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To minimize greenhouse gas emissions, the logistic field has seen an increasing usage of
electric vehicles. The resulting distribution planning problems present new computational
challenges.
We address a problem, called Electric Traveling Salesman Problem with Time Windows. We

propose a mixed integer linear formulation that can solve 20-customer instances in short
computing times and a Three-Phase Heuristic algorithm based on General Variable
Neighborhood Search and Dynamic Programming.
Computational results show that the heuristic algorithm can find the optimal solution in

most small-size instances within a tenth of a second and achieves goods solutions in
instances with up to 200 customers.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

According to US Environmental Protection Agency (2015), the total US greenhouse gas emissions amounted for 6673 mil-
lion metric tons CO2 equivalent mass units in 2013, showing an increase of 5.9% from 1990. Approximately 82.5% of total
greenhouse gas emissions by human activities was CO2. Along with passenger cars, which generated 42.7% of CO2 emissions,
the second largest source of CO2 emissions in transportation was freight trucks (22.8%). To tackle this environmental prob-
lem, in the logistic field, Electric Commercial Vehicles (ECVs) are considered as a valid alternative to Internal Combustion Com-
mercial Vehicles (ICCVs) because they are environmentally friendly and produce minimal noise.

Due to these practical considerations along with political factors (e.g., in 2009, the US Government granted 2.4 billion dol-
lars to ‘‘accelerate the manufacturing and deployment of the next generation of US batteries and electric vehicles”, see US
Department of Energy (2009)), ECVs are more and more common in last-mile delivery distribution, for example in small-
package shipping or in the distribution of food and beverages, and several companies have started deploying ECVs for their
daily operations (see FedEx, 2010; Motavalli, 2010). This gives birth to a whole new field of research concerning the condi-
tions under which ECVs are more convenient than ICCVs.

A recent study by Davis and Figliozzi (2013) compared the overall costs of three different vehicles, one diesel truck and
two electric trucks, over a long planning horizon and showed that electric vehicles are competitive especially when the trav-
eling distance is long, congestion is prevalent, and customer stops are frequent. Davis and Figliozzi (2013) also pointed out
the importance of efficient and tailored distribution plans when utilizing electric vehicles. The Vehicle Routing Problems
(VRPs) arising when dealing with ECVs present new challenges for researchers and practitioners who want to provide such
optimized distribution plans.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.tre.2016.01.010&domain=pdf
http://dx.doi.org/10.1016/j.tre.2016.01.010
mailto:rorob@transport.dtu.dk
mailto:Min.Wen@xjtlu.edu.cn
http://dx.doi.org/10.1016/j.tre.2016.01.010
http://www.sciencedirect.com/science/journal/13665545
http://www.elsevier.com/locate/tre


R. Roberti, M. Wen / Transportation Research Part E 89 (2016) 32–52 33
The literature about optimization methods for traditional ICCVs is rich (see Vigo and Toth (2014) for a comprehensive
survey on the topic), while only few recent papers provide optimization algorithms for electric VRPs. One of the seminal
papers on the subject can be considered Schneider et al. (2014), where a hybrid heuristic combining Variable Neighborhood
Search (VNS) and tabu search is proposed to solve the Electric Vehicle Routing Problem with Time Windows and Recharging Sta-
tions (E-VRPTW). The E-VRPTW is the problem of defining a least-cost distribution plan for capacitated electric vehicles,
located at a central depot, that are used to satisfy the demands of a set of customers within given time windows; because
of the limited capacity of the batteries of such vehicles, stops at recharging stations may be needed along the routes.

In this paper, we address the single-vehicle version of the E-VRPTW under two recharging policies: full (the battery is fully
recharged at each stop) and partial (any amount can be recharged at each stop). To the best of our knowledge, this problem,
which we call Electric Traveling Salesman Problem with Time Windows (E-TSPTW), has not been addressed in the literature yet.
The E-TSPTW can be easily stated as the problem of finding a shortest Hamiltonian tour for visiting a set of customers within
given time windows in such a way that the battery level is always non-negative – this can be achieved by stopping at inter-
mediate recharging stations to recharge the battery. The E-TSPTW is a generalization of the well-known and well-studied
Traveling Salesman Problem with Time Windows (TSPTW), so it is also NP-hard.

Although the market share of electric vehicles is still limited in many countries today, the deployment of electric freight
vehicles is expected to grow because of upcoming restrictions on vehicle emissions and because more and more incentives
have been provided for using environmentally-friendly vehicles. The application of the E-TSPTW is potentially wide, in par-
ticular in last-mile delivery of parcels in urban areas. In FREVUE’s reports (Nesterova et al., 2013), a two-phase delivery is con-
sidered as an interesting logistics concept for electric freight vehicles. Goods are first sent to an urban consolidation center
(UCC), a logistics facility that is close to the denser urban area, by conventional trucks and later are transferred to the electric
vehicles for last mile deliveries. This concept has been successfully adopted inmany cities, such as Leiden, Bristol, Malaga and
La Rochelle, in all of which the electric vehicles are used for transport in the city center zone (van Duin et al., 2010). Some large
logistic companies, e.g. FedEx, have also put electric vehicles into use for delivering parcels in urban areas (FedEx, 2010). It can
be further expected that when charging infrastructure is deployed along routes connecting cities and when the driving range
of electric vehicles is extended, the intercity parcel delivery will gain its momentum (Pelletier et al., in press).

Having efficient solution methods for the E-TSPTW is important not only for solving practical applications of the problem,
but also for solving more involved Electric VRPs. It is well-known (see Desaulniers et al., 2005; Vigo and Toth, 2014) that the
state-of-the-art exact algorithms for a wide range of VRPs are based on the column generation framework. The most relevant
issue when developing these algorithms is arguably the resolution of the pricing problem, which is usually an NP-hard prob-
lem for which exact algorithms are time-consuming. Therefore, many column generation algorithms generate columns by
means of heuristic algorithms and rely on exact methods only at the very last iterations. We believe that future exact algo-
rithms for Electric VRPs will rely on column generation (a first example from the literature is the exact method of
Desaulniers et al. (2014) for the E-VRPTW), and the resulting pricing problems will present most of the challenges tackled
when solving the E-TSPTW considered in this paper.

The main contributions of this paper are the following. We define the E-TSPTW and model it as a compact Mixed Integer
Linear Problem (MILP). We propose an alternative MILP model, both for the full and the partial recharge policies, that has an
exponential number of variables (with respect to the number of recharging stations) and defined several rules to limit the
number of variables necessary to achieve an optimal solution. Then, we describe a Three-Phase Heuristic algorithm based on
General VNS (GVNS) and Dynamic Programming to find near-optimal solutions of the E-TSPTW, where simple adaptations are
required to consider the full recharge policy instead of the partial recharge policy (and vice versa). Finally, we introduce two
sets of benchmark instances derived fromwell-known TSPTW instances from the literature and show the computational per-
formance of the proposed MILP model and of the Three-Phase Heuristic algorithm for both recharging policies.

The rest of the paper is organized as follows. Section 2 is the literature review. A formal definition of the E-TSPTW and a
compact MILP formulation are reported in Section 3. The alternative formulation with exponentially many variables is illus-
trated in Section 4. The proposed Three-Phase Heuristic algorithm is developed in Section 5. Section 6 reports the compu-
tational results. Some conclusions are drawn in Section 7.
2. Literature review

The E-TSPTW is a generalization of the well-known TSPTW. The TSPTW has been extensively addressed in the literature
both with exact and heuristic methods. Gendreau et al. (1998) proposed an insertion heuristic that gradually builds the solu-
tion by inserting a vertex in its neighborhood and performing a local re-optimization, and, once a feasible solution is
achieved, tries to improve it through removal and reinsertion of all vertices. Ohlmann and Thomas (2007) described a variant
of Simulated Annealing, called Compressed Annealing, that embeds a variable penalty method to consider time windows
constraints that are relaxed and stochastic search. A hybrid method that combines Beam search with Ant Colony Optimiza-
tion, called Beam-ACO, was proposed by López-Ibáñez and Blum (2010).

More recently, da Silva and Urrutia (2010) and Mladenović et al. (2012) showed the potential of solving the TSPTW by
mean of GVNS and proposed two heuristic algorithms that can be considered the state-of-the-art for solving the TSPTW.
The algorithm of da Silva and Urrutia (2010) is composed of a constructive stage followed by an optimization stage. In
the constructive stage, the goal is to achieve a feasible TSPTW solution by using a VNS; in the optimization phase, the solu-
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tion returned in the first phase is improved with a GVNS heuristic. Mladenović et al. (2012) described another efficient GVNS
that differs from the algorithm of da Silva and Urrutia (2010) because more efficient data structures and different neighbor-
hoods are used.

An alternative heuristic approach that is competitive with the algorithms of da Silva and Urrutia (2010) and Mladenović
et al. (2012) is the Variable Iterated Greedy algorithm of Karabulut and Fatih Tasgetiren (2014).

A variety of different approaches can be found in the literature to solve the TSPTW to optimality: branch-and-cut algo-
rithms (Ascheuer et al., 2001; Dash et al., 2010), constraints-programming-based methods (Focacci et al., 2002), and dynamic
programming recursions (Dumas et al., 1995; Mingozzi et al., 1997; Balas and Simonetti, 2001). The state-of-the-art exact
algorithm can be considered the column generation based method of Baldacci et al. (2011), where different state space relax-
ation techniques are used to derive tight lower bounds and are combined with dynamic programming to find optimal solu-
tions; this solution method was able to close all but one test instance (with up to 233 vertices) from the literature in
reasonable computing times.

Another stream of research closely related to our work is optimization methods for VRPs of the electric/alternative fuel
vehicles. Conrad and Figliozzi (2011) studied the Recharging VRP where vehicles with limited driving range are allowed to
recharge en route at certain customer locations. Customer service time windows, full recharge and fixed charging times
are assumed in the problem. The authors developed an iterated route construction and improvement algorithm and inves-
tigated the impact of driving range, recharging time and time window existence on the solutions. Erdoğan and Miller-Hooks
(2012) introduced the Green Vehicle Routing Problem (G-VRP), in which the time window and the vehicle capacity are not
considered, the vehicle can only be charged to full capacity when it visits a station, and the charging time is assumed to
be constant. Felipe et al. (2014) extended the GVRP by considering different types of recharging stations with different costs
and recharging speeds. Furthermore, in their problem, partial charging is allowed and the recharging time is assumed to be a
linear function of the amount of energy recharged, which brings extra decision variables in the problem on howmuch capac-
ity to be charged at the station. Several local search methods as well as a Simulated Annealing heuristic were developed.

Schneider et al. (2014) extended the G-VRP to the E-VRPTW by considering the customer time windows, unlimited num-
ber of recharging per route and a variable recharging time which depends on the remaining fuel level when a vehicle arrives
at the recharging station. They developed a hybrid VNS and Tabu Search heuristic. Preis et al. (2014) extended the E-VRPTW
by considering a load-dependent energy consumption. A Tabu Search heuristic was presented to minimize the overall energy
consumption. Hiermann et al. (submitted for publication) addressed the Electric Fleet Size and Mix VRPTW, a combination of
E-VRPTW and Fleet Size Mix VRPTW, where different types of electric vehicles with different battery capacities, load capac-
ities, energy consumptions and recharging rates are considered. Goeke and Schneider (2015) extended the E-VRPTW to a
mixed fleet consisting of electric vehicles and conventional internal combustion commercial vehicles. In contrast to a simple
traveling-distance-dependent energy consumption assumed in most of the existing studies, a more realistic energy con-
sumption incorporating the factors of speed, gradient and cargo load was adopted. Both Hiermann et al. (submitted for
publication) and Goeke and Schneider (2015) developed Adaptive Large Neighborhood Search heuristics to solve their prob-
lems. Desaulniers et al. (2014) focused on the exact algorithms for four variations of the E-VRPTW, which differ in the num-
ber of allowed recharges per route (single or multiple) and the type of recharge (partial or full). Their branch-price-and-cut
algorithms can solve most of the instances involving up to 100 customers with narrow time windows to optimality.
3. A compact formulation of the E-TSPTW

In this section, we formally introduce the E-TSPTW along with the notation used throughout the paper. We also model the
E-TSPTWwith a compact MILP formulation derived from the MILP formulation described by Schneider et al. (2014) for the E-
VRPTW. The presented formulation is a simple adaption of the formulation of Schneider et al. (2014) obtained by ignoring
capacity constraints and by considering one vehicle only.

3.1. Definition of the E-TSPTW and notation

Let V be a set of vertices defined as V ¼ fo; dg [ C [ S, where vertex o (d, respectively) is the initial (final, resp.) vertex of
the tour to find, C is a set of n customers to visit, and S is a set of m recharging stations. Vertex d is simply a copy of vertex o
that is needed for notational purposes. Moreover, let Co;Cd;Cod � V be three subsets of the set V defined as
Co ¼ C [ fog;Cd ¼ C [ fdg;Cod ¼ C [ fo; dg.

A time window ½ei; li� is associated with each vertex i 2 Cod, where ei 2 Zþ (li 2 Zþ, resp.) represents the earliest (latest,
resp.) time when service at vertex i can start; as commonly done in the literature, we assume that time windows are hard,
meaning that a vertex can be visited before time ei (in this case, the service is delayed to time ei) but not later than li. Fur-
thermore, we assume that recharging stations are always available over the planning horizon, so no time window constraints
are imposed on them.

Let A be a set of arcs defined as A ¼ AC [ AS, where AC ¼ fði; jÞ : i 2 Co; j 2 C; i – jg [ fði; jÞ : i 2 C; j 2 Cd; i – jg and
AS ¼ fði; jÞ : i 2 Co; j 2 Sg [ fði; jÞ : i 2 S; j 2 Cdg [ fði; jÞ : i; j 2 S; i – jg. Travel distance dij, travel time tij 2 Zþ, and battery con-
sumption qij 2 Zþ are associated with each arc ði; jÞ 2 A. The capacity of the battery is denoted with Q. To simplify the nota-
tion throughout the paper, we can assume, without loss of generality, that travel time tij includes the service time at vertex i.
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As done in Schneider et al. (2014), we make the following assumptions:

(1) the battery consumption for traversing arc ði; jÞ 2 A is proportionally linear to the travel distance dij with respect to a
consumption rate h, that is, qij ¼ h � dij;

(2) the recharging time is proportionally linear to the desired quantity to recharge with respect to a recharging rate g;
(3) the consumption rate h is equal for all arcs;
(4) the recharging rate g is equal for all stations.

Moreover, we assume that multiple recharges can be performed at the same station along the tour and that vertex o can
act as a recharging station.

In the literature, two policies are usually considered to determine the amount of battery recharged at each stop: full and
partial. In the full-recharge policy, the battery is always fully recharged, while, in the partial-recharge policy, any quantity
can be recharged at each stop as long as the capacity of the battery is not exceeded. Throughout the paper, we consider both
policies by, first, addressing the full-recharge policy and, then, showing what needs to be changed to handle the partial-
recharge policy.

The E-TSPTW is the problem of finding a shortest tour of graph G ¼ ðV ;AÞ that starts from vertex o, visits all customers of
the set C within their time windows, ends at d, possibly stops at recharging stations within their time windows, and such
that the battery level is always between 0 and Q.
3.2. A compact formulation for the full-recharge policy

The compact formulation illustrated in this section uses graph bG ¼ ðbV ; bAÞ, where the set of vertices bV and the arc set bA are

defined as follows. Let bS be a set of dummy stations containing multiple copies of each recharging station of the set S (where

each copy represents a different visit to the corresponding recharging station), and let bV ¼ fo; dg [ C [ bS be the set of vertices

of graph bG. The set of arcs bA is defined as bA ¼ fðo; jÞ : j 2 C [ bSg [ fði; dÞ : i 2 C [ bSg [ fði; jÞ : i; j 2 C [ bS; i – j; ei þ tij 6 ljg.
By introducing the following decision variables:

� xij 2 f0;1g: binary variable equal to 1 if arc ði; jÞ 2 bA is traversed (0 otherwise);

� zi 2 Zþ: time when the service at vertex i 2 Cod starts and when the recharge at vertex i 2 bS starts (undefined if i 2 bS is not
visited);

� yi 2 Zþ: battery level upon arriving at vertex i 2 bV (undefined if i 2 bS is not visited);

the E-TSPTW, when the full-recharge policy is applied, can be formulated as
z� ¼min
X
ði;jÞ2bAdijxij ð3:1Þ

s:t:
X
ði;jÞ2bAxij ¼ 1 i 2 Co ð3:2Þ

X
ði;jÞ2bAxij 6 1 i 2 bS ð3:3Þ

X
ði;kÞ2bAxik ¼

X
ðk;jÞ2bAxkj k 2 C [ bS ð3:4Þ

zo ¼ eo ð3:5Þ
ei 6 zi 6 li i 2 Cd ð3:6Þ
zi þ ðtij þMÞxij 6 zj þM ði; jÞ 2 bA : i 2 Co ð3:7Þ
zi þ ðtij þM þ gQÞxij � gyi 6 zj þM ði; jÞ 2 bA : i 2 bS ð3:8Þ
yo ¼ Q ð3:9Þ
yj þ ðqij þ QÞxij 6 yi þ Q ði; jÞ 2 bA : i 2 Co ð3:10Þ
yj þ qijxij 6 Q ði; jÞ 2 bA : i 2 bS ð3:11Þ
xij 2 f0;1g ði; jÞ 2 bA ð3:12Þ
zi; yi 2 Zþ i 2 bV ð3:13Þ
where M is a proper bigM value.
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The objective function (3.1) asks for minimizing the total distance of the tour. Constraints (3.2) ensures that the optimal

tour visits all customers exactly once and starts from vertex o. Constraints (3.3) stipulate that each dummy station i 2 bS can
be visited at most once. Constraints (3.4) are flow conservation constraints. Time windows are imposed by constraints (3.5)
and (3.6). Constraints (3.7) and (3.8) set the times at which each vertex is visited; in particular, constraints (3.7) refer to arcs

originating from a customer i 2 C or from o, and constraints (3.8) to arcs originating from a recharging station i 2 bS. Con-
straint (3.9) sets the initial battery level at vertex o. The battery level upon arriving at each vertex is set through constraints
(3.10) and (3.11). Constraints (3.12) and (3.13) define the ranges of the three sets of variables.

Notice that the number of constraints and variables of formulation (3.1)–(3.13) depend on the cardinality of the set bS; this
affects the effectiveness of the formulation in solving the E-TSPTW. Moreover, to guarantee that an optimal solution is found,
a proper number of copies of each station must be included. Unless a proper upper bound on the number of copies needed for
each station is computed, nþ 1 copies are needed for each station.

3.3. A compact formulation for the partial-recharge policy

In order to model the partial-recharge policy, formulation (3.1)–(3.13) has to be slightly modified, as suggested by
Bruglieri et al. (2015) for the E-VRPTW. In particular, in addition to the three sets of variables used, we introduce a variable

ri 2 Zþ for each station i 2 bS that represents the amount of battery recharged at vertex i if i is visited along the tour (it is
undefined if i is not visited).

The resulting formulation has objective function (3.1) and constraints (3.2)–(3.7), (3.9), (3.10), (3.12), (3.13), but replaces
constraints (3.8) and (3.11) with
zi þ ðtij þMÞxij þ gri 6 zj þM ði; jÞ 2 bA : i 2 bS ð3:14Þ

and
yj þ ðqij þ QÞxij 6 yi þ ri þ Q ði; jÞ 2 bA : i 2 bS ð3:15Þ

respectively, and also adds the following two sets of constraints
ri þ yi 6 Q i 2 bS ð3:16Þ

and
ri 2 Zþ i 2 bS ð3:17Þ
Constraints (3.14) modifies (3.8) to take into account that the time spent to recharge at i 2 bS depends on the quantity
recharged (i.e., ri) and is not simply gðQ � yiÞ. Constraints (3.15) establish the relationship between yj and yi if a recharge

is performed at i 2 bS. Constraints (3.16) state that the amount recharged at a vertex i 2 bS plus the level of the battery when
arriving at i cannot exceed Q. Integrality constraints on r-variables are imposed through constraints (3.17).

3.4. Improving the compact formulation for both recharge policies

Valid Inequalities – The linear relaxation of formulation (3.1)–(3.13) can be tightened by adding the following set of valid
inequalities
xij þ xji 6 1; i; j 2 C : ði; jÞ; ðj; iÞ 2 bA; ð3:18Þ

which stipulate that, for each pair of customers i; j 2 C, at most one of the two arcs ði; jÞ and ðj; iÞ can be selected. Even though
inequalities (3.18) are trivial, they increase the lower bound provided by the linear relaxation of (3.1)–(3.13) and decrease
the total computing time when solving this formulation with a general-purpose MILP solver, so we will consider them in the
computational experiments reported in Section 6.

It is trivial to observe that inequalities (3.18) are valid also for the partial-recharge policy.

Lifting Constraints (3.10) – We can also observe that inequalities (3.10) for each arc ði; jÞ 2 bA such that i; j 2 C and ðj; iÞ 2 bA
can be lifted as follows
yj þ ðqij þ QÞxij 6 yi þ Q � ðQ � qjiÞxji; ði; jÞ 2 bA : i; j 2 C; ðj; iÞ 2 bA: ð3:19Þ

Let us consider a pair of customers i; j 2 C such that both ði; jÞ and ðj; iÞ belong to bA. There are three interesting cases to con-
sider: (i) if xij ¼ 0 and xji ¼ 0, (ii) if xij ¼ 1 and xji ¼ 0, and (iii) if xij ¼ 0 and xji ¼ 1. In Case (i), inequalities (3.19) for arcs ði; jÞ
and ðj; iÞ simply become redundant. In case (ii), we have yj þ qij 6 yi and yi 6 yj þ qij, so yi ¼ yj þ qij (i.e., the battery left upon
arriving at customer j is equal to the battery left upon arriving at customer i minus the battery consumption along arc ði; jÞ).
Similarly, in case (iii), yj ¼ yi þ qji (i.e., the battery left upon arriving at customer i is equal to the battery left upon arriving at
customer j minus the battery consumption along arc ðj; iÞ).

It is easy to observe that these lifted inequalities (3.19) are valid under both recharge policies.
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4. An alternative formulation based on recharging paths

In this section, we present an alternative formulation of the E-TSPTW that contains a binary variable for each recharging
path between each couple of vertices. A recharging path between two vertices i and j is a path that starts from i, visits one or
more recharging stations, and ends at j. In principle, the resulting formulation has a number of variables that grows expo-
nentially with the number of recharging stations, but we will describe some rules to eliminate a priori a significant number
of variables.

For any arc ði; jÞ 2 AC , let us call Aij the set of all recharging paths that start from vertex i, end at vertex j, and visit any
subset of the vertices of the set So in any order. For a given path p 2 Aij, where p ¼ ði ¼ v0; v1;v2; . . . ;vk;vkþ1 ¼ jÞ and
v1;v2; . . . ;vk 2 So, let dp

ij (t
p
ij, resp.) be the total distance (travel time, resp.) of path p, given by the sum of the distances

dvavaþ1 (travel times tvavaþ1 , resp.) with a ¼ 0;1; . . . ; k of the arcs traversed by path p. The consumption qp
ij of path p 2 Aij is

defined as qp
ij ¼ h � dp

ij. For each path p 2 Aij, we also indicate by f pij (‘
p
ij, resp.) the consumption of the battery to traverse

the first (last, resp.) arc of the path, namely, f pij ¼ qiv1
and ‘pij ¼ qvkj

. Clearly, the cardinality of each set Aij for a given arc
ði; jÞ 2 A is exponential in the number of recharging stations.

The alternative formulation we propose uses the following sets of variables:

� xij 2 f0;1g: binary variable equal to 1 if arc ði; jÞ 2 AC is traversed (0 otherwise), meaning that no recharge takes place
between the two visits to vertices i and j;
� wp

ij 2 f0;1g: binary variable equal to 1 if the recharging path p 2 Aij is used (0 otherwise);
� zi 2 Zþ: time when the service at vertex i 2 Cod starts;
� yi 2 Zþ: battery level upon arriving at vertex i 2 Cod;
� ri 2 Zþ: amount of battery recharged along recharging path p 2 Aij when traveling from vertex i 2 Co to another vertex
j 2 Cd.

The proposed alternative formulation for the E-TSPTW with the full-recharge policy reads as follows
z� ¼min
X
ði;jÞ2AC

dijxij þ
X
p2Aij

dp
ijw

p
ij

0@ 1A ð4:1Þ

s:t:
X
ðk;jÞ2AC

xkj þ
X
p2Akj

wp
kj

0@ 1A ¼ 1 k 2 Co ð4:2Þ

X
ði;kÞ2AC

xik þ
X
p2Aik

wp
ik

 !
¼ 1 k 2 Cd ð4:3Þ

zj P zi þ ðtij þMÞxij þ
X
p2Aij

ðtpij þMÞwp
ij þ gri �M ði; jÞ 2 AC ð4:4Þ

ek 6 zk 6 lk k 2 Cd ð4:5Þ
yi P yj þ ðqij þMÞxij þ

X
p2Aij

ðqp
ij þMÞwp

ij � ri þ ðM � qjiÞxji �M ði; jÞ 2 AC ð4:6Þ

X
ðk;jÞ2AC

qkjxkj þ
X
p2Akj

f pkjw
p
kj

0@ 1A 6 yk k 2 C ð4:7Þ

yk 6 Q �
X
ði;kÞ2AC

qikxik þ
X
p2Aik

‘pikw
p
ik

 !
k 2 C ð4:8Þ

rk 6 M
X
ðk;jÞ2AC

X
p2Akj

wp
kj k 2 Co ð4:9Þ

ri þ yi P
X
ði;jÞ2AC

X
p2Aij

ðQ þ qp
ij � ‘pijÞwp

ij i 2 Co ð4:10Þ

zo ¼ eo ð4:11Þ
yo ¼ Q ð4:12Þ
xij 2 f0;1g ði; jÞ 2 AC ð4:13Þ
wp

ij 2 f0;1g ði; jÞ 2 AC ; p 2 Aij ð4:14Þ
zi; yi 2 Zþ i 2 Cod ð4:15Þ
ri 2 Zþ i 2 Co ð4:16Þ
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The objective function (4.1) asks for minimizing the sum of the distances of the selected arcs and recharging paths. Con-
straints (4.2) stipulate that, given vertex k 2 Co, either an arc or a recharging path going toward another vertex j, such that
ðk; jÞ 2 AC , must be selected. Similarly, constraints (4.3) stipulate that any given vertex k 2 Cd must be reached through either
a direct arc or a recharging path starting from vertex i such that ði; kÞ 2 AC .

Time windows constraints are modeled through constraints (4.4) and (4.5). In particular, constraints (4.4) set the visit
times of vertices i and j by taking into account the travel times of the direct arc ði; jÞ 2 AC , the travel times of the recharging
paths of the set Aij, and the time taken to recharge, i.e., gri. Constraints (4.5) define the earliest and latest arrival time at each
vertex.

Constraints (4.6)–(4.10) model battery capacity constraints. Constraints (4.6) set the level of the battery when going from
vertex i to vertex j (either directly or through a recharging path). In particular, it is worth noticing that the term ðM � qjiÞxji is
not necessary for the correctness of such inequalities, but allows to lift them and to break some symmetries. Indeed, consider
an arc ði; jÞ 2 AC and assume that no recharging path of the set Aij is selected (thus, wp

ij ¼ 0 for all p 2 Aij, and ri ¼ 0), there are

two interesting cases to consider: (i) xij ¼ 1 and xji ¼ 0, and (ii) xij ¼ 0 and xji ¼ 1. In Case (i), inequality (4.6) for arc ði; jÞ
reduces to yi P yj þ qij, while inequality (4.6) for arc ðj; iÞ reduces to yj P yi � qij, thus implying that yj ¼ yi � qij. Similarly,
in Case (ii), inequality (4.6) for arc ði; jÞ reduces to yi P yj � qji, while inequality (4.6) for arc ðj; iÞ reduces to yj P yi þ qji, thus
implying that yi ¼ yj � qji.

Constraints (4.7) impose on the level of the battery upon arriving at vertex k 2 C to be at least equal to the consumption of
the corresponding selected outgoing arc. Constraints (4.8) impose on the level of the battery upon arriving at vertex k 2 C not
to exceed the capacity of the battery minus the consumption of the corresponding selected incoming arc. Constraints (4.9)
guarantee that no recharge takes place if none of the outgoing recharging arcs of vertex k 2 C is selected. Constraints (4.10)
impose on each stop to fully recharge the battery.

The visit time and the initial level of the battery at vertex o are defined through constraints (4.11) and (4.12). Finally, con-
straints (4.13)–(4.16) define the range of the five sets of decision variables involved in the formulation.

It is worth noting the difference between the r-variables in the compact formulation of Section 3 and in this
alternative formulation. In both formulations, each variable ri represents the amount of battery recharged, but, in

the compact formulation, each variable ri is associated to a visit to a recharging station (i.e., i 2 bS), whereas, in the
alternative formulation, ri is associated to a vertex i 2 Co. Indeed, the recharging stations do not explicitly appear in
the alternative formulation but are hidden in the concept of recharging paths. Yet, because any feasible E-TSPTW
solution is an elementary tour with regards to the set of customers C, each variable ri does not need to be related to
the endpoints j of the recharging paths of the sets Aij for a given vertex i 2 Co as at most one of the recharging paths
of the set [ði;jÞ2ACAij can be selected.

Partial Recharge Policy. In order to allow partial recharges, it is sufficient to remove constraints (4.10) from formulation
(4.1)–(4.16).

4.1. Valid inequalities

The linear relaxation of formulation (4.1)–(4.16) can be tightened by adding the following set of valid inequalities
xij þ
X
p2Aij

wp
ij þ xji þ

X
p2Aji

wp
ji 6 1; ði; jÞ 2 AC ; ð4:17Þ
which are a sort of generalization of inequalities (3.18). Even though inequalities (4.17) are trivial cuts, we observed that
they contribute to decrease the computing times when solving (4.1)–(4.16) with a general-purpose MILP solver. Therefore,
in the computational experiments reported in Section 6, they are added to (4.1)–(4.16).

4.2. Decreasing the number of variables

As previously indicated, one of the main issues of formulation (4.1)–(4.16) is that the number of decision variables wp
ij

increases exponentially with the number of recharging stations m. The following observations contribute to rule out some
of the paths of the sets Aij that cannot be part of any optimal E-TSPTW solution. Along with the conditions explicitly men-
tioned in each of the observations, we also assume that dij ¼ tij for each arc ði; jÞ 2 A.

Observation 1. Any optimal E-TSPTW solution cannot contain a recharging path that visits more than two recharging stations if
the following conditions hold

� qij 6 Q for each arc ði; jÞ 2 A : i; j 2 S;
� the triangle inequality holds for all triplets of arcs in the subgraph inducted by the recharging stations, that is, dij 6 dik þ dkj for
all i; j; k 2 S : i – j– k.
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Observation 2. Given an arc ði; jÞ 2 AC and two recharging stations s1; s2 2 S if the following inequalities hold
Fig
dis1 6 dis2 and ds1j 6 ds2j
then recharging path ði; s2; jÞ cannot be in any optimal solution.
Observation 3. Given an arc ði; jÞ 2 AC and three recharging stations s1; s2; s3 2 S if the following inequalities hold
dis1 6 dis2 and ds1 j 6 ds3 j
and at least one of the two is strictly satisfied, then the recharging path ði; s2; s3; jÞ cannot be used in any optimal solution because is
dominated by the recharging path ði; s1; jÞ.
Observation 4. Given a vertex i 2 Co and three recharging stations s1; s2; s3 2 S if the following inequalities hold
dis1 6 dis3 and ds1s2 6 ds3s2
and at least one of the two is strictly satisfied, then, in any optimal solution, there cannot be any recharging path ði; s3; s2; jÞ for any
vertex j 2 Cd n fig.
Observation 5. Given a vertex j 2 Co and three recharging stations s1; s2; s3 2 S if the following inequalities hold
ds1s2 6 ds1s3 and ds2 j 6 ds3 j
and at least one of the two is strictly satisfied, then, in any optimal solution, there cannot be any recharging path ði; s1; s3; jÞ for any
vertex i 2 Co n fjg.

A graphical representation of Observations 2–5 is given in Fig. 1.
5. A Three-Phase Heuristic algorithm

In this section, we describe a Three-Phase Heuristic algorithm for the E-TSPTW. The algorithm is based on the heuristic
algorithms proposed by da Silva and Urrutia (2010) and Mladenović et al. (2012) for the TSPTW, which can be considered the
state-of-the-art heuristic methods for the problem. The proposed algorithm generates a sequence of random Hamiltonian
tours that may not satisfy time window and battery capacity constraints. For each of these tours, the following three phases
are executed: (1) a Variable Neighborhood Descent (VND) algorithm is applied to reach time window feasibility; (2) a local
search based on VND is applied to improve the cost of the tour; (3) an attempt to attain a feasible E-TSPTW solution is made
by running a Dynamic Programming algorithm to add intermediate recharging stops and achieve battery capacity feasibility.

A step-by-step description of the proposed algorithm is provided in Algorithm 1. The algorithm has four parameters, i.e.,
MaxIter, MinLevel, MaxLevel, and D, that will be described in the following, and returns an E-TSPTW solution y�.

The algorithm initializes (see Line 2) the best-found TSPTW solution, x�, and the best-found E-TSPTW solution, y�, to nil
and sets the iteration at which x� was found, iterBest, equal to 0. Then, a random TSP tour is generated (Line 3); this tour x
does not necessarily satisfy time window and battery level constraints.

The main loop of the algorithm (Lines 4–19) is iterated MaxIter times, and, at each iteration iter, Lines 5–19 are exe-
cuted for level that goes from MinLevel up to MaxLevel, where level represents the number of random perturbations
that are performed to escape for a local minimum.

In the perturbation phase (Lines 6–9), either the best-found TSPTW solution x� or the incumbent tour x is perturbed. Solu-
tion x� is selected for the perturbation if it has been found in one of the lastD iterations (i.e., if iterBest þ D P iter), this allows
to intensify the search around x�; otherwise, diversification is performed by perturbing the incumbent tour x. The perturba-
tion phase is taken from da Silva and Urrutia (2010) and consists of randomly relocating level customers forward by ignor-
ing the feasibility of the resulting tour in terms of time windows and battery level and by considering precedence constraints
. 1. Examples of dominated recharging paths according to Observations 2–5 – paths represented with straight lines dominate dotted paths.
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only: customer jmust precede customer i in any feasible TSPTW and E-TSPTW solution if ei þ spij > lj, where spij is the length
of the shortest path between i and j over graph G as defined in Section 3.

Once a tour x is determined, procedure MakeTWFeasible(x) makes an attempt to derive a feasible TSPTW solution from x
(Line 10). This procedure is Phase 1 of our algorithm and is described in details in Section 5.1. If a feasible TSPTW is found,
procedure ApplyLocalSearch(x) (Phase 2) tries to improve the overall cost of x by mean of a VND search (this procedure is
described in Section 5.2). The best-found TSPTW solution is updated (see Lines 13–15) if the solution found by the local
search is better than x�. Moreover, if the cost of x is not greater or equal to the cost of the best-found E-TSPTW solution
y�, procedure MakeETWFeasible(x) is run to derive an E-TSPTW solution from tour x; indeed, x is a permutation of the n cus-
tomers that satisfy all time window constraints but not necessarily the battery level constraints, so intermediate stop at
recharging stations may be needed. Procedure MakeETWFeasible(x), which is Phase 3, is a dynamic programming algorithm
that adds recharging stops in between tour x without changing the order of visit to the customers (a detailed description of
the procedure is given in Section 5.3).

Algorithm 1. Three-Phase Heuristic algorithm.

1: procedure THREE-PHASEHEURISTIC(MaxIter,MinLevel,MaxLevel,D)
2: x�  nil; y�  nil; iterBest  0
3: x BuildRandomTourðÞ
4: for iter ¼ 1; . . . ;MaxIter do
5: for level ¼ MinLevel; . . . ;MaxLevel do
6: if iterBest þ D P iter then
7: x Perturbðx�; levelÞ
8: else
9: x Perturbðx; levelÞ
10: x MakeTWFeasibleðxÞ .Phase 1
11: if x is TW-feasible then
12: x ApplyLocalSearchðxÞ .Phase 2
13: if costðxÞ < costðx�Þ then
14: x�  x
15: iterBest  iter
16: ifcostðxÞ < costðy�Þ then
17: y MakeETWFeasibleðxÞ .Phase 3
18: if costðyÞ < costðy�Þ then
19: y�  y
20: return y�
5.1. Phase 1 – Reach Time Window Feasibility

Phase 1 aims at modifying an input TSP tour x to make it satisfy time window constraints. The procedure uses a VND
framework (see Hansen et al., 2008). The objective function used in this procedure is the sum of all positive differences
between the visit time at each customer and the end of its window, that is,

P
i2C maxf0; zi � lig, where zi is the time visit

of vertex i. A pseudo-code of this procedure is given in Algorithm 2.
This procedure tries to decrease the infeasibility of the incumbent tour x by performing a sequence of moves, namely,

relocating customers backward, relocating customers forward, and swapping pairs of customers. The moves are repeated
in this order as long as either some changes can be applied to decrease the objective function (i.e., the time window infea-
sibility) or x satisfies all time window constraints.

Algorithm 2. Phase 1: Reach Time Window Feasibility.

1: procedure MAKETWFEASIBLE(x)
2: while x is TW-Infeasible do
3: x0  x
4: x RelocateBkwðxÞ
5: x RelocateFrwðxÞ
6: x SwapðxÞ
7: if x ¼ x0 then
8: break
9: return x
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5.2. Phase 2 – Local Search

In this phase, a local search procedure based on VND to improve the traveled distance of an input tour x that satisfies time
window constraints is performed. As indicated in the pseudo-code of Algorithm 3, four neighborhood are iteratively
explored, namely, relocate backward, relocate forward, two-opt, and swap, and for each of them the best improving move
that maintains time window feasibility is performed. The procedure ends as soon as no improving moves can be found in
any of the neighborhoods. For implementation issues, the reader is referred to da Silva and Urrutia (2010) and
Mladenović et al. (2012).

Algorithm 3. Phase 2: Local Search.
1: procedure APPLYLOCALSEARCH(x)
2: repeat
3: x0  x
4: x RelocateBkwðxÞ
5: x RelocateFrwðxÞ
6: x TwoOptðxÞ
7: x SwapðxÞ
8: until x0 – x
9: return x
5.3. Phase 3 – Reach Battery Capacity Feasibility

Procedure MakeETWFeasible takes a feasible TSPTW solution x as input and returns, as output, a least-cost E-TSPTW solu-
tion y (if such a solution exists) where the customers are visited in the same order of solution x. In other words, the proce-
dure tries to insert, in an optimal way, the stops at the recharging stations in between the different customers while
maintaining the level of the battery between 0 and Q at any point along the tour.

Let x ¼ ðo ¼ i0; i1; i2; . . . ; in; inþ1 ¼ dÞ be the TSPTW solution given in input, where the first and the last visited vertices are o
and d, respectively. The procedure applies a forward mono-directional labeling algorithm, where a partial path from o to a
vertex ik (with 0 6 k 6 nþ 1) is represented by a label L ¼ ðk; t; q; cÞ, whose components are:

� k: index of the last visited vertex ik;
� t: arrival time at vertex ik;
� q: level of the battery upon arriving at vertex ik;
� c: cost of the partial path.

Each label L ¼ ðk; t; q; cÞ is feasible if and only if eik 6 t 6 lik and 0 6 q 6 Q .
The labels are computed by starting from the initial label L ¼ ð0; eo;Q ;0Þ and by extending each label L ¼ ðk; t; q; cÞ as

follows:

1. through arc ðik; ikþ1Þ, by generating label bL ¼ ðk̂; t̂; q̂; ĉÞ defined as

� k̂ ¼ kþ 1;
� t̂ ¼maxfeikþ1 ; t þ tikikþ1g;
� q̂ ¼ q� qikikþ1 ;

� ĉ ¼ c þ dikikþ1 ;

2. through each recharging path p 2 Aik ikþ1 such that q P f pikikþ1 , by generating a label bL ¼ ðk̂; t̂; q̂; ĉÞ for each possible recharg-

ing quantity r (such that maxf0; qp
ikikþ1
� qg 6 r 6 Q � qþ qp

ikikþ1
� ‘pikikþ1 ) defined as

� k̂ ¼ kþ 1;
� t̂ ¼maxfeikþ1 ; t þ tpikikþ1 þ dgreg;
� q̂ ¼ q� qp

ikikþ1
þ r;

� ĉ ¼ c þ dp
ikikþ1

.

The number of labels to generate can significantly be decreased by applying the following dominance rule.
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Observation 6. Let bL ¼ ðk̂; t̂; q̂; ĉÞ and eL ¼ ð~k;~t; ~q; ~cÞ be two labels corresponding to two paths ending at the same vertex (i.e.,
k̂ ¼ ~k). If t̂ 6 ~t; q̂ P ~q; ĉ 6 ~c, and at least one of the three inequalities is strictly satisfied, then label eL is dominated and can be
discarded.

The previous propagation rules are valid when dealing with the partial recharge policy. In order to apply the full recharge
policy, it is enough to extend each label through a recharging path only once with r ¼ Q � qþ qp

ikikþ1
� ‘pikikþ1 .

6. Computational results

This section is devoted to the computational results. First, we describe the test instances we generated. Then, we report
the computational performance of the compact formulation (3.1)–(3.13) (hereafter called CF) and the alternative formulation
(4.1)–(4.16) (hereafter called PBF) on the test instances for both the full recharge and the partial recharge policy. Finally, we
illustrate the results of the heuristic algorithm described in Section 5. All results reported in this section were obtained by
using an Intel Core i7-4800MQ @2.70 GHz equipped with 8 GB of RAM, and all computing times are reported in seconds.

6.1. Description of the test instances

We generated two sets of test instances, for a total of 100 instances, by starting from TSPTW benchmark instances avail-
able in the literature. The first set of instances contains 50 small instances (with 20 customers) derived from the 20-customer
instances proposed in Gendreau et al. (1998) – hereafter, we refer to this instance set as G. The second set of instances con-
sists of 50 large instances (30 instances with 150 customers and 20 instances with 200 customers) generated from the
TSPTW instances proposed in Ohlmann and Thomas (2007) – this set is referred to as OT in the following. All these instances
feature distances, dij, equal to the travel times tij.

On all instances, the following parameters were fixed: the consumption ratio h ¼ 1, and the recharging ratio g ¼ 0:25. The
number of recharging stations is either five or ten. In particular, from each TSPTW instance, we derived an instance with five
stations and another instance with ten stations. In the instance with five stations, one of the stations is the main depot,
whereas the other four stations were evenly located in the four quadrants of the box defined by the customer locations,
namely, the station locations were defined as follows: given the Cartesian coordinates ðai; biÞ of each customer i 2 C, the min-
imum and maximum values of a and b were computed (a ¼mini2Cfaig;a ¼ maxi2Cfaig; b ¼mini2Cfbig; b ¼maxi2Cfbig), then
the locations of the four stations were set equal to aþ 1

4Da
� �

; bþ 1
4Db

j k� �
; aþ 1

4Da
� �

; bþ 3
4Db

j k� �
; aþ 3

4Da
� �

; bþ 1
4Db

j k� �
and aþ 3

4Da
� �

; bþ 3
4Db

j k� �
, where Da ¼ a� a and Db ¼ b� b. The instance with ten stations contains the same set of sta-

tions of the previous instance plus five additional stations randomly located in the square ða;aÞ � ðb; bÞ, so as to guarantee
that any feasible solution of the instance with five stations is a valid upper bound to the instance with ten stations. The dis-
tances/travel times between the recharging stations and the customers (as well as between recharging stations) are com-
puted as Euclidean distances rounded to the nearest integer.

The capacity of the battery, Q, was set as Q ¼ d z�TWesþ1e, where z�TW is the cost of the best-known solution for the corresponding
TSPTW instances that can be found in the literature (i.e., from Ohlmann and Thomas (2007), da Silva and Urrutia (2010) or
López-Ibáñez and Blum (2010)), and es is a parameter that corresponds to the minimum number of expected stops at
recharging stations in the instance; es was set equal to 2 for the G instances and equal to 5 for the OT instances. This setting
of parameter es was decided to have battery capacities roughly in the range 80–120, which, by assuming that distances are
given in kilometers, represent the driving range in many real-life applications of electric vehicles.

In order to guarantee that a feasible solution exists for both recharging policies (full and partial) in all instances, we mod-
ified the original time windows as follows. For the instance with five stations, we computed a value d representing the
increase of li for all vertices i 2 Cod with respect to the original TSPTW instance such that the best-known solution of the
TSPTW instance can be transformed into a feasible (not necessarily optimal) solution of the E-TSPTW under the full-
recharge policy; then, the same time windows were used in the other instance with ten stations. Value d was computed
by using the following MILP model.

Let ðo ¼ v0;v1;v2; . . . ;vn;vnþ1 ¼ dÞ be the best-known TSPTW solution of cost z�TW. For each vertex v i (i ¼ 0;1; . . . ;n), let
si 2 S be the recharging station having the cheapest insertion cost between v i and v iþ1 (i.e.,
si ¼ argmink2Sftv ik þ tkv iþ1 � tv iv iþ1g).

The following seven sets of variables are used:

� xi 2 f0;1g: equals 1 if vertex v i (i ¼ 0;1; . . . ;n) is visited right before vertex v iþ1 without any recharge in between (0
otherwise);

� wi 2 f0;1g: equals 1 if vertex v i (i ¼ 0;1; . . . ;n) is visited right before vertex v iþ1 with a recharge in between (0
otherwise);

� zi 2 Zþ: time at which service starts at vertex v i; i ¼ 0;1; . . . ;nþ 1;
� yi 2 Zþ: battery level upon arriving at vertex v i (i ¼ 0;1; . . . ;nþ 1);
� ui 2 Zþ: time spent to recharge when traveling from v i to v iþ1 (i ¼ 0;1; . . . ;n);
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� ri 2 Z: amount recharged when traveling from v i to v iþ1 through recharging station si (i ¼ 0;1; . . . ;n);
� d 2 Zþ: necessary increase of time windows to guarantee that a feasible E-TSPTW solution can be obtained from the

input TSPTW solution.

The MILP model to compute d reads as follows
min Mdþ
Xnþ1
i¼0

zi þ
Xn
i¼0

ui ð6:1Þ

s:t: xi þwi ¼ 1 i ¼ 0;1; . . . ;n ð6:2Þ
ev i

6 zi 6 lv i
þ d i ¼ 0;1; . . . ;nþ 1 ð6:3Þ

gri �Mxi 6 ui 6 dgQewi i ¼ 0;1; . . . ;n ð6:4Þ
ri ¼ yiþ1 � yi þ qv ivsi

þ qvsi
v iþ1 i ¼ 0;1; . . . ; n ð6:5Þ

ziþ1 P zi þ tv iv iþ1xi þ ðtv i si þ tsiv iþ1 Þwi þ ui i ¼ 0;1; . . . ;n ð6:6Þ
yi P yiþ1 þ qv iv iþ1 �Mwi i ¼ 0;1; . . . ;n ð6:7Þ
yi P qv i si

wi i ¼ 1; . . . ; n ð6:8Þ
Qwi�1 � qsi�1v i

6 yi 6 Q � qsi�1v i
wi�1 i ¼ 1; . . . ;nþ 1 ð6:9Þ

z0 ¼ e0 ð6:10Þ
y0 ¼ Q ð6:11Þ
xi;wi 2 B i ¼ 0;1; . . . ; n ð6:12Þ
zi; yi 2 Zþ i ¼ 0;1; . . . ;nþ 1 ð6:13Þ
ui 2 Zþ i ¼ 0;1; . . . ;n ð6:14Þ
ri 2 Z i ¼ 0;1; . . . ;n ð6:15Þ
d 2 Zþ ð6:16Þ
The objective function (6.1) aims at minimizing the increase (d) of the end of the time windows, li, in order to obtain a fea-
sible solution, plus the arrival and the recharge times at the different vertices. Constraints (6.2) impose on each vertex v i

(i ¼ 0;1; . . . ;n) to either go directly to vertex v iþ1 (if xi ¼ 1) or to pass through recharging station si (ifwi ¼ 1). For each vertex
v i, the arrival time cannot exceed the end of the time window plus d (see constraints (6.3)) and cannot be less than the begin-
ning of the time window ev i

. The relationship between variables wi; ri and ui is stipulated through constraints (6.4), in par-
ticular, for vertex v i, the time to recharge ui can be strictly positive if and only if vertex v iþ1 is reached through recharging
station si. Constraints (6.5) set the amount recharged at each vertex v i; i ¼ 0;1; . . . ;n. Constraints (6.6) set the arrival time at
the different vertices taking into account the travel times and the recharging times. The battery level after visiting each ver-
tex i is set through constraints (6.7). Constraints (6.8) guarantee that the battery level is such that the recharging station can
be reached if a recharge is performed. Constraints (6.9) guarantee that the battery level does not exceed the capacity of the
battery minus the consumption from a recharging station to the next vertex and that only full recharges are performed. Con-
straints (6.10) and (6.11) set the initial level of the battery and the visit time of vertex o. The range of the variables is set
through constraints (6.12)–(6.16).

Table 1 reports the features of the benchmark instances. The left part of the table refers to the G instances, while the right
part of the table to the OT instances. The following data is indicated for each instance: instance name of the original TSPTW
instance (Inst) in the format nXXwYYY.Z, where XX is the number of customers, YYY is the width of the time windows in the
original instance, and Z is the instance number; cost (z�TW) of the best-known TSPTW solution from the literature; battery
capacity Q; increase (d) of the time windows with respect to the original TSPTW instance; number of stops (ns) in the opti-
mal solution of problem (6.1)–(6.16); valid upper bound (UB) derived by computing the distance of the optimal solution of
(6.1)–(6.16). As previously explained, for each of these TSPTW instance, two E-TSPTW instances were derived: the name for-
mat used will be nXXwYYYsW.Z, where XX, YYY, and Z are derived from the original TSPTW and W represents the number of
recharging stations (either five or ten).
6.2. Computational results of CF and PBF on G Instances

In this section, we summarize the performance of formulations CF and PBF when solving the G instances through the
general-purpose MILP solver Cplex version 12.6.0.0 with a time limit of two hours. For the sake of conciseness, full detailed
results are reported in the appendix (see Tables 11–14).

With regards to CF, when considering the full-recharge policy, we used formulation (3.1)–(3.13) plus valid inequalities
(3.18) and the lifted version (3.19) of constraints (3.10); whereas, under the partial-recharge policy, constraints (3.8) and
(3.11) were removed and constraints (3.14)–(3.17) were added.



Table 1
Features of the benchmark instances.

G OT

Inst z�TW Q d ns UB Inst z�TW Q d ns UB

n20w120.1 267 92 5 3 271 n150w120.1 734 124 0 8 789
n20w120.2 218 76 0 3 244 n150w120.2 677 116 14 10 759
n20w120.3 303 104 1 3 331 n150w120.3 747 128 13 8 787
n20w120.4 300 100 0 3 318 n150w120.4 763 128 28 9 828
n20w120.5 240 80 0 4 265 n150w120.5 689 116 15 8 737

n20w140.1 176 60 0 4 192 n150w140.1 762 128 13 11 830
n20w140.2 272 92 0 3 279 n150w140.2 755 128 18 9 840
n20w140.3 236 80 0 3 251 n150w140.3 613 104 13 8 702
n20w140.4 255 88 0 4 279 n150w140.4 676 116 0 7 726
n20w140.5 225 76 0 4 231 n150w140.5 663 112 5 10 719

n20w160.1 241 84 0 6 275 n150w160.1 706 120 0 9 788
n20w160.2 201 68 0 4 224 n150w160.2 711 120 48 9 743
n20w160.3 201 68 0 3 212 n150w160.3 608 104 8 10 700
n20w160.4 203 68 0 5 232 n150w160.4 672 112 20 8 719
n20w160.5 245 84 0 4 271 n150w160.5 658 112 0 10 713

n20w180.1 253 88 0 4 276 n200w120.1 799 136 0 8 871
n20w180.2 265 92 1 4 302 n200w120.2 721 124 0 8 801
n20w180.3 271 92 9 4 300 n200w120.3 880 148 0 7 928
n20w180.4 201 68 13 5 220 n200w120.4 777 132 0 7 818
n20w180.5 193 68 0 4 232 n200w120.5 841 144 0 7 892

n20w200.1 233 80 0 4 244 n200w140.1 834 140 10 10 890
n20w200.2 203 68 0 5 238 n200w140.2 760 128 5 9 834
n20w200.3 249 84 0 4 280 n200w140.3 758 128 0 8 790
n20w200.4 293 100 0 4 309 n200w140.4 816 136 15 8 890
n20w200.5 227 76 14 4 252 n200w140.5 822 140 2 9 867

Avg 1.7 3.9 9.1 8.6
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With regards to PBF, when applying the full-recharge policy, we used formulation (4.1)–(4.16) plus valid inequalities
(4.17); whereas, for the partial-recharge policy, constraints (4.10) were removed. All instances satisfy the conditions of
Observation 1, so it was possible to generate all variables of PBF by pure enumeration.

As previously indicated, in order to guarantee that the optimal solution found by CF is such, nþ 1 copies of each recharg-
ing station have to be done. We tested CF on all the G by having nþ 1 copies, and none of the instances was closed within the
time limit of two hours. Therefore, by knowing from the optimal solutions found by PBF that no station is visited more than
three times, we tested CF with just three copies per station on all instances and report the corresponding results. This means
that the comparison between CF and PBF is biased toward CF.

A summary of the results is illustrated in Table 2. For each group of five instances having the same time window width,
the following columns are reported: the number of recharging stations jSj; the recharging policy applied (i.e., Policy, where
F stands for full, and P for partial); and, for both formulations, the average percentage lower bound of the linear relaxation (%
LP), the average percentage of the final lower bound (%bLB), the average percentage of the best upper bound found (%bUB),
the number of instances (out of five) where a feasible solution was found (Feas), the number of instances (out of five) solved
to optimality (Opt), and the average computing time (Time). All percentage values of columns %LP, %bLB, and %bUB are com-
puted over the best-known upper bounds.

Table 2 shows that PBF outperforms CF by solving all but one instance to optimality, while CF could close only 17 of the
100 instances. This is probably due to the better quality of the linear relaxation of PBF (78.7% vs 70.9%). Moreover, PBF was
able to find a feasible solution on all instances, whereas CF could find a feasible solution on 57 instances, only.

It is interesting to notice that, by comparing the same groups of instances solved with different recharging policies, the
computing time when applying the partial-recharge policy is generally lower, even though the quality of the lower bound
provided by the linear relaxation is just slightly better. We believe that this happens because Cplex strongly benefits from
finding good upper bounds very early in the search tree, and, under the partial-recharge policy, finding feasible solutions was
way easier.

It is also worth noting that the increase of recharging stations made instances harder when solved under the full-recharge
policy (indeed, the only open instance has ten stations and applies the full-recharge policy), whereas the increase of com-
puting times observed under the partial-recharge policy is less significant.

Further statistics about PBF are reported in Table 3. In particular, for all the instances with the same number of stations
(either five or ten), we report the average number of variables (Vars) in the formulation, and the average number of vari-
ables corresponding to recharging paths eliminated by each of the four observations (Observations 2–5). Notice that the
number of variables of PBF does not depend on the recharging policy applied.



Table 2
Summary of the computational results of CF and PBF on G instances.

Group jSj Policy CF PBF

%LP %bLB %bUB Feas Opt Time %LP %bLB %bUB Feas Opt Time

n20w120 5 F 72.6 89.0 100.0 2 2 5173.0 86.5 100.0 100.0 5 5 277.5
n20w140 5 F 71.3 84.5 100.0 1 1 6234.1 75.9 100.0 100.0 5 5 319.8
n20w160 5 F 71.6 90.5 100.5 4 1 6146.2 76.7 100.0 100.0 5 5 28.2
n20w180 5 F 73.5 93.3 100.0 3 2 5592.2 76.7 100.0 100.0 5 5 686.7
n20w200 5 F 73.7 87.4 100.0 3 1 6357.3 75.3 100.0 100.0 5 5 176.7

n20w120 5 P 73.4 93.0 100.0 3 2 4557.8 87.5 100.0 100.0 5 5 60.1
n20w140 5 P 71.4 91.4 100.0 3 3 4605.7 76.0 100.0 100.0 5 5 68.2
n20w160 5 P 71.6 91.8 100.2 5 2 5399.2 76.7 100.0 100.0 5 5 13.9
n20w180 5 P 74.0 95.0 102.3 4 0 7200.0 77.3 100.0 100.0 5 5 73.8
n20w200 5 P 73.7 88.5 100.0 4 1 6110.3 75.3 100.0 100.0 5 5 129.8

n20w120 10 F 66.2 81.1 0 0 7200.0 86.8 100.0 100.0 5 5 450.1
n20w140 10 F 68.7 81.0 100.0 1 0 7200.0 76.7 100.0 100.0 5 5 538.6
n20w160 10 F 69.6 82.2 100.0 1 0 7200.0 77.9 100.0 100.0 5 5 68.8
n20w180 10 F 70.7 85.7 100.0 1 1 6886.0 76.8 100.0 100.0 5 5 362.3
n20w200 10 F 69.9 83.4 100.2 4 0 7200.0 76.7 97.8 100.0 5 4 1521.0

n20w120 10 P 66.4 82.3 101.8 2 0 7200.0 87.0 100.0 100.0 5 5 76.1
n20w140 10 P 68.8 80.9 100.1 3 1 6243.1 76.8 100.0 100.0 5 5 115.1
n20w160 10 P 69.6 84.0 100.9 4 0 7200.0 77.9 100.0 100.0 5 5 22.6
n20w180 10 P 70.9 86.8 101.1 5 0 7200.0 77.0 100.0 100.0 5 5 86.1
n20w200 10 P 69.9 82.7 100.4 4 0 7200.0 76.7 100.0 100.0 5 5 122.7

Avg 70.9 86.7 57 17 6853.7 78.7 99.9 100.0 100 99 259.9

Table 3
Variables of PBF eliminated with observations 2–5 when solving G instances.

jSj Vars Observation 2 Observation 3 Observation 4 Observation 5

5 1852 1227 5351 279 197
10 3092 3059 25138 1756 982
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6.3. Computational results of the Three-Phase Heuristic

In this section, we report the computational results achieved by the Three-Phase Heuristic (hereafter called 3P-Heu)
described in Section 5 on the 100 benchmark instances under the two recharging policies.

On all instances, the following parameter setting was used MaxIter = 500, MinLevel = n
12, MaxLevel = n

2 ;D ¼ 20, and 10
runs where performed on each instance. To define such a setting, we performed some preliminary experiments on five OT

instances and defined the four parameters in a sort of layer approach. First, we fixed MaxIter and Delta, and we tested
3P-Heu for all possible combinations of MinLevel ¼ n

12 ;
n
10 ;

n
8 ;

n
6 and MaxLevel ¼ n

5 ;
n
4 ;

n
3 ;

n
2. Even though there were not signif-

icant differences between different parameter settings, we observed that the algorithm benefits from having a wide range of
MinLevel–MaxLevel. So we fixed MinLevel ¼ n

12 and MaxLevel ¼ n
2. Similarly, we determined parametersD and MaxIter.

The computational results achieved by 3P-Heu are reported in Tables 4–7. In particular, Tables 4,5 concern G instances
with five and ten recharging stations, respectively, and Tables 6,7 concern OT instances with five and ten recharging stations,
respectively.

Tables 4–7 indicate the following data: instance name (Inst); the optimal E-TSPTW solution cost (z�ETW) when available;
the cost of the best solution found (Best) over ten runs along with its percentage deviation from z�ETW, computed as 100�Best

z�ETW
;

the average (Avg) of the solution cost of the best solution found in each run and the corresponding percentage deviation
from z�ETW, computed as 100�Avg

z�ETW
; the standard deviation of the best solution found at each iteration (r); the average computing

time (Time) over the ten runs; and the number of stops (ns) in the best found solution.
Table 4 shows that 3P-Heu could find the optimal solution in all ten runs on 23 instances under both recharging policies.

On the remaining two instances (i.e., n20w200s5.3 and n20w200s5.4), on all ten runs the best solution found cost a unit
more than the optimal solution. As expected, the number of stops to recharge increases when applying the partial recharge
policy and the solution cost slightly decreases. The computing time of 3P-Heu is negligible.

The results achieved by 3P-Heu on the G instances with ten recharging stations are reported in Table 5. Even on these
instances, 3P-Heu performed well and was able to find an optimal solution on all instances on all ten runs, even though
we do not know if 295 is the cost of the optimal solution of instance n20w200s10.4 when the full-recharge policy is con-
sidered. We notice that by allowing partial recharges (instead of imposing full recharges) only a small decrease in the aver-
age optimal solution cost is achieved. The computing time of 3P-Heu remains quite negligible.



Table 4
Computational results of 3P-Heu on G instances with five stations under both recharging policies.

Inst Full recharge policy Partial recharge policy

z�ETW Best % Avg % r Time ns z�ETW Best % Avg % r Time ns

n20w120s5.1 271 271 0.0 271.0 0.0 0.0 0.05 3 271 271 0.0 271.0 0.0 0.0 0.05 4
n20w120s5.2 233 233 0.0 233.0 0.0 0.0 0.11 3 225 225 0.0 225.0 0.0 0.0 0.09 3
n20w120s5.3 317 317 0.0 317.0 0.0 0.0 0.07 3 311 311 0.0 311.0 0.0 0.0 0.06 4
n20w120s5.4 314 314 0.0 314.0 0.0 0.0 0.07 4 312 312 0.0 312.0 0.0 0.0 0.07 4
n20w120s5.5 249 249 0.0 249.0 0.0 0.0 0.06 3 249 249 0.0 249.0 0.0 0.0 0.06 3

n20w140s5.1 181 181 0.0 181.0 0.0 0.0 0.08 4 180 180 0.0 180.0 0.0 0.0 0.08 4
n20w140s5.2 279 279 0.0 279.0 0.0 0.0 0.06 4 278 278 0.0 278.0 0.0 0.0 0.07 4
n20w140s5.3 238 238 0.0 238.0 0.0 0.0 0.06 4 238 238 0.0 238.0 0.0 0.0 0.06 4
n20w140s5.4 265 265 0.0 265.0 0.0 0.0 0.10 3 265 265 0.0 265.0 0.0 0.0 0.10 4
n20w140s5.5 229 229 0.0 229.0 0.0 0.0 0.06 5 229 229 0.0 229.0 0.0 0.0 0.06 5

n20w160s5.1 246 246 0.0 246.0 0.0 0.0 0.09 3 246 246 0.0 246.0 0.0 0.0 0.09 3
n20w160s5.2 219 219 0.0 219.0 0.0 0.0 0.07 3 219 219 0.0 219.0 0.0 0.0 0.07 4
n20w160s5.3 210 210 0.0 210.0 0.0 0.0 0.07 3 210 210 0.0 210.0 0.0 0.0 0.07 3
n20w160s5.4 208 208 0.0 208.0 0.0 0.0 0.09 4 208 208 0.0 208.0 0.0 0.0 0.09 4
n20w160s5.5 253 253 0.0 253.0 0.0 0.0 0.08 4 253 253 0.0 253.0 0.0 0.0 0.08 4

n20w180s5.1 262 262 0.0 262.0 0.0 0.0 0.07 4 262 262 0.0 262.0 0.0 0.0 0.07 5
n20w180s5.2 273 273 0.0 273.0 0.0 0.0 0.08 3 273 273 0.0 273.0 0.0 0.0 0.08 3
n20w180s5.3 282 282 0.0 282.0 0.0 0.0 0.12 4 271 271 0.0 271.0 0.0 0.0 0.10 5
n20w180s5.4 206 206 0.0 206.0 0.0 0.0 0.10 4 206 206 0.0 206.0 0.0 0.0 0.10 4
n20w180s5.5 201 201 0.0 201.0 0.0 0.0 0.10 3 201 201 0.0 201.0 0.0 0.0 0.10 3

n20w200s5.1 241 241 0.0 241.0 0.0 0.0 0.09 3 241 241 0.0 241.0 0.0 0.0 0.09 3
n20w200s5.2 221 221 0.0 221.0 0.0 0.0 0.09 3 221 221 0.0 221.0 0.0 0.0 0.09 3
n20w200s5.3 254 255 0.4 255.0 0.4 0.0 0.08 4 254 255 0.4 255.0 0.4 0.0 0.09 4
n20w200s5.4 295 296 0.3 296.0 0.3 0.0 0.10 3 295 296 0.3 296.0 0.3 0.0 0.09 3
n20w200s5.5 240 240 0.0 240.0 0.0 0.0 0.12 4 240 240 0.0 240.0 0.0 0.0 0.12 4

Avg 247.5 247.6 0.03 247.6 0.03 0.00 0.08 3.5 246.3 246.4 0.03 246.4 0.03 0.00 0.08 3.8

Table 5
Computational results of 3P-Heu on G instances with ten stations under both recharging policies.

Inst Full recharge policy Partial recharge policy

z�ETW Best % Avg % r Time ns z�ETW Best % Avg % r Time ns

n20w120s10.1 270 270 0.0 270.0 0.0 0.0 0.05 3 270 270 0.0 270.0 0.0 0.0 0.05 4
n20w120s10.2 222 222 0.0 222.0 0.0 0.0 0.09 3 220 220 0.0 220.0 0.0 0.0 0.09 3
n20w120s10.3 312 312 0.0 312.0 0.0 0.0 0.06 3 311 311 0.0 311.0 0.0 0.0 0.06 5
n20w120s10.4 308 308 0.0 308.0 0.0 0.0 0.07 3 307 307 0.0 307.0 0.0 0.0 0.07 4
n20w120s10.5 243 243 0.0 243.0 0.0 0.0 0.06 4 243 243 0.0 243.0 0.0 0.0 0.06 4

n20w140s10.1 179 179 0.0 179.0 0.0 0.0 0.08 5 178 178 0.0 178.0 0.0 0.0 0.08 4
n20w140s10.2 277 277 0.0 277.0 0.0 0.0 0.06 4 277 277 0.0 277.0 0.0 0.0 0.06 5
n20w140s10.3 237 237 0.0 237.0 0.0 0.0 0.07 4 237 237 0.0 237.0 0.0 0.0 0.07 5
n20w140s10.4 260 260 0.0 260.0 0.0 0.0 0.09 3 260 260 0.0 260.0 0.0 0.0 0.09 5
n20w140s10.5 225 225 0.0 225.0 0.0 0.0 0.06 3 225 225 0.0 225.0 0.0 0.0 0.06 5

n20w160s10.1 245 245 0.0 245.0 0.0 0.0 0.09 3 245 245 0.0 245.0 0.0 0.0 0.09 3
n20w160s10.2 208 208 0.0 208.0 0.0 0.0 0.07 3 208 208 0.0 208.0 0.0 0.0 0.06 3
n20w160s10.3 210 210 0.0 210.0 0.0 0.0 0.07 3 210 210 0.0 210.0 0.0 0.0 0.08 3
n20w160s10.4 208 208 0.0 208.0 0.0 0.0 0.08 4 208 208 0.0 208.0 0.0 0.0 0.09 4
n20w160s10.5 248 248 0.0 248.0 0.0 0.0 0.08 3 248 248 0.0 248.0 0.0 0.0 0.08 3

n20w180s10.1 254 254 0.0 254.0 0.0 0.0 0.07 3 254 254 0.0 254.0 0.0 0.0 0.07 5
n20w180s10.2 272 272 0.0 272.0 0.0 0.0 0.08 4 272 272 0.0 272.0 0.0 0.0 0.08 4
n20w180s10.3 273 273 0.0 273.0 0.0 0.0 0.10 3 270 270 0.0 270.0 0.0 0.0 0.10 5
n20w180s10.4 206 206 0.0 206.0 0.0 0.0 0.11 4 206 206 0.0 206.0 0.0 0.0 0.11 4
n20w180s10.5 199 199 0.0 199.0 0.0 0.0 0.10 4 199 199 0.0 199.0 0.0 0.0 0.10 4

n20w200s10.1 239 239 0.0 239.0 0.0 0.0 0.09 3 239 239 0.0 239.0 0.0 0.0 0.09 3
n20w200s10.2 213 213 0.0 213.0 0.0 0.0 0.09 5 213 213 0.0 213.0 0.0 0.0 0.09 5
n20w200s10.3 250 250 0.0 250.0 0.0 0.0 0.09 4 250 250 0.0 250.0 0.0 0.0 0.09 4
n20w200s10.4 a295 295 0.0 295.0 0.0 0.0 0.10 4 295 295 0.0 295.0 0.0 0.0 0.10 4
n20w200s10.5 233 233 0.0 233.0 0.0 0.0 0.13 5 233 233 0.0 233.0 0.0 0.0 0.13 5

Avg 243.4 243.4 0.00 243.4 0.00 0.00 0.08 3.6 243.1 243.1 0.00 243.1 0.00 0.00 0.08 4.1

a optimality not proven.
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Table 6
Computational results of 3P-Heu on OT instances with five stations under both recharging policies.

Inst Full recharge policy Partial recharge policy

Best Avg % r Time ns Best Avg % r Time ns

n150w120s5.1 750 753.3 0.4 2.4 37.41 9 747 750.1 0.4 2.5 35.47 9
n150w120s5.2 663 665.3 0.3 1.1 33.84 7 657 657.8 0.1 0.6 30.60 6
n150w120s5.3 770 772.1 0.3 1.0 44.76 7 769 770.0 0.1 0.6 43.47 8
n150w120s5.4 735 738.6 0.5 2.6 44.80 6 735 737.6 0.4 2.0 47.44 6
n150w120s5.5 708 712.8 0.7 2.0 45.76 7 708 709.4 0.2 1.0 49.90 8

n150w140s5.1 757 757.6 0.1 0.7 117.24 7 753 754.0 0.1 0.8 125.36 8
n150w140s5.2 773 773.9 0.1 1.0 40.17 8 772 772.0 0.0 0.0 39.52 8
n150w140s5.3 632 635.0 0.5 1.3 35.10 8 626 626.5 0.1 0.9 32.66 8
n150w140s5.4 687 687.0 0.0 0.0 27.86 7 687 687.0 0.0 0.0 28.90 8
n150w140s5.5 674 674.0 0.0 0.0 42.05 6 669 669.0 0.0 0.0 39.33 6

n150w160s5.1 734 735.0 0.1 0.4 61.37 8 729 729.4 0.1 0.7 55.46 7
n150w160s5.2 708 712.9 0.7 3.4 66.66 8 696 698.5 0.4 1.1 57.15 7
n150w160s5.3 637 639.4 0.4 1.0 44.15 7 618 623.9 1.0 3.2 37.01 8
n150w160s5.4 692 693.4 0.2 1.2 38.72 8 692 692.9 0.1 0.7 43.13 8
n150w160s5.5 677 677.9 0.1 0.8 31.50 7 677 677.6 0.1 0.5 33.29 8

n200w120s5.1 818 818.3 0.0 0.5 80.97 6 818 818.3 0.0 0.5 97.46 7
n200w120s5.2 748 748.6 0.1 0.7 76.74 7 746 746.5 0.1 0.5 85.86 9
n200w120s5.3 898 900.8 0.3 1.8 95.75 8 898 900.1 0.2 1.4 110.98 9
n200w120s5.4 790 790.9 0.1 0.3 106.17 7 790 790.9 0.1 0.3 113.57 7
n200w120s5.5 863 866.0 0.3 1.8 173.54 8 862 864.0 0.2 1.0 212.83 9

n200w140s5.1 831 836.3 0.6 2.2 89.79 7 831 836.3 0.6 2.2 98.89 8
n200w140s5.2 797 799.9 0.4 1.4 171.91 7 789 791.0 0.3 1.5 127.63 8
n200w140s5.3 764 765.0 0.1 1.7 71.03 7 763 763.9 0.1 1.4 71.05 8
n200w140s5.4 821 821.0 0.0 0.0 86.18 8 816 816.0 0.0 0.0 80.26 11
n200w140s5.5 838 838.0 0.0 0.0 103.40 8 836 836.1 0.0 0.3 110.50 8

Avg 750.6 752.5 0.26 1.18 70.67 7.3 747.4 748.8 0.19 0.95 72.31 7.9

Table 7
Computational results of 3P-Heu on OT instances with ten stations under both recharging policies.

Inst Full recharge policy Partial recharge policy

Best Avg % r Time ns Best Avg % r Time ns

n150w120s10.1 746 746.7 0.1 0.5 30.45 7 740 740.9 0.1 0.3 28.45 10
n150w120s10.2 653 654.7 0.3 1.0 28.71 9 653 654.6 0.2 0.9 29.45 9
n150w120s10.3 766 768.3 0.3 1.1 37.61 8 765 766.4 0.2 0.9 39.17 10
n150w120s10.4 721 722.9 0.3 1.4 40.55 6 721 722.1 0.2 0.8 41.85 7
n150w120s10.5 693 694.6 0.2 1.1 26.72 8 693 693.0 0.0 0.0 26.76 9

n150w140s10.1 747 747.3 0.0 0.5 60.50 8 744 745.2 0.2 1.1 69.45 9
n150w140s10.2 768 768.0 0.0 0.0 35.42 8 764 764.0 0.0 0.0 34.83 7
n150w140s10.3 627 628.2 0.2 1.0 32.76 9 623 623.5 0.1 0.9 32.58 9
n150w140s10.4 683 683.0 0.0 0.0 27.22 9 683 683.0 0.0 0.0 28.20 9
n150w140s10.5 673 673.0 0.0 0.0 41.33 8 668 668.0 0.0 0.0 39.19 10

n150w160s10.1 713 713.0 0.0 0.0 29.90 7 713 713.0 0.0 0.0 30.63 7
n150w160s10.2 700 704.1 0.6 3.0 59.46 6 688 689.4 0.2 0.8 52.69 8
n150w160s10.3 628 630.2 0.4 1.7 39.82 7 617 618.7 0.3 1.7 36.79 9
n150w160s10.4 686 686.4 0.1 0.7 34.39 9 686 686.4 0.1 0.7 37.15 9
n150w160s10.5 676 676.1 0.0 0.3 31.09 7 673 673.0 0.0 0.0 32.48 8

n200w120s10.1 806 806.1 0.0 0.3 65.82 8 805 805.9 0.1 0.3 66.96 9
n200w120s10.2 738 738.1 0.0 0.3 60.01 9 736 736.9 0.1 0.3 62.62 10
n200w120s10.3 891 891.5 0.1 0.5 74.06 8 891 891.5 0.1 0.5 80.90 10
n200w120s10.4 790 790.9 0.1 0.3 106.08 7 790 790.9 0.1 0.3 113.74 7
n200w120s10.5 857 857.8 0.1 0.6 89.71 10 854 854.2 0.0 0.4 87.33 10

n200w140s10.1 831 833.4 0.3 1.3 89.53 8 827 829.1 0.3 1.1 85.82 10
n200w140s10.2 789 789.8 0.1 0.6 107.43 8 778 780.1 0.3 1.1 82.85 9
n200w140s10.3 763 764.5 0.2 1.8 72.18 7 762 763.3 0.2 1.4 71.98 9
n200w140s10.4 820 820.0 0.0 0.0 84.88 8 812 812.0 0.0 0.0 70.13 11
n200w140s10.5 830 830.9 0.1 0.3 78.74 8 830 830.9 0.1 0.3 103.84 9

Avg 743.8 744.8 0.13 0.73 55.37 7.9 740.6 741.4 0.11 0.56 55.43 9.0
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Tables 6 and 7 report the computational results achieved by 3P-Heu on the OT instances with five and ten recharging sta-
tions under both recharging policies. The optimal solutions are not known for these instances, so it is harder to assess the
quality of the results.

With five stations and full-recharge policy, the average cost of the best solution found at each iteration is 0.26% far from
the best-known and the standard deviation is 1.18, while with the partial-recharge policy, the average distance is 0.19% and
the standard deviation 0.95. The average computing time is a bit more than a minute. Not surprisingly, the average number
of stops with the partial-recharge policy is higher than with the full-recharge policy (7.9 vs 7.3).

Similar results can be seen for OT instances with ten stations (see Table 7). Under full-recharge policy the best solution
found at each iteration is 0.13% far from the best-known and the standard deviation is 0.73, while 0.11% and 0.56 are the
corresponding values under the partial-recharge policy. A higher increase in the number of stops can be observed here
(7.9 vs 9.0).

6.3.1. Computational performance on TSPTW instances
The Three-Phase Heuristic can easily be adapted to solve TSPTW instances by simply removing Phase 3 and taking the

best solution found with the first two phases only. In Table 8, we report a comparison between the computational results
of da Silva and Urrutia (2010) and of 3P-Heu on the TSPTW instances of Ohlmann and Thomas (2007). The meaning of each
column is the same of the previous tables. The same parameter setting of the previous experiments was kept apart from the
number of iterations that was decreased to 100 (i.e., MaxIter = 500) in order to have computing times similar to those of the
algorithm of da Silva and Urrutia (2010), which was run on a slower machine (i.e., a Pentium 4 2.40 GHz).

As indicated in Section 5, the first two phases of 3P-Heu are strongly inspired by the algorithms of da Silva and Urrutia
(2010) and Mladenović et al. (2012), so the computational performance of the General VNS of da Silva and Urrutia (2010) and
3P-Heu are rather similar.

6.3.2. Tests on E-VRPTW instances of Schneider et al. (2014) with a single vehicle
The E-TSPTW considered in this paper is a special case of the E-VRPTW problem investigated by Schneider et al. (2014), in

particular, the E-TSPTW does not consider the capacity (in terms of loading) of the vehicle and a single vehicle, instead of
multiple vehicles, is to be used. Schneider et al. (2014) tested their algorithm on an extensive set of instances; of these
instances, we considered the 13 instances with a single vehicle, and we tested both PBF and 3P-Heu on them.

Table 9 compares the results of the CF and the PBF on the 13 instances of Schneider et al. (2014). Columns have the same
meaning of the previous tables. Notice that the optimal solution of instance RC204-15 is not known. Moreover, formulation
CF was tested with nþ 1 copies of each recharging station.
Table 8
Computational results of 3P-Heu on original TSPTW OT instances: comparison with da Silva and Urrutia (2010).

Group z�TW da Silva and Urrutia (2010) 3P-Heu

Best % Avg % r Time Best % Avg % r Time

n150w120 722.0 722.0 0.0 722.3 0.0 0.4 11.8 722.0 0.0 722.2 0.0 0.4 10.5
n150w140 693.8 693.8 0.0 694.8 0.1 0.5 13.3 693.8 0.0 694.6 0.1 0.7 12.3
n150w160 671.0 671.0 0.0 671.2 0.0 0.3 15.0 671.0 0.0 671.6 0.1 0.7 13.1
n200w120 803.6 803.6 0.0 803.9 0.0 0.1 30.3 803.6 0.0 804.2 0.1 0.4 25.8
n200w140 798.0 798.0 0.0 799.5 0.2 1.1 38.0 798.2 0.0 798.9 0.1 1.0 30.0

Avg 737.7 737.7 0.0 738.3 0.1 0.5 21.7 737.7 0.0 738.3 0.1 0.6 18.3

Table 9
Computational results of CF and PBF on the E-VRPTW instances of Schneider et al. (2014) with a single vehicle.

Inst z�ETW CF PBF

LP % bLB % bUB % Time LP % bLB % bUB % Time

C103-5 176.05 127.85 72.6 176.05 100.0 176.05 100.0 0.2 151.93 86.3 176.05 100.0 176.05 100.0 0.1
C206-5 242.56 149.02 61.4 242.56 100.0 242.56 100.0 0.3 218.13 89.9 242.56 100.0 242.56 100.0 0.0
C208-5 158.48 110.60 69.8 158.48 100.0 158.48 100.0 0.3 110.19 69.5 158.48 100.0 158.48 100.0 0.0
R202-5 128.78 114.46 88.9 128.78 100.0 128.78 100.0 0.1 125.88 97.8 128.78 100.0 128.78 100.0 0.0
R203-5 179.06 135.00 75.4 179.06 100.0 179.06 100.0 0.3 175.63 98.1 179.06 100.0 179.06 100.0 0.0
RC204-5 176.39 98.44 55.8 176.39 100.0 176.39 100.0 0.4 100.96 57.2 176.39 100.0 176.39 100.0 0.1
RC208-5 167.98 95.56 56.9 167.98 100.0 167.98 100.0 0.2 155.25 92.4 167.98 100.0 167.98 100.0 0.2
C202-10 304.06 198.78 65.4 258.78 85.1 304.06 100.0 7200.0 257.41 84.7 304.06 100.0 304.06 100.0 0.1
R201-10 241.51 177.62 73.5 241.51 100.0 241.51 100.0 4.0 214.51 88.8 241.51 100.0 241.51 100.0 0.1
R203-10 218.21 149.87 68.7 218.21 100.0 218.21 100.0 4.0 197.13 90.3 218.21 100.0 218.21 100.0 0.4
RC201-10 412.86 254.39 61.6 335.75 81.3 412.86 100.0 7200.0 404.28 97.9 412.86 100.0 412.86 100.0 0.1
R209-15 313.24 223.11 71.2 263.70 84.2 – – 7200.0 220.67 70.4 313.24 100.0 313.24 100.0 6.5
RC204-15 a384.86 212.65 55.3 234.25 60.9 – – 7200.0 245.88 63.9 313.69 81.5 389.55 101.2 7200.0

Avg 67.4 93.2 100.0 2216.1 83.6 98.6 100.1 554.4

a Optimality not proven.



Table 10
Computational results of 3P-Heu on the E-VRPTW instances with one vehicle of Schneider et al. (2014).

Inst z�ETW Schneider et al. (2014) 3P-Heu

Best % Time Best % Avg % r Time

C103-5 176.05 176.05 100.0 0.12 176.05 100.0 176.05 100.0 0.0 0.02
C206-5 242.56 242.56 100.0 0.14 242.56 100.0 242.56 100.0 0.0 0.02
C208-5 158.48 158.48 100.0 0.11 158.48 100.0 158.48 100.0 0.0 0.02
R202-5 128.78 128.78 100.0 0.11 128.78 100.0 128.78 100.0 0.0 0.03
R203-5 179.06 179.06 100.0 0.15 179.06 100.0 179.06 100.0 0.0 0.06
RC204-5 176.39 176.39 100.0 0.15 176.39 100.0 176.39 100.0 0.0 0.16
RC208-5 167.98 167.98 100.0 0.13 167.98 100.0 167.98 100.0 0.0 0.04
C202-10 304.06 304.06 100.0 0.71 304.06 100.0 304.06 100.0 0.0 0.07
R201-10 241.51 241.51 100.0 0.78 241.51 100.0 241.51 100.0 0.0 0.05
R203-10 218.21 218.21 100.0 0.71 218.21 100.0 218.21 100.0 0.0 0.25
RC201-10 412.86 412.86 100.0 0.90 412.86 100.0 412.86 100.0 0.0 0.10
R209-15 313.24 313.24 100.0 13.73 313.24 100.0 313.24 100.0 0.0 0.51
RC204-15 a384.86 384.86 100.0 15.57 384.86 100.0 386.16 100.3 1.7 9.07

Avg 100.0 2.6 100.0 100.0 0.1 0.8

a Optimality not proven.
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Formulation PBF clearly outperforms CF both in terms of instances solved to optimality and computing time. Instance
RC204-15 could not be solved by any of the two formulations. It is worth noticing that the linear relaxation of PBF provides
much better lower bounds than the linear relaxation of CF.

Finally, a comparison on the 13 instances between 3P-Heu and the hybrid heuristic of Schneider et al. (2014) is reported
in Table 10. The results of Schneider et al. (2014) were achieved on an Intel Core i5 750 processor clocked at 2.67 GHz.

The table indicates the both heuristic algorithms managed to find the best-known solution on all 13 instances. The only
instance where 3P-Heu could not find the best known solution in all ten runs was RC204-15. Even in terms of computing
times the two algorithms seem equally good, even though 3P-Heu seems to perform better on instance R209-15.
7. Conclusions

In this paper, we addressed a generalization of the well-known Traveling Salesman Problem with Time Windows (TSPTW)
that arises when electric vehicles are used; the main difference lies in the limited capacity of the batteries of such vehicles
that require intermediate stops at recharging stations. We called this new problem Electric TSPTW (E-TSPTW).

We proposed a compact formulation of the problem and an alternative formulation with exponentially many variables
with respect to the number of recharging stations. We also showed a few preprocessing rules to limit the number of vari-
ables. Starting from the state-of-the-art heuristic algorithms for the TSPTW, we illustrated a Three-Phase Heuristic algorithm
based on General Variable Neighborhood Search and Dynamic Programming. The proposed approaches have been applied to
two different recharging policies: full (the battery is fully recharged at any stop) and partial (the amount to recharge is a
decision variable).

Computational results on newly generated instances showed that the proposed alternative formulation could solve 20-
customer instances under both recharging policies in short amount of computing times. The heuristic algorithm was able
to achieve upper bounds of very good quality on such 20-customer instances in around a tenth of a second. Further compu-
tational results of the heuristic algorithm on large-scale instances with 150 and 200 customers were also reported.

We believe that a few possible directions for future research can be: (a) investigating the potential of the alternative for-
mulation in a column-and-cut generation framework; (b) testing a multi-phase approach, where hard constraints are added
in sequential phases, on other problems encountered when using electric vehicles instead of traditional internal combustion
commercial vehicles; (c) addressing other sources of cost in the objective function along with traveling distances in order to
assess the environmental impact/cost of electric vehicles in real-life distribution problems.
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Appendix A

This section reports detailed computational results of formulations CF and PBF on all G instances. Columns report the fol-
lowing data: instance name (Inst); optimal solution cost (z�ETW) – notice that, on instance n20w200s10.4 of Table 13, the
optimality of 295 was not proven; lower bound (LP) achieved by the linear relaxation (and, in parenthesis, the corresponding



Table 12
Detailed computational results of CF and PBF on G instances with five stations and partial-recharge policy.

Inst z�ETW CF PBF

LP % bLB % bUB % Time LP % bLB % bUB % Time

n20w120s5.1 271 206.5 (76.2) 271.0 (100.0) 271 (100.0) 670.8 255.5 (94.3) 271.0 (100.0) 271 (100.0) 0.3
n20w120s5.2 225 171.3 (76.1) 215.5 (95.8) 225 (100.0) 7200.0 182.5 (81.1) 225.0 (100.0) 225 (100.0) 138.3
n20w120s5.3 311 206.5 (66.4) 260.8 (83.9) 7200.0 265.5 (85.4) 311.0 (100.0) 311 (100.0) 134.1
n20w120s5.4 312 217.0 (69.6) 267.2 (85.6) 7200.0 254.0 (81.4) 312.0 (100.0) 312 (100.0) 27.3
n20w120s5.5 249 196.5 (78.9) 249.0 (100.0) 249 (100.0) 518.1 237.0 (95.2) 249.0 (100.0) 249 (100.0) 0.6

n20w140s5.1 180 138.0 (76.7) 180.0 (100.0) 180 (100.0) 1149.6 135.0 (75.0) 180.0 (100.0) 180 (100.0) 3.8
n20w140s5.2 278 193.0 (69.4) 223.2 (80.3) 7200.0 227.0 (81.7) 278.0 (100.0) 278 (100.0) 43.7
n20w140s5.3 238 177.5 (74.6) 238.0 (100.0) 238 (100.0) 2049.2 185.0 (77.7) 238.0 (100.0) 238 (100.0) 10.7
n20w140s5.4 265 180.8 (68.2) 203.0 (76.6) 7200.0 181.0 (68.3) 265.0 (100.0) 265 (100.0) 279.6
n20w140s5.5 229 156.0 (68.1) 229.0 (100.0) 229 (100.0) 5429.5 177.0 (77.3) 229.0 (100.0) 229 (100.0) 3.3

n20w160s5.1 246 169.5 (68.9) 215.1 (87.4) 247 (100.4) 7200.0 201.0 (81.7) 246.0 (100.0) 246 (100.0) 12.4
n20w160s5.2 219 164.0 (74.9) 219.0 (100.0) 219 (100.0) 5235.5 173.0 (79.0) 219.0 (100.0) 219 (100.0) 4.4
n20w160s5.3 210 151.0 (71.9) 210.0 (100.0) 210 (100.0) 160.4 166.5 (79.3) 210.0 (100.0) 210 (100.0) 1.6
n20w160s5.4 208 149.1 (71.7) 183.0 (88.0) 208 (100.0) 7200.0 153.0 (73.6) 208.0 (100.0) 208 (100.0) 13.4
n20w160s5.5 253 178.2 (70.4) 211.7 (83.7) 254 (100.4) 7200.0 177.0 (70.0) 253.0 (100.0) 253 (100.0) 37.6

n20w180s5.1 262 196.3 (74.9) 259.3 (99.0) 262 (100.0) 7200.0 216.0 (82.4) 262.0 (100.0) 262 (100.0) 4.3
n20w180s5.2 273 192.5 (70.5) 266.0 (97.4) 273 (100.0) 7200.0 197.0 (72.2) 273.0 (100.0) 273 (100.0) 4.2
n20w180s5.3 271 186.7 (68.9) 246.9 (91.1) 7200.0 208.0 (76.8) 271.0 (100.0) 271 (100.0) 48.5
n20w180s5.4 206 166.8 (80.9) 196.3 (95.3) 225 (109.2) 7200.0 165.0 (80.1) 206.0 (100.0) 206 (100.0) 106.1
n20w180s5.5 201 150.5 (74.9) 185.8 (92.4) 201 (100.0) 7200.0 151.0 (75.1) 201.0 (100.0) 201 (100.0) 205.9

n20w200s5.1 241 184.0 (76.3) 223.0 (92.5) 241 (100.0) 7200.0 186.0 (77.2) 241.0 (100.0) 241 (100.0) 78.0
n20w200s5.2 221 179.0 (81.0) 203.8 (92.2) 221 (100.0) 7200.0 179.0 (81.0) 221.0 (100.0) 221 (100.0) 71.9
n20w200s5.3 254 154.6 (60.9) 204.3 (80.4) 254 (100.0) 7200.0 172.0 (67.7) 254.0 (100.0) 254 (100.0) 38.2
n20w200s5.4 295 204.2 (69.2) 228.3 (77.4) 7200.0 204.0 (69.2) 295.0 (100.0) 295 (100.0) 280.8
n20w200s5.5 240 194.1 (80.9) 240.0 (100.0) 240 (100.0) 1751.7 195.0 (81.3) 240.0 (100.0) 240 (100.0) 180.0

Avg (72.8) (92.0) (100.1) 5574.6 (78.5) (100.0) (100.0) 69.2

Table 11
Detailed computational results of CF and PBF on G instances with five stations and full-recharge policy.

Inst z�ETW CF PBF

LP % bLB % bUB % Time LP % bLB % bUB % Time

n20w120s5.1 271 206.5 (76.2) 271.0 (100.0) 271 (100.0) 2844.5 255.5 (94.3) 271.0 (100.0) 271 100.0 0.3
n20w120s5.2 233 171.3 (73.5) 194.6 (83.5) 7200.0 182.5 (78.3) 233.0 (100.0) 233 100.0 906.2
n20w120s5.3 317 206.5 (65.1) 252.5 (79.7) 7200.0 265.5 (83.8) 317.0 (100.0) 317 100.0 191.9
n20w120s5.4 314 217.0 (69.1) 256.2 (81.6) 7200.0 254.0 (80.9) 314.0 (100.0) 314 100.0 288.6
n20w120s5.5 249 196.5 (78.9) 249.0 (100.0) 249 (100.0) 1420.4 237.0 (95.2) 249.0 (100.0) 249 100.0 0.6

n20w140s5.1 181 138.0 (76.2) 158.4 (87.5) 7200.0 135.0 (74.6) 181.0 (100.0) 181 100.0 133.4
n20w140s5.2 279 193.0 (69.2) 222.5 (79.8) 7200.0 227.0 (81.4) 279.0 (100.0) 279 100.0 530.6
n20w140s5.3 238 177.5 (74.6) 192.5 (80.9) 7200.0 185.0 (77.7) 238.0 (100.0) 238 100.0 22.6
n20w140s5.4 265 180.8 (68.2) 196.9 (74.3) 7200.0 181.0 (68.3) 265.0 (100.0) 265 100.0 906.4
n20w140s5.5 229 156.0 (68.1) 229.0 (100.0) 229 (100.0) 2370.5 177.0 (77.3) 229.0 (100.0) 229 100.0 6.0

n20w160s5.1 246 169.5 (68.9) 223.0 (90.7) 246 (100.0) 7200.0 201.0 (81.7) 246.0 (100.0) 246 100.0 48.6
n20w160s5.2 219 164.0 (74.9) 189.1 (86.3) 7200.0 173.0 (79.0) 219.0 (100.0) 219 100.0 10.0
n20w160s5.3 210 151.0 (71.9) 210.0 (100.0) 210 (100.0) 1931.2 166.5 (79.3) 210.0 (100.0) 210 100.0 1.4
n20w160s5.4 208 149.1 (71.7) 180.6 (86.8) 211 (101.4) 7200.0 153.0 (73.6) 208.0 (100.0) 208 100.0 11.8
n20w160s5.5 253 178.2 (70.4) 224.9 (88.9) 254 (100.4) 7200.0 177.0 (70.0) 253.0 (100.0) 253 100.0 69.3

n20w180s5.1 262 196.4 (74.9) 251.3 (95.9) 262 (100.0) 7200.0 216.0 (82.4) 262.0 (100.0) 262 100.0 6.0
n20w180s5.2 273 192.5 (70.5) 273.0 (100.0) 273 (100.0) 3712.7 197.0 (72.2) 273.0 (100.0) 273 100.0 6.8
n20w180s5.3 282 186.7 (66.2) 240.5 (85.3) 7200.0 208.0 (73.8) 282.0 (100.0) 282 100.0 862.8
n20w180s5.4 206 166.8 (80.9) 206.0 (100.0) 206 (100.0) 2648.5 165.0 (80.1) 206.0 (100.0) 206 100.0 272.5
n20w180s5.5 201 150.5 (74.9) 171.5 (85.3) 7200.0 151.0 (75.1) 201.0 (100.0) 201 100.0 2285.6

n20w200s5.1 241 184.0 (76.3) 227.6 (94.4) 241 (100.0) 7200.0 186.0 (77.2) 241.0 (100.0) 241 100.0 75.8
n20w200s5.2 221 179.0 (81.0) 209.4 (94.7) 221 (100.0) 7200.0 179.0 (81.0) 221.0 (100.0) 221 100.0 109.2
n20w200s5.3 254 154.6 (60.9) 179.2 (70.5) 7200.0 172.0 (67.7) 254.0 (100.0) 254 100.0 40.2
n20w200s5.4 295 204.2 (69.2) 227.4 (77.1) 7200.0 204.0 (69.2) 295.0 (100.0) 295 100.0 514.8
n20w200s5.5 240 194.1 (80.9) 240.0 (100.0) 240 (100.0) 2986.6 195.0 (81.3) 240.0 (100.0) 240 100.0 143.6

Avg (72.5) (88.9) (100.1) 5900.6 (78.2) (100.0) (100.0) 297.8
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Table 14
Detailed Computational Results of CF and PBF on G Instances with Ten Stations and Partial-Recharge Policy.

Inst z�ETW CF PBF

LP % bLB % bUB % Time LP % bLB % bUB % Time

n20w120s10.1 270 163.0 (60.4) 221.0 (81.9) 7200.0 246.0 (91.1) 270.0 (100.0) 270 (100.0) 0.5
n20w120s10.2 220 150.0 (68.2) 196.0 (89.1) 228 (103.6) 7200.0 179.0 (81.4) 220.0 (100.0) 220 (100.0) 36.5
n20w120s10.3 311 193.0 (62.1) 244.0 (78.5) 7200.0 265.5 (85.4) 311.0 (100.0) 311 (100.0) 331.9
n20w120s10.4 307 202.5 (66.0) 238.5 (77.7) 7200.0 245.0 (79.8) 307.0 (100.0) 307 (100.0) 11.3
n20w120s10.5 243 183.0 (75.3) 205.3 (84.5) 243 (100.0) 7200.0 237.0 (97.5) 243.0 (100.0) 243 (100.0) 0.3

n20w140s10.1 178 136.0 (76.4) 178.0 (100.0) 178 (100.0) 2415.5 135.0 (75.8) 178.0 (100.0) 178 (100.0) 4.2
n20w140s10.2 277 174.0 (62.8) 208.9 (75.4) 7200.0 227.0 (81.9) 277.0 (100.0) 277 (100.0) 158.3
n20w140s10.3 237 165.5 (69.8) 189.5 (80.0) 238 (100.4) 7200.0 185.0 (78.1) 237.0 (100.0) 237 (100.0) 24.2
n20w140s10.4 260 172.0 (66.2) 184.9 (71.1) 7200.0 181.0 (69.6) 260.0 (100.0) 260 (100.0) 384.3
n20w140s10.5 225 155.0 (68.9) 176.1 (78.3) 225 (100.0) 7200.0 177.0 (78.7) 225.0 (100.0) 225 (100.0) 4.4

n20w160s10.1 245 162.5 (66.3) 192.0 (78.3) 245 (100.0) 7200.0 201.0 (82.0) 245.0 (100.0) 245 (100.0) 34.7
n20w160s10.2 208 155.0 (74.5) 181.8 (87.4) 208 (100.0) 7200.0 173.0 (83.2) 208.0 (100.0) 208 (100.0) 5.1
n20w160s10.3 210 147.0 (70.0) 185.3 (88.2) 7200.0 166.5 (79.3) 210.0 (100.0) 210 (100.0) 1.2
n20w160s10.4 208 147.1 (70.7) 180.7 (86.9) 212 (101.9) 7200.0 153.0 (73.6) 208.0 (100.0) 208 (100.0) 9.8
n20w160s10.5 248 165.0 (66.5) 196.6 (79.3) 252 (101.6) 7200.0 177.0 (71.4) 248.0 (100.0) 248 (100.0) 62.4

n20w180s10.1 254 165.3 (65.1) 215.9 (85.0) 255 (100.4) 7200.0 202.0 (79.5) 254.0 (100.0) 254 (100.0) 7.1
n20w180s10.2 272 190.5 (70.0) 219.1 (80.5) 272 (100.0) 7200.0 197.0 (72.4) 272.0 (100.0) 272 (100.0) 6.2
n20w180s10.3 270 183.2 (67.8) 236.9 (87.7) 272 (100.7) 7200.0 208.0 (77.0) 270.0 (100.0) 270 (100.0) 80.2
n20w180s10.4 206 163.0 (79.1) 194.4 (94.3) 215 (104.4) 7200.0 165.0 (80.1) 206.0 (100.0) 206 (100.0) 40.9
n20w180s10.5 199 144.0 (72.4) 172.3 (86.6) 199 (100.0) 7200.0 151.0 (75.9) 199.0 (100.0) 199 (100.0) 296.4

n20w200s10.1 239 182.0 (76.2) 208.3 (87.2) 240 (100.4) 7200.0 186.0 (77.8) 239.0 (100.0) 239 (100.0) 89.0
n20w200s10.2 213 161.0 (75.6) 191.8 (90.0) 214 (100.5) 7200.0 179.0 (84.0) 213.0 (100.0) 213 (100.0) 59.6
n20w200s10.3 250 145.1 (58.0) 166.3 (66.5) 252 (100.8) 7200.0 172.0 (68.8) 250.0 (100.0) 250 (100.0) 60.1
n20w200s10.4 295 194.2 (65.8) 218.5 (74.1) 7200.0 204.0 (69.2) 295.0 (100.0) 295 (100.0) 310.9
n20w200s10.5 233 171.9 (73.8) 222.7 (95.6) 233 (100.0) 7200.0 195.0 (83.7) 233.0 (100.0) 233 (100.0) 94.1

Avg (69.1) (83.4) (100.8) 7008.6 (79.1) (100.0) (100.0) 84.5

Table 13
Detailed Computational Results of CF and PBF on G Instances with Ten Stations and Full-Recharge Policy.

Inst z�ETW CF PBF

LP % bLB % bUB % Time LP % bLB % bUB % Time

n20w120s10.1 270 163.0 (60.4) 222.0 (82.2) 7200.0 246.0 (91.1) 270.0 (100.0) 270 (100.0) 2.6
n20w120s10.2 222 150.0 (67.6) 192.6 (86.7) 7200.0 179.0 (80.6) 222.0 (100.0) 222 (100.0) 2084.7
n20w120s10.3 312 193.0 (61.9) 244.0 (78.2) 7200.0 265.5 (85.1) 312.0 (100.0) 312 (100.0) 92.4
n20w120s10.4 308 202.5 (65.7) 233.0 (75.6) 7200.0 245.0 (79.5) 308.0 (100.0) 308 (100.0) 70.1
n20w120s10.5 243 183.0 (75.3) 201.1 (82.8) 7200.0 237.0 (97.5) 243.0 (100.0) 243 (100.0) 0.7

n20w140s10.1 179 136.0 (76.0) 177.0 (98.9) 179 (100.0) 7200.0 135.0 (75.4) 179.0 (100.0) 179 (100.0) 6.1
n20w140s10.2 277 174.0 (62.8) 210.0 (75.8) 7200.0 227.0 (81.9) 277.0 (100.0) 277 (100.0) 1858.0
n20w140s10.3 237 165.5 (69.8) 189.7 (80.0) 7200.0 185.0 (78.1) 237.0 (100.0) 237 (100.0) 47.5
n20w140s10.4 260 172.0 (66.2) 187.0 (71.9) 7200.0 181.0 (69.6) 260.0 (100.0) 260 (100.0) 774.3
n20w140s10.5 225 155.0 (68.9) 176.0 (78.2) 7200.0 177.0 (78.7) 225.0 (100.0) 225 (100.0) 7.0

n20w160s10.1 245 162.5 (66.3) 190.7 (77.8) 7200.0 201.0 (82.0) 245.0 (100.0) 245 (100.0) 55.6
n20w160s10.2 208 155.0 (74.5) 176.3 (84.7) 7200.0 173.0 (83.2) 208.0 (100.0) 208 (100.0) 8.7
n20w160s10.3 210 147.0 (70.0) 182.0 (86.7) 7200.0 166.5 (79.3) 210.0 (100.0) 210 (100.0) 4.3
n20w160s10.4 208 147.1 (70.7) 176.6 (84.9) 208 (100.0) 7200.0 153.0 (73.6) 208.0 (100.0) 208 (100.0) 14.9
n20w160s10.5 248 165.0 (66.5) 191.0 (77.0) 7200.0 177.0 (71.4) 248.0 (100.0) 248 (100.0) 260.5

n20w180s10.1 254 165.3 (65.1) 200.2 (78.8) 7200.0 202.0 (79.5) 254.0 (100.0) 254 (100.0) 4.0
n20w180s10.2 272 190.5 (70.0) 221.2 (81.3) 7200.0 197.0 (72.4) 272.0 (100.0) 272 (100.0) 17.0
n20w180s10.3 273 183.2 (67.1) 229.8 (84.2) 7200.0 208.0 (76.2) 273.0 (100.0) 273 (100.0) 235.7
n20w180s10.4 206 163.0 (79.1) 206.0 (100.0) 206 (100.0) 5630.2 165.0 (80.1) 206.0 (100.0) 206 (100.0) 135.7
n20w180s10.5 199 144.0 (72.4) 167.1 (83.9) 7200.0 151.0 (75.9) 199.0 (100.0) 199 (100.0) 1419.0

n20w200s10.1 239 182.0 (76.2) 205.1 (85.8) 239 (100.0) 7200.0 186.0 (77.8) 239.0 (100.0) 239 (100.0) 190.2
n20w200s10.2 213 161.0 (75.6) 203.8 (95.7) 213 (100.0) 7200.0 179.0 (84.0) 213.0 (100.0) 213 (100.0) 52.6
n20w200s10.3 250 145.1 (58.0) 176.2 (70.5) 252 (100.8) 7200.0 172.0 (68.8) 250.0 (100.0) 250 (100.0) 108.8
n20w200s10.4 a295 194.2 (65.8) 221.9 (75.2) 7200.0 204.0 (69.2) 262.2 (88.9) 295 (100.0) 7200.0
n20w200s10.5 233 171.9 (73.8) 209.1 (89.7) 233 (100.0) 7200.0 195.0 (83.7) 233.0 (100.0) 233 (100.0) 53.0

Avg (69.0) (82.7) (100.1) 7137.2 (79.0) (99.6) (100.0) 588.2

a optimality not proven.

R. Roberti, M. Wen / Transportation Research Part E 89 (2016) 32–52 51



52 R. Roberti, M. Wen / Transportation Research Part E 89 (2016) 32–52
percentage ratio with respect to z�ETW, computed as 100�LP
z�ETW

); final best lower bound (bLB – and, in parenthesis, the correspond-

ing percentage ratio with respect to z�ETW, computed as 100�bLB
z�ETW

); final best upper bound (bUB – and, in parenthesis, the corre-

sponding percentage ratio with respect to z�ETW, computed as 100�bUB
z�ETW

); and the computing time (Time).

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tre.
2016.01.010.
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