 3 depicts a toy example of the min-cost flow problem. There are 5 nodes and 8 arcs in the graph. Among the nodes, v1

is a surplus node because bv1 ¼ 30. v2 and v3 are transshipment nodes and their values of bv are equal to 0 and not displayed
in the figure. v4 and v5 are demand nodes. The total amount of demand is equal to the supply. Each arc is associated with a
capacity ue and a unit transportation cost ce, represented in the form of ce=ue in the figure. Our goal is to determine a least



Table 1
Notation table.

pi A parcel
wj A crowd worker
sk A pop station
P The number of parcels
W The number of workers
S The number of pop stations
C The capacity of a worker
cðpi;wjÞ The cost of assign a parcel pi to worker wj

xðpi;wjÞ ¼ 1 if pi is assigned to wj; otherwise, xðpi;wjÞ ¼ 0
dð�; �Þ The Euclidean distance between two locations
pi  wj Assign parcel pi to worker wj

Fig. 3. An example of min-cost flow problem.
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cost shipment through the network in order to meet the demands at fv4;v5g from the surplus v1. More specifically, we need
to determine the flow f e in each arc satisfying Constraints (6) and (7) such that the total cost is minimized. The optimal flow
for this example is ff 12 ¼ 10; f 13 ¼ 20; f 23 ¼ 3; f 24 ¼ 0; f 25 ¼ 7; f 34 ¼ 15; f 35 ¼ 8; f 45 ¼ 5g with the total cost of 186.

4.2. Reduction to the min-cost flow model

To reduce our crowd-delivery model to the min-cost flow problem, we build a network as shown in Fig. 4. The top and
bottom are two dummy nodes s and t, represented in dashed circles: s is the only surplus node and its bs is set to the number
of parcels P, meaning the total amount of supply is P; and t is the only demand node, with bt set to �P for the balance
between supply and demand. It is worth noting that the concept of suppliers in the network min-cost flow model is not
equivalent to the delivery capacity of all the available workers. Instead, we assume that the total capacity of workers is
higher than the number of parcels and we can always find a solution based on the optimization model. The remaining nodes,
including parcels and crowd-workers, serve as the transshipment nodes.

Three types of arcs, denoted by s! pi; pi ! wj and wj ! t respectively, are incorporated in the network. The first type
s! pi is from the surplus node to the parcels, with capacity ue ¼ 1 and transportation cost per unit ce ¼ 0. The second type
pi ! wj is from parcels to workers. The capacity is set to 1, meaning each parcel can be assigned to at most one worker and
the cost of the assignment is set to cðp;wÞ, measured by the additional travel distance. The third type of arcs wj ! t is from
workers to the demand node. The capacity is set to the maximum number of parcels that a worker can carry, which is C in
our model.

Let Dopt denote the optimal solution to the min-cost flow problem in Fig. 4. It essentially contains the values of f e for all
the arcs. To show that our crowd-delivery model can be reduced to the min-cost flow problem, we first prove the following
lemma.

Lemma 1. f s!pi ¼ 1 for all pi.
Proof. Based on Constraint (6), we know that f s!pi
6 1. Suppose there exists an arc s! p0i such that f s!p0

i
< 1. Then,

P
e2NþðsÞf e �

P
e2N�ðsÞf e 6 P � 1þ f s!p0

i
< P ¼ bs, which violates Constraint (7). Therefore, all the f s!pi

must be set to 1. h

Next, we prove that when we set xðpi;wjÞ ¼ f pi!wj
, the objective function in the crowd-delivery model is the same as the

cost function in the network flow problem.

Lemma 2. If xðpi;wjÞ ¼ f pi!wj
, then

P
e2Ecef e ¼

P
pi

P
wj
cðpi;wjÞxðpi;wjÞ



Fig. 4. Reduction to min-cost flow model.
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Proof. Since the costs for arcs s! pi and wj ! t are both set to 0, we have
P

e2Ecef e ¼
P

pi

P
wj
cpi!wj

f pi!wj
. Since

xðpi;wjÞ ¼ f pi!wj
, we finish the proof. h

Finally, we show that Constraints (3) and (4) are also satisfied based on the mapping between xðpi;wjÞ and f pi!wj
.

Lemma 3. If xðpi;wjÞ ¼ f pi!wj
, then

P
pi
xðpi;wjÞ 6 C.
Proof. Based on Constraint (7), we have bðwjÞ ¼ f wj!t �
P

pi
f pi!wj

¼ 0. Based on Constraint (6), we have
P

pi
xðpi;wjÞ ¼

P
pi
f pi!wj

¼ f wj!t 6 C. h
Lemma 4. If xðpi;wjÞ ¼ f pi!wj
, then

P
wj
xðpi;wjÞ ¼ 1.
Proof. Based on Constraint (7), we have bðpiÞ ¼
P

wj
f pi!wj

� f s!pi
¼ 0. Then, according to Lemma 1,

P
wj
xðpi;wjÞ ¼

P
wj
f pi!wj

¼ f s!pi
¼ 1. h

Therefore, when we find a solution Dopt for the min-cost flow problem, the cost is also the minimum value of our objective
function in the crowd-delivery model as long as we set xðpi;wjÞ ¼ f pi!wj

.

4.3. Implementation

After reducing our crowd-delivery model to the min-cost flow problem, we can adopt any standard network flow
techniques to solve our problem. A general solution to the problem is linear programming, since we optimize a linear func-
tion, and all constraints are linear. There are several other tailored algorithms, such as cycle-canceling algorithm, cost-scaling
algorithm, successive shortest path algorithm and network simplex algorithm, have also been proposed to improve the
performance. Readers can refer to Ahuja et al. (1993) for a comprehensive survey. In our implementation, we adopt the
network simplex algorithm (Florian and Lebeuf, 1997; Kennington and Helgason, 1980) provided by the LEMON library5

as the baseline solution for the crowd-delivery problem in this paper. The simplex algorithm is selected because it was
experimentally evaluated in Király and Kovács (2012) as the fastest implementation for the min-cost flow problem.
5 http://lemon.cs.elte.hu/trac/lemon.

http://lemon.cs.elte.hu/trac/lemon
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The computation cost consists of two parts: the network construction time and the model solving time. To construct the
network, we need to traverse each pair ðpi;wjÞ and calculate the additional travel distance cðpi;wjÞ as the unit cost in the
network. The complexity is OðP �WÞwhere P is the number of parcels and W is the number of workers. For the model solver,

the complexity of applying the network simplex algorithm in our problem is OðjV jjEj2 � C � PÞ, where jV j ¼ P þW is the
number of nodes in the network, jEj ¼ P �W is the number of arcs and C is the maximum capacity.

5. Pruning strategies

The complexity of the above baseline solution is dominated by jEj2, which could be very huge when there are many
workers and parcels in the model. In this section, we propose various pruning techniques with the purpose of reducing jEj.

5.1. Rule 1: Cost-based pruning

Our first pruning strategy consists of two steps. In the first step, we propose a greedy method to quickly assign the parcels
to the workers with a relatively small cost. This cost, denoted by dg , acts as the upper bound for the optimal solution. In the
second step, given a pair of parcel pi and worker wj, we estimate the lower bound for any solution which assigns pi to wj. If
the lower bound is even higher than dg , we can remove the arc pi ! wj from the network because the cost of the optimal
solution should be no greater than dg .

Our greedy algorithm is presented in Algorithm 1. In the initialization steps, we build an inverted list for each parcel pi.
The elements in the list are in the form of ðwj; cðpi;wjÞÞ and sorted in ascending order of cðpi;wjÞ. Thus, the promising assign-
ments will be put at the beginning of the list. We also construct a setMwith all the sorted lists and initialize the value of dg to
0. Then, the algorithm starts iterating among the sorted lists to find the assignment ðpi;wjÞ with the minimum cost. If the
worker wj still has capacity to accept the task, we consider it as one assignment in the greedy solution and update the total
cost of dg . Since we have finished the assignment of parcel pi, we remove its sorted list Li from M. If the worker wj has been
assigned with C parcels, we cannot assign pi to wj and need to find other candidate in the sorted list. We continue the
iterations until all the parcels have been assigned. At this moment, M becomes empty and dg is the cost of our greedy
solution. Since we are always picking the assignment with the minimum cost, dg is a relatively good result.

Algorithm 1. Greedy algorithm.
1. for each parcel pi do
2. build a list Li sorted in ascending order of cðpi;wjÞ for all the workers
3. end for
4. M ¼ fL1; L2; . . . ; LMg
5. dg  0
6. while M – ; do
7. ðpi;wjÞ  pick the assignment in M with the minimum cost
8. if wj still has capacity to deliver parcel pi then
9. assign pi to wj

10. dg  dg þ costðpi;wjÞ
11. M  M � Li
12. else
13. remove ðpi;wjÞ from Li
14. continue
15. end if
16. end while

The next step is to estimate the lower bound of any solution Dpi!wj
that sets xðpi;wjÞ ¼ 1. In our implementation, we set

the lower bound of Dpi!wj
to be cðpi;wjÞ þmini0–icðpi0 ;wjÞ. In other words, this solution assumes that a worker can take any

number of parcels and it always assigns the parcel to the worker with the minimum cost. The proof of the lower bound
property is quite straightforward and is omitted in the paper. Given the greedy cost dg , we evaluate the lower bound cost
of each arc ðpi;wjÞ and remove it if the lower bound is higher than dg .

Fig. 5 shows an example in which four parcels are assigned to four workers using cost-based pruning. We assume that the
capacity of eachworker is 2. For eachparcel,webuild a sorted list in ascendingorder of the cost. For example, ðw3;3Þ in the list of
p1 means the cost of delivering parcel p1 byworkerw3 is 3. By applying the greedy algorithm,we obtain the assignment results
fp1 ! w1; p2 ! w3; p3 ! w2; p4 ! w3g with cost 8. Note that the greedy solution in this example is not optimal. The optimal
assignment should be fp1 ! w1; p2 ! w1; p3 ! w3; p4 ! w3g, leading to a cost of 7. Then, we create an array bound in which
bound½i� sums the minimum cost incurred by delivering the parcels except pi, i.e. bound½i� ¼

P
i0–i min cðpi0 ;wjÞ. This array can



Fig. 5. An example of cost-based pruning.
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be pre-computed in advance. In this example, we have bound½1� ¼ 1þ 2þ 1 ¼ 4; bound½2� ¼ 2þ 2þ 1 ¼ 5;
bound½3� ¼ 2þ 1þ 1 ¼ 4 and bound½4� ¼ 2þ 1þ 2 ¼ 5. For each entry ðpi;wjÞ in list Li, we calculate the value of
cðpi;wjÞ þ bound½i� and compare it with the greedy cost 8. All the entries with cðpi;wjÞ þ bound½i�P 8 are pruned, as shown in
the figure.

5.2. Rule 2: Capacity-based pruning

The cost-based pruning works well when the cost of the greedy solution is very close to optimum. However, since in real-
ity, the worker’s capacity is bounded by C, the performance may not be good when C is small. In this part, we propose a new
capacity-based pruning strategy, which can guarantee that the number of arcs can be reduced from P �W to P � dPCe. Let T ¼ dPCe
and in reality, T is a value much smaller than W.

Similar to the cost-based pruning, we first build a sorted list Li for each parcel pi in ascending order of the delivery cost
cðpi;wjÞ. The length of each inverted list is W because we can calculate cðpi;wjÞ for all the workers. We use wij to denote the
worker with the j-th lowest cost in Li to delivery parcel pi. Intuitively, the workers far away from a parcel’s pop-station are
unlikely to take the task due to large delivery cost. Theoretically, we can prove that all the workers wij with j > T can be
pruned because the optimal solution will not assign parcel pi to them.

Lemma 5. The optimal solution will not assign pi to the workers wij with j > T.
Proof. We prove by contradiction. Suppose there exists an optimal solution Dopt assign which assigns a parcel pi to a worker
wij with j > T in the sorted list. For the remaining parcels, Dopt assigns pm (m– i) to worker wn. Then, we can construct
another assignment solution D0 which follows Dopt to assign pm (m – i) to worker wn. At this moment, there are P � 1 parcels
assigned and we need to determine which worker to deliver pi. Since the first T workers can take at most T � C P P parcels,
we can find a worker wij with j 6 T who is not fully occupied. Then, D0 can assign the parcel pi to this worker, generating a
total cost smaller than Dopt . This contradicts with the assumption that Dopt is an optimal solution. h

Thus, the capacity-based pruning reduces the number of arcs in the network by W�C
P times. With the availability of a large

pool of crowd-workers, the pruning strategy is highly effective.
Its performance can be further improved by avoiding building the sorted lists for all the parcels, whose complexity is

OðP �W � logWÞ. To reduce the CPU time cost in this component, we propose an index-based methodology to avoid calculat-
ing the cost cðp;wÞ for all the pairs of parcels and workers. This is inspired by the observation that even though the parcels to
be delivered are dynamic workloads whose destinations can only determined on the fly, we can still estimate the lower
bound cost for a worker w to take any parcel located in pop-station s. Since the lower-bound is between a worker and a
pop-station, it can be pre-computed in an offline manner and stored as an index. Since the parcels will be assigned to the
nearest pop-stations based on the consumer’s address, we can guarantee that the parcel must be located in the voronoi cell.
For example, suppose a worker has a travel pattern from A! B, as shown in Fig. 6. The destination of any parcel delivered
from pop-station smust be located in the same voronoi cell. Then, we can obtain the lower bound and upper bound cost for a
worker to deliver a parcel from a pop-station.

Lemma 6. When a parcel p at station s is assigned to a worker w with travel pattern A! B, we have cðp;wÞP dðA; sÞþ
dðs;BÞ � dðA;BÞ.
Proof. The proof is quite straightforward based on the triangular inequality: cðp;wÞ ¼ dðA; sÞ þ dðs; tÞ þ dðt;BÞ � dðA;BÞP
dðA; sÞ þ dðs;BÞ � dðA; BÞ. h
Lemma 7. When a parcel p at station s is assigned to a worker w with travel pattern A! B and the maximum distance from s to
any point in the voronoi cell is r, we have cðp;wÞ 6 dðA; sÞ þ 2r þ dðs;BÞ � dðA;BÞ.



Fig. 6. Lower bound cost for a worker to deliver a parcel in pop-station s.
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Proof.
cðp;wÞ ¼dðA; sÞ þ dðs; tÞ þ dðt;BÞ � dðA; BÞ
6dðA; sÞ þ r þ dðt;BÞ � dðA;BÞ
6dðA; sÞ þ r þ dðs; tÞ þ tðs;BÞ � dðA; BÞ
6dðA; sÞ þ 2r þ tðs;BÞ � dðA; BÞ �
For the index construction, we build an inverted list with length W for each pop-station, where W is the number of work-
ers. The entries in the list are in the form of a triple hw; LBw;UBwi and sorted in ascending order of LBs, where LBs and UBs are
the lower bound and upper bound derived from Lemmas 6 and 7 respectively. These inverted index are stored in disk and
loaded into memory for the optimization of the crowd-delivery model. Given a parcel as an assignment query, our task
becomes how to utilize the index to quickly determine the top-T workers. We first determine the pop-station containing
the parcel and load the inverted list into memory. Then, we maintain a maximum heap with size T and access the workers
in order. For each worker, if the upper bound is smaller than the T-th cost in the heap, denoted by dT , we directly insert it into
the heap. Otherwise, we calculate the exact cost and compare it with dT . If the exact cost is larger than dT , we discard the
worker. The algorithm terminates when the lower bound of the current worker is larger than dk and all the remaining
workers can be pruned.

In summary, the computation cost incorporates detecting the top-Tworkers and running min-cost flow algorithms on the
reduced network. The complexity of the former component is OðP �W � log TÞ as we use a heap to avoid sorting the whole list.
The complexity of the later component is reduced to OðP3ðP þWÞÞ.

5.3. Rule 3: Frequency-based pruning

Finally, we propose a frequency-based pruning strategy to further reduce the number of arcs in the network. Let Wa be
the group of arcs retained after adopting the capacity-based pruning. For the elements in the top-T heap, we sort them again
in ascending order of cðpi;wjÞ. Our pruning relies on an important observation that if the frequency of a workerwij inWa is no
greater than C, then all the workers located after wij in the sorted list Li can be pruned.

Lemma 8. Let freq½w� denote the frequency of w occurring in Wa. Given a worker wij in the i-th sorted list, if freq½wij� 6 C, then all
the workers wij0 with j0 > j can be pruned.
Proof. Again, we prove by contradiction. Suppose there exists an optimal solution Dopt assign which assigns a parcel pi to a
workerwij0 with j0 > j. For the remaining parcels, Dopt assigns pm (m – i) to workerwn. Then, we can construct another assign-
ment solution D0 which follows Dopt to assign pm (m – i) to worker wn. Then, we simply need to assign pi to wij in D0 because
the worker has enough capacity to take the task. Thus, D0 is a better solution than Dopt , which leads to a contradiction. h

Therefore, when we detect such a low-frequency worker in Wa, we can remove a number of workers. After that, we need
to decrease the frequencies of these pruned workers by 1, which may lead to further pruning of more workers. The process
can iterate until no more workers can be pruned. To make this iterative procedure more efficient, we propose our iterative
frequency-based pruning in Algorithm 2. We maintain an array idx with size P and initialize the entries in the array to be T.
idx½i� stores the smallest index of a worker located in the i-th and with a frequency freq½wij� 6 C. The algorithm starts by
counting the frequency of each worker in Wa. Then, the process framework consists of two components: (1) scan all the
workers and update the idx array; and (2) remove workers in the i-th sorted list whose index is larger than idx½i�. It
terminates when no more workers can be pruned.
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Algorithm 2. Iterative frequency-based pruning.

1. build an array idx with size P and set idx½i�  T
2. while true do
3. calculate the frequency freq½w� for worker w in Wa

4. finish true
5. for each sorted list Li for parcel pi do
6. for j ¼ 1; j 6 idx½j�; j++ do
7. wij  Li½j�
8. if freq½wij� 6 C then
9. if j < idx½i� then
10. idx½i�  j
11. finish false
12. end if
13. end if
14. end for
15. end for
16. if finish then
17. break
18. end if
19. for i ¼ 1; i 6 P; i++ do
20. keep the first idx½i� workers in list Li
21. end for
22. end while

Fig. 7 shows an example of iterative frequency-based pruning. In this example, there are three parcels to be assigned
and the T workers have been sorted by cðp;wÞ. We assume that the worker capacity is 2. In the first iteration, we scan the
frequencies of all the workers and update the array of idx. For example, idx½3� ¼ 2 because the frequency of w8 is no
greater than the capacity and all the workers afterwards can be removed. In the second iteration, we can further prune
some workers from the lists due to the frequency update. For example, the frequency of w1 is 3 in the first iteration
and becomes 2 after the frequency update. Then, all the workers after w1 can be pruned. The iteration continues until
no more workers can be pruned. In this example, each list for parcel pi happens to retain only one worker, who will take
the delivery task.
6. Experimental study

This section presents results of an extensive performance study of various pruning techniques. All the codes are
implemented in C++ and the min-cost flow problem is solved by the network simplex algorithm provided by the API of
the LEMON library.6 We conduct the experiments on a server with 128 GB memory, running Centos 5.6.

6.1. Datasets

We construct three datasets to simulate the experimental environments for the crowd-delivery problem:

� Singapore bus. It contains the bus transactions, including boarding and alighting bus stations, of millions of people in
Singapore for a period of 6 months. We treat each person as a crowd-worker and detect the most frequent travel routes,
say from station A to station B, as the motion pattern. We use the 124 pop-stations of SingPost7 in our experiments and the
destinations of the parcels are generated randomly.
� Singapore taxi. It contains trajectories from 13;200 taxies in Singapore over one week. Each taxi continuously reports
its locations at a frequency of 20–80 s, which provide us the full historical trajectory. Since the status of the taxi
(e.g., busy or vacant) is available, we can easily derive the travel route of each ride. For example, if the status changes
from vacant to busy, we know there is a passenger on board. After a while, the status changes back to vacant, we know
the destination of the ride. From the taxi dataset, we extract 500;000 most frequent travel routes as the motion
patterns of the crowd-workers. The parcels are generated using the SingPost pop-stations and their destinations are
randomly assigned.
6 http://lemon.cs.elte.hu/trac/lemon.
7 https://www.mypopstation.com/locations.

http://lemon.cs.elte.hu/trac/lemon
https://www.mypopstation.com/locations


Fig. 7. An example of iterative frequency-based pruning.
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� GeoLife (Zheng et al., 2009). The dataset essentially keeps all the travel records of 182 users for a period of over three
years, including multiple kinds of transportation modes (walking, driving and taking public transportation). For each user,
the GPS information is collected periodically and 91 percent of the trajectories are sampled every 15 s. From the dataset,
we sample 500,000 sub-trajectories with a period of 30 min as the motion patterns of our crowd-workers. The locations of
pop-stations and the destinations of parcels are generated randomly.

In total, we generate 500,000 motion patterns for the crowd-workers and 5000 parcels from each dataset.

6.2. Methods

We report the performance of the following four methods:

� M0. This method simply reduces the crowd-delivery model to the min-cost flow problem without applying any pruning
techniques. It uses as a baseline solution.
� M1. This method applies the cost-base pruning to reduce the number of arcs in the network.
� M2. This method applies the capacity-based pruning to further reduce the size of the network generated by M1.
� M3. This method applies the frequency-based pruning on the network generated by M2.

For the performance metric, we report both the number of arcs retained after applying the pruning techniques and the
running time of calling the API of the LEMON library to solve the min-cost flow problem in the reduced network. We examine
the performance in terms of increasing W (from 100,000 to 500,000), P (from 1000 to 5000) and C (from 1 to 9), with their
default values set to W ¼ 200;000; P ¼ 2000 and C ¼ 5 respectively.

6.3. Performance study

We report the number of arcs between the parcels and workers in Table 2. For method M0, it does not apply any pruning
techniques. Thus, it needs to handle a network with P �W arcs because each parcel can be assigned to any worker. This num-
ber could be very huge for largeW and P. For instance, whenW ¼ 500;000 and P ¼ 2000, the network contains 1 billion arcs.
MethodM1 uses the cost-based pruning to reduce the network size. The method is effective only when C is large or P is small.
When C ¼ 9, the number of arcs reduces from 400 million to 9 million in the GeoLife dataset. This is because with higher
capacity, a parcel is more likely to be assigned to the worker with the minimum delivery cost. Thus, the total cost generated
by the greedy method becomes closer to the optimal solution and facilitates better pruning. Similarly, when P is small, the
parcels can be assigned to the most suitable workers with less conflict. Hence, when P ¼ 1000, it reduces the number of arcs
from 200M to 3M in the Singapore Taxi and GeoLife datasets.

The capacity-based pruning methodM2 is highly effective in reducing the network size. The number of arcs is reduced by
orders ofmagnitude. Themethod also prefers small P and larger C, but is insensitive toW. This is because it guarantees that the



Table 2
Number of arcs in the network after applying the pruning strategies (result unit = million).

Increasing W Increasing P Increasing C

100,000 200,000 300,000 400,000 500,000 1000 2000 3000 4000 5000 1 3 5 7 9

Singapore bus dataset
M0 200 400 600 800 1000 200 400 600 800 1000 400 400 400 400 400
M1 200 368 522 526 555 16 368 600 800 1000 400 400 368 220 111
M2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1.8 3.2 5 4 1.33 0.8 0.572 0.446
M3 0.066 0.035 0.019 0.024 0.025 0.003 0.035 0.256 0.784 2.4 3.8 0.219 0.035 0.008 0.004

Singapore taxi dataset
M0 200 400 600 800 1000 200 400 600 800 1000 400 400 400 400 400
M1 136 115 151 126 94 3 115 476 728 995 391 205 115 47 18
M2 0.8 0.8 0.8 0.8 0.8 0.2 0.8 1.8 3.2 5 4 1.33 0.8 0.572 0.446
M3 0.113 0.024 0.011 0.007 0.008 0.003 0.024 0.205 0.606 1 2.6 0.176 0.024 0.005 0.003

GeoLife dataset
M0 200 400 600 800 1000 200 400 600 800 1000 400 400 400 400 400
M1 193 222 160 523 243 3 222 577 779 978 392 383 222 45 9
M2 0.8 0.8 0.8 0.8 0.8 0.2 0.8 1.8 3.2 5 4 1.33 0.8 0.572 0.446
M3 0.58 0.461 0.429 0.421 0.394 0.079 0.461 1.3 2.6 4.2 3.7 1 0.461 0.274 0.183
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number of arcs will be reduced to P2=C after applying the pruning, which is a variable irrelevant to W. The frequency-based
pruning can further reduce the network size by around an order of magnitude. When C is large, the method works extremely
well. For example, after applying the frequency-based pruning, each parcel in the Singapore Taxi dataset has only 2 candidate
workers.

The running time of the comparison methods is reported in Table 3. We have the following observations. (1) The imple-
mentation of LEMON library is highly efficient. It takes less than 3 h for the baseline solution to find the optimal solution,
even in a network with 1 billion arcs. (2) M1 can significantly reduce the running time when C is large or P is small. For
instance, when P ¼ 1000, the speed is improved by at least one order of magnitude, and (3) M2 and M3 work extremely fast.
They can handle most of the scenarios with less than 10 s because the network size has been significantly reduced. In gen-
eral, M2 boosts the performance by hundreds of times and the speedup for M3 can reach three orders of magnitude.

When compared with TRACCS system, our solution based on network min-cost flow model has two major advantages.
First, it is very efficient and returns optimal results. The authors of TRACCS system admit that their proposed Integer Linear
Programming model is intractable even for small-scale problems. Hence, they can only resort to heuristic methods that
return approximate results without any theoretical guarantee. Second, our solution is scalable to handle millions of crowd
workers, whereas the performance study of TRACCS system only evaluates up to 1000 agents. As illustrated in the experi-
mental study, the network size reduces as there are more available crowd workers. For a crowd-delivery system to work
in practice, it is important that there are a large pool of citizen workers available as the service providers. Consequently,
the delivery cost per task can be reduced and the system can be profitable for the logistic companies. Therefore, supporting
million-scale crowd workers is a key issue to the success of crowd-delivery systems.
Table 3
Results of running time (result unit = second).

Method Increasing W Increasing P Increasing C

100 K 200 K 300 K 400 K 500 K 1000 2000 3000 4000 5000 1 3 5 7 9

Singapore bus dataset
M0 1040 2510 3348 4154 5880 1001 2510 3730 5113 8120 1990 2360 2510 2281 2052
M1 1040 2412 2644 3279 3893 79 2412 3730 5113 8120 1990 2360 2412 1338 778
M2 5 5 6 7 9 3 5 13 25 38 25 10 5 4 4
M3 1 2 3 3 5 1 2 3 8 19 23 3 2 2 2

Singapore taxi dataset
M0 1105 2014 3016 4533 6112 913 2014 3303 4572 6098 1948 2048 2014 2012 1977
M1 943 1854 2645 3588 4179 24 1854 2782 4236 6092 1720 1795 1854 1000 316
M2 6 5 5 6 6 2 5 11 32 41 21 7 5 3 2
M3 2 2 3 3 4 1 2 3 4 10 12 2 2 2 2

Beijing dataset
M0 1373 2339 3580 4397 5677 1008 2339 4499 5926 7542 2214 2561 2339 2071 1998
M1 1295 1823 1486 3788 1989 20 1823 4214 5899 7523 1910 1823 1127 415 76
M2 6 6 8 10 10 3 6 21 39 79 35 13 6 5 4
M3 6 6 7 7 7 2 6 19 36 66 33 12 6 4 3
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7. Conclusion and future work

In this paper, we proposed an effective crowd-delivery model by utilizing a large pool of citizen workers to enhance the
last-mile delivery. To efficiently solve the model, we formulated it as a network min-cost flow problem and proposed various
pruning techniques that can dramatically reduce the network size. The running time was improved by two orders of mag-
nitude from the baseline solution and can support real-time delivery optimization in the large-scale mobile crowd-sourcing
problem.

This frontier and novel concept of crowd delivery in city last-mile application has significant impact on the urban logis-
tics development. Compared with traditional last-mile methods or synchronized/consolidated last-mile (where service
providers cooperate and share the urban consolidated center to re-assign delivery tasks to vehicles by parcel destination),
crowd delivery has the following merits: Firstly, its delivery is in high parallelism and each delivery task is independent.
Whereas, the delivery process in the synchronized/consolidated delivery can be considered as sequential. The previous
delivery tasks will always impact the subsequent tasks; Secondly, it is one-to-one communication in crowd delivery.
However, it is one-to-more communication in traditional delivery; Thirdly, from the environmental and sustainable point
of view, crowd sourcing delivery advocates green supply chain and eco-friendly. By using millions of citizens as part-time
delivery labor in urban logistics, fewer number of vehicles are needed for service providers, leading to less carbon
emission; Last but not least, from the perspective of social revolution and responsibility, this new design in urban logistics
will increasingly become one of the most meaningful forms of competitive advantage. As it can cater customers’ insatiable
appetite for greater simplicity and convenience by adding a layer between service providers and end customers. Crowd
delivery offers a way for each individual to participate in social change happening on the ground. This novel design will
improve everyone’s life.

For Logistics service provider considering implementing crowdsourcing model in the last-mile delivery, our results
suggest that crowdsourcing could be applied in real-time delivery requests in the large-scale problem. The proposed effec-
tive pruning algorithms make it possible to get optimal solution in an efficient way. However, there are some practical issues
and concerns that should be raised and need to be investigated. Data privacy and confidentiality is one of the most key con-
cerns. Parcel package may be redesigned with only barcode and rare limited information. Legal regulations should be
enhanced towards governing the collection, use and disclosure of personal data by all service providers and crowd workers.
Also general exceptional clause should be emphasized when installing the apps and some penalty rules and obligations
should be agreed when accepting the delivery tasks in order to prevent the uncertainties during the delivery. In addition,
there are some discussion about the user case. In this paper, the parcel we are referring to normal commerce small items
or normal mails. Parcel sensing will reinforced before sending requests to crowd to avoid hazardous and dangerous parcels.

Our work servers as the initial efforts on the problem of crowd-delivery that takes into account the motion patterns of
workers and uses the additional travel distance as the cost measurement. Since the system is often much more complex
in reality, our future works will take into account (1) the delivery time requirements of consumers; (2) a more practical
measure, such as additional travel time, to measure the cost; (3) better pricing strategy and higher system reliability and
(4) on-demand requests similar to UberRush, but with a much larger pool of workers.
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