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One of the main triggers of traffic congestion on highways is vehicle merging at on-ramps.
The development of automated procedures for cooperative vehicle merging is aimed to
ensure safety and alleviate congestion problems. In this work, a longitudinal trajectory
planning methodology is presented, developed to assist the merging of vehicles on high-
ways; it achieves safe and traffic-efficient merging, while minimizing the engine effort
and passenger discomfort through the minimization of acceleration and its first and second
derivatives during the merging maneuver. The problem is formulated as a finite-horizon
optimal control problem and is solved analytically. This enables the solution to be stored
on-board, saving computational time and rendering the methodology suitable for practical
applications. The tunable weights, used for taking into account the different optimization
criteria, may serve as parameters to match the individual driver’s preferences. The pro-
posed methodology is first developed for a pair of cooperating vehicles, a merging one
and its putative leader. Moreover, an alternative solution procedure via a time-variant
Linear-Quadratic Regulator approach is also presented. A Model Predictive Control (MPC)
scheme is utilized to compensate possible disturbances in the trajectories of the cooperat-
ing vehicles, whereby the analytical optimal solution is applied repeatedly in real time,
using updated measurements, until the merging procedure is actually finalized.
Subsequently, the methodology is generalized for a set of vehicles inside the merging area.
Various numerical simulations illustrate the validity and applicability of the method.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The merging of mainstream traffic flow with the incoming flow at on-ramps is a major trigger of traffic flow problems on
highways, such as speed breakdown, traffic flow oscillations and congestion (Davis, 2006; Pueboobpaphan et al., 2010;
Milanés et al., 2011; Marczak et al., 2013; Sun et al., 2014). Moreover, in manual driving, the merging maneuvers may be
stressful due to the involved risk, the close interaction with other drivers, and the requirement for a good synchronization
of observations, calculations and actions in a very short time window. As the interacting cars and drivers in the merging
procedure have, in general, different abilities, characteristics, and driving styles, the merging process is often performed inef-
ficiently with respect to the traffic flow and throughput, but also with respect to passengers’ safety and comfort (Tideman
et al., 2007). To this end, a continuously increasing effort is spent for the development of merging assistance systems, as part
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of the development of a class of Vehicle Automation and Communication Systems (VACS), to enable cooperative merging of
equipped vehicles (Tideman et al., 2007; Pueboobpaphan et al., 2010; Scarinci and Heydecker, 2014).

The proposed algorithms for cooperative merging share common characteristics, but also have major differences, for
example in the adopted assumptions, the network layout, the type of vehicles and their level of ‘‘intelligence”, the type
and location of the control, the type of communications, etc. The layout of the networks may include single or multiple lanes
in each stream. Although the most efficient merging requires the coordination of both mainstream and on-ramp vehicles,
control algorithms exist, which control only the one stream of vehicles. Centralized or decentralized control can be used;
in the first case, the decisions are taken in a traffic management center, while in the second case the decisions are made
on each individual vehicle, and may transmitted to the affected vehicles (Scarinci and Heydecker, 2014).

Before proceeding to the application of the automated merging maneuvers, a merging sequence must be established first,
which refers to the specific sequence of vehicles from the two streams when passing through the merging area. Several cri-
teria can be used to define the merging sequence, such as safety, passenger comfort, flow efficiency, fuel consumption and
emissions, time delay, etc. The creation of the merging sequence should be the result of an upper-level controller, while the
lower-level merging controller is dedicated to the merging maneuvers for each involved vehicle. In his work back in 1969,
Athans (Athans, 1969) formulated the merging problem as an optimal control problem for a given merging sequence; all pos-
sible sequences are evaluated and the optimal one is selected. Thereafter, several works have been published for the creation
of the merging sequence (see for example Posch and Schmidt, 1983; Li et al., 2007; Cao et al., 2014; Ntousakis et al., 2014a).

In general, the lower-level merging controller has two distinct tasks: firstly the creation of the proper gap; and secondly
the control of the speeds of the cooperating vehicles to produce an efficient and safe merging (Pueboobpaphan et al., 2010).
The control of the affected vehicles and the computation of the merging trajectories has been the subject of several papers. In
Posch and Schmidt (1983) two different algorithms are proposed: a conflict and a non-conflict one. In the second one, vehi-
cles are not predicted to violate safety constraints, and a heuristic strategy is applied for the computation of a constant accel-
eration. In the first algorithm, the putative follower assumes that the leader follows the non-conflict mode, while its own
speed is controlled using a modified reference trajectory. Three control guidance laws have been proposed in Kachroo
and Li (1997), with linear, ‘‘optimal”, and parabolic velocity profiles, respectively, for the merging vehicle, using sliding mode
control theory. The ‘‘optimal” velocity profile is defined in the sense of minimizing acceleration deviations. In Ran et al.
(1999), the proposed control strategy aims to match on-ramp merging vehicles to specifically created (or adjusted) gaps
in the mainstream; an upper level controller is used for assigning the gaps to the merging vehicles, so that vehicles can
merge at the mainline speed. Several sub-models are used to provide the speed profile of the merging and mainstream vehi-
cles, namely ‘‘platoon forming”, ‘‘platoon following”, ‘‘check for gap”, ‘‘gap adjustment”, ‘‘gap assignment”, and ‘‘deceleration
for metering”.

In the merging algorithm presented in Lu et al. (2004), a virtual platoon is formed before the on-ramp merging vehicle
arrives at the merging point; speed and acceleration of the merging vehicle are the same as those of the platoon vehicles
in the mainstream; the distance of the merging vehicle to the merging point equals the distance of the corresponding merg-
ing slot to the same point. In Davis (2006), an algorithm was proposed, which utilizes a virtual vehicle, imitating the move-
ment of the preceding vehicle in the adjacent lane; the purpose of the additional introduced interactions, which are of a car-
following nature, is to adjust headways so that safe distances in front of and behind the merging vehicle are obtained before
reaching the merging point. The algorithm was later adapted and evaluated for a mixed traffic environment with different
penetration rates of ACC (Adaptive Cruise Control)-equipped vehicles (Davis, 2007), demonstrating a considerable improve-
ment in throughput due to the cooperative merging. In Li et al. (2007) a trajectory planning algorithmwas developed for lane
closures, controlling both longitudinal and lateral movements, using fifth order polynomials.

In Raravi et al. (2007) an optimization problem was formulated with the objective to minimize the time taken by vehicles
to reach the intersection region, subject to safety-related constraints; additionally a head-of-lane algorithmwas proposed for
achieving the same goal with less computational overhead. In Pueboobpaphan et al. (2010) a decentralized merging assistant
was proposed, applicable in mixed traffic situations, designed to increase flow stability by minimizing conflicts in the merg-
ing region and limiting the speed changes. CACC-equipped vehicles are assumed in the mainstream, while a roadside unit
(RSU) predicts the time the ramp vehicle needs to arrive at the acceleration lane. The mainstream CACC (Cooperative Adap-
tive Cruise Control) vehicles decelerate well in advance to avoid being within a safety zone of the on-ramp merging vehicles.
A driver-assistance system for controlling the longitudinal motion of both on-ramp and mainstream vehicles was proposed
in Milanés et al. (2011) for congested traffic, having as objectives to avoid congestion on the on-ramp and to minimize the
effect of the on-rampmerging vehicles on the congested mainstream. The virtual vehicle concept is used to map the merging
vehicle on the mainstream, while the control is based on fuzzy logic, applied and tested to actual vehicles in low speeds. In
Park et al. (2011) an algorithm was developed for providing lane-changing advisories to mainstream vehicles to create space
for the on-ramp merging ones, using variable gap sizes, according to the speeds and characteristics of vehicles.

In Rios-Torres et al. (2015) an analytic solution is developed for the problem of coordinating connected vehicles traveling
over two merging roads. The problem is formulated as an optimal control problem aiming to find a safe and fuel-efficient
crossing schedule for all the vehicles in the control zone; acceleration is used in the objective function of the related optimal
control problem.

A trajectory planning methodology is developed in this work, to enable automated merging of mainstream and single-
lane on-ramp vehicles onto a single-lane mainstream. The designed trajectories minimize the engine effort and passenger
discomfort by minimizing vehicle acceleration, jerk and its first derivative. The minimization of acceleration is directly
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connected to the minimization of fuel consumption (Rios-Torres et al., 2015). On the other hand, as stated in Elbanhawi et al.
(2015), optimizing the movement of the vehicle to minimize resulting forces and jerk acting on the passengers, is the most
common approach towards passenger comfort. Thus, in a different (non-merging) context, (Rathgerber et al., 2015) use the
longitudinal and lateral jerk for calculating optimal vehicle trajectories to maximize passengers’ comfort; while, in an alter-
native simplified approach, the derivative of the jerk is also used to produce optimal trajectories described with polynomials
of 7th order.

Another purpose for the proposed methodology is to enable efficient merging with respect to the resulting total outflow,
by ensuring pre-specified time-headways and vehicle speeds at the end of the maneuver, which correspond to maximum
throughput. A finite-horizon optimal control problem with fixed final states is formulated to this end, and solved analyti-
cally. Tunable weights are used for combining the different optimization criteria, which may also serve as parameters to
be tuned by the drivers according to their preferences. Initially, a pair of cooperating vehicles is used for the development
of the methodology, while a Model Predictive Control scheme is established to compensate possible disturbances in the tra-
jectories of the cooperating vehicles, by using updated real-time measurements in each time step for the formation of the
remaining part of the optimal trajectory. Then, the methodology is further developed and tested for a set of vehicles inside
the merging area.

The paper is structured as follows: in Section 2, the merging control framework is presented. In Section 3, the optimal
control problem is defined for a pair of vehicles (a merging one and its putative leader), while analytic solutions are derived
for: (a) the minimization of acceleration alone, (b) the minimization of the jerk alone, and (c) the minimization of the first
time-derivative of jerk of the merging vehicle. In Section 4, an analytic solution for a combined cost function is derived,
which includes the minimization of acceleration, jerk and the first derivative of jerk. Additionally, a discrete-time Quadratic
Programming formulation, which allows for explicit consideration of inequality constraints, is presented. The effect of the
relative weight values on the shape of the produced trajectory are illustrated and discussed. Moreover, an alternative solu-
tion procedure via a time-variant LQR (Linear-Quadratic Regulator) approach is also offered. The lateral movement of on-
ramp vehicles is finally discussed. In Section 5, the MPC framework is presented and applied to specific examples; further-
more, it is compared to a typical ACC-based system. Subsequently, the MPC framework is further generalized for a set of
vehicles. In Section 6, the concluding remarks are presented, while in Appendix A, the linear system of equations which pro-
vide the expressions for the constants involved in the various analytic solutions of the optimal control problem, are included.
2. The merging control framework

Typically, the merging process for an on-ramp driver includes a set of coordinated tasks. Firstly, the driver scans the adja-
cent target lane for possible gaps and evaluates which gap is the best one according to her preferences (e.g. the safest, the
most comfortable, the first available, etc.). Once the gap is selected, the driver adjusts accordingly the speed of her vehicle to
align with the targeted gap and mainstream vehicle speed; and, finally, performs the required maneuvers to merge. The pur-
pose of the proposed methodology is to produce trajectories for the involved (on-ramp and mainstream) vehicles that will
make the speed adjustment and gap alignment process optimal, as far as traffic efficiency, the applied vehicle effort and the
passenger comfort are concerned.

In this work, a single mainstream motorway lane is considered, with a single-lane on-ramp leading to an acceleration
lane, as illustrated in Fig. 1. We define the merging point close to the end of the acceleration lane, where the merging vehicles
coming from the on-ramp will perform the final merging maneuver (incorporating lateral motion also) to enter the main-
stream flow. All vehicles coming from the on-ramp are enforced to merge at this point; however, the proposed methodology
can be generalized to deal with varying merging points. Further, we define a cooperation area, starting from a pre-specified
distance (both on the mainstream and on the on-ramp) upstream of the merging point and ending at the merging point
(Fig. 1). Inside this cooperation area, all vehicles (on both the mainstream and the on-ramp) are called merging vehicles
and are under merging control. The use of a fixed merging point allows for the longitudinal and lateral movements of vehi-
cles to be treated independently. While the following sections tackle the more crucial longitudinal movement, the lateral
movement for on-ramp vehicles is addressed in Section 4.6. For the longitudinal movement, the position of each vehicle
inside the cooperation area is defined by its lane (mainstream or on-ramp) and its x-distance from the merging point. In
the following, when addressing a specific merging vehicle, we will call it, for brevity and clarity, the ego vehicle.
Acceleration 
Lane

Mainstream Lane

Merging Point
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Fig. 1. The topology of the motorway, where the optimal merging trajectory is computed and applied.



Fig. 2. Schematic representation of all involved control layers.
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Fig. 3. For each vehicle in the cooperation area, the green solid arrow indicates its physical leader and the dashed black arrow the putative leader; for
example, for vehicle C the physical leader is vehicle A, while the putative leader is vehicle B. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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In a typical merging scenario, more than one vehicles will, in general, be present inside the cooperation area at each time
instant. Prior to designing the optimal merging trajectories, it is necessary to define the sequence (Merging Sequence - MS) in
which the vehicles shall reach the merging point and eventually move downstream of the cooperation area. It is assumed
here that an upper control level exists, located either in the traffic control center or in a nearby road side unit (RSU), which
performs the determination (and real-time update) of the MS according to appropriate criteria (e.g. current vehicle speeds,
possible priority of mainstream versus ramp flow, etc.). This upper-level controller (Fig. 2) updates the MS every time a new
vehicle enters or exits the cooperation area, or when the current speeds and positions of the vehicles inside the cooperation
area have changed beyond prescribed levels. The MS algorithm and the criteria employed to produce or modify the MS are
outside the scope of this work. However, it was demonstrated, e.g. in Ntousakis et al. (2014a), that even relatively simple MS
schemes may produce a smooth and efficient total traffic flow at the macroscopic level.

A given MS implies that, for each vehicle inside the cooperation area, a ‘‘putative leader” (i.e. the preceding vehicle in the
MS) has been assigned (Fig. 3), and this is actually the output of the upper control level; except if no merging conflict is pre-
dicted for a vehicle (e.g. because it is the only one or the first to enter in the cooperation area), in which case no putative
leader needs to be assigned; such vehicles can continue their movement without any influence from the cooperative merging
system. Clearly, with increasing upstream and on-ramp demand, the number of vehicles without a putative leader will be
accordingly decreasing or even nullified. The putative leader of a vehicle may or may not be its physical leader (the preceding
vehicle in the same lane), as it can be a vehicle of a different lane, as illustrated in Fig. 3.

The physical and the putative leaders of a vehicle influence its movement in a different manner (Fig. 3). Specifically, the
putative leader delivers to the ego vehicle appropriate information (merging time and speed estimates) that is used by the
ego vehicle in order to design its merging trajectory according to Section 3. On the other hand, the physical leader is taken
into account by the vehicle’s car-following (ACC) control. The most restrictive of both resulting accelerations is actually
applied to the vehicle to guarantee safety under any circumstances. Thus, from the point of view of merging trajectory con-
trol, the car-following law may be viewed as a possible disturbance. This treatment of the problem can be applied to each
vehicle that arrives in the cooperation area (either from the mainstream or from the on-ramp) if it is assigned a putative
leader by the upper level controller (Fig. 3); hence we may have many pairs of successive vehicles, where each vehicle
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may act as a follower of its putative and physical leaders; and at the same time be the putative (or physical) leader of other
vehicles.

In this context, the scope of this work is, for any given MS, to provide merging trajectories for each involved vehicle, which
are traffic-efficient and resolve the merging conflicts as smoothly as possible and with as small engine effort as possible.
3. Vehicle merging trajectory planning

3.1. Trajectory boundary values

The merging trajectory is aimed to guide the vehicle movement from its current state (position and speed) to the merging
point, which corresponds to the vehicle’s final merging position (Fig. 3). There is a question, however, on how to specify
appropriately the final (merging) time and the final (merging) speed for each merging vehicle. Clearly, the difference of
the final merging times and speeds of consecutive vehicles are directly related to the time-headway between consecutive
exiting vehicles; hence, the specified merging times and speeds of the vehicles will determine the resulting total outflow,
or, more generally, the traffic state downstream of the merge. In many circumstances, the mainstream outflow should be
maximized, e.g. at times of high demand; more generally, the traffic state downstream of the merge should be optimized
according to the prevailing link or network traffic conditions. This is the task of a superior traffic management layer, see
e.g. (Roncoli et al., 2015a, 2015b). Thus, there is a necessity for the merging control problem and approach to be conceived
in a way that allows for both autonomous operation (in absence of a traffic management layer) and for interventions by a
superior traffic management layer, so as to adapt to the prevailing traffic conditions at the link or network level. For the
merging control problem at hand, this boils down to an appropriate specification of the final merging times and speeds of
merging vehicles, as explained in what follows.

If there is no intervention by an external traffic management level, we will specify (although other choices are also pos-
sible within the present framework) that the merging trajectory of each controlled vehicle should, at the final merging point,
feature a (final) speed equal to the final speed of its putative leader; and a final time-headway to its leader equal to the pre-
specified one (set by the driver of the merging vehicle on the on-board (C)ACC system) (Fig. 4). The implication of this choice
is that the speed of merging vehicles will be maintained close to the speed of the last merged vehicle which did not have a
putative leader or close to the prevailing speed downstream of the merge; while the time-headways of merging vehicles will
be the ones set by their drivers. This is a rather ‘‘natural” choice which is deemed to lead to smooth traffic conditions, sup-
pressing the nuisance that merging on-ramp vehicles could generate for the freeway traffic. On the other hand, when traffic
conditions become critical, the superior traffic management level may be activated and set the final vehicle merging speeds
and headways externally, so as to adapt to the prevailing traffic conditions and achieve an efficient traffic flow at link or net-
work level (Fig. 2), as envisaged, e.g. in Kesting et al. (2008) and Roncoli et al. (2015a, 2015b).

When the merging trajectory of the ego vehicle is computed (and continuously updated in real time), its putative leader
may not have reached the merging point yet. However, based on the putative leader’s own computations, an estimated final
merging time and speed is available, which can be communicated to the ego vehicle through V2V or V2I communication
(Fig. 2). Thus, the desired final speed ve of the ego vehicle at the merging point can be estimated (and continuously updated).
Moreover, the expected time of arrival T of the ego vehicle at the merging point xe can be easily computed as
T ¼ tL ð1Þ

where tL is the time that the putative leader is expected to arrive at the position
xT ¼ xe þ ve � hd ð2Þ

with hd being the desired headway setting of the ego vehicle. Thus, the ego vehicle should start from the initial condition

x0 ¼ ½x0 v0�T and drive to the final condition xe ¼ ½xe ve�T by time T at the merging point xe ¼ 0.
The computation and application of an optimal merging trajectory is subject to a variety of potential uncertainties,

including: (i) the boundary values tL and ve may change over time; (ii) the ACC controller of the ego vehicle may be activated
and alter the merging trajectory; (iii) the vehicle’s actual path may deviate from the computedmerging trajectory; and (iv) as
the MS may be modified during the process, a new putative leader may be assigned to the ego vehicle. These uncertainties
Acceleration 
Lane

Mainstream Lane

Merging Point

xT = ve hdx-Axis x = 0

Fig. 4. The positions of the ego vehicle and its putative leader at the beginning and the end of the merging procedure.
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call for a feedback control structure to attenuate their impact. We will indeed address this need in later sections of the paper
by employing a model predictive control (MPC) approach; i.e. by computing the merging trajectory repeatedly, each time
with updated data, during the merging process. Thus, for the needs of this section, we will consider that the boundary values
tL and ve are available when computing the vehicle merging trajectory.

3.2. Minimization of acceleration

First we will consider the case of defining the optimal merging trajectory as the one that minimizes the required accel-
eration of each merging vehicle, as .e.g., in Rios-Torres et al. (2015). We consider that the movement of the vehicle is
described by the equations of motion and we ignore any delays, lags or restrictions. The system is described by the following
state variables:

� _x1 ¼ x2 (speed).
� _x2 ¼ u (acceleration).

The objective is to bring the system from the initial condition x0 ¼ ½x0 v0�T to the final condition xe ¼ ½xe ve�T by time T,
while minimizing the criterion
J ¼ 1
2

Z T

0
u2dt: ð3Þ
This quadratic criterion will lead to smooth variations of acceleration over time. For the sake of simplicity in the form of
the optimal solution, we do not consider constraints in the state and control variables. Such constraints would limit the
speed between zero and its maximum value; and the acceleration between its minimum and maximum values. Although
the probability of actually hitting these bounds in ordinary situations is deemed low, we would in most cases merely face
an additional disturbance, should this indeed happen, thanks to the MPC procedure. It should be noted that the derivation
of analytical solutions for the corresponding constrained optimization problem is not an easy task and may indeed be even
infeasible or computationally demanding due to many possible combinations of subsequent constraint activation and deac-
tivation that would need to be elaborated. In any case, we also offer a (non-analytic) computation possibility with explicit
constraint consideration in Section 4.4.

In order to find the solution to the optimal control problem above, we first write its Hamiltonian function
H ¼ 1
2
u2 þ k1x2 þ k2u ð4Þ
where k1 and k2 are the co-state variables. The necessary conditions for optimality are (Papageorgiou et al., 2012):
_x1 ¼ Hk1 ¼ x2 ð5Þ

_x2 ¼ Hk2 ¼ u ð6Þ

_k1 ¼ �Hx1 ¼ 0 ð7Þ

_k2 ¼ �Hx2 ¼ �k1 ð8Þ

Hu ¼ uþ k2 ¼ 0: ð9Þ

From (7) we obtain that
k1ðtÞ ¼ c1: ð10Þ

Hence, from (8) and (9) we have
k2ðtÞ ¼ �c1t � c2 ð11Þ

and
uðtÞ ¼ c1t þ c2 ð12Þ

where c1 and c2 are constants to be computed. Using (12), Eqs. (5) and (6) yield:
x1ðtÞ ¼ 1
6
c1t3 þ 1

2
c2t2 þ c3t þ c4 ð13Þ

x2ðtÞ ¼ 1
2
c1t2 þ c2t þ c3: ð14Þ



470 I.A. Ntousakis et al. / Transportation Research Part C 71 (2016) 464–488
In order to calculate the four constants in (13) and (14), the initial and final conditions of the problem will be used:
x1ð0Þ ¼ x0, x1ðTÞ ¼ 0, x2ð0Þ ¼ v0, x2ðTÞ ¼ ve. Then, the corresponding constants result as:
Fig. 5.
ve ¼ 20
c1 ¼ 6
T2 ðve þ v0Þ þ 12x0

T3 ð15Þ

c2 ¼ �6x0
T2 � 2ve þ 4v0

T
ð16Þ

c3 ¼ v0 ð17Þ

c4 ¼ x0: ð18Þ

An example demonstrates the performance of the derived optimal solution. Setting x0 ¼ �150 m, xe ¼ 0 m, v0 ¼ 14 m

s ,
ve ¼ 20 m

s , T ¼ 10 s, the resulting graphs of jerk (the time derivative of acceleration), acceleration, speed, and position of
the merging vehicle as functions of time are presented in Fig. 5.

It is evident that the target speed ve and target position xe are achieved at time T as requested; while the acceleration is a
linear function of time (see (12)), and the jerk has a small constant value. These trajectories look very smooth at first view.
However, it should be emphasized that, using this optimal control formulation, it is impossible to impose an initial acceler-
ation condition. This can be observed in the example, where the optimal solution imposes a certain value of acceleration at
time t ¼ 0þ, regardless of its actual value (that the merging vehicle had) at time t ¼ 0�. The same can be also observed for the
jerk. Since one of our optimization targets is to maximize the passenger comfort, expressed through the minimization of the
magnitude and the variation of acceleration, it is necessary to avoid abrupt changes to both acceleration and jerk. This cannot
be accomplished by this solution, which, if used within a model predictive control (MPC) framework (as it will be presented
in a following section), would result in ‘‘step-like” variations in acceleration and corresponding strong pulses in jerk for each
discrete time step of the MPC procedure. Similarly, after arrival of the vehicle at the merging point, its speed on the
mainstream would be maintained constant at ve, which implies a jump of acceleration to zero and hence a strong pulse
of the jerk value at time T. To circumvent these shortcomings, the problem formulation will be expanded gradually in the
next sections.
Graphical representation of the optimal solution, regarding the minimization of acceleration, for the case with x0 ¼ �150 m, xe ¼ 0 m, v0 ¼ 14 m
s ,

m
s , T ¼ 10 s.
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3.3. Minimization of jerk

We expand the previous formulation so that the acceleration becomes a 3rd state variable while the (virtual) control vari-
able now corresponds to the jerk (the time-derivative of acceleration):

� _x1 ¼ x2 (speed).
� _x2 ¼ x3 (acceleration).
� _x3 ¼ u (jerk).

The objective is to bring the system from the initial condition x0 ¼ ½x0 v0 a0�T to the final condition xe ¼ ½xe ve ae�T by time
T (where a0 and ae are the initial and final accelerations of the merging vehicle, respectively), while minimizing the criterion:
J ¼ 1
2

Z T

0
u2dt: ð19Þ
The Hamiltonian function of the above optimal control problem is
H ¼ 1
2
u2 þ k1x2 þ k2x3 þ k3u ð20Þ
where k1, k2, k3,are the co-state variables. Subsequently, we have the necessary conditions of optimality:
_x1 ¼ Hk1 ¼ x2 ð21Þ

_x2 ¼ Hk2 ¼ x3 ð22Þ

_x3 ¼ Hk3 ¼ u ð23Þ

_k1 ¼ �Hx1 ¼ 0 ð24Þ

_k2 ¼ �Hx2 ¼ �k1 ð25Þ

_k3 ¼ �Hx3 ¼ �k2 ð26Þ

Hu ¼ uþ k3 ¼ 0: ð27Þ

By solving (24), we obtain again (10); and using (25), we get again (11). Using (26), we then have
k3ðtÞ ¼ 1
2
c1t2 þ c2t þ c3: ð28Þ
Finally, due to (27) we have:
uðtÞ ¼ �k3ðtÞ ¼ �1
2
c1t2 � c2t � c3 ð29Þ

x3ðtÞ ¼ �1
6
c1t3 � 1

2
c2t2 � c3t � c4 ð30Þ

x2ðtÞ ¼ � 1
24

c1t4 � 1
6
c2t3 � 1

2
c3t2 � c4t � c5 ð31Þ

x1ðtÞ ¼ � 1
120

c1t5 � 1
24

c2t4 � 1
6
c3t3 � 1

2
c4t2 � c5t � c6: ð32Þ
In this case, six constants have to be specified for the 5th order polynomial of (32), using the initial and final conditions of
the involved state variables. The conditions used for the previous formulation (for position and speed) aremaintained. In addi-
tion, we specify that: (a) the initial acceleration equals the actual acceleration a0 of the merging vehicle at time zero (to avoid
jumps of the acceleration value with MPC); and (b) the final acceleration should be equal to zero (to avoid an acceleration
jump at the merging point). Hence, the six conditions can be formulated as: x1ð0Þ ¼ x0, x1ðTÞ ¼ 0, x2ð0Þ ¼ v0, x2ðTÞ ¼ ve,
x3ð0Þ ¼ a0, x3ðTÞ ¼ 0. These conditions lead to an analytic calculation of the six constants, as detailed in Appendix A.

The example demonstrates the performance of the derived optimal solution. The initial and final conditions are:
x0 ¼ �150 m, xe ¼ 0 m, v0 ¼ 14 m

s , ve ¼ 20 m
s , a0 ¼ �0:6 m

s2, ae ¼ 0:0 m
s2, T ¼ 10 s. Note that the initial value of acceleration

is chosen equal to the same value in the previous example, to enable comparability of results.
The graphical representation of the resulting optimal solutions is depicted in Fig. 6. It can be observed that the derived

optimal solution provides the expected results concerning the initial and final conditions. The jerk is seen to exhibit some



Fig. 6. Graphical representation of the optimal solution, regarding the minimization of jerk, for the case with x0 ¼ �150 m, xe ¼ 0 m, v0 ¼ 14 m
s , ve ¼ 20m

s ,
a0 ¼ �0:6 m

s2, ae ¼ 0:0 m
s2, T ¼ 10 s.
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variations compared to its constant value in Fig. 5; which is the price to pay in order to impose the initial and final accel-
eration values and hence avoid jerk pulses at the start and final times. However, we still face the problem of jerk jumps
at the initial and final states in case of MPC application. Since this may have a direct impact on passenger feeling and comfort,
we may address this issue by also taking into account the derivative of the jerk in the state equations.

3.4. Minimization of the derivative of jerk

The system is now described by the following state variables:

� _x1 ¼ x2 (speed).
� _x2 ¼ x3 (acceleration).
� _x3 ¼ x4 (jerk).
� _x4 ¼ u (derivative of jerk).

The objective is to bring the system from the initial condition x0 ¼ ½x0 v0 a0 j0�T to the final condition xe ¼ ½xe ve ae je�T by
time T (where j0 and je are the initial and final values of jerk for the merging vehicle, respectively), while minimizing the
criterion:
J ¼ 1
2

Z T

0
u2dt: ð33Þ
The Hamiltonian function of the above optimal control problem is now
H ¼ 1
2
u2 þ k1x2 þ k2x3 þ k3x4 þ k4u ð34Þ
where k1, k2, k3, k4, are the co-state variables. Following the same procedure as before, the optimal solution is given by:
u ¼ ðc1t3=6Þ þ ðc2t2=2Þ þ c3t þ c4: ð35Þ
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Subsequently,
Fig. 7.
v0 ¼ 14
x4 ¼ c1t4

24
þ c2t3

6
þ c3t2

2
þ c4t þ c5 ð36Þ
x3 ¼ c1t5

120
þ c2t4

24
þ c3t3

6
þ c4t2

2
þ c5t þ c6 ð37Þ
x2 ¼ c1t6

720
þ c2t5

120
þ c3t4

24
þ c4t3

6
þ c5t2

2
þ c6t þ c7 ð38Þ
x1 ¼ c1t7

5040
þ c2t6

720
þ c3t5

120
þ c4t4

24
þ c5t3

6
þ c6t2

2
þ c7t þ c8: ð39Þ
In this case, eight constants have to be defined for the 7th degree polynomial of Eq. (39), using the initial and final con-
ditions of the problem at hand. The conditions used for the previous formulation are maintained, and the two additional con-
ditions needed are set as follows: (a) the initial jerk equals the actual jerk of the merging vehicle at time zero (to avoid initial
jumps) and (b) the final jerk is set zero (for similar reasons as in the previous formulation). The eight conditions can be given
now as: x1ð0Þ ¼ x0, x1ðTÞ ¼ 0, x2ð0Þ ¼ v0, x2ðTÞ ¼ ve, x3ð0Þ ¼ a0, x3ðTÞ ¼ 0, x4ð0Þ ¼ j0, x4ðTÞ ¼ 0, where j0 is the initial jerk of
the merging vehicle.

The following example demonstrates the performance of the derived optimal solution. The initial and final conditions are:
x0 ¼ �150 m, xe ¼ 0 m, v0 ¼ 14 m

s , ve ¼ 20 m
s , a0 ¼ �0:6 m

s2, ae ¼ 0:0 m
s2, j0 ¼ �0:3 m

s3, je ¼ 0 m
s3, T ¼ 10 s. The graphical represen-

tation of the resulting optimal solutions is depicted in Fig. 7. As it can be observed, the derived optimal solution provides the
expected results, concerning the initial and final conditions. Again, jerk and acceleration are varying with time to ensure the
satisfaction of initial and final conditions. Note, in particular, the increasingly smooth convergence of the speed towards its
final value over the three cases of Figs. 5–7.
Graphical representation of the optimal solution, regarding the minimization of the derivative of jerk, for the case with x0 ¼ �150 m, xe ¼ 0 m,
m
s , ve ¼ 20 m

s , a0 ¼ �0:6 m
s2, ae ¼ 0:0 m

s2, j0 ¼ �0:3 m
s3, je ¼ 0 m

s3, T ¼ 10 s.
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4. Further extensions

4.1. Combined cost function

In the previous section, the considered cost function includes only the (virtual) control input u. This, however, may not
provide sufficient flexibility while attempting an appropriate, possibly individual (by driver) trade-off between engine effort,
passenger comfort and task feasibility. The generalization in this section considers a combined cost function, taking into
account the acceleration, the jerk, as well as the time-derivative of jerk. To this end, a weighted sum of the respective terms
is used to define the new cost function. The first two terms in the combined cost function are directly related to comfort and
engine effort, respectively. On the other hand, the derivative of jerk does not have a direct physical meaning; however, it is
necessary to include it in the cost function for avoiding abrupt jerk changes at the start and end of the merging maneuver.
The system is described with four state equations, as in Section 3.4., and the objective is to bring the system from the con-

dition x0 ¼ ½x0 v0 a0 j0�T to the final condition xe ¼ ½0 ve 0 0�T by time T .
The cost function is now defined as:
J ¼ 1
2

Z T

0
ðw1x23 þw2x24 þ u2Þdt ð40Þ
where w1, w2 are the non-negative weights of the two additional terms in the cost function. The Hamiltonian function of the
optimal control problem above is
H ¼ 1
2
ðw1x23 þw2x24 þ u2Þ þ k1x2 þ k2x3 þ k3x4 þ k4u ð41Þ
where k1, k2, k3, k4 are the co-state variables. Following a similar procedure as before, the optimal solution results as:
uðtÞ ¼ c5 � A4
1 � eA1�t þ c6 � A4

1 � e�A1�t þ c7 � A4
2 � eA2�t þ c8 � A4

2 � e�A2�t ð42Þ

x4 ¼ c1
w1

þ c5 � A3
1 � eA1�t � c6 � A3

1 � e�A1�t þ c7 � A3
2 � eA2�t � c8 � A3

2 � e�A2�t ð43Þ

x3 ¼ c2
w1

þ c1
w1

t þ c5 � A2
1 � eA1�t þ c6 � A2

1 � e�A1�t þ c7 � A2
2 � eA2�t þ c8 � A2

2 � e�A2�t ð44Þ

x2 ¼ c3
w1

þ c2
w1

t þ c1w2

w2
1

þ c1
2w1

t2 þ c5 � A1 � eA1�t � c6 � A1 � e�A1�t þ c7 � A2 � eA2�t � c8 � A2 � e�A2�t ð45Þ

x1 ¼ w2c1
w2

1

t þw2c2
w2

1

þ c1
6w1

t3 þ c2
2w1

t2 þ c3
w1

t þ c4
w1

þ c5 � eA1�t þ c6 � e�A1�t þ c7 � eA2�t þ c8 � e�A2�t ð46Þ
where
A1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

2 � 4w1

q
2

vuut
ð47Þ

A2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

2 � 4w1

q
2

vuut
: ð48Þ
It should be noted that the above solution is valid only if w2
2 � 4w1–0. Otherwise, the optimal solution is given by:
x1 ¼ w2c1
w2

1

t þw2c2
w2

1

þ c1
6w1

t3 þ c2
2w1

t2 þ c3
w1

t þ c4
w1

þ c5 � e
ffiffiffiffi
w2
2

p
�t þ c6 � e�

ffiffiffiffi
w2
2

p
�t þ c7 � t � e

ffiffiffiffi
w2
2

p
�t þ c8 � t � e�

ffiffiffiffi
w2
2

p
�t : ð49Þ
The eight conditions for the computation of the eight constants in (49) are the same as in Section 3.4: x1ð0Þ ¼ x0, x1ðTÞ ¼ 0,
x2ð0Þ ¼ v0, x2ðTÞ ¼ ve, x3ð0Þ ¼ a0, x3ðTÞ ¼ 0, x4ð0Þ ¼ j0, x4ðTÞ ¼ 0. This solution will be used to investigate the impact of the
cost function weights in a later section. It should be emphasized that all optimal control solutions obtained to this point
can be readily executed in real time (within a MPC framework) in the vehicle’s on-board computer, as they only require ele-
mentary computations and the inversion of a low-order matrix (see Appendix A).

4.2. Discrete-time formulation

The previous optimal control problems may also be formulated in discrete time, in which case the resulting optimization
may be cast in the form of a Quadratic Programming (QP) problem (Papageorgiou et al., 2012). Let s be the discrete time step.
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Let ak ¼ aðksÞ, jk ¼ jðksÞ, dk ¼ dðksÞ be the acceleration, the jerk and the time derivative of jerk, respectively, at discrete time
instant k ¼ 0;1;2; . . .K , with K ¼ T=s being the total number of discrete time steps. Then the cost function to be minimized is
Z ¼
XK�1

k¼0

w1a2k þw2j
2
k þ d2

k

� �
: ð50Þ
Similarly, we define with xk and vk the position and speed of the vehicle at time instant k. Assuming a constant value of
the (virtual) control variable dk during each time step [ks, (k + 1)s), the state variables should obey the following linear
discrete-time state equations:
xkþ1 ¼ xk þ vksþ 1
2
aks2 þ 1

6
jks3 þ

1
24

dks4 ð51Þ
vkþ1 ¼ vk þ aksþ 1
2
jks2 þ

1
6
dks3 ð52Þ
akþ1 ¼ ak þ jksþ
1
2
dks2 ð53Þ
jkþ1 ¼ jk þ dks ð54Þ
with the following initial and final conditions:
x0 ¼ xð0Þ; xK ¼ xðKÞ ¼ 0
v0 ¼ vð0Þ; vK ¼ vðKÞ
a0 ¼ að0Þ; aK ¼ aðKÞ ¼ 0
j0 ¼ jð0Þ; jK ¼ jðKÞ ¼ 0:

ð55Þ
The only difference of this discrete-time optimal control problem from its continuous-time counterpart of Section 4.1 is
due to the fact that the (virtual) control variable dk is constant for the duration of each time period s. Hence, the solution of
both problems will be virtually identical for sufficiently small s. In fact, solving the discrete-time problem with s ¼ 0:01 s
was found to produce virtually indistinguishable solutions when compared with the continuous-time solutions; but much
larger time steps may be sufficient for practice-relevant results. Despite the impressive recent advancements with solution
codes for QP control problems (Mattingley et al., 2011), the formulation of the merging trajectory design problem in QP for-
mat is not expected to provide computational advantages over the reported solutions of Sections 3 and 4.1. However, the QP
formulation would allow for ready inclusion (if necessary) of linear state or control constraints, as described in Section 4.4.
4.3. The choice of weights

In the case of minimization of the combined cost function, which includes two weighted terms, the choice of weights
plays an important role for the shape of the resulting optimal trajectories. In particular, possible extreme values of jerk
and acceleration can be suppressed by the proper selection of weights. Undoubtedly, some drivers may be skeptical regard-
ing the produced optimal merging trajectories, especially if they do not match their driving preferences; this might in turn
lead to deactivation of the system. However, the use of weights in the formulation of the problem as tuning parameters could
possibly render the system more appealing to the drivers, if the weights could be manually adjusted by the individual driver
to render the resulting trajectories more appealing to her driving style. An alternative option would be to use machine learn-
ing techniques to automatically tune these weights, using as a learning base the trajectories the specific driver usually
applies for merging.

To illustrate the impact each weight has on the produced optimal trajectory, a range of different examples is presented.
The initial and final conditions for all considered examples are the same as in Section 3.4. In the first case considered, the
weight w2 is kept constant (w2 ¼ 1), while varying the weight w1. In the second case, the weight w1 is kept constant
(w1 ¼ 1), while varying the weight w2. In the third case, both weights vary, having the same value for each sub-case. The
corresponding results are depicted in Figs. 8–10. The variation of only w2 (Fig. 9) seems to have a small effect on the time
variation of acceleration and jerk, while the variation of only w1 (Fig. 8) has the more pronounced effect. As w1 is increasing,
the tendency to minimize the acceleration becomes higher and leads to a linear-like trajectory (as in Section 3.2), but the
zero-acceleration constraint at the final time produces an abrupt variation in acceleration and correspondingly high values
of jerk, near the end of the trajectory. When both weights are modified (with equal values, to demonstrate the effect of the
third term of the cost function, see Fig. 10), the variation of jerk is higher for the large values of both weights due to the com-
bined effect of the two first terms of the cost function; while, for small values of the two weights, the variation of acceler-
ation and jerk is rather small. Clearly a high number of different merging examples, involving various initial and final states
as well as final times, may be necessary to appreciate the impact of weights and the related possibilities.



Fig. 8. Graphical representation of the resulting optimal solutions, regarding the minimization of the combined cost function, for different values of
w1;w2 ¼ 1,w1 ¼ 0:1 ðblueÞ, 1 ðredÞ, 10 ðblackÞ, 100 ðgreenÞ, 1000 ðmagentaÞ. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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4.4. QP formulation with inequality constraints

The QP formulation can be used to compute the optimal solution in the case where constraints are also imposed for the
maximum and minimum permissible values of the state variables. This is demonstrated in the following example, referring
to the case with the combined cost function, with the same initial and final conditions and the weights w1 ¼ 0:1, w2 ¼ 0:5.
The optimal solution for the unconstrained case is visible in Fig. 11, along with the resulting optimal solution when a max-
imum value in acceleration equal to amax ¼ 1:5 m

s2 is imposed. The optimal solution is accordingly modified to satisfy the
imposed constraint, resulting in steeper variations of jerk outside the region where the constraint is activated, in order to
fulfil the initial and final conditions.

4.5. Time-varying LQR (Linear-Quadratic Regulator) formulation

The unconstrained optimal control problem (for the continuous-time or the discrete-time formulation) is a Linear Quad-
ratic (LQ) one, since the system state is described by a set of linear differential or difference equations, while the cost func-
tion is of quadratic form. Thus, the solution of this problem can be given in linear feedback form, as a linear-quadratic-
regulator (LQR). The LQR may be developed in very similar ways in either continuous time or discrete time. In the following
the discrete-time LQR derivation is presented for the problem under consideration.

Eqs. (51)–(54) constitute a discrete-time linear system which may be expressed in state-space form
xkþ1 ¼ A � xk þ b � uk ð56Þ
where x ¼ ½x v a j�T is the state vector and u ¼ d is the (virtual) control input. The quadratic performance index (50) is
extended with a final-time term
J ¼ 1
2
kxKk2S þ

1
2

XK�1

k¼0

kxkk2Q þ u2
k

h i
: ð57Þ
As in (50), we have the diagonal state-weighting matrix Q ¼ diagð0 0 w1 w2Þ. The final-time term is introduced to guar-
antee that all final states xK will be virtually zero; to this end, the elements of the diagonal weighting matrix S are chosen
sufficiently high.



Fig. 9. Graphical representation of the resulting optimal solutions, regarding the minimization of the combined cost function, for different values of w2;
w1 ¼ 1, w2 ¼ 0:1 ðblueÞ, 1 ðredÞ, 10 ðblackÞ, 100 ðgreenÞ, 1000 ðmagentaÞ. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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It can be shown (Papageorgiou et al., 2012) that the optimal control sequence minimizing the performance index is deliv-
ered by the linear feedback law
uk ¼ �Lk � xk ð58Þ

where L is the time-varying feedback gain vector, which may be computed via the following equations
Lk ¼ ½bTPkþ1bþ 1��1½bTPkA� ð59Þ

Pk ¼ ATPkþ1Aþ Q � LTkb
TPkþ1A ð60Þ
with terminal condition
PK ¼ S: ð61Þ

The matrix Pk is referred to as the discrete-time Riccati matrix and it can be computed, along with the gain Lk, through back-
ward integration, starting from (61) and utilizing Eqs. (59) and (60).

The above feedback control law will drive the system to the origin (xK ¼ 0Þ in final time K from any initial state xð0Þ ¼ x0.
In our case however, we need all final states to be driven to the origin, except for the speed, which should be driven towards
the desired final speed ve. For this reason, the problem must be reformulated such that all states are driven to zero. To this
end, we introduce the variable v� as
v�
k ¼ vk � ve: ð62Þ
Eq. (51) for the position now becomes
xkþ1 ¼ xk þ v�
ksþ

1
2
aks2 þ 1

6
jks3 þ

1
24

dks4 þ ves: ð63Þ
Accordingly, Eq. (52) for the speed becomes
v�
kþ1 ¼ v�

k þ aksþ 1
2
jks2 þ

1
6
dks3: ð64Þ



Fig. 10. Graphical representation of the resulting optimal solutions, regarding the minimization of the combined cost function, for different values of
w1 ¼ w2;w1 ¼ w2 ¼ 0:0001 ðblueÞ, 1 ðredÞ, 10 ðblackÞ, 1000 ðgreenÞ. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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The remaining system equations (acceleration and jerk) remain unchanged. The new equations may be written in state-
space form
xkþ1 ¼ A � xk þ b � uk þ d ð65Þ
where now x ¼ ½x v�a j�T and the vector d ¼ ½ve s 0 0 0�T acts as a constant and known disturbance to the system. In this case,
the optimal control law is extended (Marinaki and Papageorgiou, 2005) as
uk ¼ �Lkxk � Uk ð66Þ

For computing the feedforward term Uk, we use the following definitions:
Dk ¼ ½1þ bTPkþ1b�
�1
bT ð67Þ
Zk ¼ AT½I � Pkþ1bDk� ð68Þ
pK ¼ PKd ð69Þ
pk ¼ Pkdþ Zkpkþ1 ð70Þ

The vector pk can be computed using Eqs. (67)–(70). Finally we have Uk ¼ Dkpkþ1.
It is important to note that the matrices Pk and Lk can be computed offline only once, for a sufficiently long K , and be

stored inside the vehicle, since they depend only on the a priori known matrices A;b;Q ; while the feedforward term Uk

depends also on the desired final speed ðveÞ and must therefore be computed online (or be stored for a range of different
final speeds).

The LQR solution is equivalent to the previously derived analytical solution, but might present computational advantages.
In particular, the control law (66) is by itself equivalent to an MPC procedure, because it is not dependent on any particular
initial state.



Fig. 11. Graphical representation of the resulting optimal solutions using QP, regarding the minimization of the combined cost function, for the case with
x0 ¼ �150 m, xe ¼ 0 m, v0 ¼ 14 m

s , ve ¼ 20 m
s , a0 ¼ �0:6 m

s2, ae ¼ 0 m
s2, j0 ¼ �0:3 m

s3, je ¼ 0 m
s3, T ¼ 10 s; solid blue line: no constraints are activated; dashed red

line: imposed maximum acceleration constraint amax ¼ 1:5 m
s2. (For interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)
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4.6. Lateral movement

For the final merging of vehicles stemming from the on-ramp, a lateral lane change from the acceleration lane to the
mainstream lane is of course necessary. All previous developments did not address explicitly this lateral part of the on-
ramp merging vehicle trajectory. This is because the presence of a fixed merging point (Fig. 1) allows for an independent
design of the lateral vehicle movement. Specifically, on-ramp merging vehicles need to move, short before reaching the
merging point, in lateral direction from an initial position yð0Þ ¼ �D, D being the lane width, to zero. The time period for
the execution of the lane change maneuver may be pre-specified to be either constant (few seconds) or dependent on the
desired longitudinal merging speed ve. The initial speed, acceleration and jerk in lateral direction at the start of the maneuver
are obviously equal to zero; while the respective final values at the end of the maneuver should also be equal to zero. The
state equations and objective criterion for the lateral movement are the same as for the longitudinal movement in previous
sections. However, since the final values of all lateral state variables must be equal to zero, the ordinary LQR (58), with offline
computed gain matrix, may be employed online for the lateral movement with very low computation requirements.

5. Application of a model predictive control framework

5.1. The necessity of MPC

In the previous sections we adopted the assumption that each merging vehicle knows its final speed (ve) and time of arri-
val at the merging point (T) beforehand, while computing its trajectory. However, these values may be subject to modifica-
tions as the vehicle is moving in an actual merging scenario for several reasons, such as: (a) inaccurate estimation of the
expected speed and time of arrival at the merging point of the previous vehicle in the MS (putative leader); (b) inaccurate
trajectory realization by the vehicle control; (c) the presence of other vehicles ahead of the putative leader may affect its
trajectory and its time of arrival to the merging point (as well as its expected speed); and (d) changes of the final speed
and headway ordered by the traffic management level (Fig. 2).

In order to tackle such real-time changes, which call for corresponding updates of the vehicle trajectory, a Model Predic-
tive Control (MPC) scheme is utilized. In this way, possible disturbances in the trajectories of the merging vehicle and its
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putative leader can be compensated, as the optimization problem is repeatedly solved (or the LQR is applied in real time),
using the updated data for the formation of the remaining part of the optimal trajectory. Thanks to the pursued problem
formulation, the optimal solution’s general form remains always the same (in every time step); what changes are only
the initial state, the remaining time horizon and, possibly, the final merging speed. Thus, the solution constants can be
re-calculated as functions of the initial conditions, as well as of ve and T; or the LQR (66) may be simply activated, possibly
with an update of the feedforward term, in case of final speed change. This procedure is repeated regularly, e.g. each second;
until the vehicle merging has been actually accomplished.

In the following section, illustrative MPC-application examples will be presented for cases where unexpected modifica-
tions in the movement of the putative leader occur, which affect both T and ve.

5.2. MPC application examples

We assume in this section that the putative leader can transmit only its current speed and position to the ego vehicle.
Therefore, it is necessary to make an assumption regarding the future movement of the putative leader, which will enable
the ego vehicle to estimate its expected time of arrival ðTÞ and expected speed ðveÞ and be able to apply the optimal control.
The simplest assumption for estimating the aforementioned values is the one of constant speed for the remaining part of the
trajectory of the putative leader. Clearly, this naïve assumption presents a challenge to the ego vehicle if the leader is actually
changing its speed, hence the resulting merging control may, under circumstances, lead to strong (or even extreme) accel-
eration requirements. Under this assumption, the putative leader will move at constant speed from the current time t ¼ t0
until the time t ¼ t0 þ T . Consequently, the expected speed and expected time of arrival of the ego vehicle can be easily cal-
culated as follows:
ve ¼ vLðt0Þ ð71Þ

T ¼ hd � ve � xLðt0Þ
vLðt0Þ

����
���� ¼ hd � xLðt0Þ

vLðt0Þ
����

���� ð72Þ
where the subscript ‘‘L” refers to the putative leader. If, for any reason, the putative leader is stopped in the current time step
(i.e. vLðt0Þ ¼ 0), a suitable trajectory is applied to the ego vehicle, so as to have it stop at a safe distance behind the putative
leader. In order to calculate this trajectory we set ve ¼ 0, while T is calculated from
T ¼ v
acomf

ð73Þ
where acomf is a comfortable deceleration. Also, since the optimal solutions are designed to satisfy the final condition
xðTÞ ¼ 0, the x-axis for this exceptional case should be suitably ‘‘shifted”; such that the new initial position to be used in
the optimal solution calculation is x0 ¼ x� ðxL � ðlL þ rsafeÞÞ, where lL is the length of the putative leader and rsafe is the safe
distance.

In the first example (Fig. 12), the putative leader drives at a constant speed of 15 m/s; then it accelerates to 20 m/s; and
continues thereafter at a constant speed. The ego vehicle assumes, at each MPC update, a constant future speed for its puta-
tive leader, equal the leader’s current speed. The simulation step is equal to 0.01 s, while w1 ¼ 0:1, w2 ¼ 0:5. In Fig. 12, dif-
ferent results of the MPC scheme are presented for different values of the MPC control step used (control step: blue = 0.1 s,
red = 0.5 s, black = 2.0 s).

From Fig. 12 it may be seen that the system works as expected, converging to the prescribed final speed and headway.
However, by increasing the control intervals, the total cost is also increasing (Table 1) because, in order to address the accu-
mulated estimation error in cases of longer control steps, the ego vehicle needs to apply stronger maneuvers.

Simulations have been also performed for the case where the leader continues to accelerate throughout the duration of
the merging process. This example was introduced to illustrate the difficulties that might arise in case of a naïve MPC pre-
diction regarding the leader’s speed. In such a case, there will always be a speed and headway error at the end of the merging
maneuver, since the ego vehicle assumes constant leader speed, while the putative leader actually accelerates. Particularly,
when the ego vehicle is close to the merging point, the remaining time is not sufficient to compensate for the error, and the
optimal solution may impose large accelerations. This situation can be improved if the prediction regarding T and ve can
become more accurate (not using the assumption of constant speed for the remaining of the trajectory), or the putative lea-
der can communicate its estimated final merging time and speed according to its own optimal trajectory planning. In order
to visualize this problem, the example in Fig. 13 is used. Note that, if hard inequality constraints (for acceleration and speed)
would be considered here, this might render the optimization problem infeasible.

5.3. Comparison with ACC-controller merging

In this section, the proposed method will be compared to a typical ACC controller (Ntousakis et al., 2014b) merging policy.
As a matter of fact, several works have proposed the derivation of a merging trajectory for the ego vehicle by applying its ACC
control law to a so-called ‘‘virtual” vehicle, which is basically a ‘‘projection” of the putative leader to the same lane as the ego



Fig. 12. The effect of the control step on the resulting trajectory with the MPC scheme, for the case when a constant speed is assumed for the putative
leader. 1st scenario: the putative leader accelerates and then follows a constant speed trajectory (control step: blue = 0.1 s, red = 0.5 s, black = 2.0 s). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
The effect of the control step on the cost of the produced trajectory for the case of Fig. 12.

Control step 0.1 s 0.2 s 0.5 s 1.0 s 2.0 s
Cost 17.3 18.7 24.1 38.4 101.4
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vehicle (Schmidt and Posch, 2010; Uno et al., 1999; Ntousakis et al., 2014a). Although this control method has the advantage
that it does not need a separate controller to react to the putative leader’s movement, it can lead to unnecessarily strong
accelerations or decelerations. In the following, we use the same leader movement as in Fig. 12 to test the reaction of the
ACC merging controller and compare with the optimal control case.

The ACC controller used in this work is the following (Liang and Peng, 1999):
ades ¼ K1ðv � vLÞ þ K2ðxL � x� v � hdÞ ð74Þ

where ades is the desired acceleration and v is the speed of the ego vehicle, vL is the speed of the leader, x is the position of the
ego vehicle, xL is the position of the leader, hd is the desired time headway and K1, K2 are the control gains, with values 1.19
and 1.72, respectively. The desired acceleration is bounded by the maximum acceleration and the maximum deceleration,
usually in the range between �4 and 3 m/s2; moreover, the jerk was also bounded in the range between �3 and 4 m/s3.
The simulation step is equal to 0.01 s, while the control step equals 0.2 s. The produced trajectory using the ACC controller
is presented in Fig. 14. It is evident that the merging procedure virtually nullifies the final speed and headway errors, but the
produced trajectory features large and abrupt variations in acceleration and jerk, contrary to the smoother ones produced by
the proposed methodology. The resulting value of the trajectory cost is 496339.78, which is significantly higher than in the
optimal control cases.

5.4. Application to a set of vehicles

In this section, a more general and ordinary application of the proposed methodology is presented; the effectiveness of
the proposed methodology is assessed in a scenario where a set of several vehicles exists inside the cooperation area, and all
of them follow the proposed methodology. In order to facilitate such a scenario, the following assumptions are adopted:



Fig. 13. MPC scheme, for the case when a constant speed is assumed for the putative leader. 2nd scenario: the putative leader accelerates until the merging
point (control step: 0.2 s).

Fig. 14. The produced trajectory using the ACC merging controller.
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� An upper control level decides on the merging sequence of the vehicles inside the cooperation area and updates it on a
regular basis, in order to deal with disturbances or other unexpected events.

� Each merging vehicle is equipped with a controller that applies the MPC scheme, as described in the previous sections,
and computes an optimal trajectory.

� All vehicles are equipped with an ACC controller, which enables the automatic following of their leading vehicles in the
same lane (actual leaders). Outside the cooperation area, only the ACC controller is active – for all vehicles.

� The MPC and ACC controllers are simultaneously active, inside the cooperation area, while the command that is actually
applied to the vehicle is the most restrictive one. This is necessary in order to guarantee safety.

� No constraints are imposed in this work for the extreme values of jerk, acceleration, and speed (for both controllers - for
compatibility reasons).

� The merging control process ends for a vehicle, once it has successfully merged into the mainstream.

Each merging vehicle, in order to be able to apply the proposed methodology, needs two values (at each control step): the
expected time of arrival (T) and the expected speed ve at the merging point, which are provided by its putative leader. Each
putative leader continuously transmits the updated information to the corresponding follower vehicle until its merging, for
updating the latter’s optimal trajectory at every control step.

A flow chart of the MPC methodology for a set of vehicles is presented in Fig. 15.
In the following examples, an application of this methodology to a set of vehicles is presented, to demonstrate: (a) its

applicability and practicality, and (b) how the variations in the movement of the putative leader affect the corresponding
ego vehicle. Without limiting the generality of the proposed methodology, for simulation purposes we consider a set of 6
vehicles, initially traveling under ACC control, which enter the cooperation area successively (Fig. 16). The merging sequence
for this example is pre-defined to be L-A-B-C-D-E (Fig. 16); however, in a real application this MS would be dynamically
determined by the upper level controller. We assume that the cooperation area begins 200 m upstream of the merging point.
The leading vehicle L is moving with a constant speed.
Fig. 15. The flow chart of the MPC methodology applied for a set of vehicles.



Acceleration 
Lane

Single Lane Motorway

Merging Point

x = ve hdx-Axis x = 0

Fig. 16. Representation of the predefined merging sequence for the set of vehicles involved in the automated merging procedure.

Table 2
The initial conditions for the vehicles involved in the test depicted in Fig. 16.

Vehicle ID L A B C D E

Position (m) �300 �330 �342.5 �360 �368 �390
Speed (m/s) 20 20 17 20 17 20
Acceleration (m/s2) 0 0 0 0 0 0
Jerk (m/s3) 0 0 0 0 0 0

Fig. 17. Application of the MPC scheme to a set of vehicles. 1st scenario: the putative leaders transmit their expected times and speeds at the merging
point; vehicles: A: Blue, B: Green, C: Red, D: Light Blue, and E: Purple. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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As previously mentioned, the movement of vehicles is affected by the merging system, only when they are located inside
the cooperation area. For this experiment, it is assumed that any vehicle that has no actual and no putative leader travels
with acceleration equal to zero. The simulation step was set equal to 0.1 s (same for the ACC controller step), while the con-
trol step for the MPC was set to 0.2 s. Table 2 contains the initial conditions for the vehicles involved in the test. The sim-
ulation results for the first example are depicted in Fig. 17.

Before commenting on the results of Fig. 17, it should be emphasized that this particular example is a demanding one,
since the mainstream vehicles arriving in the cooperation area have already the desired distance with their actual leaders
(provided by the active ACC systems). However, in order to allow for the two on-ramp vehicles to merge, the necessary gaps



Fig. 18. Application of the MPC scheme to a set of vehicles. 2nd scenario: the putative leaders transmit only their current speeds in each time step; vehicles:
A: Blue, B: Green, C: Red, D: Light Blue, and E: Purple. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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should be created; thus, they need to perform a maneuver to first decelerate and, once the gaps are created, accelerate again
to reach the speeds of their putative leaders. These maneuvers are automatically (and optimally) created by the proposed
optimal control methodology.

In the performed simulation (Fig. 17), the system proves capable to successfully implement the decision of the upper level
controller regarding the merging sequence. In other words, the vehicles move on to the downstream section in the pre-
scribed order. Equally importantly, the vehicles merge with the correct speeds and headways. Finally, the average acceler-
ations imposed can be considered acceptable, although in some cases high instantaneous values were unavoidable.

In the second example, the same simulation was performed, considering now that the putative leaders cannot transmit T
and ve but only their current speed and position. The following vehicles predict the values T and ve, based on the naïve
assumption of constant speed for their putative leaders, and continuously re-estimate those values in each time step of
the MPC scheme, as described in a previous section. The corresponding simulation results are depicted in Fig. 18.

Similarly to the previous example, the system successfully executes the merging tasks in the correct order. Additionally,
the vehicles manage to proceed to the downstream section with the correct speed and headway, although the assumption of
constant speed was not close to the real situation. This success is attributed to the use of the MPC controller (in combination
with the optimal trajectory specification), which successfully compensates for the resulting errors. However, compared to
the previous example, higher values for jerk and acceleration are observed. This is expected, since the actions of the con-
troller are based on an incorrect assumption, and, as the vehicles approach the merging point, less time is available to correct
this error. Nevertheless, the application of the proposed methodology for a set of vehicles proved to be applicable and effec-
tive, while its extension to any number of interacting vehicles is straightforward.
6. Conclusions

A trajectory planning methodology for the facilitation of an automated merging procedure was proposed, based on an
optimal control problem formulation, with analytic solutions. Traffic efficiency is taken into account through the final con-
ditions of the problem, which guarantee that the vehicle will proceed to the downstream section with the correct speed and
headway. The cost function to be minimized includes the weighted sum of the squares of the acceleration, jerk and derivative
of the jerk. By minimizing this function, passenger comfort and engine effort are directly considered. The resulting analytic
optimal solution can be stored in the controller of each vehicle. Only two input values from the vehicle’s putative leader are
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needed to compute the optimal trajectory, namely the time to the merging point and the final speed at the same position. If
an accurate estimation of these input values is not available, the methodology can be applied through a MPC scheme, which
can compensate for possible errors. In the case that the putative leader cannot transmit the necessary values to its follower
(merging vehicle) in the on-ramp, its current speed and position can be used instead, along with a prediction of its future
speed; then, the MPC scheme is used to continuously update the optimal trajectory, based on the updated values provided
by the putative leader.

The simulation results proved the applicability and effectiveness of the methodology, and highlighted the importance of
having a correct estimation for the input values. The impact of the different weight combinations to the cost function of the
optimization problemwas also studied, as well as the impact of the control step length for the MPC scheme. In particular, the
specification of the cost criterion weights (within a range) might be left to the drivers, according to their possible preferences
for more ‘‘dynamic” or smoother driving behaviour. The superiority of the proposed methodology with respect to a typical
ACC controller was demonstrated; the latter may produce high and abrupt variations of acceleration and jerk, contrary to the
much smoother ones produced by the proposed one. It was also shown that the solution of the LQ optimization problem can
be given in a feedback form, as a finite horizon linear-quadratic-regulator. This formulation provides certain computational
advantages as the required matrices can be computed off-line and stored in the vehicle.

The proposed MPC scheme for a pair of vehicles was finally extended and applied to an arbitrary set of vehicles within the
cooperation area, with a prescribed merging sequence. The extended methodology includes the use of an ACC controller for
all vehicles, while the MPC is used alongside the ACC inside the cooperation area. Simulation results demonstrate the appli-
cability and effectiveness of the proposed methodology, and its potential for real-world application. Additional tests will be
carried out to assess the performance of the proposed methodology in different flow conditions. Moreover, the combination
of the proposed methodology with a proper upper-level controller, which facilitates the computation of the merging
sequence, is under development.
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Appendix A

A.1. Minimization of acceleration

The analytic expressions for the four constants, defining the analytic solution of the optimal trajectories, are listed below:
c1 ¼ 6
T2 ðve þ v0Þ þ 12x0

T3 ðA:1Þ

c2 ¼ �6x0
T2 � 2ve þ 4v0

T
ðA:2Þ

c3 ¼ v0 ðA:3Þ

c4 ¼ x0 ðA:4Þ
A.2. Minimization of jerk

The following linear system of equations provides the six constants, defining the analytic solution of the optimal
trajectories:
x3ð0Þ ¼ a0 ¼ �c4 ðA:5Þ

x3ðTÞ ¼ 0 ¼ �1
6
c1T

3 � 1
2
c2T

2 � c3T � c4 ðA:6Þ

x2ð0Þ ¼ v0 ¼ �c5 ðA:7Þ

x2ðTÞ ¼ ve ¼ � 1
24

c1T
4 � 1

6
c2T

3 � 1
2
c3T

2 � c4T � c5 ðA:8Þ

x1ð0Þ ¼ x0 ¼ �c6 ðA:9Þ
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x1ðTÞ ¼ 0 ¼ � 1
120

c1T
5 � 1

24
c2T

4 � 1
6
c3T

3 � 1
2
c4T

2 � c5T � c6 ðA:10Þ
A.3. Minimization of jerk’s derivative

The following linear system of equations provides the eight constants, defining the analytic solution of the optimal
trajectories:
x4ð0Þ ¼ j0 ¼ c5 ðA:11Þ

x4ðTÞ ¼ 0 ¼ c1T
4

24
þ c2T

3

6
þ c3T

2

2
þ c4T þ c5 ðA:12Þ

x3ð0Þ ¼ a0 ¼ c6 ðA:13Þ

x3ðTÞ ¼ 0 ¼ c1T
5

120
þ c2T

4

24
þ c3T

3

6
þ c4T

2

2
þ c5T þ c6 ðA:14Þ

x2ð0Þ ¼ v0 ¼ c7 ðA:15Þ

x2ðTÞ ¼ ve ¼ c1T
6

720
þ c2T

5

120
þ c3T

4

24
þ c4T

3

6
þ c5T

2

2
þ c6T þ c7 ðA:16Þ

x1ð0Þ ¼ x0 ¼ c8 ðA:17Þ

x1ðTÞ ¼ 0 ¼ c1T
7

5040
þ c2T

6

720
þ c3T

5

120
þ c4T

4

24
þ c5T

3

6
þ c6T

2

2
þ c7T þ c8 ðA:18Þ
A.4. Minimization of the combined cost function

The following linear system of equations provides the eight constants, defining the analytic solution of the optimal
trajectories for this case:
x4ð0Þ ¼ j0 ¼ c1
w1

þ c5 � A3
1 � c6 � A3

1 þ c7 � A3
2 � c8 � A3

2 ðA:19Þ

x4ðTÞ ¼ 0 ¼ c1
w1

þ c5 � A3
1 � eA1�T � c6 � A3

1 � e�A1�T þ c7 � A3
2 � eA2�T � c8 � A3

2 � e�A2�T ðA:20Þ

x3ð0Þ ¼ a0 ¼ c2
w1

þ c5 � A2
1 þ c6 � A2

1 þ c7 � A2
2 þ c8 � A2

2 ðA:21Þ

x3ðTÞ ¼ 0 ¼ c2
w1

þ c1
w1

T þ c5 � A2
1 � eA1�T þ c6 � A2

1 � e�A1�T þ c7 � A2
2 � eA2�T þ c8 � A2

2 � e�A2�T ðA:22Þ

x2ð0Þ ¼ v0 ¼ c3
w1

þ c1w2

w2
1

þ c5 � A1 � c6 � A1 þ c7 � A2 � c8 � A2 ðA:23Þ

x2ðTÞ ¼ ve ¼ c3
w1

þ c2
w1

T þ c1w2

w2
1

þ c1
2w1

T2 þ c5 � A1 � eA1�T � c6 � A1 � e�A1�T þ c7 � A2 � eA2�T � c8 � A2 � e�A2�T ðA:24Þ

x1ð0Þ ¼ x0 ¼ w2c2
w2

1

þ c4
w1

þ c5 þ c6 þ c7 þ c8 ðA:25Þ

x1ðTÞ ¼ 0 ¼ w2c1
w2

1

T þw2c2
w2

1

þ c1
6w1

T3 þ c2
2w1

T2 þ c3
w1

T þ c4
w1

þ c5 � eA1�T þ c6 � e�A1�T þ c7 � eA2�T þ c8 � e�A2�T ðA:26Þ
where
A1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

2 � 4w1

q
2

vuut
ðA:27Þ

A2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

2 � 4w1

q
2

vuut
ðA:28Þ
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