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There is a considerable body of studies on the relationship between daily transport activ-
ities and CO2 emissions. However, how these emissions vary in different weather condi-
tions within and between the seasons of the year is largely unknown. Because individual
activity–travel patterns are not static but vary in different weather conditions, it is immen-
sely important to understand how CO2 emissions vary due to the change of weather. Using
Swedish National Travel Survey data, with emission factors calculated through the
European emission factor model ARTEMIS, this study is a first attempt to derive the amount
of CO2 emission changes subject to the change of weather conditions. A series of economet-
ric models was used to model travel behaviour variables that are crucial for influencing
individual CO2 emissions. The marginal effects of weather variables on travel behaviour
variables were derived. The results show an increase of individual CO2 emissions in a war-
mer climate and in more extreme temperature conditions, whereas increasing precipita-
tion amounts and snow depths show limited effects on individual CO2 emissions. It is
worth noting that the change in CO2 emissions in the scenario of a warmer climate and
a more extreme temperature tends to be greater than the sum of changes in CO2 emissions
in each individual scenario. Given that a warmer climate and more extreme weather could
co-occur more frequently in the future, this result suggests even greater individual CO2

emissions than expected in such a future climate.
� 2016 Elsevier Ltd. All rights reserved.
1. The CO2 emissions of passenger transport and weather

The European Union has committed itself to a 20% reduction in its greenhouse gas (GHG) emissions. CO2 emissions are the
major quantity of interest, and transport is one of the main emitting sectors and the only sector that continues to grow sub-
stantially (European Commission, 2015). Overall, the transport sector produces the second largest share of CO2 emissions
among all sectors in the EU, in which road transport, mainly by passenger car, is responsible for around 70% of the total
CO2 emissions in the transport sectors (EU Transport in Figures, 2014). Measuring, modelling, and predicting CO2 emissions
from road transport are thus important and hot topics in the transportation field. Studies on CO2 emissions from road
transport have been focused on passenger transport (e.g. Barla et al., 2011; Waygood et al., 2014) and freight transport
(e.g. Eng-Larsson et al., 2012; Stelling, 2014). It is well known that two major factors determine the CO2 emissions of
passenger transport, the emission factor of the vehicle and the vehicle usage (vehicle mileages travelled).
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The emission factor describes the amount of CO2 emitted by a passenger car when the vehicle is being used per unit of
travel. The principle sources of emissions can be categorised into three types (Boulter and McCrae, 2007): (1) ‘hot’ exhaust
emission, the amount of CO2 being emitted during the use of the vehicle; (2) cold start emission, the amount of CO2 being
emitted during each trip start when the engine does not reach its running temperature; and (3) evaporative emission, the
amount of CO2 emissions due to evaporative losses of volatile organic compounds. The emission factor is therefore expressed
in terms of CO2 emissions per kilometre (hot exhaust emission), per trip (cold start emission), and per hour/minute (evap-
orative emission). The European emission factor model ARTEMIS (Boulter and McCrae, 2007) shows that weather parameters
(temperature, precipitation, etc.) affect all three types of CO2 emission factors. In general, hot exhaust emission decreases
with an increasing temperature for both petrol and diesel cars, but more so for diesel cars. Adverse weather, such as precip-
itation or snow, could trigger the use of in-vehicle A/C, wiper, and window defrost and thus increase the hot exhaust emis-
sions from the auxiliary system. Cold start emissions are well known to be greater in lower temperature conditions (Andree
and Joumard, 2005), whereas evaporative emissions increase with an increasing temperature (Hausberger et al., 2005).
Therefore, the emission factors are strongly dependent on the weather parameters, thus leading to variations in CO2 emis-
sions in different weather conditions. However, existing studies on the CO2 emissions from passenger transport usually
ignore the influences of weather parameters on emission factors (e.g. Susilo and Stead, 2009; Barla et al., 2011; Waygood
et al., 2014).

It has long been known that changes in weather and climate correspond to changes in travel behaviour (Koetse and
Rietveld, 2009; Böcker et al., 2013a; Dijst et al., 2013). Various travel behaviour studies have examined the role of weather
on changes in travel choices. Cools et al. (2010) conducted a stated preference study and proved that travel behaviour is sig-
nificantly affected by weather conditions and that the impacts of weather are highly dependent on the purpose for travel.
From revealed preference studies, in terms of mode choice, Sabir (2011) and Bergström andMagnusson (2003) showed a sub-
stantial increase in bicycle trip share in warmer temperatures. Saneinejad et al. (2012) also found that cycling trips were the
most dependent on the change of weather. Miranda-Moreno and Nosal (2011) found that cycling flow per hour is influenced
not only by the current weather but also previous weather conditions. Creemers et al. (2015) adopted meteorological mea-
sures to represent weather conditions and found that meteorological measures can better capture the impact of weather
onmode choice. Liu et al. (2015a, 2015b) showed that weather effects onmode choice were different in regions with different
climates and in trips with different purposes. Ahmed et al. (2013) found that weather conditions are a paramount factor influ-
encing even commute-cycling decisions. In terms of destination choice and travel distance, Sabir (2011) found that individ-
uals prefer closer destinations for shopping or leisure activities in adverse weather conditions. Böcker et al. (2013b) showed
that a warmer and wetter future climate corresponds to an increase in travel distance. In terms of trip frequency, the number
of trips conducted per individual per day decreases on windy and snowy days, whereas road traffic flow decreases signifi-
cantly on rainy days (Keay and Simmonds, 2005; Kim et al., 2010).

Despite the growing knowledge on the impacts of weather on travel behaviour in general, this knowledge cannot be
directly applied to the impacts of weather on CO2 emissions. On the one hand, changes in weather and climate may lead
to a modal shift and an increase/decrease of travel distance, etc., and those effects may cancel out in terms of CO2 emissions.
For instance, precipitation tends to decrease trip distance while increasing the likelihood of travelling by car. On the other
hand, emission factors of vehicles vary in different weather conditions. Because the CO2 emissions of road passenger transport
are determined by both the emission factors and travel patterns of each trip/individual, the CO2 emissions are influenced by
the change of weather in a complex manner. Moreover, given that the future climate could become warmer and that weather
could become more extreme, researchers and policy makers are particularly interested in knowing the change in CO2 emis-
sions from road passenger transport in such a future climate scenario compared to the CO2 emissions in the current climate.
However, few researchers have analysed the change in CO2 emissions subject to the change of weather.

Thus, this paper aims to analyse and quantify the amount of CO2 emissions from road passenger transport due to the
change of weather. Using the Swedish National Travel Survey, this study first examines which weather conditions correspond
to the most/least CO2 emissions from road passenger transport. Furthermore, several econometric models are estimated in
order to derive the marginal effects of weather parameters on the travel behaviour variables, including trip frequency, mode
choice, destination choice, travel distance, and travel speed for car trips. Those marginal effects of weather provide the travel
behaviour changes given the change of a weather variable. Thosemodels are then used to derive the amount of CO2 emissions
per individual per day given the change of weather and climate. The results provide the changes in CO2 emissions in various
future climate scenarios compared to the current weather conditions, whereas all other factors remain unchanged.

The next section describes the details of the datasets and the emission factor models used in this paper. Then, the
explanatory analysis of CO2 emissions according to weather parameters is provided. After that, the econometric models
are introduced, and the marginal effects of weather variables are presented. Furthermore, the simulation study is described,
and the changes of amounts of CO2 emissions in various future climate scenarios are presented. Finally, this paper is con-
cluded by summarising the findings from the previous sections.
2. The Swedish National Travel Survey, the weather datasets, and the emission model

The data used in this paper stems from two data sources. The travel data come from the 2011 Swedish National Travel
Survey (NTS) datasets. The NTS data are travel diary data in which a trip is defined when certain errands have been achieved
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at the destination (note that changing mode is not an errand). All trips a respondent took in the observed day are recorded,
including the main travel mode, travel purpose, start and end points, departure and arrival times, etc., as well as individual
and household characteristics (Staffan, 2001). The data also cover the vehicle information, such as the manufacture year of
the vehicle and fuel type. The dataset covers all of Sweden for all days of the week and every week of the year. The respon-
dents were selected through a stratified sampling method according to the socio-demographics and residential locations.
However, one limitation of the NTS is that the departure and arrival locations of each trip are only available at the munic-
ipality level for confidential reasons.

The weather data come from the Swedish Meteorological and Hydrological Institute (SMHI). The weather data contain
weather information measured every three hours, including average, minimum, and maximum temperatures (the average
temperature is used in this paper); precipitation amounts; level of visibility (visible distance measured in km); wind speed
(km/h); relative humidity; snow depth; and air pressure (SMHI, 2012).

The weather information was assigned into each trip by matching weather data from the weather station nearest to the
centre of the departure municipality of that trip and by selecting the non-missing value of each weather variable with its
measured time closest to the departure time. It is worth noting that the average distance from each weather station to its
corresponding trip start municipality is around 10 km. One should be aware of the limitation of combining two datasets:
the distance from the nearest weather station to the respondent’s place of departure varies for each trip, raising questions
about the degree to which weather conditions measured at the weather station are the same as those at the departure loca-
tion. However, these differences are smaller for large municipalities such as Stockholm and Gothenburg, where more data
were collected, while for municipalities with only a few residences, such as some in northern Sweden, that distance is
greater. The spatial heterogeneity of weather effects resulting from this approach is discussed in detail by Liu et al. (2015c).

The emission factors were calculated using the European emission factor model ARTEMIS (Boulter and McCrae, 2007). For
private car trips, three types of emissions were calculated: hot exhaust emissions, cold start emissions (Ec), and evaporative
emissions (Ee). Hot exhaust emissions were separated into running hot exhaust emissions (Eh) and hot exhaust emissions
from the auxiliary system (Ea). The corresponding emission factors were calculated accordingly: The emission factor of run-
ning hot exhaust emissions (Fh) was calculated using an average speed model. The emission factor of running hot exhaust
emissions, in general, is a function of the fuel type (petrol or diesel), emission standard of the vehicle, road type of the trip
(urban, rural, or motorway), ambient temperature outside the vehicle, and average speed of the trip. The emission factor of
hot exhaust emissions from the auxiliary system (Fa) is dependent on the time of day, trip departure location (southern, cen-
tral, or northern Sweden), ambient temperature outside the vehicle, and raining/snowing conditions. The emission factor of
cold start emissions (Fc) is determined by the fuel type, emission standard of the vehicle, ambient temperature outside the
vehicle, rain or snow status, average speed of the trip, trip distance, and time since last use of the vehicle. Although several
types of evaporative emissions are described in the ARTEMIS model, only the emissions due to running loss are considered in
this paper, as other types of evaporative emissions require detailed meteorological parameters that are not available in the
data. However, given the fact that evaporative emissions are only a very small proportion of the total emissions, this sim-
plification is still valid. The emission factor of evaporative emissions (Fe) is determined by the fuel type, road type, and ambi-
ent temperature outside the vehicle. The total emission of a given trip is then calculated by Eq. (1):
Etotal ¼ Eh þ Ea þ Ec þ Ee ¼ Fh � Dþ Fa � H þ Fc þ Fe � D ð1Þ
where D denotes the travel distance of the given trip, and H denotes the travel time of the given trip. This total emission per
trip, Etotal, is then transformed into the emission per trip per individual by dividing Etotal by the number of accompanying indi-
viduals in the given trip. Two assumptions are made for the emission standard of the vehicle and road type. Because the
detailed emission standard of the vehicle is not available in the NTS but only the manufacture year of the vehicle, it is
assumed in this study that vehicles manufactured before 1993 are pre-EU I standard, those between 1993 and 1996 are
EU I standard, those between 1996 and 2000 are EU II standard, those between 2000 and 2005 are EU III standard, and those
after 2005 are EU IV or a more recent standard (Directive 2002/51/EC, 2015). The road type—rural, urban, and motorway—is
determined in this study as trips with urban road conditions are those that depart and arrive in the same municipalities and
within Stockholm, Gothenburg, and Malmö municipalities, whereas trips with rural road conditions are those that depart
and arrive in the same municipalities but in those other than Stockholm, Gothenburg, and Malmö. Trips with motorway road
conditions are those that depart and arrive in different municipalities.

The emission factor of a bus is taken as 79 g/passenger km (Swedish public transport, 2016). The CO2 emissions for trips
by walking, cycling, metro/tram, and train are taken as 0, whereas CO2 emissions for trips made by other modes (flight, boat,
moped, coach, etc.) are not considered in this study. The zero emission assumption of trains is valid in Sweden, because the
passenger trains in Sweden are all electrified, and the marginal CO2 emission is in principal zero (Andersson and
Lukaszewicz, 2006). Around 8% of trips in the NTS are made by ‘other modes’.
3. The individual CO2 emissions in Sweden

By applying emission factors on the NTS, the trip-based CO2 emissions were then aggregated into the individual level
by summing up CO2 emissions of all trips made by the given individual. The weighted average of the individual CO2 emis-
sions was then calculated, with the weight used to represent the whole population of Sweden. On average, 3.87 kg of CO2
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from passenger transport are emitted per individual per day in Sweden, which is slightly more than that from a study
(3.8 kg of CO2 per person per day) that used a Dutch national travel survey in 2005 and much less than that from the
same study (4.3 kg of CO2 per person per day) (Susilo and Stead, 2009). However, given that the study mentioned above
did not consider CO2 emissions other than running hot exhaust emissions and did not consider weather in emission fac-
tors, it is plausible that the difference between individual CO2 emissions in Sweden and those in the Netherlands/UK could
be even greater.

The individual CO2 emissions are plotted according to various weather parameters, as shown in Fig. 1.
In general, running hot exhaust emissions are the major share of total emissions (around 90%). Cold start emissions and

hot emissions from the auxiliary systemmake up 10% of the total emissions, whereas evaporative emissions are negligible. In
other words, the results indicate that ignoring cold start emissions and hot emissions from the auxiliary system, as most pre-
vious studies have done, would underestimate approximately 10% of the total emissions, which is considerable. For studies
that do not include hot emissions from the auxiliary system (e.g. Waygood et al., 2014), around 5% of the total emissions are
underestimated. In Fig. 1, the individual CO2 emissions show clear variations in different seasons and regions. Individual CO2

emissions are greater in summer and lesser in winter. Central Sweden has the lowest individual CO2 emissions among three
regions, presumably because a larger share of respondents lives in dense and urban areas such as Stockholm and Gothen-
burg. Previous studies (e.g. Kennedy et al., 2009) have shown that urbanisation density is inversely related to GHG emissions.
It is worth noting that the individual CO2 emissions are extremely high in the summer in northern Sweden, almost reaching
6 kg per individual per day. This is mainly due to the high vehicle mileage travelled in the summer in northern Sweden,
49 km per individual per day compared to 30 km in the other seasons in northern Sweden. However, one should be aware
that only 9.3% of the total Swedish population reside in northern Sweden. Therefore, its influence on the average individual
CO2 emissions of the whole of Sweden is relatively limited. Precipitation and snow conditions seem to be positively corre-
lated with individual CO2 emissions. Although trip distance tends to be shorter on rainy and snowy days, private cars are
more often used.

Although the above-mentioned descriptive results show clear difference in CO2 emissions, those differences do not
necessarily represent the change in CO2 emissions due to the change of weather, because other factors such as individual
socio-demographics, residential environment, etc., also play important roles in influencing individual CO2 emissions
(Susilo and Stead, 2009; Waygood et al., 2014). It is therefore of interest to know the characteristics of samples that have
a high/low individual CO2 emission. This study differentiated between five different groups (quintiles) on the basis of
their individual emissions, together with the zero-emission group (the group of individuals who do not emit any CO2

emissions in the given day). The six groups of samples and their corresponding shares of CO2 emissions are presented
in Fig. 2.

As seen in Fig. 2, 34% of the sample population did not (directly) emit any CO2 emissions in the given day, as they used
zero emission travel modes (walking, cycling, tram/metro, and train) in all their trips in the observed day. However, the last
20% emission quantile (13.1% of the total sample population) was responsible for 61.3% of the total CO2 emissions. The char-
acteristics of the zero emission group and the last 20% emission quantile are presented in Table 1.

It is not surprising that the last 20% emission quantile consists of more male travellers than female travellers, and
almost all have a driving license. The last 20% emission quantile consists of more partnered living individuals with high
income compared to the zero emission group, whereas the zero emission group consists of more young individuals and
individuals who are single living without children, and with low income. Almost all individuals in the last 20% emission
quantile have at least one car in the household, whereas 26% of travellers in the zero emission group do not have access
to a private car. The rest of the travellers (74%) in the zero emission group, although they have access to a private car, did
not use the car on the observed day, thus producing zero emissions on that particular day. A substantial proportion of
individuals from the zero emission group reside in highly urbanised municipalities, such as Stockholm, Gothenburg,
and Malmö. Presumably, a dense, mixed, and compact urban environment provides this particular group an opportunity
to travel and carry out its daily activities without substantial need for a private car (Sun et al., 2009; Ewing and Cervero,
2010; Susilo et al., 2012).

In terms of experiencing different weather conditions, there is no considerable difference in the shares of individuals from
the zero emission group and the last 20% emission quantile observed in each season. Individuals from the zero emission
group are more likely to be observed in a warmer than normal day (temperature on the given day is higher than its monthly
historical mean in the given municipality) than those from the last 20% emission quantile. A larger proportion, 38.3%, of indi-
viduals from the last 20% emission quantile is observed travelling on rainy days compared to those from the zero emission
group (the corresponding proportion is 26%). However, that difference in terms of snow is less considerable compared to that
in terms of precipitation.

4. Deriving the marginal effects of weather on travel behaviour variables

4.1. The travel behaviour models

The difference in individual CO2 emissions shown in Fig. 1 does not necessarily represent the impacts of weather, since
other factors may vary significantly in different groups of weather condition classifications. Therefore, estimates that repre-
sent the changes in travel behaviour variables solely due to the change of weather are required. Travel behaviour variables,
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Fig. 1. Individual CO2 emissions (kg/day) under different weather conditions. (a) Individual CO2 emissions (kg/day) in different seasons and regions of
Sweden. (The geographical classification of Sweden is based on Nomenclature of Territorial Units for Statistics. The counties of northern Sweden refer to
Härjedalen, Medelpad, Jämtland, Ångermanland, Västerbotten Norrbotten, and Lappland. The counties of central Sweden refer to Hälsingland, Dalarna,
Cästrikland, Uppland, Värmland, Västmanland, Narke, and Södermänland. The counties of southern Sweden refer to Dalsland, Bohus Iän, Västergötland,
Östergötland, Småland, Öland, Gotland, Blekinge, Skäne, and Halland.) (b) Individual CO2 emissions (kg/day) in different precipitation categories. (c)
Individual CO2 emissions (kg/day) in different snow-depth categories.
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Fig. 2. Proportion of individuals against their CO2 emissions.
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including trip frequency, travel mode choice, destination choice, travel distance, and average speed, were well known to
affect the CO2 emissions. Therefore, a series of models was constructed to obtain the marginal effects of weather variables
on these five travel behaviour variables. Those marginal effects denote the amount of changes in each travel behaviour vari-
able given the change of a weather variable while other factors remain invariant. Therefore, those marginal effects represent
the changes in each travel behaviour variable solely due to the change of weather.

Panel mixed binary logit models were used to model the destination choice of non-work trips. The model is simplified as
each individual chooses between two destination choices for his or her non-work trips: the destination is located in the same
municipality of departure or the destination is located outside the municipality of departure. The model has the following
general form:
Ui;j;k ¼ ak þ Xi;jbk þ li;k þ ei;j;k ð2Þ

Pi;j;k ¼
Z þ1

�1

eUi;j;kP2
k¼1e

Ui;j;k
f ðli;kÞdli;k ð3Þ
where Ui;j;k represents the utility of choosing choice k {the destination is located in the same municipality of departure, the
destination is located outside the municipality of departure} for individual i and his/her non-work trip j. ak is the alternative
specific constant. Xi;j represents the explanatory variable set that influences the destination choice, which includes weather
variables. bk represents the corresponding parameters. li;k is the individual level error term that captures the panel effect,
which is assumed to be normally distributed. f ðli;kÞ denotes the probability density function of li;k. Pi;j;k is evaluated through
simulation. The panel effect is considered to take into account the fact that several trips were made by the same individual.
ei;j;k is the independent and identically distributed (iid) error term that is assumed to be Gumbel distributed and leads to the
logit probability expression shown in Eq. (3). The marginal effect of a given weather variable Xi;j is then expressed as
@Pi;j;k=@Xi;j. The marginal effect is calculated by the following equation:
Mi;j;k ¼ @Pi;j;k=@Xi;j ¼ Pi;j;kðXi;j þ DXi;jÞ � Pi;j;kðXi;jÞ
DXi;j

¼

Rþ1
�1

e
Ui;j;k ðXi;jþDXi;j ÞP2

k¼1
e
Ui;j;k ðXi;jþDXi;j Þ

f ðli;kÞdli;k �
Rþ1
�1

e
Ui;j;k ðXi;j ÞP2

k¼1
e
Ui;j;k ðXi;j Þ

f ðli;kÞdli;k

DXi;j
ð4Þ
In Eq. (4), DXi;j denotes a small change of the given weather variable Xi;j. In this study, DXi;j takes the value of 1% of the
mean of Xi;j over all samples. The integral in Eq. (4) is handled by simulation technique. The marginal effect at the sample
mean is reported, which takes the mean of all Mi;j;k for all individuals and their trips. The marginal effect then represents
the probability change in the dependent variable due to unit change of a given weather variable Xi;j.

Two sub-models were estimated for the non-work trips departure in urban areas (Stockholm, Gothenburg, and Malmö)
and rural areas (other municipalities). It is assumed that the destination of the work trip does not change for the given
individual on the given day given the change of weather conditions.

Panel mixed multinomial logit models were used to model travel mode choice. Four sub-models were estimated: (1) work
trips made by individuals with at least one car in the household, (2) non-work trips made by individuals with at least one car
in the household, (3) work trips made by individuals with no car in the household, and (4) non-work trips made by



Table 1
Profile of the zero emission group and the last 20% emission quantile.

The zero emission group The last 20% emission quantile

Socio-demographics
Gender
Male 47.4% 60.6%
Female 52.6% 39.4%
Age
Average age 40.8 46.3
Driving license
Younger than 17 17.6% 3.1%
Having driving license 65.4% 96.1%
Not having driving license but older than 17 17.0% 0.8%
Household type
Younger than 24 29.5% 8.8%
24–64 & single living without children 13.2% 16.4%
24–64 & single living with youngest child 0–6 years old 1.0% 1.3%
24–64 & single living with youngest child 7–18 years old 1.8% 2.2%
24–64 & partnered living without children 18.7% 39.2%
24–64 & partnered living with youngest child 0–6 years old 9.3% 15.3%
24–64 & partnered living with youngest child 7–18 years old 8.8% 22.6%
Over 64 17.2% 8.8%

Missing data 0.6% 0.9%
Household income
Household income <150,000 SEK 6.3% 1.5%
Household income 150,000–400,000 SEK 24.2% 20.2%
Household income >400,000 SEK 39.6% 55.6%
Missing data 29.8% 22.8%
Household size
Average household size 2.72 2.77
Household car ownership
Household with no car 26.1% 0.4%
Household with one car 51.0% 43.2%
Household with two cars 18.9% 43.3%
Household with more than two cars 3.7% 13.1%
Missing data 0.2% /
Residential municipality
Stockholm 18.8% 8.2%
Gothenburg 6.4% 3.3%
Malmö 2.4% 1.8%
Other municipalities 72.5% 86.7%

Weather conditions
Season
Observed in spring 26.1% 23.7%
Observed in summer 24.1% 27.2%
Observed in autumn 25.5% 27.3%
Observed in winter 24.3% 21.7%
Temperature
Average temperature deviation against its monthly mean value 0.43 0.35
Precipitation
No precipitation in the observed day 74.0% 61.7%
Precipitation in the observed day 0–1 mm 16.6% 23.2%
Precipitation in the observed day 1–5 mm 7.3% 11.1%
Precipitation in the observed day >5 mm 2.1% 4.0%
Snow
Snow depth in the observed day is 0 cm 93.2% 91.3%
Snow depth in the observed day 0–1 cm 1.4% 1.8%
Snow depth in the observed day >1 cm 5.4% 6.9%

Note: data are weighted in order to represent the whole population of Sweden.
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individuals with no car in the household. The choice set was simplified into {physically active modes (walking and cycling),
bus, tram/metro, others} for those with no car in the household and {physically active modes, car, bus, tram/metro, others}
for those with at least one car in the household. Both the car drivers and car passengers were counted as car users. Although
people from households without a car can potentially still use a car by a car sharing system, this is not included in this study
since only 2% of all observed trips made by respondents in households without a car are trips with rented or borrowed cars.

Panel log-linear models were used to model the trip distance of non-work trips:
logðDi;jÞ ¼ aþ Xi;jbþ li þ ei;j ð5Þ
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where Di;j is the trip distance of non-work trip j made by individual i. a is the intercept. li is the individual level error term
and ei;j is the iid error term, which are both assumed to be normally distributed. Three sub-models were estimated for (1) the
non-work trips of which the departure and arrival locations are in an urban area and in the same municipality (urban local
trips), (2) the non-work trips of which the departure and arrival locations are in a rural area and in the same municipality
(rural local trips), and (3) the non-work trips of which the departure and arrival locations are in different municipalities
(long-distance trips). It is also assumed that the travel distance for the work trip does not change for the given individual
on the given day given the change of weather conditions.

Panel linear models were used to model the average speed of car trips. Similar to the models for trip distance, three sub-
models were estimated for urban local trips, rural local trips, and long-distance trips. The models have a similar form as
those for trip distance:
Vi;j ¼ aþ Xi;jbþ li þ ei;j ð6Þ
where Vi;j is the average speed for the non-work trip j made by individual i.
Finally, a negative binomial model was used to model the number of non-work trips made per individual per day. Again, it

is also assumed that the number of work trips made by the given individual on a given day would not vary given the change
of weather.

A list of explanatory variables used in those models is presented in Table 2. Observed temperature was separated into
measures of monthly variation and daily variation in order to differentiate the impact of variation of ‘normal’/‘as expected’
weather conditions between municipalities with the impact of variation of ‘un-usual’/‘unpredictable’ weather conditions
from a local perspective (Liu et al., 2015b). The ‘normal’ value here is the average monthly temperature during the 10 years
prior to the analysed year in each municipality where the trip took place. This measure of ‘normal’ temperature represents
the local climate of each month in the given municipality. The corresponding coefficients may reveal differences in travel
patterns between summer (warmer months) and winter (colder months). The daily variation measure was represented by
a Z score, showing the deviation of that value on the given day when the trip took place from its corresponding ‘normal’ tem-
perature. This measure of ‘abnormal’ temperature represents the degree of warmer/colder than the normal temperature. The
corresponding coefficients denote the individuals’ behavioural response to an extremely cold/warm day (temperature being
much lower/higher than the mean temperature in the municipality in that month). This daily variation measure represented
by a Z score was then separated into two intervals—‘Z score < 0’ and ‘Z score > 0’—since both large positive and large negative
Z scores indicate an extreme temperature. An interaction effect between the temperature measures of monthly variation and
daily variation was also introduced, as the effects of this daily variation measure may differ in municipalities in warmer or
colder months.

All of the models were estimated through a backward elimination method, where all explanatory variables were initially
entered into the model, and then those that turned out to be insignificant in each step were sequentially removed. The full
estimation results of the parameters are not shown in the paper due to the limitation in the length of the paper. However, the
estimated marginal effects of each weather variable are presented in Table 3. As discussed above, those marginal effects rep-
resent the changes of a travel behaviour variable given a unit change of a weather variable while other explanatory variables
remain invariant. For instance, as shown in Table 3a, a one degree increase in monthly mean temperature corresponds to a
0.42 percentage point increase in the probability of choosing the destination of a non-work trip other than the municipality
of departure (a long-distance trip).
4.2. The impacts of weather on the travel behaviour variables

As shown in Table 3, although some travel behaviour variables are relatively invariant to the change of weather, all mod-
els exhibit at least one weather variable that has a significant marginal effect. Those changes in travel behaviour variables
surely lead to the change in the amount of CO2 emissions subject to the change of weather. Those marginal effects also indi-
cate the direction of the change in amount of CO2 emissions subject to the change of weather, as an increase/decrease of a
particular travel behaviour variable has an intuitive interpretation to the direction of change of CO2 emissions. Moreover, the
individual level error terms of all models are highly significant even with individual socio-demographic variables being con-
sidered. It indicates a strong between-individual variation, and ignoring this panel effect would likely lead to biased marginal
effect estimates. In many models, the magnitude of between-individual variation is even larger than that of iid error terms.

As shown in Table 3, the probability of choosing a destination of a non-work trip outside the municipality of departure
would increase in warm months. This indicates an increase in travel distance in warm months, which echoes the finding of
Sabir (2011). For those who depart in rural areas, a warmer-than-normal day would indicate a decreasing probability of hav-
ing the destination outside the municipality of departure, thus potentially leading to a decrease in trip distance and CO2

emissions. Moreover, this effect tends to be more substantial in cold months. As expected, snow corresponds to a decreasing
probability of having the destination outside the municipality of departure, although this effect becomes insignificant for
those who depart in urban areas.

As the use of private car is the major source of CO2 emissions, Table 3 only presents the marginal effects of weather vari-
ables on the probability of choosing car as the main travel mode in individuals’ work/non-work trips. For those who do not
have a car in the household (note that only a few individuals in the sample do not have a car in the household), the marginal



Table 2
Explanatory variables used in each model.

Destination
choice

Mode
choice

Trip
distance

Average speed for car
trips

Number of non-work
trips

Socio-demographics
Male (reference)
Female (D)

p p p p p
Number of children under 6 years old in the trip (C)

p p p p
Age under 25 (D)

p p p p p
Age between 25 to 64 (reference)
Age over 64 (D)

p p p p p
Single living (reference)
Partnered living (D)

p p p p
Living type missing (D)

p p p p
Low income (D)

p p p p
Medium income (reference)
High income (D)

p p p p
Income missing (D)

p p p p
Home location in Stockholm (reference)
Home location in Gothenburg (D)

p
Home location in Malmö (D)

p
Home location in other municipalities (D)

p

Trip information
Departure location in Stockholm (reference)
Departure location in Gothenburg (D)

p p p p
Departure location in Malmö (D)

p p p p
Departure location in other municipalities (D)

p p p p
Departure at morning peak 6:00–9:00 (D)

p p p p
Departure at daytime 9:00–16:00 (reference)
Departure at afternoon peak 16:00–19:00(D)

p p p p
Departure at night time19:00–6:00 (D)

p p p p
Trip takes place on Monday to Thursday (D)

p p p p p
Trip takes place on Friday (D)

p p p p p
Trip takes place on weekend (reference)
Trip distance (C)

p
Square of trip distance (C)

p
Vehicle model before 2000 (D)

p
Vehicle model 2000–2005 (D)

p
Vehicle model after 2005 (reference)

Weather condition
Historical monthly mean temperature in the given

municipality (C)

p p p p p

Temperature Z score < 0 (C)
p p p p p

Temperature Z score > 0 (C)
p p p p p

Monthly mean � Z score < 0 (C)
p p p p p

Monthly mean � Z score > 0 (C)
p p p p p

Precipitation amount (C)
p p p p p

Square of precipitation amount (C)
p p p p p

Snow depth (C)
p p p p p

Snow depth missing (D)
p p p p p

Note: The variables ‘Living type missing’, ‘Income missing’, and ‘Snow depth missing’ are dummy variables indicating the corresponding measures are
missing for the given observation. The purpose of using ‘missing dummy’ instead of pairwise elimination is to keep as many observations as possible for
estimation.
C in parentheses denotes that the corresponding variable is a continuous variable, whereas D in parentheses denotes that the corresponding variable is a
dummy variable.
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effects of weather variables on the probability of choosing bus as the main mode were presented. For those who have at least
one car in the household, the probability of choosing car for their work trips is relatively invariant to the changes of weather
compared to their mode choices for non-work trips, which is expected. Only the interaction effect between ‘monthly mean
temperature’ and ‘temperature Z score > 0’ is significant among all weather variables considered. For their non-work trips,
the probability of choosing car tends to increase on a warmer-than-normal day, especially in cold months, which indicates
a substantial increase in CO2 emissions in that weather condition in winter. Moreover, a thick snow depth on the ground
corresponds to a decreasing probability of choosing car in their non-work trips (Liu et al., 2015a), thus contributing to
the reduction of CO2 emissions.

For trip distance, a warm month and a warmer-than-normal day, in general, correspond to a longer trip distance. Precip-
itation is related to a decreasing trend of trip distance of urban local trips but shows no significant effect on that of rural local
trips. Although intuitively precipitation and snow may influence the average speed of car trips, the corresponding variables



Table 3a
Marginal effects of weather variables in each travel behaviour model.

Destination choice for non-work
trips (Probability of travelling
across)

Mode choice model (Panel mixed multinomial logit)

Departure in
urban area

Departure in
rural area

For work and
with car

For non-work
and with car

For work
and no car

For non-work
and no car

Paccross Paccross Pcar Pcar Pbus Pbus

Weather variables
Historical monthly mean temperature in

the given municipality (C)
0.42 0.23 0.03 �0.01 �0.34 �0.10
(4.91) (2.68) (0.28) (�0.24) (1.67) (�0.82)

Temperature Z score < 0 (C) / / 1.41 0.31 �1.55 /
(1.23) (0.94) (�1.26)

Temperature Z score > 0 (C) / �1.34 / 0.47 �3.41 /
(1.73) (4.70) (�3.34)

Monthly mean � Z score < 0 (C) / / �0.13 �0.09 0.32 0.32
(�1.04) (�2.28) (1.70) (1.78)

Monthly mean � Z score > 0 (C) / 0.23 0.14 �0.07 0.16 �0.10
(2.85) (2.99) (�3.52) (1.89) (�1.49)

Precipitation amount (C) / 0.44 0.08 0.08 0.86 �0.16
(1.53) (0.38) (0.56) (2.16) (�1.43)

Square of precipitation amount (C) / / / / �0.01 �0.01
(�1.01) (�0.63)

Snow depth (C) / �0.15 0.02 �0.09 0.70 /
(2.84) (0.22) (�1.67) (1.11)

Model information
Number of observations (trips) 12,543 20,575 11,352 27,013 1275 3577
Number of individuals 5011 7898 5172 9386 611 1363
Log-likelihood �4653.5 �9697.5 �9659.7 �19904.8 �907.9 �2435.2
Log-likelihood at zero beta �8694.1 �14261.5 �18270.3 �43475.7 �1767.5 �4958.8
McFadden’s rho 0.465 0.320 0.471 0.542 0.486 0.509
Standard deviation of individual level error

term
2.193 2.156 3.12 4.01 5.23 2.70
(20.38) (32.91) (37.60) (55.97) (8.54) (18.92)

Standard deviation of iid error term
(standard Gumbel distribution)

1.283 1.283 1.283 1.283 1.283 1.283
(fixed) (fixed) (fixed) (fixed) (fixed) (fixed)

Note: ‘/’ means the corresponding variable was eliminated through the backward elimination method. Numbers in parenthesis are corresponding t-values
calculated through the delta method. Numbers in bold characters are significant at 10% level. Note that it is possible that the given marginal effect is
insignificant while the corresponding parameter is significant and kept in the model. For models of destination choice, the marginal effects on the
probability of travelling across municipality are presented. For models of mode choice, the marginal effects on the probability of choosing car are presented
for those households with a car. The marginal effects on the probability of choosing bus are presented for those without a car in household.
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show no significant effects. However, precipitation and snow influence the destination choice, which serves as a selection
mechanism for the trip distance and average models. In other words, changes in precipitation amount and snow depth
may lead to a shift in the selection of trip distance and average models (e.g. shift from an urban local trip to long-
distance trip given the change in precipitation amount and snow depth), resulting in the change of average speed in different
rainy and snowy conditions. Moreover, monthly mean temperature shows positive effects on the average speed of all types
of trips, whereas the effects of temperature Z score variables and the interaction variables differ in different types of trips. For
the trip frequency of non-work trips, only the interaction effect between monthly mean temperature and temperature Z
score > 0 shows a significant effect.

It is worth noting that the study builds upon the one-day travel diary data, not a long-term panel database. Thus, the esti-
mated marginal effects of weather variables represent how the entire sample would have different travel behaviour in dif-
ferent weather conditions rather than that one given individual would have different travel behaviour in different weather
conditions. The latter may infer the long-term travel behaviour of individuals, such that a given individual may choose to
allocate more leisure travel on warm and sunny days while taking fewer trips on cold and rainy days. Capturing this
long-term travel budget (trade-off) may require longitudinal travel diary data for a long time period.
5. Changes in CO2 emissions due to the change of weather

Although the marginal effects of weather variables on travel behaviour variables give intuitive interpretations on the
changes in CO2 emissions due to the change of weather, the overall picture of the effects of weather is still unclear. For
instance, from the discussion above, trip distance tends to increase in warm months (an increase in monthly mean temper-
ature). However, the emission factor of car is generally smaller in warmer months, raising questions on the changes in
amount of CO2 emissions given the change in monthly mean temperature. Therefore, the marginal effects of weather vari-
ables on CO2 emissions were derived based on the travel behaviour models presented in Section 4. Those marginal effects



Table 3b
Marginal effects of weather variables in each travel behaviour model.

Trip distance for non-work
trips (panel log-linear)

Average speed of car
trips (panel linear)

Number of non-work
trips per individual
per day (Negative
binomial)

Urban
local
trips

Rural
local
trips

Long
distance
trips

Urban
local
trips

Rural
local
trips

Long
distance
trips

Non-work trips

Log(D) Log(D) Log(D) V V V E(N)

Weather variables
Historical monthly mean temperature in the

given municipality (C)
0.007 0.009 0.021 0.091 0.116 0.169 /
(2.18) (3.59) (5.16) (1.63) (2.93) (2.72)

Temperature Z score < 0 (C) / / / �2.345 / 1.730 /
(�3.36) (1.96)

Temperature Z score > 0 (C) / 0.086 0.129 / 0.462 / /
(2.95) (2.98) (1.72)

Monthly mean � Z score < 0 (C) / / �0.009 / / �0.187 /
(�2.61) (�2.22)

Monthly mean � Z score > 0 (C) / �0.004 �0.012 / / / 0.003
(�1.64) (�3.28) (4.19)

Precipitation amount (C) �0.069 / / / / / /
(�4.00)

Square of precipitation amount (C) 0.004 / �0.001 / / / /
(3.41) (�1.85)

Snow depth (C) / / / / / / /

Model information
Number of observations (trips) 9619 15,903 5894 4989 9980 6715 /
Number of individuals 3640 5863 3173 1889 3851 3324 14,026
Adjust R square 0.029 0.035 0.229 0.072 0.066 0.099 /
Standard deviation of individual level error term 0.94 0.94 1.14 10.99 13.83 17.93 /
Standard deviation of iid error term 1.03 0.92 0.67 14.95 14.11 16.97 /
Dispersion parameter / / / / / / 3.996

(28.96)
Log-likelihood / / / / / / �27182.4
AIC / / / / / / 54,393

Note: ‘/’ means the corresponding variable was eliminated through the backward elimination method. Numbers in parenthesis are corresponding t-values
calculated through the delta method. Numbers in bold characters are significant at 10% level. Note that it is possible that the given marginal effect is
insignificant while the corresponding parameter is significant and kept in the model. For models of destination choice, the marginal effects on the
probability of travelling across municipality are presented. For models of mode choice, the marginal effects on the probability of choosing car are presented
for those households with a car. The marginal effects on the probability of choosing bus are presented for those without a car in household.
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represent the changes in CO2 emissions, expressed in terms of individual CO2 emissions, given a new scenario of weather
conditions (a new set of values of weather variables).

In order to derive such changes in CO2 emissions, the changes of travel behaviour variables in the new scenario of weather
conditions were first derived through the travel behaviour models described in Section 4. In general, the derivation of the
changes of travel behaviour variables in the new scenario of weather conditions is identical to the derivation of the marginal
effects of weather variables presented in Table 3, as shown below:
Mi
w ¼ E YijXi

w new; b
� �

� E YijXi
w old;b

� �
ð7Þ
where Mi
w denotes the change of a particular travel behaviour variable for observation i given a new scenario of weather

conditions. Xi
w new denotes the explanatory variable set where the original weather variables are substituted by a new set

of weather variables given a particular weather scenario. Xi
w old denotes the explanatory variable set with the original

weather variables. b denotes the estimated parameters of a given model. EðYijXi
w; bÞ denotes the expected outcome of the

travel behaviour variable Yi, given the explanatory variable set Xi
w and corresponding parameters b. For the models of aver-

age speed of car trips (panel linear model), the expected outcome is EðYijXibÞ ¼ Xib. For the models of trip distance (panel
log-normal linear model) and number of non-work trips per day (negative binomial model), the expected outcome is

EðYijXibÞ ¼ eX
ib. For the models of destination choice and mode choice (panel mixed logit models), the change of share of each

alternative in the whole sample was first determined. For a given alternative k, the change of number of observations choos-
ing alternative k due to the change of weather variables is:
Nk ¼
X
i

Pw new
i;k �

X
i

Pw old
i;k ð8Þ
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where Pw new
i;k is the predicted probability of choosing alternative k for observation i given the new set of weather variables.

Pw old
i;k is the predicted probability of choosing alternative k for observation i given the weather variables in the data. The

expression of Pw new
i;k and Pw old

i;k is presented in Eq. (3). If Nk is positive, which means that Nk observations were shifting from

other alternatives to alternative k due to the change of weather variables, Nk observations with the highest values of Pw new
i;k

among the observations that do not choose alternative kwere selected to shift from other alternatives to alternative k. If Nk is
negative, those with the lowest values of Pw new

i;k among the observations that choose alternative kwere selected to shift from

alternative k to other alternatives. Those Nk observations then denote Mi
w.

Therefore, the predicted travel behaviour variable given the change of weather is expressed as:
Yi
new ¼ Yi

old þMi
w ð9Þ
where Yi
new denotes the new travel behaviour variable given the change of weather. Yi

old denotes the travel behaviour variable

observed in the data. It is important to note that the predicted travel behaviour variable builds upon the observed data Yi
old

rather than the predicted values from the model. The influence of the change of weather variables is expressed in the mar-

ginal effect Mi
w. Given that some models show poor model fit (e.g. the adjust R square of trip distance model of urban local

trips is 0.02), the predicted value from the model may differ substantial from the observed data, which is due to the large

estimated standard deviation of the iid error term. However, the marginal effect Mi
w takes the difference of expected out-

comes of the model given the changes of weather (see Eq. (8)). It is therefore more stable and reliable compared to directly

using the predicted values as Yi
new, since the impact of this large standard deviation of the iid error term is cancelled out

when deriving Mi
w, as the standard deviation of the iid error term appears in both the terms E YijXi

w new; b
� �

and

E YijXi
w old; b

� �
, as shown in Eq. (7).

The predicted travel behaviour variables according to Eq. (9) were then used to calculate the individual CO2 emissions in
the new weather scenario. A general flowchart of the calculation is shown in Fig. 3.

As shown in Fig. 3, the predicted changes of destination choice given the change of weather were first calculated, in which
certain observations shifted from local trips to long-distance trips and vice versa given the new weather scenario. Given
those changes in destination choices, the changes of average speed profile and trip distance profile were then determined.

For those observations that shifted destination choices, E YijXi
w new; b

� �
of average speed and trip distance were calculated

using the function of the new model according to the new destination choice (local trips or long-distance trips). For instance,

a given trip shifted from an urban local trip to a long-distance trip. Therefore, E YijXi
w old; b

� �
of the trip distance model was

calculated through the estimated function of urban local trips. However, E YijXi
w new; b

� �
of the trip distance model was cal-

culated through the estimated function of long-distance trips, because the destination choice has changed given the new
weather scenario. The changes in model choice were then determined given the change in trip distance. Those changes in
travel behaviour variables and the new emission factors given the new weather scenario were then used to calculate the
CO2 emissions of each trip. The CO2 emissions at trip level were then aggregated into individual level by considering the
changes in the number of non-work trips per individual per day.
Fig. 3. Flowchart of the prediction of CO2 emissions under new weather scenario.



184 C. Liu et al. / Transportation Research Part D 49 (2016) 172–187
Given the fact that the future climate will become warmer and weather will become more extreme and unpredictable, a
series of scenarios is considered: (1) the monthly mean temperature increases by 1–5 �C (a warmer climate), (2) the daily
temperature Z score is 10–50% more extreme (a more extreme temperature), (3) a combination of scenario 1 and scenario
2 (a warmer climate and a more extreme temperature), (4) precipitation amount is 10–50% more (more extreme rainy con-
ditions), and (5) snow depth are 10–50% more (more extreme snowy conditions).

The predicted change in CO2 emissions in these five scenarios are presented in Table 4.
As shown in Table 4, individual CO2 emissions tend to increase in the scenario of a warmer climate. Given that the

monthly mean temperature increases by 5 �C, the corresponding individual CO2 emissions would increase by 6.8% with
all else being equal. As seen in Table 3, an increase in monthly mean temperature corresponds to an increase in trip distance,
which therefore increases the likelihood of choosing a private car. Although the emission factor of a private car decreases
with the increase of temperature, this part of reduction in CO2 emissions does not surpass the CO2 emissions from the
increased use of a private car and vehicle kilometres travelled. By looking into different sources of emissions, hot emissions
from the auxiliary system increase dramatically by 37.0% given a 5 �C rise in monthly mean temperature, whereas cold start
emissions decrease slightly in a warmer climate by 9.7%. A more extreme temperature also corresponds to the increase of
individual CO2 emissions, although the magnitude is much smaller than that of the scenario of a warmer climate. Increasing
the daily temperature Z score by 50% only leads to a 2.3% increase in individual CO2 emissions. Contrary to the scenario of a
warmer climate, cold start CO2 emissions remain relatively unchanged in a more extreme temperature condition. In the sce-
nario of both a warmer climate and a more extreme temperature, the change in individual CO2 emissions becomes more dra-
matic. It is worth noting that the change in CO2 emissions in the scenario of a warmer climate and a more extreme
temperature tends to be larger than the sum of changes in CO2 emissions in each individual scenario. For instance, the indi-
vidual CO2 emissions increase by 382 g in the scenario of ‘increasing monthly mean temperature by 5 �C and increasing daily
temperature Z score by 50%’, whereas the sum of the changes in individual CO2 emissions in each scenario is only 356 g
(265 g + 91 g). This indicates that the CO2 emissions from passenger transport are likely to increase more than expected
in such a joint scenario, which is more likely to occur in the future.

In the scenarios of heavier rain situations, the individual CO2 emissions do not vary substantially. Although the precipi-
tation amount is negatively related to the trip distance of urban local trips (see Table 4), its influence on CO2 emissions is
absorbed by the slightly more preferable usage of car mode on rainy days as well as the increase in emission factors on rainy
days, mainly the factor of emissions from the auxiliary system. Moreover, the individual CO2 emissions drop slightly in a
much thicker snow scenario, although the magnitude is small. It is worth noting that only 30% of all sampled trips are under
rainy conditions, whereas only 8% are under snowy conditions. Therefore, changes in precipitation amount and snow depth
would only affect the CO2 emissions of those trips. However, it is plausible that the individual CO2 emissions may increase/
decrease more substantially if the heavy rain and thick snow situations become more frequent, which this study does not
consider.

According to the future climate prediction from Intergovernmental Panel on Climate Change (IPCC) (Collins et al., 2013),
the global mean temperature will increase from 0.5 �C to 4 �C in the years 2081–2100 compared to the reference years
(1981–2000), depending on the scenario. Precipitation change would be between 0% and 20%. The annual minimum daily
temperature would be 11 �C colder and the annual maximum daily temperature 4 �C warmer in Sweden. Therefore, the
emission of a possible scenario ‘mean temperature +4 �C, Z score +50%, and precipitation +20%’ is calculated, which results
in 4184.7 g per individual per day (108.1% of the base scenario). This means that CO2 emissions will increase by 8% due to the
changes in weather and climate in a pessimistic future climate scenario. This indicates that if a large-scale transport
demand–supply model does not take into account weather elements, its prediction of CO2 emissions in the future scenario
can be significantly underestimated. Transport policies related to climate mitigation should either focus on market penetra-
tion of green vehicles (e.g. electric vehicle) in order to lower emission factors or cope with an increased travel demand, espe-
cially for long-distance car trips in Sweden, to decrease vehicle kilometres travelled.

6. Discussions and conclusion

Although there is growing knowledge of the impacts of weather on the change of travel behaviour, the impacts of weather
on CO2 emissions from passenger transport still receive little attention. However, the impacts of weather on CO2 emissions
from passenger transport are not directly transferrable from the knowledge of weather impacts on travel behaviour, due to
the dual role of weather in travel behaviour change and emission factor change. Therefore, this paper explored the relation-
ship between the changes of weather conditions and the change in CO2 emissions from passenger transport by considering
the influences of weather on both travel behaviour and emission factors. This study is a first attempt to get a plausible esti-
mate of the change in individual CO2 emissions given the change of weather conditions. Using NTS data and weather data
from SMHI, the individual CO2 emissions were calculated by using the emission factors derived from the European emission
model ARTEMIS. The individual CO2 emissions showed clear variations in different seasons and weather conditions. A series
of econometric models was used to model the travel behaviour variables that are relevant to individual CO2 emissions. The
marginal effects of each weather variable on those travel behaviour variables were presented. The results in general corre-
spond to the existing knowledge on the impacts of weather on travel behaviour. A warmer climate corresponds to an increas-
ing trip distance, which thus increases the probability of choosing a private car, whereas precipitation and snow conditions
discourage individuals from conducting long-distance trips.



Table 4
Individual CO2 emissions in the new scenarios of weather conditions.

Total emissions (g) Hot exhaust
emissions (g)

Hot emissions from
auxiliary system (g)

Cold start emissions
(g)

Evaporative
emissions (g)

Value Percentage
(%)

Value Percentage Value Percentage
(%)

Value Percentage
(%)

Value Percentage
(%)

Scenario 1
Current weather conditions 3871.1 100 3593.2 100 144.7 100 132.9 100 0.3 100
Monthly mean temperature

+ 1 �C
3922.7 101.3 3640.0 101.3 151.8 104.9 130.5 98.2 0.3 101.9

Monthly mean temperature
+ 2 �C

3978.3 102.8 3689.4 102.7 160.2 110.7 128.2 96.5 0.4 135.8

Monthly mean temperature
+ 3 �C

4025.2 104.0 3728.3 103.8 170.9 118.1 125.5 94.4 0.5 169.8

Monthly mean temperature
+ 4 �C

4077.7 105.3 3771.1 104.9 183.2 126.7 122.9 92.5 0.5 169.8

Monthly mean temperature
+ 5 �C

4136.0 106.8 3817.2 106.2 198.2 137.0 120.0 90.3 0.6 203.8

Scenario 2
Current weather conditions 3871.1 100 3593.2 100 144.7 100 132.9 100 0.3 100
Daily temperature Z score

+ 10%
3893.5 100.6 3612.5 100.5 147.9 102.2 132.8 99.9 0.3 101.9

Daily temperature Z score
+ 20%

3914.8 101.1 3630.0 101.0 151.6 104.8 132.8 99.9 0.3 101.9

Daily temperature Z score
+ 30%

3932.6 101.6 3644.1 101.4 155.6 107.5 132.6 99.8 0.3 101.9

Daily temperature Z score
+ 40%

3947.6 102.0 3653.6 101.7 161.4 111.6 132.3 99.6 0.4 135.8

Daily temperature Z score
+ 50%

3961.7 102.3 3666.8 102.0 162.5 112.3 132.0 99.3 0.4 135.8

Scenario 3
Current weather conditions 3871.1 100 3593.2 100 144.7 100 132.9 100 0.3 100
Temperature + 1 �C and Z

score + 10%
3941.9 101.8 3655.6 101.7 155.6 107.5 130.4 98.1 0.4 135.8

Temperature + 2 �C and Z
score + 20%

4010.2 103.6 3712.7 103.3 169.2 116.9 127.9 96.3 0.4 135.8

Temperature + 3 �C and Z
score + 30%

4083.8 105.5 3772.3 105.0 185.9 128.5 125.0 94.1 0.6 203.8

Temperature + 4 �C and Z
score + 40%

4168.9 107.7 3839.2 106.8 206.9 143.0 122.2 92.0 0.7 237.8

Temperature + 5 �C and Z
score + 50%

4252.7 109.9 3900.8 108.6 230.9 159.6 120.1 90.4 0.9 305.7

Scenario 4
Current weather conditions 3871.1 100 3593.2 100 144.7 100 132.9 100 0.3 100
Precipitation amount + 10% 3871.2 100.0 3593.4 100.0 144.7 100.0 135.7 102.1 0.3 101.9
Precipitation amount + 20% 3872.2 100.0 3594.3 100.0 144.8 100.1 135.7 102.1 0.3 101.9
Precipitation amount + 30% 3872.0 100.0 3594.1 100.0 144.8 100.1 135.7 102.1 0.3 101.9
Precipitation amount + 40% 3870.0 100.0 3592.2 100.0 144.8 100.1 135.6 102.0 0.3 101.9
Precipitation amount + 50% 3873.5 100.1 3595.7 100.1 145.1 100.3 135.5 101.9 0.3 101.9

Scenario 5
Current weather conditions 3871.1 100 3593.2 100 144.7 100 132.9 100 0.3 100
Snow depth + 10% 3864.7 99.8 3587.0 99.8 144.6 99.9 132.8 99.9 0.3 101.9
Snow depth + 20% 3858.0 99.7 3580.4 99.6 144.5 99.9 132.8 99.9 0.3 101.9
Snow depth + 30% 3856.1 99.6 3578.5 99.6 144.5 99.9 132.8 99.9 0.3 101.9
Snow depth + 40% 3855.6 99.6 3578.1 99.6 144.4 99.8 132.8 99.9 0.3 101.9
Snow depth + 50% 3855.3 99.6 3577.8 99.6 144.4 99.8 132.8 99.9 0.3 101.9
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These models were then used in a simulation study to derive the changes in individual CO2 emissions due to the changes
of weather conditions. The marginal effects of weather variables on each travel behaviour variable were derived and used to
calculate the travel behaviour changes under the new weather scenario. Those travel behaviour changes together with the
changes in emission factors were then used to derive the changes in individual CO2 emissions. A series of scenarios was con-
sidered given that the future climate will become warmer and that weather will become more extreme and unpredictable.
The scenario analysis showed an increase in individual CO2 emissions in a warmer climate and in more extreme temperature
conditions, whereas increasing intensity of precipitation and snow corresponds to a slight decrease in individual CO2 emis-
sions, although it may be due to the fact that only a few trips were sampled in those weather conditions. It is worth noting
that the change in CO2 emissions in the scenario of a warmer climate and a more extreme temperature tends to be larger
than the sum of changes in CO2 emissions in each individual scenario. Given that a warmer climate and more extreme
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weather would co-occur more frequently, this result suggests even greater individual CO2 emissions in such a future climate
than in either a warmer climate or more extreme weather conditions. Furthermore, the weather scenarios considered in this
study can be combined with other scenarios regarding the change of land use patterns, socio-demographical profiles, and
vehicle fleet profiles to derive a more comprehensive picture of CO2 emissions in various possible future scenarios.

The results presented in this study indicate the importance of considering weather and climate change in the evaluation
of CO2 emissions. Given that most large-scale transport demand–supply interaction models do not consider the impacts of
weather variability, using the estimated CO2 emissions from those models as the estimates of future external effects may
considerably underestimate the actual future CO2 emissions. With global warming and more frequent adverse weather, such
an underestimation may reach 8% or more. In cost–benefit analysis, the underestimated external cost of CO2 emissions
would lead to a higher rank for projects with considerable environmental impacts. Possible abatement could be to set up
a higher marginal external cost for CO2 emissions—higher than the shadow price for CO2 emissions—in order to give a higher
weight of CO2 emissions per capital. For traffic management, the efforts then must not only cope with the seasonal and local
weather pattern of activity–travel behaviour. For instance, more congestion on a warm summer day is expected. Therefore,
appropriate congestion mitigation measurements are needed. Moreover, long-distance car trips are more preferred in warm
months. Freeway management is needed in warm months to cope with the increasing demand.

Nevertheless, one should also be aware of the limitations of this study. First, this study used national survey data in which
detailed departure and arrival locations are not available. Therefore, detailed land use and accessibility variables were not
used in the econometric model. Second, this study derived the marginal effects of weather from econometric models, while
some of which showed low model fit. However, a transport model with demand–supply interaction would provide more
accurate marginal effects of weather, since certain travel behaviour variables such as average speed are more suitably
described in the supply model with a detailed speed–density relationship in each link rather than any regression models.
However, given that the travel route of each trip is not available in the NTS and few transport demand–supply models con-
sider weather as a factor, econometric models were used in this study. Third, the results from this study are also exploratory
and need to be validated, preferably with the results from large-scale demand–supply models if weather elements are con-
sidered. Fourth, the marginal effects of weather variables are likely to vary among regions and countries with a different cli-
mate (Liu et al., 2015b). A meta-analysis comparing the CO2 emissions subject to the change of weather would give a
comprehensive picture of the influence of weather on a global scale. It was also assumed in this study that the individual
activity–travel engagement behaviour would follow the patterns that were exhibited in the NTS. There is no guarantee that
the individual activity–travel engagement behaviour would remain the same when the weather characteristics change in the
future. The study also only focuses on direct in-use CO2 emissions, not the carbon footprint. All of these issues would be pos-
sible future research directions of this study.
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