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This study aimed to develop a secondary crash risk prediction model on freeways using
real-time traffic flow data. The crash and traffic data were collected on the I-880 freeway
for five years in California, United States. The secondary crashes were identified by a
method based on speed contour plot. The random effect logit model was used to link the
probability of secondary crashes with the real-time traffic flow conditions, primary crash
characteristics, environmental conditions, and geometric characteristics. The results
showed that real-time traffic variables significantly affect the likelihood of secondary
crashes. These traffic variables include the traffic volume, average speed, standard devia-
tion of detector occupancy, and volume difference between adjacent lanes. In addition,
the primary crash characteristics, environmental conditions and geometric characteristics
also significantly affect the risks of secondary crashes. The model evaluation results
showed that the predictive performance of the developed model was deemed satisfactory.
The inclusion of traffic flow variables and random effect increases prediction accuracy by
16.6% and 7.7%, respectively. These results have the potential to be used in advanced traffic
management systems to develop proactive traffic control strategies to prevent the occur-
rences of secondary crashes on freeways.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Secondary crashes are the crashes that result from a prior crash. They usually occur within the spatial and temporal
impact ranges of an existing primary crash. The occurrence of secondary crashes on freeways leads to increased risks of addi-
tional crashes, reduced freeway capacity, and increased travel time uncertainty. Previous studies suggested that the risks of
secondary crashes can be reduced by improved incident management (Sun and Chilukuri, 2010; Zhan et al., 2009). To
develop incident management strategies of preventing secondary crashes on freeways, increased attentions have been given
to studying the contributing factors to secondary crashes.

A review of literature revealed that significant efforts have been conducted to identify secondary crashes in previous
studies (Raub, 1997; Karlaftis et al., 1998; Moore et al., 2004; Hirunyanitiwattana and Mattingly, 2006; Zhan et al., 2008;
Chilukuri and Sun, 2006; Sun and Chilukuri, 2010; Zhang and Khattak, 2010; Chou and Miller, 2010). The proposed
approaches to identify secondary crashes in previous studies are briefly summarized in Table 1. In early studies, the static
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Table 1
Summary of secondary crash identification methods in previous studies.

Author Year Method

Raub 1997 Static thresholds of 1 mile and 15 min
Karlaftis et al. 1998 Static thresholds of 1 mile and 15 min
Moore et al. 2004 Static thresholds of 2 miles and 2 h
Hirunyanitiwattana and Mattingly 2006 Static thresholds of 2 miles and 1 h
Zhan et al. 2008 Static thresholds of 2 miles and 15 min
Chilukuri and Sun 2006 Incident progression curve
Sun and Chilukuri 2010 Incident progression curve
Zhan et al. 2009 Method based on cumulative arrival and departure plots
Zhang and Khattak 2010 Method based on queue length estimations
Khattak et al. 2011 Method based on queue length estimations
Chou and Miller-Hooks 2010 Simulation-based method
Imprialou et al. 2013 Method based on spatiotemporal impact area of primary crash
Yang et al. 2014a Method based on spatiotemporal impact area of primary crash
Park and Haghani 2016 Method based on spatiotemporal impact area of primary crash
Sarker et al. 2015 Method based on spatiotemporal impact area of primary crash
Mishra et al. 2016 Method based on spatiotemporal impact area of primary crash
Wang et al. 2016 Method based on spatiotemporal impact area of primary crash
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threshold methods were used to identify secondary crashes based on some fixed spatial and temporal criteria. These studies
assumed that secondary crashes should occur within a maximum spatial and temporal impact range of a primary incident.
For example, Karlaftis et al. (1998) used static spatial and temporal thresholds of 1 mile and 15 min to identify secondary
crashes. Any crash occurring within 1 mile upstream of and less than 15 min after a prior crash is defined as a secondary
crash. Hirunyanitiwattana andMattingly (2006) proposed the static thresholds of 1 h and 2 miles upstream of a primary inci-
dent for identifying secondary crashes. Other studies conducted by Raub (1997), Moore et al. (2004), and Zhan et al. (2008)
used the similar static thresholds. One limitation associated with the static method is that they need a subjective determi-
nation of fixed spatial and temporal thresholds. As a result, the static method may not have adequate accuracy in identifying
second crashes (Chilukuri and Sun, 2006; Sun and Chilukuri, 2010; Zhang and Khattak, 2010; Chou and Miller, 2010).

To overcome the limitation associated with the static threshold methods, a number of studies proposed various dynamic
methods to identify secondary crashes. These dynamic methods include the incident progression curve (Chilukuri and Sun,
2006; Sun and Chilukuri, 2010), queue length estimations (Zhang and Khattak, 2010), cumulative arrival and departure plots
(Zhan et al., 2009), and simulation-based method considering shockwave (Chou and Miller, 2010). Sun and Chilukuri (2010)
developed incident progression curves to estimate the end of the varying queue throughout the entire incident. The results
showed that the method based on incident progression curves can improve the secondary crash identification accuracy by
30%, compared with the static method. In a study conducted by Zhang and Khattak (2010), a dynamic spatial threshold
method based on queue length estimations was developed to identify secondary incident. Zhan et al. (2009) proposed a
method for detecting secondary crashes based on cumulative arrival and departure plots. In this method, the cumulative
arrival and departure plots were used to estimate the maximum queue length and the recovery time of associated queue
for incidents with lane blockages.

Recently, a number of studies detected secondary crashes by identifying the spatiotemporal impact area of primary
crashes (Imprialou et al., 2013; Yang et al., 2014a; Park and Haghani, 2016; Sarker et al., 2015; Mishra et al., 2016; Wang
et al., 2016a, 2016b). Yang et al. (2014a) used the speed contour plot to identify secondary crashes on freeways. The results
showed that 50% of secondary crashes occurred within 70 min after and 2 miles upstream of the primary crashes. Imprialou
et al. (2013) used the Automatic Tracking of Moving Jams method to detect secondary crashes by defining the actual bound-
aries of the spatiotemporal influence area of primary crashes. The results showed that the proposed method provides better
accuracy in detecting secondary crashes than conventional static threshold methods. Park and Haghani (2016) developed a
Bayesian structure equation model to identify spatiotemporal impact area by using the vehicle probe data. Sarker et al.
(2015) proposed a method to detect secondary crashes based on spatiotemporal impact area analysis and shockwave prin-
ciples. The validations results showed that the proposed method can achieve a good detection accuracy ranging from 72% to
91%.

In addition to secondary crash identifications, some studies have also been conducted to explore the characteristics of
secondary crashes (Hirunyanitiwattana and Mattingly, 2006; Yang et al., 2014a; Khattak et al., 2009; Karlaftis et al., 1998,
1999; Carrick et al., 2015; Xie et al., 2016; Mishra et al., 2016; Jalayer et al., 2015; Zhang et al., 2015; Wang et al., 2016a,
2016b). Hirunyanitiwattana and Mattingly (2006) used the proportional tests to compare the characteristics of secondary
crashes and primary crashes on freeways with respect to time of day, roadway classification, severity level and type of acci-
dent. The results showed that secondary crashes are more likely to be property-damage-only (PDO) rear-end crashes occur-
ring during peak hours. Yang et al. (2014a) conducted a thorough examination of the spatio-temporal distributions,
clearance time, crash type and severity of secondary crashes. The results showed that most secondary crashes occurred
within two hours and two miles upstream of primary crashes. They also found that secondary crashes are likely to involve
two or more vehicles and to be rear-end crashes. Carrick et al. (2015) compared the roadway, environmental, and vehicle
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characteristics of secondary and normal crashes. Secondary crashes are more likely to occur on freeways and in rainy
weather conditions. Moreover, commercial vehicles are slightly more likely to incur secondary crashes. Jalayer et al.
(2015) studied the statistical characteristics of secondary crashes in terms of collision type, severity level, and response dura-
tion. Zhang et al. (2015) used microscopic simulation tool to study the queuing delays associated with secondary incidents.
The secondary incidents were found to incur longer delays than single incidents. The time gap and distance between a pri-
mary incident and its secondary significantly affect the total delays. Mishra et al. (2016) compared the temporal distributions
of secondary crashes on Freeways and arterials. The results showed that the occurrence time of secondary crashes on Free-
ways exhibits both AM and PM peaks. While the occurrence time of secondary crashes on arterials only exhibits a PM peak.

To prevent the occurrence of secondary crashes, a number of studies have been conducted to investigate the relationship
between the likelihood of secondary crashes and various contributing factors, such as the characteristics of the primary
crashes, weather conditions, geometric conditions, traffic volumes, and roadway functional class (Zhan et al., 2009; Zhang
and Khattak, 2010; Kopitch and Saphores, 2011; Khattak et al., 2012; Yang et al., 2014b; Mishra et al., 2016; Wang et al.,
2016a, 2016b). Table 2 summarizes the research findings of contributors to secondary crashes in these studies. With regard
to the primary crash characteristics, the collision type, occurrence time, crash duration, and number of involved vehicle were
found to significantly affect secondary crash likelihood. More specifically, the rear-end crashes with longer durations are
more like to incur secondary crashes (Yang et al., 2014b; Mishra et al., 2016). The crashes occurred at the peak-off hours
or on the weekends are less likely to incur secondary crashes (Zhan et al., 2009; Khattak et al., 2012; Yang et al., 2014b;
Kopitch and Saphores, 2011). Moreover, the risks of secondary crashes increase with an increase in the number of involved
vehicles (Zhang and Khattak, 2010; Mishra et al., 2016).

With regard to other contributing factors, adverse weather conditions such as rain and snow were found to significantly
increase the risks of secondary crashes (Khattak et al., 2012; Mishra et al., 2016; Wang et al., 2016a, 2016b). The secondary
crash risks increase with an increase in the annual average daily traffic (AADT) (Zhang and Khattak, 2010; Khattak et al.,
2012; Mishra et al., 2016). Compared with crashes occurred on freeways, crashes on arterials are more likely to incur sec-
ondary crashes (Mishra et al., 2016). Curve segments lead to increased risks of secondary crashes (Zhang and Khattak,
2010). The crashes detected by closed circuit television (CCTV) on freeways are more likely to incur secondary crashes
(Khattak et al., 2012).

As shown in Table 2, logit model is one of the commonly used methods to predict secondary crashes. It does not make any
assumption about the distribution and variances of the dependent variable. Logit model has the advantage of avoiding over-
fitting problem (Mitra and Washington, 2007). It is also superior to other methods when dealing with unbalanced sample, in
which the number of one class is much larger than that of the other classes. In addition, unlike most artificial intelligence
models that work as black-boxes, logit model provides an easily readable mathematical function, which defines tangible
Table 2
Research findings of contributors to secondary crashes in previous studies.

Author Method Research findings

Zhan et al. (2009) Logit model � Secondary crash risks at morning peak are higher than other times
� Longer duration crash increases secondary crash risks

Zhang and Khattak (2010) Ordered logit model � Longer duration crash increases secondary crash risks
� Larger number of involved vehicles increases secondary crash risks
� Greater traffic volume (AADT) increases secondary crash risks
� Curve segment leads to increased risks of secondary crashes

Khattak et al. (2012) Logit model � Adverse weather increases secondary crash risks
� Secondary crash risks at peak hours are higher than those at peak-off hours
� Larger AADT increases secondary crash risks
� Longer duration crash increases secondary crash risks
� Primary crashes detected by closed circuit television (CCTV) are more likely
to incur secondary crashes

Yang et al. (2014b) Logit model � Secondary crash risks at peak hours are higher than those at peak-off hours
� Rear-end crashes are more likely to incur secondary crashes
� Longer duration crash increases secondary crash risks

Kopitch and Saphores (2011) Logit model � Secondary crash risks at peak hours are higher than those at peak-off hours
� Secondary crash risks on weekends are lower than those on weekdays

Mishra et al. (2016) Multinomial logit model � Larger AADT increases secondary crash risks
� Larger number of involved vehicles increases secondary crash risks
� Rear-end crashes are more likely to incur secondary crashes
� Clear weather reduces the risks of secondary crashes
� Secondary crashes are more likely to occur on arterials than on freeways

Wang et al. (2016a, 2016b) Logit model � Clear weather reduces the risks of secondary crashes
� Larger speed of shockwave increases secondary crash risks
� Longer duration crash increases secondary crash risks
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relationships between dependent and explanatory variables (Zhang and Xie, 2008). This allows the results to easily be
applied in practical engineering applications.

Although numerous studies have been conducted to predict the secondary crash likelihood and to identify the contribut-
ing factors, relatively few studies have focused on predicting the likelihood of secondary crashes in real time considering the
effects of dynamic traffic flow conditions. Vlahogianni et al. (2012) developed a secondary crash risk model to connect the
secondary crash likelihood with primary accident duration, weather conditions, number of vehicles, hourly volume, and
hourly speed. The results suggested that the secondary crash likelihood increases with an increase in volume and a decrease
in speed. Since hourly volume and speed were used for model development, this model cannot predict secondary crash risks
in short time interval, such as 5 min. It is difficult to be used for real-time incident management. In a study conducted by
Park and Haghani (2016), traffic condition was classified into congested and uncongested states according to vehicle probe
speed data. The risks of secondary crashes were linked with traffic congestions and clearance duration of primary crashes.
The results suggested that traffic congestions tend to increase the likelihood of secondary crashes. However, in addition to
the average speed, other traffic flow variables such as average occupancy and speed variances, and the differences in traffic
flow variables between adjacent lanes may also contribute to the occurrence of secondary crashes. Considering these traffic
flow variables in secondary crash prediction will promote a more complete understanding of the relationship between real-
time traffic flow conditions and secondary crash risks.

Investigation of the relationship between real-time traffic flow conditions and the risks of secondary crashes will help to
increase the predictive performance of the secondary crash risk model. Moreover, such relationship can be used to develop
real-time secondary risk prediction models, which will play an important role in incident management for preventing sec-
ondary crashes. Recent studies suggested that dynamic traffic management systems (DTMS), such as the variables limit sys-
tem and rampmetering system, have the potential to reduce collision risks on freeways (Abdel-Aty et al., 2007, 2012; Yu and
Abdel-Aty, 2014; Chen and Ahn, 2015). The real-time secondary crash risk prediction models can also be used to develop
proactive traffic control strategies in DTMSs to reduce the risks of secondary crashes on freeways. The central idea is to
proactively eliminate the hazardous traffic flow conditions prone to secondary crashes by adjusting the speed limits or flow
rate on freeway mainlines. The hazardous traffic flow conditions can be identified using a real-time secondary crash risk pre-
diction model that links the risks of secondary crashes with dynamic traffic flow variables. Compared with simply alerting
drivers upstream of a crash, the applications of DTMSs are expected to more effectively prevent the occurrences of secondary
crashes. Because the proactive traffic control strategies can help to determine the best speed for drivers or flow rate on main-
line to minimize secondary crash risks. The study presented in this paper fills gaps in understanding the effects of real-time
traffic flow conditions on the likelihood of secondary crashes.

The primary objective of this study was to develop a secondary crash risk prediction model incorporating the effects of
real-time traffic flow conditions. The high-resolution traffic data collected from loop detectors were used for the model
development. This study has the potential to contribute to the field of secondary crash analysis by: (1) exploring the traffic
flow conditions prone to secondary crashes on freeways; and (2) using high-resolution traffic flow data to develop a real-
time secondary crash risk prediction model. This fills the knowledge gap that previous studies generally developed the sec-
ondary crash risk prediction model without considering the effects of real-time traffic flow conditions. The developed model
in this study is expected to improve the prediction accuracy of secondary crashes.
2. Data sources

The used traffic and crash data were obtained from a 35-mile section on the I-880 freeway in the state of California, Uni-
ted States from 2006 to 2010. There were 134 loop detectors stations along the selected freeway section on two directions.
The average spacing between loop detector stations is about 0.5 miles for both directions. Crash data were obtained from the
Statewide Integrated Traffic Records System (SWITRS) that is maintained by the California Department of Transportation
(Caltrans). The extracted crash characteristics included the date, time, crash severity, collision type, road surface conditions,
weather conditions, and lighting conditions.

A total of 9188 crashes were identified and used for further data analysis. 4846 crashes occurred on the southbound, and
4342 occurred on the northbound. Three types of crashes were identified, including the secondary crashes, the primary
crashes and the normal crashes. To be more specific, the secondary crashes are the crashes that are induced by primary
crashes. The primary crashes are defined as the crashes that lead to secondary crashes, while the normal crashes are defined
as the crashes that did not lead to any secondary crashes. The number of identified secondary crashes, primary crashes and
normal crashes are 113, 97, and 8978 respectively. The method for identifying these three types of crashes is given in
Section 4.1.

The high-resolution traffic data were extracted from the Highway Performance Measurement System (PeMS) maintained
by the Caltrans. The PeMS database provides 30-s raw loop detector data for each lane, including count, speed, and detector
occupancy. For each crash, the authors extracted the raw traffic data from the nearest detector station to the crash location.
For each crash, traffic data were extracted for the time interval between 5 and 10 min prior to crash occurrence. The purpose
was to account for the potential inaccuracies in the reported crash time (Golob and Recker, 2004). The 30-s raw traffic data
from the nearest loop detector station for each crash were further aggregated into 5-min intervals and converted into the 12



Table 3
Candidate variables for secondary crash risk prediction model development.

Variable category Variable Description

Real-time traffic conditions AvgCnt Average vehicle count during 5-min period (veh/30 s)
AvgSpd Average vehicle speed during 5-min period (mile/h)
AvgOcc Average detector occupancy during 5-min period (%)
DevCnt Std. dev. of vehicle count during 5-min period (veh/30 s)
DevSpd Std. dev. of vehicle speed during 5-min period (mile/h)
DevOcc Std. dev. of detector occupancy during 5-min period (%)
CovCnt Coefficient of variation of count during 5-min period (veh/30 s))
CovSpd Coefficient of variation of speed during 5-min period (mile/h)
CovOcc Coefficient of variation of occupancy during 5-min period (mile/h)
DifCnt Vehicle count difference between adjacent lanes (veh/30 s)
DifSpd Vehicle speed difference between adjacent lanes (veh/30 s)
DifOcc Occupancy difference between adjacent lanes (veh/30 s)

Primary crash characteristics Severity 1 = Injury crashes; 0 = PDO
Sideswipe 1 = Sideswipe crash; 0 = otherwise
Rear-end 1 = Rear end crash; 0 = otherwise
Peak 1 = Peak period; 0 = otherwise
Dayweek 1 = Weekend; 0 = weekday

Environmental conditions Weather 1 = Adverse weather conditions; 0 = clear
Roadsurf 1 = Road surface is wet; 0 = otherwise
Lighting 1 = No street lights or street lights not functioning; 0 = otherwise

Geometric characteristics Lane Number of lanes
Widths Road surface width (ft)
Widthm Inner median width (ft)
Curve 1 = Curve section; 0 = otherwise
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traffic flow variables presented in Table 3. The geometric variables for each crash were extracted based on its occurrence
location. As shown in Tables 3 and 4 candidate geometric variables were considered.

3. Methodology

Statistical methods used in this study are briefly discussed in this section. The proportionality tests were conducted to
compare the characteristics between the primary crashes and normal crashes. The Bayesian random effect logit model
was used to predict the probability of secondary crashes induced by the primary crashes on freeways.

3.1. Bayesian random effect logit model

The Bayesian random effect logit model was used to develop a secondary crash risk prediction model, in which the like-
lihood of secondary crashes was linked with real-time traffic variables, primary crash characteristics, weather conditions and
geometric characteristics. The random effect was included to account for the heterogeneity caused by the unobserved fac-
tors, such as the work zones, design features, and pavement conditions. Previous studies suggested that overlooking the
unobserved heterogeneity may lead to inconsistent and bias parameter estimates (Washington et al., 2003;
Anastasopoulos and Mannering, 2009). Accordingly, the random effect logit model is expected to produce more accurate
parameter estimates and better predictive performance. It can be expressed as follows:
Table 4
Proport

Rear
Side
Othe
1–6
7–12
13–1
19–2
yn � BernoulliðpnÞ ð1Þ
ional tests between primary and normal crashes.

Normal crashes Primary crashes Secondary crashes Tests between primary and
normal crashes

Z value Sig.

-end 0.58 0.73 0.73 3.31 0.001
swipe 0.22 0.11 0.18 3.23 0.001
rs 0.20 0.15 0.10 1.22 0.23
am 0.09 0.02 0.00 4.62 0.000
am 0.31 0.38 0.40 1.49 0.14
8 pm 0.39 0.43 0.32 0.81 0.42
4 pm 0.21 0.16 0.28 1.23 0.22
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logitðpnÞ ¼ b0 þ hr þ b1x1n þ b2x2n þ � � � þ bixin ð2Þ

where yi represents the secondary crash indicator (=1 if a secondary crash is induced by a primary crash, and 0 indicates that
no secondary crash occurred) for the nth observation in the sample; pn denotes the probability of a secondary crash induced
by a primary crash; xin denotes the value of variable i for sample n; bi is the coefficient of variable xi; hr is the random effect
which captures the heterogeneity effects for freeway segment r. The random effect hr is assumed to be normally distributed
as hr � (0, Rh).

The Bayesian approach based on Markov chain Monte Carlo (MCMC) simulations was used to estimate the random effect
logit model. The non-informative prior distributions were used. The inference was made on the basis of the remaining draws
after discarding the draws during the burn-in period.

To evaluate the effects of traffic flow variables on the likelihood of secondary crashes, the elasticity analysis was con-
ducted. The elasticity of a continuous independent variable represents the percentage change in the dependent variable
resulting from a 1% change in the independent variable (Washington et al., 2003). The elasticity of a continuous independent
variable xi is given as:
Ei ¼ @Y
@xi

� xi
Y
¼ ð1� PÞbixi ð3Þ
Although each observation in the dataset has an elasticity that depends on the value of xi and the estimated probability of
a secondary crash P, it is customary to report the average elasticity in the sample. In the following analysis, both the average
and standard deviation of the elasticity are given. Note that Eq. (3) cannot be used to calculate the elasticity for an indicator
variable. The elasticity of an indicator variable xi is estimated by computing a pseudo-elasticity using the following equation
(Washington et al., 2003):
Ei ¼ eDðx
0bÞ � ð1þ exibi Þ

eDðx0bÞ � exibi þ 1
� 1

� �
� 100 ð4Þ
3.2. Receiver Operating Characteristic (ROC) curve

The ROC curve is frequently used to compare the predictive performance of different models (Egan, 1975). A model of
binary outcome (event = 1 and non-event = 0) classifies an observation as an event (a crash) if the predicted probability of
the observation exceeds a pre-specified threshold. Otherwise, it will be classified as a non-event. The predictive performance
of a model of binary outcome can be measured with two complementary indicators: the true positive rate (sensitivity) that is
the proportion of events predicted as an event, and true negative rate (specificity) that is the proportion of non-events pre-
dicted as a non-event. Both sensitivity and specificity depend on the same probability threshold varying between 0 and 1.
The ROC curves illustrate the relationship between the true positive rate (sensitivity) and the false alarm rate (1-
specificity) for thresholds from 0 to 1. To develop a ROC curve, one needs to calculate the sensitivity and (1-specificity)
for multiple thresholds varying between 0 and 1.

4. Data analysis and results

4.1. Identification of secondary crashes

The conventional static method of identifying secondary crash suffers from the subjective determinations of fixed spatial
and temporal thresholds. The dynamic methods compensate for the inadequacies of the static method by determining
dynamic thresholds based on queuing estimations or traffic simulations. However, a number of the dynamic methods still
have some shortcomings. For example, the methods based on queue length estimations need detailed queuing information
which is not commonly available (Chou and Miller, 2010; Khattak et al., 2009, 2011; Hirunyanitiwattana and Mattingly,
2006; Yang et al., 2014a, 2014b). The methods based on incident progression curve use an identical progression curve for
all secondary crashes, resulting in inaccurate secondary crash identification results (Chou and Miller, 2010).

To overcome the shortcomings with the existing static and dynamic methods, this study used a method based on the
speed contour plot to identify secondary crashes. The central idea is to determine the spatial and temporal impact range
of a prior crash using real-time traffic flow data while accounting for the effects of recurrent congestions. A secondary crash
is then identified if it is within the spatial and temporal impact range of this prior crash. The detailed procedure of this
method is as follows:

(1) The 5-min speed data were extracted to develop a speed contour plot for a prior crash. More specifically, the speed
data were extracted for the time interval between 6 h before the prior crash and 6 h after the prior crash from the loop
detectors within 10 miles upstream the prior crash. Fig. 1(a) illustrates an example of a speed contour plot for a prior
crash, in which congestions and queue formations were clearly observed after the prior crash. However, it is difficult to



Fig. 1. Identification of secondary crashes.
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determine whether the queue formations were caused by recurrent congestions or the prior crash. To account for
effects of the recurrent congestions, the following two steps were further used to identify the spatial and temporal
impact range of the prior crash.

(2) The research team further extracted 5-min speed data for the same time and location in the step (1) from crash-free
days in one year. For example, the prior crash in Fig. 1(a) occurred at the time of 11:45 am on November 20, 2009 and
the milepost of 3.95. Then the speed data were collected for the same time interval and location in Fig. 1(a) from all
crash-free days in 2009. Then the speed data for each time and location was averaged over all the crash-free days.

(3) To account for the potential effects of recurrent congestions, we subtracted the average speed over crash-free days in
step (2) from the speed data for each time and location in step (1). The differences between speeds in step (2) and step
(1) for various times and locations were then used to develop a new speed contour plot, which was used to identify the
spatial and temporal impact range of the prior crash. Fig. 1(b) illustrates the modified speed contour for identifying the
spatial and temporal impact range of a prior crash.

(4) The crashes that occurred in the spatial and temporal impact ranges of primary crashes were identified as secondary
crashes. The crashes that did not lead to secondary crashes were then identified as normal crashes. Using the above
identification method, the numbers of identified secondary, primary, and normal crashes in the dataset are 113, 97,
and 8978 respectively.



C. Xu et al. / Transportation Research Part C 71 (2016) 406–418 413
Previous studies suggested that the speed contour based method can accurately determine the spatiotemporal impact
ranges of traffic flow disturbances or traffic congestions (Chen et al., 2004; Kerner et al., 2004; Li and Bertini, 2010; Yang
et al., 2014a; Hojatia et al., 2014). Accordingly, the used speed contour method is expected to accurately identify primary,
normal, and secondary crashes. To validate this point, we further compared the results of secondary crash identification with
those of the latest publications about secondary crash identifications. The ratio between the identified secondary crashes and
all crashes in this study is 1.23%, which is consistent with the findings of the latest publications in this area that this ratio is
around 1–1.5% (Park and Haghani, 2016; Sarker et al., 2015; Mishra et al., 2016; Wang et al., 2016a, 2016b).

4.2. Characteristics of primary and normal crashes

Fig. 2(a) illustrates the distributions of primary, normal and secondary crashes by collision type. The rear-end collision is
the predominant collision type for both primary and secondary crashes. 73.2% of the primary crashes and 72.6% of the sec-
ondary crashes were rear-end collisions. The proportion of rear-end collision in normal crashes is 58.2%, which is about 15%
lower than that in primary crashes. The proportionality test was used to investigate whether the difference in rear-end col-
lision proportion between primary and normal crashes is significant. The significance level of 0.05 was used in the test. As
shown in Table 4, the difference in the proportion of rear-end collision between primary and normal crashes is statistically
significant (p-value = 0.001). As expected, the proportion of sideswipe collision in normal crashes is significantly greater than
that in primary crashes (see Table 4). These results are consistent with the findings in previous studies that primary crashes
leading to secondary crashes are more likely to be rear-end crashes (Yang et al., 2014b; Mishra et al., 2016).

Fig. 2(b) illustrates the distributions of primary and normal crashes by occurrence time. From 0:01 to 6:00 am, the pro-
portion of normal crashes is 8.8%, which is about four times the proportion of primary crash. The proportional test indicates a
significant difference between these two proportions (see Table 4). Due to the low traffic volume, crashes occurred during
this time period usually have short queue lengths, resulting in low risks of secondary crashes. From 6:01 to 12:00 am, the
proportions of both primary and secondary crashes are slight greater than that of the normal crashes. For other time periods,
the proportions of primary and secondary crashes are not significantly different from that of normal crashes. These results
are consistent with the findings in previous studies (Hirunyanitiwattana and Mattingly, 2006; Yang et al., 2014b).

4.3. Secondary crash risk prediction model

To identify how real-time traffic flow conditions affected the likelihood of secondary crashes on freeways, Bayesian logit
models were used to develop secondary crash risk prediction models, in which the events are the primary crashes that lead
to secondary crashes and the non-event are the normal crashes that did not lead to secondary crashes. In previous studies,
the real-time traffic flow conditions were generally not considered in the secondary crash risk assessment. For the purpose of
comparison, we also developed a reduced model in which the real-time traffic flow variables were not included. To account
for the possible correlations between candidate variables presented in Table 3, the research team calculated the Pearson cor-
relation parameters between different pairs of candidate variables and generated several combinations which included the
maximum number of uncorrelated variables. Stepwise logit analysis was then conducted to select variables from each com-
bination. The log likelihood at the convergence of each model was compared. The model with the highest log likelihood was
considered the best model.

Table 5 gives the estimation results of the models with and without traffic variables. The following likelihood ratio test
was conducted to identify whether the inclusion of real-time traffic flow data significantly improved the goodness-of-fit of
the secondary crash risk prediction model. The test statistic is given by (Washington et al., 2003):
Fig. 2. Comparisons of crash characteristics between primary and normal crashes.



Table 5
The secondary crash risk prediction models with and without traffic variables.

Variables Model without traffic variables Model with traffic variables

Mean S.D. 2.5% 97.5% Mean S.D. 2.5% 97.5%

Constant �2.63 0.62 �3.65 �1.59 �5.12 0.98 �6.78 �3.51
Severity �0.55 0.26 �0.99 �0.13 �0.49 0.26 �0.95 �0.08
Sideswipe �0.83 0.33 �1.39 �0.31 �0.69 0.34 �1.27 �0.17
Dayweek �2.18 0.64 �3.34 �1.24 �1.30 0.65 �2.47 �0.34
Roadsurf 0.44 0.27 0.10 0.79 0.65 0.28 0.17 1.11
Lane �0.40 0.16 �0.67 �0.14 �0.27 0.18 �0.56 �0.04
AvgCnt – – – – 0.23 0.04 0.17 0.31
AvgSpd – – – – �0.03 0.01 �0.04 �0.02
DevOcc – – – – 2.54 1.23 0.36 4.43
DifCnt – – – – 0.14 0.06 0.03 0.24
Log-likelihood �518.00 �486.70

Table 6
Results

Test

Likel
Likel
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v2 ¼ �2½LLðbwithoutÞ � LLðbwithÞ� ð5Þ
where LL(bwithout) is the log-likelihood at convergence of the model without traffic variables; and LL(bwith) is the log-
likelihood at convergence of the model with traffic variables. This test statistic is chi-squared distributed with the degrees
of freedom equal to the difference in the number of parameters between these two models. As shown in Table 6, the test
results indicate that the inclusion of real-time traffic flow information significantly improves the goodness-of-fit of the sec-
ondary crash risk prediction model (p-value < 0.0001).

As mentioned in Section 3, overlooking the unobserved heterogeneity may lead to inconsistent and bias parameter esti-
mates in the model. Accordingly, a random effect was further introduced in the above model with traffic variables to account
for the heterogeneity caused by the unobserved factors. Similarly, a likelihood ratio test was conducted to compare the mod-
els with and without random effect. The test result indicates that the inclusion of a random effect can significantly improve
the goodness-of-fit of the model with traffic variables (see Table 6). Table 7 gives the estimation results of the secondary
crash risk model with random effect. This model has nine independent variables, including four traffic flow variables, three
variables for primary crash characteristics, one environmental variable, and one geometric variable.

As shown in Table 7, the average traffic volume (represented by AvgCnt) is positively associated with the risks of sec-
ondary crashes, indicating that the crashes occurred in high-volume traffic are more likely to induce secondary crashes. This
result is consistent with the findings of previous studies that the risks of secondary crash increase with an increase in AADT
(Zhang and Khattak, 2010; Khattak et al., 2012; Mishra et al., 2016). Larger traffic volume indicates smaller time headway
between vehicles. Generally speaking, smaller time headway gives drivers less space for taking crash avoidance maneuver,
resulting in increased risks of secondary crashes. Accordingly, when a crash occurred in high volume traffic conditions, the
ramp metering systems can be used to reduce the upstream volume rate on mainline to reduce the risks of secondary
crashes. In addition, gradually reducing the speed in the upstream can also be used to decrease the traffic volume.

The negative parameter of the average speed (represented by AvgSpd) indicates that the risks of secondary crashes
increase as the average speed decreases. The decreasing speed represents an increase in traffic density and queue formations.
The disturbances caused by the primary crashes are easier to propagate in this queuing traffic conditions, leading to high
risks of secondary crashes. To prevent secondary crashes in this condition, traffic control strategies should be developed
to accelerate the dissipation of queue in traffic flow. For example, the variable speed limit system can be used to gradually
increase the speed downstream the crash location and gradually decrease the speed upstream the crash location at the same
time.

Interestingly, the standard deviation of detector occupancy (represented by DevOcc) and the difference in traffic volume
between adjacent lanes (represented by DifCnt) also significantly affect the risks of secondary crashes. Specifically, the stan-
dard deviation of detector occupancy is positively associated with the occurrence of secondary crashes. The standard devi-
ation of detector occupancy is indicative of oscillating traffic conditions in which vehicles accelerate and brake frequently,
thereby increasing the risks of secondary crashes. In this scenario, gradually reducing the upstream speed may reduce the
risks of secondary crashes, because the approaching traffic will meet the oscillating traffic conditions at a lower speed.

The positive parameter of the traffic variable DifCnt indicates that the risks of secondary crashes increase with an increase
in volume difference between adjacent lanes. A possible explanation is that the imbalances of traffic volume between lanes
may encourage drivers to change lanes more frequently, resulting in increased risks of secondary crashes. Alerting upstream
of likelihood ratio tests.

s LLR LLU v2 d.f. p-value

ihood ratio test between models with and without traffic variables �518 �486 64 4 <0.0001
ihood ratio test between models with and without random effect �486 �478 16 1 <0.0001



Table 7
Results of the secondary crash risk prediction model with random effect.

Variables Mean S.D. 2.5% Median 97.5% Elasticity

Constant �4.94 0.90 �6.39 �5.01 �3.35 –
Severity �0.50 0.26 �0.94 �0.49 �0.07 �25.58 (1.91a)
Sideswipe �0.69 0.33 �1.28 �0.68 �0.18 �34.83 (2.75)
Dayweek �1.32 0.64 �2.45 �1.28 �0.37 �59.93 (4.14)
Roadsurf 0.65 0.28 0.18 0.65 1.10 29.86 (3.84)
Lane �0.31 0.17 �0.64 �0.29 �0.05 �1.22 (0.22)
AvgCnt 0.23 0.04 0.17 0.23 0.31 2.29 (0.78)
AvgSpd �0.03 0.01 �0.04 �0.03 �0.02 �1.84 (0.46)
DevOcc 2.56 1.30 0.32 2.62 4.53 0.13 (0.18)
DifCnt 0.13 0.06 0.03 0.13 0.24 0.55 (0.24)
Random effect variance 0.40 0.21 0.05 0.41 0.74 –
Log-likelihood �478.30 – – – – –

a Note: The standard deviation of elasticity for each variable.
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drivers of a crash and prohibiting lane changing within the impact area of the primary crash may help to alleviate the risks of
secondary crashes.

The elasticity analysis was further conducted to compare the effects of different traffic flow variables on the secondary
crash likelihood. Elasticity tells how many times the secondary crash probability changes if the explanatory variable changes
by 1% while the other variables remain fixed. Unlike the marginal effects, the elasticity is dimensionless. Accordingly, it is
more convenient for comparing the effects of different variables. The elasticity analysis results of the four traffic flow vari-
ables are also given in Table 7. The average elasticity values for these four traffic flow variables (AvgCnt, AvgSpd, DevOcc, and
DifCnt) are 2.29, �1.84, 0.13, and 0.55, respectively. It means that the one-percent increase in these four traffic flow variables
is associated with the 2.29%, �1.84%, 0.13%, and 0.55% increases in the secondary crash probability, respectively. The traffic
volume and speed have relatively higher effects on secondary cash risks, compared with the other two traffic flow variables.

Among the variables for primary crash characteristics, the severity level, collision type and occurrence date of primary
crashes were found to be statistically significant. The estimated parameter of the severity level (represented by Severity)
is negative, indicating that the injury crashes are less likely to incur secondary crashes. A possible explanation is that freeway
agencies usually arrive at the locations of injury crashes more quickly, resulting in lower risks of secondary crashes. Besides,
injury crashes often occurred in less congested conditions. The average elasticity for severity level is �25.58. Compared with
other types of crashes, the injury crashes have lower likelihood of inducing secondary crashes.

The parameter of sideswipe crashes is negative, which is consistent with the results of the previous studies that rear-end
crashes are more likely to incur secondary crashes. The elasticity of �34.83 suggests that if the primary crash is a sideswipe
crash, the probability of inducing a secondary crash is 34.83% lower than that of other types of crashes. The negative param-
eter of occurrence date (represented by Dayweek) indicates that compared with weekdays, crashes occurring in the week-
ends have lower likelihood of incurring secondary crashes, which is consistent with the findings in previous study (Kopitch
and Saphores, 2011). According to the elasticity, the likelihood of secondary crashes on weekends is about 59.93% lower than
likelihood of secondary crashes on weekdays.

As expected, the parameter for the number of lanes (represented by Lane) is negative, indicating that crashes occurring on
freeway segment with larger number of lanes have lower likelihood of incurring secondary crashes. This finding is intuitive
because larger number of lanes decreases the negative impacts of the primary crashes on traffic flow operation, and leaves
more space for taking crash avoidance maneuver. The average elasticity of number of lanes is �1.22.

The wet road surface (represented by Roadsurf) is positively associated with the risks of secondary crashes, indicating
that the crashes occurred on wet road surface are more likely to induce secondary crashes. Due to the reduced friction
between pavement and tires, upstream vehicles require longer distance to decelerate. The corresponding elasticity of
29.86 suggests that the wet road surface conditions increase the probability of secondary crashes by 29.86%. To better reduce
the risks of secondary crashes in adverse weather, transportation agency should identify crashes and alert upstream drivers
about the crash occurrence in time.
4.4. Predictive performance

The ROC curve was developed to evaluate the predictive performance of the developed secondary crash risk prediction
model presented in Table 7. As shown in Fig. 3, the areas under the ROC curve is 0.837, indicating that the developed model
provides good predictive performance. Table 8 gives the secondary crash prediction accuracy at different false alarm rates.
The developed model was able to correctly identify 66.0% at the false alarm rate of 0.2. Accordingly, this model has adequate
accuracy to identify secondary crash in advance and can be used in practical applications to reduce the risks of secondary
crashes.

To investigate whether the inclusion of real-time traffic flow data increases the prediction accuracy of secondary crashes,
the ROC curves were also developed for the models with and without traffic variables presented in Table 5 (see Fig. 3). The



Fig. 3. ROC curves of three different models.

Table 8
Comparison of predictive performance between different models.

1-specificity Sensitivity of the models

Without traffic variables With traffic variables With random effect

0.1 22.0% 30.9% 42.3%
0.2 38.9% 53.6% 66.0%
0.3 52.0% 76.3% 85.6%
0.4 65.5% 88.0% 90.7%
0.5 78.9% 91.8% 94.8%
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ROC curve for the model with traffic variables is always to the above of the ROC curve for the model without traffic variables,
indicating that the secondary crash prediction accuracy of the model with traffic variables is better than that of the model
without traffic variables, no matter at what false alarm rates. Table 8 also gives the secondary crash prediction accuracy of
the models with and without traffic variables at different false alarm rates. It can be found that the inclusion of real-time
traffic flow data increases the prediction accuracy of the secondary crash risk prediction model by an average of 16.6%.

To investigate whether the inclusion of a random effect increases model predictive performance, the authors also com-
pared the ROC curves of the model with random effect and the model with traffic variables. The ROC curve for the model
with both traffic variables and random effect is to the above of the ROC curve for the model with only traffic variables
(see Fig. 3), indicating that the secondary crash prediction accuracy of the model with random effect in Table 7 is better than
that of the model with traffic variables in Table 5. Table 8 compares the secondary crash prediction accuracy of these two
models at different false alarm rates. Accounting for the unobserved heterogeneity by including a random effect can further
increase the prediction accuracy of secondary crashes by an average of 7.7%.
5. Summary and conclusions

This study investigated the effects of real-time traffic flow variables on the likelihood of secondary crashes. A method
based on speed contour plot was first developed to identify secondary crashes on freeways. This method can help to identify
the spatial and temporal impact ranges of primary crashes while accounting for the effects of recurrent congestions. The pro-
portionality test was used to compare the characteristics of primary and normal crashes. The random effect logit model was
then used to link the probability of secondary crash occurrences with the real-time traffic flow conditions, primary crash
characteristics, environmental conditions, and geometric characteristics.

The results showed that the real-time traffic flow variables significantly affect the risks of secondary crashes. The occur-
rence of a primary crash leads to turbulent traffic conditions, which propagates upstream the crash occurrence location. The
upstream drivers might involve in a secondary crash if they travel with high speed and short following distance, when meet-
ing such turbulent traffic conditions. Accordingly, the traffic flow conditions are the contributing factors to secondary
crashes. Investigation of the relationship between real-time traffic conditions and secondary crash risks can promote a better
understanding the characteristics of secondary crashes and improve prediction accuracy. However, most of the previous
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studies used static and aggregate traffic data such as AADT, which cannot capture the impacts of sudden variations in traffic
conditions on secondary crash risks. The results of this study suggested that incorporating real-time traffic variables
increases the prediction accuracy by 16.6%.

The crash characteristics analysis showed that rear-end collision is the predominant collision type for both primary and
secondary crashes. The vehicles from upstream stations are required to decelerate abruptly when approaching relatively
lower speed traffic where the primary crash occurred. This may partly explain why the percentages of rear-end collision
in primary and secondary crashes are higher than that in normal crashes. Accordingly, drivers are required to reduce speed
and keep a longer car following distance before meeting hazardous traffic conditions, especially crashes. With regard to the
occurrence time, the proportions of primary and secondary crashes occurred in the morning are slight greater than that of
the normal crashes, indicating that crashes occurred in the morning period especially the morning peak are more likely to
incur secondary crashes.

The impact of unobserved heterogeneity is an important modeling issue that should be considered in the secondary crash
risk assessment. However, this issue has been largely overlooked in previous studies. Theoretically, the available explanatory
variables only explain part of the variance in the risks of secondary crashes. A number of unobserved variables, such as the
work zones, vehicle conditions, pavement conditions, driver behaviors, may have significant effects on secondary crash risks
and introduce heterogeneity. Accordingly, overlooking these unobserved heterogeneity may lead to inconsistent and bias
parameter estimates (Washington et al., 2003). To account for the unobserved heterogeneity, the random effect logit model
was used in this study. The evaluation results showed that the inclusion of random effect increases the prediction accuracy
by 7.7%.

The results of this study have the potential to help incorporate secondary crash prevention strategies in the existing
DTMSs, such as the rampmetering systems and variable speed limit systems. For example, when a crash occurred, the devel-
oped model in this study can be immediately used to estimate the probability of a secondary crash using real-time traffic
flow data. If the high risks of secondary crashes are identified, traffic flow control strategies can be applied to alleviate
the risks of secondary crashes by reducing the upstream volume and smoothing turbulent traffic conditions. These applica-
tions can help reduce the secondary crash risks immediately through the use of DTMSs. Before the results of this study are
used in practical engineering, additional efforts are still need to understand the connection between these traffic control
methods and secondary crash risks, and to test the transferability of the developed model using data collected from other
freeways. The authors suggest that further studies may focus on these issues.
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