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Connected vehicle technology can be beneficial for traffic operations at intersections. The
information provided by cars equipped with this technology can be used to design a more
efficient signal control strategy. Moreover, it can be possible to control the trajectory of
automated vehicles with a centralized controller. This paper builds on a previous signal
control algorithm developed for connected vehicles in a simple, single intersection. It
improves the previous work by (1) integrating three different stages of technology devel-
opment; (2) developing a heuristics to switch the signal controls depending on the stage of
technology; (3) increasing the computational efficiency with a branch and bound solution
method; (4) incorporating trajectory design for automated vehicles; (5) using a Kalman
filter to reduce the impact of measurement errors on the final solution. Three categories
of vehicles are considered in this paper to represent different stages of this technology:
conventional vehicles, connected but non-automated vehicles (connected vehicles), and
automated vehicles. The proposed algorithm finds the optimal departure sequence to min-
imize the total delay based on position information. Within each departure sequence, the
algorithm finds the optimal trajectory of automated vehicles that reduces total delay. The
optimal departure sequence and trajectories are obtained by a branch and bound method,
which shows the potential of generalizing this algorithm to a complex intersection.
Simulations are conducted for different total flows, demand ratios and penetration rates

of each technology stage (i.e. proportion of each category of vehicles). This algorithm is
compared to an actuated signal control algorithm to evaluate its performance. The simula-
tion results show an evident decrease in the total number of stops and delay when using
the connected vehicle algorithm for the tested scenarios with information level of as low
as 50%. Robustness of this algorithm to different input parameters and measurement
noises are also evaluated. Results show that the algorithm is more sensitive to the arrival
pattern in high flow scenarios. Results also show that the algorithm works well with the
measurement noises. Finally, the results are used to develop a heuristic to switch between
the different control algorithms, according to the total demand and penetration rate of
each technology.
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1. Introduction

Traffic signals are essential components for urban traffic management. Traffic signals interrupt the progression of vehi-
cles, increasing travel time, gas emissions and fuel consumption (Unal et al., 2003; Coelho et al., 2005; Li et al., 2009). It
is estimated that delays at traffic signals contribute to as much as 5–10% of all traffic delay or 295 million vehicle-hours
of delay on major roadways in the U.S. (National Transportation Operations Coalition (NTOC), 2012). Moreover, field tests
have shown that stop-and-go vehicles cause 14% extra exhaust gas emissions compared to vehicles that drive at a constant
speed (Xia et al., 2012).

Traditional signal control strategies use either historical data (fixed-time) or real-time information provided by loop
detectors (actuated or adaptive) to determine departure priority. Those devices are usually installed at a fixed location
and cannot provide detailed information about the movement of individual vehicles. Therefore, even if those signal control
strategies can adapt to the variations in demand, there is still room for improvement.

The recent development in connected vehicle technology (i.e. vehicles that can communicate with each other and infras-
tructure to provide information on speed, location, etc.) makes it possible to track and control the movement of vehicles and
thus has attracted increasing attention in traffic control. With real-time information obtained from connected vehicles, bet-
ter signal control strategies can be developed. Moreover, wireless communication systems and automated driving can help
advise drivers or control vehicles, providing a more flexible design of signal control strategies.

A recent research (Guler et al., 2014) proposed a signal control algorithm for an isolated intersection. It used information
provided by different penetration rates of connected vehicles present in a traffic stream, and evaluated the benefits of this
technology. This paper further exploits the value of connected vehicle technology by extending the above research. In this
work, additionally, a certain percentage of connected vehicles are assumed to be automated. This allows the central con-
troller to optimally design the trajectories of these automated vehicles to further improve the operations. Compared to
Guler et al. (2014), the contributions of this paper are threefold. First, this work proposes a scheme to show how the algo-
rithm should evolve with different development stages of connected vehicle technology, considering three different types of
vehicles. Second, it enables bidirectional vehicle-to-infrastructure communication and successfully integrates trajectory
design for automated vehicles into the signal control scheme. Third, it further improves the performance indices by reducing
both the delay and the number of stops.

This paper is organized as follows. Section 2 presents a short review on signal control strategies utilizing connected vehi-
cle technology. Section 3 introduces the algorithm developed. Section 4 evaluates the performance of this algorithm by com-
paring it to an actuated signal control algorithm, and analyzes its robustness. Section 5 proposes a demand responsive
control strategy based on the application bounds of the new algorithm. Section 6 concludes the paper.
2. Literature review

This section presents a short literature review on signal control strategies based on connected vehicle technology. The
interested readers can refer to Florin and Olariu (2015) for a comprehensive survey of traffic signal optimization methods
using connected vehicles from a technology perspective, and L. Li et al. (2014) which, from the control side, summarized
the general traffic control strategies and highlighted the transition from feedback control to feed-forward control thanks
to the connected vehicle technology.

The existing research on intersection control using connected vehicles can be classified into two categories. In the first
category, it is assumed that vehicles report position and speed information to a central controller. The central controller then
optimizes the intersection control based on such information. Some studies focus on the optimization of the signal phases
(Priemer and Friedrich, 2009; Hu et al., 2015), whereas other studies provide priority to individual cars to optimize departure
sequences (Wu et al., 2007; Pandit et al., 2013). Most of the early works assume all or a majority of the vehicles are con-
nected. Only a few recent works relaxed this assumption by taking into consideration incomplete information. The arrival
information of unequipped vehicles is estimated using either traffic models (He et al., 2012, 2014; Guler et al., 2014;
Feng et al., 2015), statistical methods (Lee et al., 2013), or simulations (Goodall et al., 2013). It is shown that the algorithms
in the aforementioned works perform well with lower penetration rates. However, the benefit of this technology is not fully
exploited in this category, as these works assume only uni-directional communications.

The second category takes advantage of automated driving and integrates trajectory design into the signal control
scheme. Vehicle trajectories can be designed to minimize evacuation time (Li and Wang, 2006), or to provide cooperative
control (Lee and Park, 2012). A reservation based algorithm that reserves space at the intersection for each car in advance
was proposed for automated vehicles only (Dresner and Stone, 2004) and for connected vehicles with human drivers mixed
with automated vehicles (Dresner and Stone, 2006). Au and Stone (2010) presented a trajectory planning algorithm for auto-
mated vehicles to reduce the number of stops. Z. Li et al. (2014) presented an on-line algorithm to optimize vehicle trajectory
and traffic signal simultaneously for an intersection of two one-way streets. A rolling horizon scheme is adopted to identify
each control stage. In each stage, trajectory is designed and signal timing plans are enumerated to minimize total delay.
Kamal et al. (2015) used model predictive control to coordinate automated vehicles at an unsignalized intersection to max-
imize the intersection capacity and avoid collision. One limitation in the previous works in this category is that they assume
all vehicles to be automated or connected.
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This paper tries to fill the gap. First, this paper allows the central controller to design the trajectory of automated vehicles
to improve the overall operations. Second, this paper considers incomplete information. Finally, a demand responsive
scheme is proposed to accommodate all stages of technology development.
3. Description of algorithm

In this paper, a signal control algorithm is developed using the information obtained from connected and automated vehi-
cles at an isolated intersection with two one-way traffic streams. This simple scenario is chosen to gain insights on the ben-
efits of connected vehicle technology for the operation of the intersection. For the reader’s convenience, a list of the most
important variables used in the algorithm is presented in Table 1.

Three categories of vehicles are considered: (1) conventional vehicles, (2) automated vehicles (also known as autonomous
vehicles in some literature), and (3) connected vehicles. Conventional vehicles are defined as the vehicles that cannot com-
municate to the central controller by any means. Automated vehicles are the vehicles without a driver, whose trajectories
can be controlled by the central controllers. Although all automated vehicles provide information (i.e., are connected), herein
we call connected vehicles only those vehicles that send information, but whose trajectory cannot be controlled/modified.1

It is assumed that both connected and automated vehicles are equipped with vehicle-to-infrastructure (V2I) communi-
cation systems. V2I communication systems have been widely employed in traffic signal control strategies (He et al.,
2014; Z. Li et al., 2014; Hu et al., 2015). There are several platforms that enable V2I communications, such as Dedicated Short
Range Communications (DSRC), 3G/4G, and Bluetooth. Compared to the other platforms, DSRC has several advantages (Guo
and Balon, 2006; Andrews and Cops, 2009): (1) it is more robust to radio interference and extreme weather conditions; (2) it
works with high vehicle speeds; (3) it has small latency (0.002 s); (4) it helps to protect privacy; and (5) the transmission
rage of DSRC is 100–1000 m. Therefore, the algorithm in this paper is developed based on the DSRC communication
technology.

Additionally, it is assumed that the trajectory (vehicle motion trajectory, e.g. speed, acceleration rate, etc.) of automated
vehicles can be controlled using V2I communications and automated driving systems. This gives the possibility to design the
trajectory for automated vehicles to improve the traffic operations at the intersection.

The proportion of each type of vehicle is summarized with two penetration rates. The percentage of connected vehicles
among all vehicles is defined as the information level, i.e.,
1 In c
their be
them ex
information level ¼ number of automated vehiclesþ number of connected vehicles
number of all vehicles

ð1Þ
The proportion of automated vehicles among all vehicles that send information (connected and automated vehicles) is
defined as the automated level, i.e.,
automated level ¼ number of automated vehicles
number of automated vehiclesþ number of connected vehicles

ð2Þ
Both the information level and the automated level range from 0 to 1. Different combinations of these two penetration rates
represent different implementation stages of connected vehicle technology.

The inputs to the algorithm include the car set N that consists of all connected and automated cars in the zone of interest,
plus stopped conventional cars ahead of some stopped connected or automated cars, as well as the arrival sequence and the
observed or estimated trajectory of each car. The output of the algorithm is the optimal departure sequence for all cars in car
set N and the optimized trajectory for each automated car in the zone of interest. The zone of interest is defined as the range
within which connected and automated vehicles can send and receive information in relation to the intersection. The length
of the zone of interest partly determines the amount of information received from the connected and automated vehicles. It
is constrained by two factors: the city block size (traffic side) and the DSRC transmission range (technology side). It would be
unrealistic to have a zone of interest longer than a city block, as this would require a priori information on route choice. It is
also required for the zone of interest to be shorter than the DSRC transmission range due to physical constraints. However, if
the zone of interest is selected to be too short, there will not be enough information resulting in myopic signal control. There-
fore, the minimum of the city block size and the DSRC transmission range is used in this paper.

The flowchart of the algorithm is shown in Fig. 1. The goal of this algorithm is to determine the optimal departure
sequence of all vehicles and the optimized trajectories for automated vehicles in an on-line manner (i.e. in real time). Each
decision step (i.e. the time between every update of the optimal departure sequence and trajectories of automated vehicles)
is triggered by one of three events: (1) a connected or automated car enters the zone of interest; (2) a connected or auto-
mated car comes to a stop; (3) a connected or automated vehicle leaves the zone of interest. All of these events require
the inputs to be updated. The first event adds new connected or automated cars to the set N, the second event unveils
stopped conventional cars that were not detected before, and the third removes a vehicle from the car set N.
ases where connected vehicles also receive instructions, if the drivers follow them, they are deemed as automated vehicles; if the drivers do not change
haviors accordingly, they fall into the connected vehicle category. For simplicity, the case where the drivers react to the instructions but do not follow
actly is not considered in this paper.



If 1) new connected/automated vehicles arrive at the zone of interest, 2) connected/
automated vehicles come to a stop,  or 3) a vehicle leaves the zone of interest, trigger the 

decision step K.

Solution procedure: branch and bound (Section 3.4 and Appendix B)
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based on vehicle trajectories to minimize 
the total delay. (Section 3.2) 

Lower level model:
Trajectory optimization for each 

automated vehicle to maximize the speed 
entering the intersection for a given 
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Decision step K: a  bi-level optimization problem

Execute the output:
Assign the optimal trajectories to the automated vehicles and discharge the vehicles 

according to the selected departure sequence.

K
 =

 K
 +

1

Determine the input (Section 3.1): 
Update the vehicle set N, the arrival sequence and the observed trajectory of each car. 

Fig. 1. Flowchart of algorithm.

Table 1
List of most important variables.

N Current car set at each decision time, cars indexed by c
I Arrival sequence, cars indexed by i
J Departure sequence, cars indexed by j
M Approach, indexed by m
uf Free flow speed
kjam Jam density
w Backward wave speed
Sm Saturation flow rate for approach m
l Length of the intersection
a Acceleration rate
d Length of zone of interest
umin Lower bound for speed in trajectory design
Vc Virtual departure time of car c at the downstream end of the intersection
Dc;J Departure time of car c for departure sequence J at the downstream end of the intersection
TDJ Total delay for departure sequence J
Pc;J Delay penalty for car c for departure sequence J, this represents the time it takes for car c to cross the intersection
Oc;J Position of car c within the platoon using departure sequence J

uinit
c;J Initial speed of car c when entering the intersection

uopt
c;J Optimal speed in trajectory design

udes
c;J Design speed in trajectory design
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In each decision step, a bi-level optimization model is proposed to integrate the optimization of departure sequence and
the trajectory design for automated vehicles based on the arrival information. The upper level model is adapted from Guler
et al. (2014). In the upper level model, the departure sequence is optimized to minimize the total delay based on the revealed
vehicle trajectories. In the lower level model, the trajectory of each automated vehicle is optimized for a given departure
sequence to maximize the speed entering the intersection. The two levels interact with each other. The lower level model
takes the departure sequence and returns vehicle trajectories to the upper level model. In this paper, the bi-level model
is solved by a branch and bound algorithm.

In the final step, vehicles are discharged according to the calculated departure sequence. Automated vehicles will be given
designed trajectories. It is assumed that the signal turns green for an approach right before the first car in that platoon enters
the intersection.
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The rest of this section presents the algorithm within each decision step. Section 3.1 presents how the model inputs are
determined. Section 3.2 presents the upper level model, i.e. optimization of departure sequence. Section 3.3 presents the
lower level model, i.e. trajectory design for automated vehicles. Section 3.4 proposes a fast branch and bound algorithm
to solve the bi-level model.

3.1. Model inputs

When the decision step is triggered, the inputs to the algorithm, namely the vehicle set, arrival sequence and the trajec-
tory of each car need to be updated. The method to update automated and connected vehicles differs from that for conven-
tional vehicles.

The arrival sequence and trajectories of connected and automated vehicles are obtained directly from the V2I communi-
cation systems. It is assumed that connected vehicles and automated vehicles report their location and speed (i.e. trajectory)
at any given time after they enter the zone of interest. With such information and assuming free flow speed uf , the virtual
departure time Vc (i.e. the time at which a vehicle would arrive to the downstream end of the intersection if there were no
queueing) of an automated or connected vehicle c can be obtained and updated once it enters the zone of interest.

The arrival information (arrival sequence and virtual departure time) of conventional vehicles (i.e. vehicles that do not
provide any type of information) can be estimated using the location information of connected and automated vehicles. Once
a connected or automated vehicle comes to a stop, the number of conventional vehicles stopping in front of it (i.e. the arrival
sequence of conventional vehicles) can be estimated by kinematic wave theory (given previous signal settings and assuming
a fundamental diagram). The detailed procedure for estimating the number of conventional vehicles can be found in Appen-
dix A. The virtual departure times for these conventional vehicles are estimated using a linear interpolation.

3.2. Upper level model: optimization of departure sequence

Denote M as the set of approaches. Denote I as the arrival sequence, i.e. the sequence in which vehicles on both
approaches in car set N arrive at the zone of interest. For automated and connected vehicles, the arrival sequence and
approach are detected from the car-to-infrastructure system once they enter the zone of interest. The arrival sequence
and approach for conventional vehicles are estimated using the information provided by connected and automated vehicles.

Denote J as the departure sequence, i.e. the sequence in which vehicles on both approaches in car set N depart from the
intersection. Note that departure sequence J is one permutation of the arrival sequence I that satisfies the first-in-first-out
principle for each individual approach. To minimize total delay, the optimal departure sequence is found, i.e.,
2 For
vehicle
(althou
min
J

TDJ ð3Þ
For each departure sequence J, the total delay TDJ is calculated as
TDJ ¼
X
c2N
ðDc;J � VcÞ ð4Þ
where for departure sequence J; Dc;J represents the predicted departure time of vehicle c from the downstream end of the
intersection. Recall that Vc is the virtual departure time from the downstream line of the intersection for car c. Hence, the
difference Dc;J � Vc is the delay for car c.

Assume each vehicle is represented by a triple c ¼ ði; j;mÞwhere i 2 I is the position of car c in the arrival sequence, j 2 J is
the position of car c in the departure sequence, and m 2 M is the approach. For a given departure sequence J, and the
corresponding optimal trajectories obtained in Section 3.3, the predicted departure time for car c ¼ fi; j;mg; Dc;J , is calcu-
lated as the maximum of the virtual departure time and the next possible departure time, i.e.2
Dc;J ¼ max Vc; Dc0 ;J þ 1
Sm
þ Pc;J

� �
; c ¼ fi; j;mg and c0 2 fI; j� 1;Mg; 8c 2 N ð5Þ
where Sm is the saturation flow from approachm; c0 is the previous vehicle in this departure sequence to vehicle c. The delay
penalty Pc;J represents the time it takes for each car to cross the intersection, and is given in Eq. (6) derived with the basic
kinematic law.
Pc;J ¼max
l
uf

;
�uinit

c;J þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uinit
c;J

� �2
þ 2al

r
a

8>><>>:
9>>=>>; ð6Þ
the very first vehicle entering the system when the system is empty, we expect that it drives at the free flow speed, thus we have Dc;J ¼ Vc . For the first
in the departure sequence J which is not the first vehicle in the system, Eq. (5) still holds, where c0 is the previous vehicle that departs before vehicle c
gh c0 is not in the departure sequence J but in the departure sequence of an earlier time step).
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Fig. 2. Illustration of penalty, where uf ¼ 50 km/h, l ¼ 5 m, a = 2 m/s2.
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where l is the length of the intersection; a is the acceleration rate, and uinit
c;J is the initial speed of a car c when entering the

intersection. The initial speed uinit
c;J is the result of the trajectory optimization for automated vehicles (more details are

provided in Section 3.3). The second term of the RHS in Eq. (6) represents the acceleration time of car c if the initial speed
is smaller than the free flow speed uf . Here, the case where the vehicle reaches the free flow speed in the middle of the inter-
section is not considered. This might cause a small and systematic error which should not influence the results in any
significant manner.

As is shown in Fig. 2, the penalty decreases as the initial speed increases. Notice that as more cars discharge from a
platoon, the initial speed increases since cars have space to accelerate before consecutively entering the intersection. There-
fore, the penalty favors platooning instead of alternating departures between approaches. By not requiring cars to stop, the
initial speed can also be increased. Hence, allowing cars to discharge in platoons is favorable for decreasing the penalty.
3.3. Lower level model: trajectory design for automated vehicles

For a given departure sequence J, the trajectory of each vehicle can be sequentially determined according to the departure
sequence. The trajectory is designed for each individual automated vehicle based on the real or estimated traffic information
(departure time, speed, etc.) of the cars in front of it. The objective of the trajectory design is to let vehicles pass the inter-
section at a specific time with the maximum possible speed and, if possible, without stopping.

In order to calculate the optimal trajectories for automated vehicles, the ‘‘future” trajectories of connected and conven-
tional vehicles should be predicted using Newell’s car following model. One input to the Newell’s car following model is the
departure sequence, which is represented as the signal timing. The other parameters of the Newell’s car following model are
determined using kinematic wave theory. For Newells car following model the distance travelled in a time step is calculated
as the minimum of how far a vehicle can travel at free-flow speed and what would be permissible due to downstream con-
gestion. Under free-flow conditions, the trajectory of the car no longer depends on the car in front of it. In the case with
downstream congestion, the spacing between each pair of cars is the inverse of the density. For more information on New-
ell’s car following model, see Newell (2002).

For ease of presentation, the acceleration and deceleration processes are simplified without changing the overall control.
To this end, the acceleration and deceleration processes are divided into two types. The first type occurs because the signal
changes from red to green. This type of maneuver includes the vehicles that accelerate from the stopped state and cross the
intersection (see Fig. 3b for an example). This type involves only acceleration maneuvers and usually occurs close to the
intersection. The second type of maneuver consists of all other possibilities, i.e. either decelerating because of red signal
or a queue downstream, or informed by the controller to accelerate or decelerate. This type involves both acceleration
and deceleration maneuvers and occurs near the back of queue, which can be near the intersection or not. In other words,
the first type consists of the accelerating vehicles because the signal switches to green and the second type includes all the
other cases. The first type of acceleration process is taken into consideration to properly evaluate the benefits of platooning
(see Eq. (6)). For simplicity, constant acceleration with acceleration rate a is assumed. For the second type, instantaneous
acceleration and deceleration are assumed to simplify the discussion (i.e. a ¼ 1). Notice that this assumption of instanta-
neous acceleration and deceleration can be made without loss of generality. As long as the time to enter the intersection
is fixed, the assumption of instantaneous acceleration and deceleration will only slightly influence the initial speed uinit

c;J at
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Fig. 3. Illustration of the speed calculation. Car c represents the first car in the platoon; car ĉ represents the car that follows other cars. The dashed trajectory
represents the closest possible trajectory of car ĉ to the last vehicle in the platoon (according to Newell’s car following model).
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which the vehicle enters the intersection, and thus change the total calculated delay by Eqs. (5) and (6). However, as is
shown in Fig. 2, the marginal change in delay penalty decreases as uinit

c;J increases. Hence, as long as uinit
c;J is sufficiently large

(i.e. over 25 km/h), the total calculated delay across all cars will only be slightly different than in reality. Therefore, it is
reasonable to assume instantaneous acceleration and deceleration before a car joins the dispatching platoon or comes to
a stop.

By the assumption above, the design of the full trajectory of an automated vehicle c can be simplified into deciding on a
particular design speed udes

c;J at the time the algorithm performs trajectory design. This is a quasi-optimal solution, which sim-

plifies the discussion with satisfactory approximation. The initial speed entering the intersection uinit
c;J can be calculated from

udes
c;J .
Intuitively, it is always possible to let a car pass the intersection without stopping, as long as the car drives at a sufficiently

low speed. However, it does not make sense if the car crawls to the intersection. Therefore, a lower bound umin is defined to
constrain the design speed, i.e.,
umin 6 udes
c;J 6 uf ð7Þ
where the second inequality means that the design speed cannot exceed the free flow speed uf .
Given the trajectory of the previous cars, an automated car can be assigned to either wait until the next signal cycle, or

follow the previous car. This is equivalent to considering two cases based on whether an automated car is the first car in its
platoon or not (this is determined from the departure sequence), i.e. Oc;J ¼ 1 or Oc;J > 1 where Oc;J represents car c’s position
in the platoon for a given departure sequence J.

As is shown in Fig. 3b, car c represents the case with Oc;J ¼ 1 and car ĉ represents the case with Oĉ;J > 1. In this figure, t0 is
the time the algorithm performs trajectory design. xc and xĉ are the distance from car c and car ĉ to the intersection,
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respectively; uopt
c;J and uopt

ĉ;J are the optimal speeds of car c and car ĉ respectively at time t0; and tg is the earliest possible time
when this approach can be given green signal, which is determined by the passing time of the last vehicle that has departed
in the conflicting approach. Here a triangular fundamental diagram is assumed, as is shown in Fig. 3a, with free flow speed uf ,
backward wave speed w and jam density kjam.

3.3.1. Platoon leader
For car cwhich is the first car in the platoon, the optimal trajectory would let it pass the intersection exactly at time tg and

then accelerate. This assumption which is made for simplicity purposes, could cause a small and systematic error, as in the-
ory, the car could try to accelerate before and enter the intersection with the free flow speed. This error would affect the
model in a conservative way: the observed delay in simulation is probably slightly larger than what could be realized.

The optimal speed of car c before accelerating can be found by Eq. (8).
uopt
c;J ¼

xc � rx

tg � t0
ð8Þ
where rx is the estimated standard deviation for location errors. rx is estimated with the aid of a Kalman filter. The detailed
explanation of the Kalman filter and rx can be found in Appendix B. Eq. (8) designs a conservative speed when there are mea-
surement errors. In cases without measurement errors, the Kalman filter would give a rx ¼ 0.

The optimal speed may not satisfy the constraint of Eq. (7) and hence should be further adjusted.
udes
c;J ¼

max minfuopt
c;J ;uf g;umin

n o
; tg > t0

uf ; tg 6 t0

(
ð9Þ
In case tg > t0, the speed is constrained by the lower speed bound and the free flow speed. In case tg 6 t0, car c arrives at
the intersection after the signal switches, thus car c can drive with the free flow speed on the approach link.

Then, the initial speed at which car c enters the intersection is calculated as
uinit
c;J ¼

udes
c;J ; udes

c;J > umin

0; udes
c;J ¼ umin

(
ð10Þ
where in the second case (udes
c;J ¼ umin), the car would arrive at the intersection before the signal turns green. This means that

the car would simply stop to avoid crawling and then accelerate across the intersection. Therefore the initial speed is 0 in this
case.

3.3.2. ĉ Platoon follower
For car ĉ that follows the previous cars, the optimal trajectory should be tangent to the closest possible trajectory (accord-

ing to Newell’s car following model (Newell, 2002); see the dash line in Fig. 3b) to the last vehicle in the platoon. This means
that car ĉ will join the platoon and then accelerate across the intersection. The following equation is derived by basic
kinematic law and traffic flow theory.
tg þ
uopt
ĉ;J � udes

c;J

a
þ ðOĉ;J � 1Þ=kjam

w
¼ t0 þ xĉ

uopt
ĉ;J

� ðOĉ;J � 1Þ=kjam þ
uopt
ĉ;J

� �2

� udesc;J

� �2

2a

uopt
ĉ;J

ð11Þ
where both sides of the equation represent the time when the actual trajectory of car ĉ intersects with the closest possible
trajectory (marked as point of tangency in Fig. 3b). The LHS corresponds to this intersecting time in the closest possible
trajectory while the RHS corresponds to this intersecting time in the designed trajectory.

The optimal speed uopt
ĉ;k can then be obtained by solving Eq. (11).
uopt
ĉ;J ¼ udes

c;J � a tg � t0 þ Oĉ;J � 1
wkjam

� �
þ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tg � t0 þ Oĉ;J � 1

wkjam

� �2

þ 2
1
a

xĉ �
ðOĉ;J � 1Þðudes

c;J þwÞ
wkjam

 !vuut ð12Þ
The design speed udes
ĉ;J is obtained by adjusting uopt

ĉ;J according to constraint Eq. (7).
udes
ĉ;J ¼max min uopt

ĉ;J ;uf

n o
;umin

n o
ð13Þ
The initial speed when car ĉ enters the intersection can be found as
uinit
ĉ;J ¼max udes

ĉ;J ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðudes

ĉ;J Þ
2 þ 2aðOĉ;J � 1Þ=kjam

q� �
ð14Þ
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where the first term of the RHS represents the case where this car joins the accelerating platoon after entering the intersec-
tion and the second term represents the case where this car enters the intersection with the accelerating platoon (as in
Fig. 3b).

3.4. A branch and bound algorithm as a solution method

In this section, a branch and bound algorithm is proposed to search for the exact optimal departure sequence and the
optimal speed for the proposed bi-level optimization model. The solution procedure can be modelled as a tree search prob-
lem, as is shown in Fig. 4.

Each node in this tree consists of a vehicle, which can be either a connected/automated vehicle, or an estimated conven-
tional vehicle. Each node has the following attributes shown in Table 2.

The root node of this tree consists of the last vehicle that has departed from the intersection, which gives the initial state
(platoon information, departure time of the previous vehicle, etc.). Each child of node n consists of the next vehicle that
departs after the vehicle in node n. For this problem, each node n has at most two children (the nodes that are successive
to node n), as there are two approaches to discharge from. Therefore, each path from the root node to a leaf node represents
a departure sequence. Then finding the optimal departure sequence is equivalent to finding the path that minimizes the total
vehicle delay.

A branch and bound algorithm is used for the tree search problem. This algorithm is based on the depth-first search,
which traverses the nodes of the tree from the root node and searches as far as possible along each path before backtracking.
The implementation of the depth-first search algorithm uses a stack S. When visiting each node, the algorithm calculates the
departure time of the vehicle in this node (Eqs. (5) and (6)) and the optimal speed if this vehicle is automated (Eqs. (8)–(14)).
A trimming mechanism is introduced based on a lower and upper estimated bound for the optimal solution. For this prob-
lem, a global upper bound, UB, of the optimal solution is defined as the minimum total delay of all the paths found so far. For
each node n, a local lower bound, LBn, is also defined such that LBn is smaller than the total delay of any path including node
n, which will be determined later in this section. Before checking the children of each node, the node is checked against these
bounds, and is discarded if it cannot produce a better solution than the best one found so far. Specifically, if LBn > UB, then
node n, together with all of its children and descendants, should be trimmed. By applying this trimming mechanism, the
computational complexity is drastically reduced.

The solution procedure is written in pseudo code and described in Algorithm 1.
n

 .  . .  . .  . .  .

nRnL

n0
A path: 

departure 
sequence

root node

leaf node

(mn, On, Dn, LBn, SDn)

Fig. 4. Illustration of the branch and bound algorithm.

Table 2
Attributes of a node n.

mn Arriving approach of the vehicle in node n
On Position in the platoon of the vehicle in node n
Dn Departure time of the vehicle in node n
SDn Sub delay from the root node to the current node n
LBn Lower bound of the total delay among all the departure sequences that consist node n
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Algorithm 1. Branch and bound algorithm for solving the optimal departure sequence and trajectory.
Input: vehicle sets Ni from approach i ¼ 1;2, including the speed and location information; the approach m0, platoon
O0, and departure time D0 of the last vehicle that has departed.

Output: the optimal departure sequence bJ; the optimal total delay TD; and the optimal speed uopt

c;bJ for all c in bJ .
1: Build the root node n0 using m0; O0 and D0

2: Calculate the lower bound LB0 for the root node n0 using Eq. (20)
3: For the same departure sequence J0, calculate the global upper bound UB and uopt

c;J0
using Eqs. (5), (6), (8)–(14).

4: Initialize the stack S and S.push(n0)
5: Total delay TD UB
6: while S is not empty do
7: Node n = S.pop();
8: if LBn > UB then
9: Continue
10: if TD > UB then
11: TD UB
12: Update the optimal departure sequence the optimal speed
13: Build the child nodes nL and nR of node n with the first vehicles in Ni; i ¼ 1;2.
14: Calculate the departure time DL and DR using Eqs. (5) and (6)
15: Calculate the sub delay from the root node to nL and nR, respectively, i.e. SDL  SDn þ DL and SDR  SDn þ DR

16: Calculate the lower bound LBL and LBR, respectively, using Eq. (20)
17: S.push(nL) and S.push(nR)

The rest of this section finds the local lower bound LBn for node n.

Note that from Eqs. (5) and (6), it holds that
Dc;J P Dc0 ;J þ 1
Sm
þ l
v f

ð15Þ
where c is any vehicle and c0 is the previous vehicle that departs exactly before c.
Then for any departure sequence J, define D0c;J such that
D0cn ;J ¼ Dcn ;J ð16Þ

D0c;J ¼ D0c0 ;J þ
1
Sm
þ l
v f

ð17Þ
where cn is the vehicle in node n; c and c0 vehicles in later position than cn in departure sequence J; c0 is the previous vehicle
to vehicle c.

It is derived from Eqs. (15)–(17) that
D0c;J 6 Dc;J ð18Þ

Denote Jn as the ordered set of vehicles in J starting from cn. Denote SDn as the sub delay from the root node to node n.

Then it holds by Eq. (18) that
SDn þmin
Jn

X
c2Jn=fcng

D0c;J 6 min
J

TDJ ð19Þ
By Eq. (19), the lower bound LBn can be defined as
LBn ¼ SDn þmin
Jn

X
c2Jn=fcng

D0cn ;J ð20Þ
Then the following model needs to be solved.
min
Jn

X
c2Jn=fcng

D0cn ;J ð21Þ
Notice that only the first term of the penalty in Eq. (6) is considered when determining the lower bound. Then, only two
possible departure sequences in vehicle set Jn=fcng solves the optimization model Eq. (21) and yields the lower bound LBn in
Eq. (20): (i) the departure sequence that discharges all vehicles from approach 1 first, then discharges all vehicles from
approach 2; (ii) the departure sequence that discharges all vehicles from approach 2 first and then discharges all vehicles
from approach 1. These two cases are compared to find the value of LBn using Eq. (20). Note that this lower bound may
not be realized as only the first term of the penalty function Eq. (6) is considered.
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4. Simulation results and algorithm evaluation

A micro-simulation platform is coded in Java to evaluate the proposed algorithm. There are two interacting layers in the
simulation framework: (1) the real layer simulates the traffic dynamics using the arrival information and the control policy;
(2) the control layer calculates the control policy (departure sequence and trajectory) using the real traffic information.

The real layer consists of the car following behaviors, the vehicle dynamics and the configurations of the intersection and
the signal. Many car following models have been proposed over the years, either deterministic (Treiber et al., 2000;
Wiedemann, 1974) or stochastic (Chen et al., 2010; Treiber et al., 2006; Menendez, 2006). For simplicity, the car following
behavior in this paper is assumed as the Intelligent Driver Model (IDM) (Treiber et al., 2000) to represent a more realistic
driving behavior. The parameters in IDM are calibrated using the Lankershim Dataset from the Next Generation Simulation
(NGSim) project (Alexiadis et al., 2004). The maximum acceleration rate is 1:8 m=s2, the desired deceleration rate 3 m=s2, the
minimum spacing is 2.4 m, the car length 4.8 m, the reaction time 1.4 s and the desired speed 60 km/hr. The dynamics of the
cars follows the basic kinematic equations discretized by the time step 0.01 s. The length of intersection is 5 m, the maxi-
mum green time 60 s, and the minimum green time 5 s. The minimum and maximum green times are set at the same levels
for both the actuated control and the proposed control algorithm.

In the control layer, the algorithm parameters are defined as: the acceleration rate a ¼ 1:8 m=s2; the saturation flow rate
S1 ¼ S2 ¼ 1800 veh/h; free flow speed uf ¼ 60 km/h; backward wave speed w ¼ 20 km/h; length of the zone of interest3

d ¼ 100 m; minimum speed for trajectory design umin ¼ 10 km/h.
Notice that the car following model used in the simulation and the control algorithm is different. This is to show that the

simplification in the control algorithm performs well in practice.
The total input flow (combined flow of the two approaches) is set to vary between 1000 and 2000 veh/h. Notice that the

cases with a total flow of 2000 veh/hr represent oversaturated conditions. The demand ratio (ratio of total demand between
the two approaches, i.e. flow on approach 1 divided by flow on approach 2) varies between 0.2 and 1. A small demand ratio
means that the demand is unbalanced. Arrivals are generated randomly assuming an exponential headway distribution. The
expected headway equals the inverse of the flow for a given approach.

Note that at least a small fraction of connected and/or automated vehicles are required for the operations of the algorithm
as they constitute the only information source (as there are no fixed detectors). Therefore, the information level is set to vary
between 0.2 and 1 in the simulation. The automated level ranges from 0 to 1. As the automated level decreases to 0, the algo-
rithm will be reduced to the algorithm in Guler et al. (2014) (i.e. without trajectory design).

A simulation of 400 cars is run for 20 different random seeds for each scenario tested. Average delay and average number
of stops per car are recorded.

The rest of this section shows the results and evaluates the algorithm. In Section 4.1, the performance of the algorithm is
evaluated by comparing its performance to that of an actuated signal control algorithm. A sensitivity analysis is then con-
ducted in Section 4.2 to evaluate the robustness of the algorithm to measurement errors. Section 4.3 analysis the robustness
of this algorithm to different arrival patterns. Section 4.4 evaluates the computational efficiency of the proposed branch and
bound algorithm.
4.1. Performance of the algorithm

The performance of the proposed algorithm is evaluated by comparing the resulting average car delay and average num-
ber of stops to an actuated signal control algorithm. The actuated signal control algorithm assumes the presence of fixed
detectors near the intersection on both approaches. It operates as such: the signal switches to red if (1) no cars have arrived
on the current approach for 5 s or (2) the green time exceeds the maximum green time of 60 s. The location of the loop detec-
tors is chosen at 65 m upstream the intersection, which is optimized by a sensitivity analysis. Simulations are conducted for
scenarios of different total flows, demand ratios, information levels and automated levels. The results for average number of
stops and average delay per car are shown in Figs. 5 and 6 respectively.

The results show that the connected vehicle algorithm performs better for both average number of stops and average
delay for a moderate information level. Generally speaking, this algorithm requires 50% penetration rate of vehicles that
provide information to perform better than the actuated signal control algorithm. This is an expected result because the
actuated signal control algorithm uses information extracted from infrastructure devices (e.g. loop detectors, video cameras,
etc.), whereas the connected vehicle algorithm does not utilize any of such information. In the case where the connected
vehicle algorithm could also use information from other sources (besides the connected and the automated vehicles them-
selves), it is expected to outperform the actuated signal control algorithm for a much lower penetration rate.

The effects of trajectory design can also be observed from the trend (i.e. monotonicity) of each curve in Figs. 5 and 6. This
is because the scenarios with automated level of 0 represent the cases without trajectory design. As is shown in Figs. 5 and
6a-b, the average number of stops in all scenarios tested and the average delay in the low demand scenarios decrease
3 A length of 100 m is chosen because this is the minimum of the typical city block size (100 m) and the average DSRC range used in the literature (300 m).
Also note that this choice is conservative. The performance is expected to improve by increasing this length, as there is more information provided by
connected/automated vehicles.
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Fig. 5. Simulation results for average number of stops per car. Solid lines with different labels represent the results of the connected vehicle algorithm
under different information levels. Dashed lines represent the results of the actuated signal control algorithm.
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monotonously with the increase of automated level. This means that the trajectory design successfully reduces the average
number of stops in all scenarios and the average delay in low demand scenarios. However, the trajectory design does not
perform as well for the high demand scenarios for the average delay. In fact, for high demand scenarios, the performance
of trajectory design is highly sensitive to the information level. For low information levels, the average delay might increase
with the increasing percentage of automated vehicles, as is shown in Fig. 6c and d. This happens because in the high demand
scenarios, there are vehicles lingering for more than one cycle and forming long queues due to oversaturation. As informa-
tion drops, the algorithm will have insufficient knowledge of the arrivals and the queues. In such cases, although trajectory
design is still possible, it is very likely to give an unsatisfactory solution which may give rise to a non-optimal signal timing
strategy. Hence, this unsatisfactory trajectory could be detrimental to the system. For high information levels, however, the
trajectory design efficiently reduces both number of stops and delay. Therefore a better approach is to use the algorithm
without trajectory design in the high demand and low information cases.
4.2. Robustness to location errors

Due to the noises in measurement and the data corruption in transmission, the location information received by the cen-
tral controller may not be accurate. This section tests how the errors in location affects the performance of the proposed
algorithm. It is assumed that the location errors and the speed errors follow a joint Gaussian distribution. The errors (location
and speed) at different time steps are assumed to be independent. The mean of the Gaussian distribution is assumed as 0 for
both location and speed, which represents that there are no systematic errors. The standard deviation of the location
measurement is assumed as 15.0 m and the standard deviation of the speed measurement is assumed to be 2 m/s. This is
because the normal GPS devices provide an accuracy of 7.8 m at 95% confidence level (Florin and Olariu, 2015), and the accu-
racy can also be enhanced by map-matching (Greenfeld, 2002) or data fusion with other in-vehicle sensors (Caron et al.,
2006). A Kalman filter is implemented to reduce the noise in the location measurements (a detailed description of this
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Fig. 6. Simulation results for average delay per car. Solid lines with different labels represent the results of the connected vehicle algorithm under different
information levels. Dashed lines represent the results of the actuated signal control algorithm.
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algorithm can be found in Appendix B). The estimation error of the location is not sensitive to the speed measurement errors
after the implementation of the Kalman filter (see Fig. B.12). Then the covariance matrix is assumed to be:
R ¼ 225 0
0 4

	 

ð22Þ
The other simulation settings are the same as in Section 4.1. The results are shown in Fig. 7.
Fig. 7 shows that the proposed algorithm outperforms the actuated algorithm in the cases with full information even

when there are measurement errors. It can also be seen that the effect of these measurement errors is larger if the informa-
tion level and automation level increase. This is because as more vehicles report information and receive trajectory guidance,
the system receives more noisy data.

Moreover, the actuated algorithm assumes that the loop detector data is available. If the loop detector data is integrated
in the proposed algorithm, the proposed algorithm can be expected to always outperform the actuated algorithm. Also note
that these results are obtained using very conservative assumptions as automated vehicles in reality cannot have large mea-
surement noises. Therefore, this algorithm is expected to work properly in reality.

4.3. Robustness to arrival patterns

This subsection tests how robust the algorithm is to different arrival patterns. For each combination of total flow rate,
demand ratio, information level and automated level, the measure for robustness is defined as the coefficient of variation,
i.e. the ratio between the standard deviation and the mean of the average delay or the average number of stops. The coef-
ficient of variation measures the dispersion of the results in the data set, and is comparable across different data sets even
though they do not have the same mean.

Multiple tests show that the coefficient of variation is not sensitive to the information level or the automated level (as is
shown in Fig. 8b-d), but highly related to total flow. Particularly, the coefficient of variation increases drastically with total



Fig. 7. Robustness to measurement errors. The dashed lines represent the results of the actuated control algorithm.
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flow. The trend is very similar for all demand ratios. Therefore, for demonstration purposes, the coefficient of variation is
averaged over different demand ratios, information levels and automated levels to show the impacts of total flow on the
robustness. Fig. 8a shows the results.

As is shown in Fig. 8a, the coefficient of variance increases as the total flow increases. This means that the algorithm is
more sensitive to the arrival patterns as the total flow increases, and the intersection becomes more saturated. Hence, the
arrival patterns will have a large influence on the temporal and spatial extent of the queue, which impacts the performance
of the algorithm (especially for low information levels). This also helps explain the chaotic pattern of the performance index
in high demand cases in Fig. 6.
4.4. Efficiency of the branch and bound algorithm

This section tests the efficiency of the proposed branch and bound algorithm. A total of 1896 cases are tested. The algo-
rithm finds the optimal solution in all cases tested. The efficiency of this branch and bound algorithm is evaluated by com-
paring the average number of nodes visited to obtain the optimum departure sequence to an enumeration algorithm. The
enumeration algorithm visits all the nodes in the tree. The results are shown in Table 3.

Table 3 shows the trend of both the enumeration method and the branch and bound method when the number of cars in
the zone of interest increases. It can be seen from Table 3 that the branch and bound method is significantly more efficient
than the enumeration method. In contrast to the exponentially increasing complexity of the enumeration method, the com-
putational complexity of the branch and bound increases more linearly with increasing the number of cars.
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Fig. 8. Average coefficient of variation with different total flows, demand ratios, information levels and automated levels.

Table 3
Efficiency of the branch and bound algorithm (nodes visited).

# of cars in zone of interest 14 15 16 17 18 19 20 21

Enumeration 28,001 54,931 123,112 174,284 223,887 290,485 437,376 1,139,544
Branch and bound 1385 1616 1832 2236 2306 2096 2088 2404
Ratio 40.4 68.0 134.4 155.9 194.2 277.2 418.9 948.0
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The average run time for each case using the branch and bound algorithm is 0.6 ms, in contrast to 26 ms using the enu-
meration method. The speed at which the solution can be obtained with the branch and bound algorithm is promising for
increasing the complexity of the problem to account for multiple lanes and approaches.
5. A demand responsive control strategy

As discussed in Section 4, the proposed algorithm has limitations especially for low information availability cases. In this
section, a demand responsive control strategy is proposed to adapt to different traffic situations. This strategy dynamically
switches between the two (or three) algorithms based on demand and information level: the connected vehicle algorithm
with and without trajectory design, and the actuated signal control algorithm if the necessary infrastructure (e.g. detectors)
is available.

The demand responsive strategy is determined by identifying the bounds for each algorithm. To do so, simulation is con-
ducted for different total flows, demand ratios, information levels and automated levels. Other parameters remain the same.
Simulation results are shown in Fig. 9.4 Two polylines represent the boundaries for the three algorithms. Notice that those
boundaries are conservative because loop detector information is not integrated into the connected vehicle algorithm, but is
used for actuated signal control.
4 The upper boundary determines when the trajectory design should be used. If the system is worse off with the trajectory design, then the algorithm
without trajectory design is advised by Fig. 7.
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The upper boundary distinguishes between the connected vehicle strategies with and without trajectory design. The
boundary is calculated as the minimum information level such that using trajectory design gives a better result in both aver-
age delay and average number of stops. In other words, for a certain combination of information level and total flow, trajec-
tory design is only adopted if both average delay and average number of stops can be improved for all automated levels
(P 0:2). This is a conservative application bound.

The lower boundary, i.e. the boundary between actuated signal control strategy and connected vehicle signal control
strategy, is determined by the minimum information level such that connected vehicle strategy performs better than the
actuated signal control strategy in terms of both average delay and average number of stops. For a given information level,
demand ratio and total flow, the connected vehicle strategy is chosen only if both performance indices are improved for all
automated levels. Similar to the upper one, this is also a conservative application bound.

The two boundaries divide the traffic parameter space into three parts, each of which corresponds to one of the three
algorithms considered. When the current traffic situation lies in a certain part of this figure, the algorithm corresponding
to that zone will be used. It is shown in Fig. 9 that the connected vehicle algorithm always requires less than 50% vehicles
to provide information in order to outperform the actuated signal control algorithm. This is less strict than most of the exist-
ing research works (He et al., 2012; Z. Li et al., 2014) that require all or a majority of the vehicles to be connected or
automated.

The application bounds can be relaxed if loop detector information is integrated into the connected vehicle algorithm.
Simulations show that the performance is sensitive to the location of the loop detector (Yang et al., 2015). If information
from a loop detector installed further than 30 m upstream of the intersection is used, the connected vehicle algorithm
can always achieve a better performance than the actuated signal control algorithm. Hence, only two strategies should be
considered (namely, the connected vehicle algorithm with and without trajectory design).
6. Conclusions

This paper improves the algorithm from Guler et al. (2014) by (1) integrating three different stages of technology
development; (2) developing a heuristics to switch the signal controls depending on the stage of technology; (3) allowing
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trajectory modification for automated cars for a simple and single intersection; (4) developing a branch and bound algorithm
to substitute the enumeration method to improve the computational efficiency; (5) adopting a Kalman filter to reduce the
impact of the measurement errors.

With such modifications, both car delays and number of stops are reduced compared to Guler et al. (2014) in most
scenarios tested. Various simulations are conducted to evaluate the performance of the proposed algorithm. The results
show that with information levels greater than 50%, the delay and number of stops can be reduced compared to the actuated
signal control algorithm. The benefit of trajectory modification is greater in low demand scenarios or high demand scenarios
with high information levels. A demand responsive strategy that combines the proposed algorithm with and without trajec-
tory design and a simple actuated signal control algorithm was proposed based on the simulation results. It is also shown
that the algorithm is not sensitive to measurement noises.

The arrival sequence and trajectories of conventional vehicles are estimated using kinematic wave theory and Newell’s
car following model. The estimation accuracy largely depends on the information level, as connected vehicles and automated
vehicles are the only source of information. For low information levels, the inaccurate estimation of conventional vehicles
might make the algorithm less efficient. The performance of this algorithm can be further improved if (1) information from
other sources (e.g. loop detectors) is integrated (in such case a data fusion algorithm similar to that in Ambühl and
Menendez, 2016, but at a microscopic level could be implemented), (2) information on the conventional vehicles is better
estimated by more advanced queue estimation methods (e.g., as shown in Ramezani and Geroliminis, 2014; Comert,
2013). The performance of this algorithm can also be improved using stochastic programming (e.g., Tong et al., 2015), if
the distribution of queue length is known.

This algorithm uses Newell’s car following model to simplify the calculation of the trajectory design. In principle, any car
following model can be used here. As long as the trajectories of previous cars are given, the design speed to enter the inter-
section can be determined.

The results of this paper can also be generalized to show the influence of package loss (i.e. the loss of information when a
vehicle communicates to the central controller). Such loss is equivalent to reducing information level or automated level. As
discussed in Section 4, the performance indices would be worse if information level is lower. However, for package losses
within a certain range, there would not be much deterioration in performance.

Future work includes further generalization of the algorithm to a complex intersection. The increase in complexity can be
driven by two factors: more modes or more intersection movements. In multi-modal scenarios, there might be some traffic
modes requesting priority, e.g. transit vehicles, emergency vehicles, etc. Additionally, the priority scheme could follow
different approaches (e.g., Guler and Menendez, 2014; He et al., 2016; Guler et al., 2016) One general way to deal with
the priority requests would be to change the objective function, e.g. total passenger delay (transit vehicles), total value of
time (emergency vehicles), etc. On the other hand, the proposed fast branch and bound algorithm makes it possible to
generalize the model for more intersection movements. It is expected that for a larger scale of intersection, the model
can be solved with reasonable computational time. A difficulty aroused from considering a more complex intersection is,
however, the planning of the turning trajectories and lane changings with the co-existent of conventional, connected and
automated vehicles. Ongoing efforts are being made in this direction.

Other possible extension of this paper is arterial control, which involves the cooperation not only between vehicles and
intersections, but also among intersections. This is also ongoing work of the authors.

Appendix A. Estimation of the arrival information of conventional vehicles

In this section, the arrival information (arrival sequence, virtual departure time and trajectories) of conventional vehicles
is estimated based on kinematic wave theory and Newell’s car following model. The estimation of the arrival information of
conventional vehicles is based on the information given by stopped connected or automated vehicles. There are four steps.

Step 1. For each approach, define the vehicle set Bl as the set of the vehicles that are forced to stop due to the lth red signal
that starts at time tr;l and ends at time tg;l (tr;l < tg;l). Denote xI as the location of the intersection.
When a connected or automated vehicle c comes to a stop at time tc and location xc , attach the trajectory point
ðtc; xcÞ to cycles, i.e. find the cycle index l such that c 2 Bl.
Note that c 2 Bl if and only if
xI �wðtc � tg;l�1Þ 6 xc 6 xI �wðtc � tg;lÞ ðA:1Þ
where w is the backward wave speed. Eq. (A.1) means that the trajectory point ðtc; xcÞ is inside the region between the
discharging lines at the ðl� 1Þth green time and lth green time.
Step 2. For Bl that contains car c, sort the vehicles in ascending order according to arrival times of the vehicles.
Step 3. Calculate the arrival sequence of conventional vehicles. There are two cases based on whether or not car c is the first

connected or automated vehicle attached to its cycle Bl.
Fig. A.10a illustrates the case where car c is the first connected or automated vehicle attached to its cycle. This means
that any car in front of car c is a conventional vehicle. In this case, the number of conventional vehicles nconv in front
of car c can be estimated as



distance

time
(a) car c is the first connected/automated

distance

time
(b) car c is not the first connected/automated

vehicle attached to its cycle

vehicle attached to its cycle

Fig. A.10. Illustration of the estimation of arrival sequence of conventional vehicles. The bold lines represent the trajectories of the connected or automated
vehicles and the normal lines represent the trajectories of the conventional vehicles.
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nconv ¼ bxckjc � bTgSmc ðA:2Þ

where Tg is the sum of green time from time tg;l to time tc; bTgSmc is the number of vehicles that leave the intersection
from time tg;l to time tc .
Fig. A.10b represents the case where car c is not the first connected or automated car in Bl. Denote the previous
connected or automated car as �c. Denote the time and location car �c comes to a stop due to the red signal as t�c; x�c.
Then the number of conventional vehicles between car c and car �c is

nconv ¼ bðxc � x�cÞkjc ðA:3Þ
Step 4. Estimate the virtual departure time and the trajectories of the conventional vehicles. The virtual departure time of
the conventional vehicles is estimated using linear interpolation between the virtual departure times of connected
or automated vehicles. The estimation of trajectories of conventional vehicles is based on Newell’s model.

The algorithm is validated based on NGSIM data (Lankershim trajectory data from 8:30 a.m. to 8:45 a.m. on June 16,
2005) to compare the queue length. The mean estimation error is estimated, i.e. the average absolute difference between
the estimated queue length and the actual queue length. The results are shown in Fig. A.11. It can be seen that the estimation
error is within 3 cars for penetration rate larger than 45%.
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Fig. A.11. Validation result of the estimation algorithm with NGSim data.
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Appendix B. Kalman filter for location and speed estimation with measurement noise

Kalman filter (Kalman, 1960) is an algorithm that produces estimates of unknown variables from a time series of noisy
measurements. The estimation results are more precise than a single measurement. In this section, a Kalman filter is applied
to estimate the speed x and location u, as well as the standard deviation of the location rx. The signal control algorithm uses
this information as an input.

The Kalman filter is applied in an online manner. Every time the vehicle sends information, the estimated location x̂ðkÞ,
speed v̂ðkÞ and their covariance matrix RðkÞ are updated. In this section, all the variables with bold font represent vectors or
matrices.

A Kalman filter consists of system equations and measurement equations. The system equations are derived from the
basic vehicle motion equations.
xðkÞ ¼ xðk� 1Þ þ uðk� 1ÞC þ qxðkÞ ðB:1Þ
uðkÞ ¼ uðk� 1Þ þ quðkÞ ðB:2Þ
where xðkÞ and uðkÞ represent the real location and speed at time step k; C is the duration of each time step, which is chosen
as 0.2 s in this paper (according to Gómez et al. (2015) and Leung et al. (2006), a resolution between 1 and 5 Hz is reasonable
for GPS data). qxðkÞ and quðkÞ are the system errors at time step k, which are introduced due to two reasons: (1) acceleration
and driving behavior are not considered; (2) time is discretized. The joint distribution of qxðkÞ and quðkÞ is assumed to follow
a two dimensional Gaussian distribution with mean 0 and covariance matrix Q , i.e.
½qxðkÞ; qvðkÞ�T � Nð0;QÞ ðB:3Þ

where xT represents the transpose of vector/matrix x. Covariance matrix Q can be calibrated from real data, and is related to
the sampling interval of the GPS data. In this paper, the following Q is used.
Q ¼ 6:8061 0:0382
0:0382 0:3819

	 

ðB:4Þ
The measurement equations are written as
yðkÞ ¼ xðkÞ þ rxðkÞ ðB:5Þ
vðkÞ ¼ uðkÞ þ ruðkÞ ðB:6Þ
where yðkÞ and vðkÞ are the measurement of location and speed, respectively. rxðkÞ and ruðkÞ are measurement errors of
location and speed, respectively. The joint distribution of rxðkÞ and ruðkÞ is assumed to follow a two dimensional Gaussian
distribution with mean 0 and covariance matrix R, i.e.
½rxðkÞ; rvðkÞ�T � Nð0;RÞ ðB:7Þ

Covariance matrix R is related to the accuracy of the measurement devices.

To solve the Kalman filter, the system equations and measurement equations are rewritten as
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xðkÞ
uðkÞ

	 

¼ A

xðk� 1Þ
uðk� 1Þ

	 

þ qxðkÞ

quðkÞ

	 

ðB:8Þ

yðkÞ
vðkÞ

	 

¼ H

yðk� 1Þ
vðk� 1Þ

	 

þ rxðkÞ

ruðkÞ

	 

ðB:9Þ
where
A ¼ 1 C

0 1

	 

; H ¼ 1 0

0 1

	 

ðB:10Þ
Then the location, speed and their covariance can be estimated using the following iterative equations.
lðkÞ ¼ A
x̂ðk� 1Þ
ûðk� 1Þ

	 

ðB:11Þ

PðkÞ ¼ ARðk� 1ÞAT þ Q ðB:12Þ
KðkÞ ¼ PðkÞHTðHTPðkÞH þ RÞ�1 ðB:13Þ
x̂ðk� 1Þ
ûðk� 1Þ

	 

¼ lðkÞ þ KðkÞ yðkÞ

vðkÞ

	 

ðB:14Þ

RðkÞ ¼ ðI � KðkÞHÞPðkÞ ðB:15Þ
where lðkÞ is the predicted state variables, PðkÞ is the predicted covariance, KðkÞ is the Kalman gain.
Then, by rewriting RðkÞ as
RðkÞ ¼ Rxx Rxu

Rxu Ruu

	 

; ðB:16Þ
the standard deviation of the location can be found as
rx ¼
ffiffiffiffiffiffiffi
Rxx

p
: ðB:17Þ
The initial covariance is chosen as R and the initial speed and location are chosen as the initial measurement.
The effect of the Kalman filter can be seen in Fig. B.12. The horizontal axis is the standard deviation of the measurement

errors, whereas the vertical axis represents the standard deviation of the location estimation after implementing the Kalman
filter. While this paper focuses more so on the error in the location measurement since the algorithm relies more on this
information, three different standard errors for speed measurements are also shown in this figure. Fig. B.12 shows that
the estimation error of the location is smaller than the measurement error. In other words, by using the Kalman filter,
the error related to location measurement is reduced. It is also shown in Fig. B.12 that the estimation of the Kalman filter
is not very sensitive to the standard deviation of the error in speed measurement. Also notice that adding the Kalman filter
would not influence the running time, as only one iteration of the Kalman equations is required in each time step.
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Fig. B.12. Effect of the Kalman filter.
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