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The introduction of connected and autonomous vehicles will bring changes to the highway
driving environment. Connected vehicle technology provides real-time information about
the surrounding traffic condition and the traffic management center’s decisions. Such
information is expected to improve drivers’ efficiency, response, and comfort while
enhancing safety and mobility. Connected vehicle technology can also further increase effi-
ciency and reliability of autonomous vehicles, though these vehicles could be operated
solely with their on-board sensors, without communication. While several studies have
examined the possible effects of connected and autonomous vehicles on the driving envi-
ronment, most of the modeling approaches in the literature do not distinguish between
connectivity and automation, leaving many questions unanswered regarding the implica-
tions of different contemplated deployment scenarios. There is need for a comprehensive
acceleration framework that distinguishes between these two technologies while modeling
the new connected environment. This study presents a framework that utilizes different
models with technology-appropriate assumptions to simulate different vehicle types with
distinct communication capabilities. The stability analysis of the resulting traffic stream
behavior using this framework is presented for different market penetration rates of con-
nected and autonomous vehicles. The analysis reveals that connected and autonomous
vehicles can improve string stability. Moreover, automation is found to be more effective
in preventing shockwave formation and propagation under the model’s assumptions. In
addition to stability, the effects of these technologies on throughput are explored, suggest-
ing substantial potential throughput increases under certain penetration scenarios.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Cities have gone through numerous transformations through time. Transportation systems and technologies have been an
integral part of these transformations. The past two decades have seen substantial integration of advances in wireless com-
munication, processing power, and sensing technologies into traffic management systems, with the goal of enhancing mobil-
ity, sustainability, safety, and reliability of these systems. The next major wave of technological innovation is seeking to
impact the system through vehicle-based innovation. In particular, autonomous vehicles have been prototyped with
substantial advances in sensing technologies and associated pattern recognition and control intelligence, while pervasive
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wireless communication technologies provide the opportunity to create an internet of vehicles where individual vehicles can
communicate with other vehicles (through Vehicle-to-Vehicle communications) and infrastructure (through Vehicle-to-
Infrastructure communications). Consequently, virtually all aspects of drivers’ decision making, from strategic to operational
decisions, would be impacted and generally enhanced. At the operational level, these technologies are intended to help dri-
vers and vehicles make safe and reliable decisions about acceleration choice and executing lane-changing maneuvers. It is
important to note that these two types of communications (Vehicle-to-Vehicle and Vehicle-to-Infrastructure communica-
tions) can also improve the efficiency and reliability of operating autonomous vehicles.

The driving environment and associated driver-vehicle behavior are expected to change with the introduction of con-
nected and autonomous vehicles. Human-driven vehicles and autonomous vehicles have different driving logics. Humans
have higher reaction time compared to robots; and therefore, to overcome the uncertainty associated with human decisions,
they should consider more decision variables (Treiber et al., 2007). In the context of driving, a human driver not only takes
into account the behavior of the immediate leader, but he/she also monitors the behavior of several vehicles ahead (possibly
the entire traffic stream ahead) (Treiber et al., 2007). This method can result in a more stable car-following behavior (Treiber
et al., 2007).

From the modeling standpoint, capturing the effects of these technologies on driving and car-following stability is a chal-
lenging task. A major part of driving-related decisions correspond to the acceleration choice. Consequently, acceleration
behavior has been studied extensively in the literature and several models with different levels of complexity have been
introduced to capture the underlying processes of acceleration decision making (Chandler et al., 1958; Gazis et al., 1959;
Gipps, 1981; Hamdar and Mahmassani, 2009; Herman et al., 1959; Talebpour et al., 2011; Yang and Koutsopoulos, 1996).
However, previous studies did not clearly present the role of communication in operating connected and autonomous vehi-
cles, and most of the efforts focused on specific applications of connected and autonomous vehicles technologies (e.g. Coop-
erative Adaptive Cruise Control or Automated Highway Systems). Moreover, these studies did not investigate the
interactions between autonomous vehicles, human-driven vehicles with connectivity (these vehicle are called ‘‘connected
vehicles” in this paper), and human-driven vehicles without connectivity (these vehicle are called ‘‘regular vehicles” in this
paper) in detail. Therefore, there is a need for a comprehensive acceleration framework to model this new driving environ-
ment and capture the interactions between different vehicle types. This study presents such a comprehensive acceleration
framework to model this driving environment with regular, connected, and autonomous vehicles. This framework uses dif-
ferent acceleration models with different assumptions to model regular, connected, and autonomous vehicles. A reliable
acceleration modeling framework should offer stability. Two types of car-following stability has been identified in the liter-
ature (Treiber and Kesting, 2013; Wilson and Ward, 2010): local stability and string stability. Local stability refers to the
vehicle’s response to its leader’s acceleration decisions. It is achieved if a (following) vehicle recovers from a perturbation
and retains the original steady-state speed and spacing after deviating from it (this deviation, for instance, can be caused
by the leader’s sudden break). String stability is defined for a platoon of vehicles and investigates the behavior of the entire
platoon in response to its leader’s sudden break. If the perturbation decays as it propagates upstream within the platoon, the
car-following behavior is called string stable. Since this acceleration framework is based on well-established car-following
models, local stability is expected to hold for this framework. Consequently, the main focus of the present study is to inves-
tigate the string stability of traffic flow under different market penetration rates of connected and autonomous vehicles.
Accordingly, both analytical and simulation-based analyses of string stability of this acceleration framework are performed.

Moreover, through an extensive simulation effort and by investigating the effects of autonomous and connected vehicles
on throughput, and on the scatter in the fundamental diagram of traffic flow, this study shows that this framework is capable
of capturing the interactions between different vehicle types. These simulations explore possible changes in throughput and
structure of the fundamental diagram under different market penetration rates of connected and autonomous vehicles. Con-
sequently, the main contribution of the present study is to utilize these findings to investigate the possible impacts of con-
nected and automated vehicles on traffic flow and string stability.

The remainder of this paper is organized as follows: Section 2 presents a review of the efforts to model connected and
autonomous vehicles. Section 3 discusses the possible effects of connected and autonomous vehicles on driving environ-
ment. Section 4 presents the acceleration framework and the logic behind selecting each model in this framework. Analytical
and simulation-based investigations of string stability under different market penetration rates of connected and autono-
mous vehicles are offered in Section 5. It is followed by a simulation-based analysis of throughput under different market
penetration rates of connected and autonomous vehicles using the proposed acceleration framework in Section 6. The paper
is concluded with some summary remarks and future research needs in Section 7.
2. Background

Extensive effort has been devoted to model drivers’ car-following behavior since the introduction of the General Motor
(GM) stimulus-response models (Chandler et al., 1958; Gazis et al., 1959; Herman et al., 1959). However, most of these mod-
els are unable to capture driving behavior in the new connected driving environment, and models to capture these new
behaviors are very limited in the literature. Early efforts to model this new driving environment focused on Automated High-
way Systems (AHS) where fully autonomous vehicles were operated on a set of designated lanes (Varaiya and Shladover,
1991). Long before the ‘‘Google car”, that pioneering work laid the foundation for understanding and exploring several
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critical aspects of automated vehicles systems, and was successfully demonstrated on I–15 in 1991 (Ferlis, 1997). An
example of these early works is a study by Varaiya and Shladover (1991) on flow control and congestion management in
Automated Highway Systems. They proposed a control scheme with five different levels (physical, vehicle regulation,
platoon, link, and network layers), where each level controls a different unit in this system. In another study, Hanebutte
et al. (1998) presented a simulation framework to model an AHS in which an early version of Adaptive Cruise Control
(ACC) was implemented using a neural network controller. Chien et al. (1997) presented a macroscopic level controller to
control density in an automated highway to maximize performance of this system. Using a macroscopic simulation tool, they
showed that congestion could be avoided using this controller. Broucke and Varaiya (1996) presented an approach to inves-
tigate the performance of an AHS. They showed that the performance of an AHS is a function of vehicle movement strategies
(control laws) and decisions of the Traffic Management Center (TMC). They also investigated the causes of congestion in an
AHS and proposed a series of actions to prevent/eliminate it. In another study (Broucke and Varaiya, 1997), they presented a
design to improve the performance of automated highways (triple the capacity, guarantee a collision-free system, reduce
travel time, and reduce emissions).

The concept of Automated Highway Systems has eventually evolved into driver assistance systems. Earlier versions of the
driver assistance systems only relied on on-board sensors. ACC is an example of these early versions, which adjusts the vehi-
cle’s speed based on the leader’s speed. The introduction of V2V and V2I communications can improve the performance of
driver assistance technologies. For instance, ACC can be updated to use the information from the V2V communications net-
work. The current flavor of this system is called Cooperative Adaptive Cruise Control (CACC) and automatically adjusts the
vehicle’s speed based on the behavior of its leaders and followers. Different acceleration logics have been proposed in the
literature to control vehicles with CACC. Van Arem et al. (2006) were among the first researchers to propose a car-
following logic for CACC. Their model uses safe deceleration, current acceleration, spacing, and relative speed with respect
to the immediate leader to calculate the acceleration at the next decision point. Wang et al. (2014) proposed a CACC logic
based on model predictive control process in which each vehicle uses the information from its leaders to predict the behavior
of the platoon. Zhao and Sun (2013) presented a VISSIM-based simulation framework that considers ACC and CACC vehicles.
They investigated the effects of different platoon sizes and market penetration rates of ACC and CACC vehicles on capacity,
and confirmed that capacity increases as market penetration rate of CACC vehicles increases.

In addition to the above modeling efforts, several studies have investigated the stability of a platoon of ACC and/or CACC
vehicles. Naus et al. (2010) presented a decentralized CACC control logic and derived the necessary and sufficient criteria to
achieve string stability. Wang et al. (2013) presented a driver assistance system based on a receding horizon control frame-
work. They used this framework to model ACC and CACC vehicles and derived the necessary conditions to ensure stability in
ACC and CACC systems. In another study, Bose and Ioannou (2003) investigated the stability of a mixed traffic consisting of
ACC and regular vehicles, and showed that ACC vehicles could improve the stability of traffic flow, reduce emissions, and
improve fuel efficiency. The ICC (Ioannou and Xu, 1994) model was used to represent the ACC vehicles.

While these and several other efforts in the literature have established a solid base to study the effects of connected and
autonomous vehicles on driving environment, many questions remain to be addressed, including the underlying interactions
between these vehicles and the effect of these interactions on throughput and stability of traffic flow. Therefore, there is a
need for comprehensive simulation frameworks to model the interactions between regular, connected, and autonomous
vehicles. This study presents an effort to develop such a framework using existing technology-appropriate acceleration mod-
els, and performs analytical and simulation-based analyses of the stability of the resulting heterogeneous traffic stream.
3. Conceptual background

As mentioned previously, change in driving behavior and driving environment can be expected with the introduction of
autonomous and connected vehicle technologies. It is important to anticipate these changes, predict their impact, and plan
accordingly prior to wide deployment of these technologies. Simulation tools provide the means to predict these changes
and investigate different approaches to cope with them. In order to have a reliable simulation tool, clear definition of auton-
omous, connected, and regular vehicles is required. Moreover, identifying specific characteristics of each group and their
driving logic is necessary. Unfortunately, the literature does not offer a clear definition for these types of vehicles, and
automation and connectivity are sometimes used interchangeably. This section presents a characterization for autonomous,
connected, and regular vehicles in a highway environment.

Driver’s decision-making forms the basis of the movement of regular vehicles (or human driven vehicles with no com-
munication capability). Driver’s decision-making at the operational level, in this case, is based on his/her perception of sur-
rounding traffic condition including the leaders and followers behavior. The key to understand the driving logic/behavior in
this case is the source of this information (perception). This perception mostly comes from driver’s visual scanning. The dri-
ver is expected to adjust his/her speed not only based on the immediate leader and follower, but also based on the behavior
of several vehicles ahead and behind, which results in a more stable, reliable, and comfortable driving experience.

The addition of communication improves drivers’ perception of their driving environment; thus, the reliability of driving
related decisions is enhanced. To characterize this improvement, it is important to distinguish between different communi-
cation types. Two types of communications have been incorporated into the connected vehicles technology, vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. V2V communications provide detail information about
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vehicles’ movement and drivers’ operational decisions (e.g. speed, acceleration, and location) while V2I communications pro-
vide detail information about road conditions, weather condition, and TMC decisions. Consequently, driver behavior can be
influenced based on the information received. It is important to note that, regardless of the type of information, drivers are
the decision makers in connected vehicles. In light of V2V availability, drivers are not only aware of vehicles in their vicinity,
but also receive information from several vehicles upstream and downstream. Therefore, they know about traffic condition
downstream ahead of time (e.g. sudden brakes or shockwave formation). This additional information can enhance driver
response as having such information can decrease driver’s reaction time and improve their confidence in decision-
making. On the other hand, availability of V2I communications provides information about breakdown formation down-
stream (e.g. due to lane closure or a crash), changes in speed limit, workzone condition, weather condition, roadway condi-
tion, geometry, etc. The main impact of such information is on drivers’ strategic decisions (e.g. lane-selection, route choice,
etc.), while it can have some impact on drivers’ operational decisions.

The definition of autonomous vehicle provided by USDOT is very general and includes five different levels of automation
(National Highway Traffic Safety Administration, 2013). The first level, no-automation, refers to the regular vehicles, as
defined previously, where drivers are the only decision makers. The second level, function specific automation, refers to vehi-
cles with at least one vehicle control function. Electronic stability control and lane adjustment are two examples of these
control functions. The third level, combined function automation, refers to vehicles with at least two vehicle control func-
tions. These control functions work with each other at the same time and provide more assistance to the driver. At fourth
level of automation, limited self-driving automation, vehicles can control safety-critical functions. However, their ability
is limited to certain weather, roadway, and traffic conditions. Driver can resume control of the vehicle if necessary and
enough time should be provided for this transition. Unfortunately, there are several issues associate with operating auton-
omous vehicles at this level. Saffarian et al. (2012) pointed out these issues and provided design solutions to overcome them.
One of the main issues is overreliance where drivers do not check the performance of autonomous vehicles. Another issue is
adaptation with the new system, which requires a tremendous mental workload. Unpredictable mental workload is another
issue, which arises when drivers face an unexpected situation. Automation is expected to reduce mental workload in normal
driving situations; however, an unpredictable situation can create stress and increase mental workload of the driver and pas-
sengers. Finally, skill degradation and reduced situational awareness can occur at this level of automation. Several studies in
aviation (Parasuraman et al., 2000) showed that automation can reduce cognitive skills through time. The fifth and the last
level of automation, full self-driving automation, refers to fully autonomous vehicles. A vehicle with this level of automation
controls entire driving functions in any weather, road, and traffic condition.

Early versions of autonomous vehicles (regardless of automation level) relied only on on-board sensors to collect infor-
mation about the weather, road, and traffic conditions. Despite the considerable improvement in the quality of these sensors,
they still have certain range and accuracy limitations. Consequently, the performance of autonomous vehicles was bounded
by these sensor limitations. For instance, maximum speed of an autonomous vehicle is limited by its radar range. A radar
sensor has a specific detection range and cannot see beyond that range. Therefore, autonomous vehicles should always
assume that there is an obstacle right after the detection range; thus, by considering the maximum deceleration of the vehi-
cle, maximum speed can be calculated.

Connected vehicle technology can overcome the sensor limitations and provide smoother, safer, and more reliable driving
experience with autonomous vehicles. In fact, any level of automation can benefit from this technology and some of the
applications of this technology (e.g. CACC) require only the third level of automation. However, it is essential to distinguish
full self-driving automation, limited self-driving automation, and lower levels of automation while studying the effects of
autonomous vehicles and connected vehicles technology on driving environment. The next section presents an acceleration
framework that distinguishes between regular, connected, and autonomous vehicles based on the definitions provided in
this section.
4. Model formulation

Acceleration behavior has been studied extensively in the literature and several models with different levels of complex-
ity have been introduced to capture the underlying processes of acceleration decision making. Unfortunately, most of these
models are designed to capture driving behavior in the absence of communications. Their modeling capabilities are even
more limited in a mixed environment where only a portion of vehicles is equipped with the essential communication tools.
The addition of autonomous vehicles can further increase the complexity in this environment. Therefore, this study presents
an acceleration framework to address the limitations of microscopic simulation models in capturing the changes in driver
behavior in such a mixed environment. This section provides an overview of the acceleration framework with a description
of the acceleration models.
4.1. Modeling vehicles with no communication capability

The drivers of these vehicles neither receive information from other vehicles nor from the traffic management center
(TMC). They only get information from road signs (both VMS and conventional signs). They also have a rough perception
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of other drivers’ behavior in their vicinity. Moreover, their acceleration behavior has a probabilistic nature and they are
uncertain about other drivers’ future behavior. This uncertainty may result in crash occurrence.

In general, drivers are seeking to travel at a desired speed while avoiding crashes. Avoiding crashes is an extremely
important factor in drivers’ decision making because of its severe consequences. Hamdar et al. (2008) presented an
acceleration model that avoids (most) crashes by specifying behavioral mechanism based on Kahneman and Tversky’s
prospect theory (Kahneman and Tversky, 1979). An extension to this model was presented by Talebpour et al. (2011),
who recognized that drivers have different perceptions encountering congested versus uncongested regimes. Accordingly,
based on prospect theory, they introduced two value functions, one for modeling driver behavior in congested regimes
and one for modeling driver behavior in uncongested regimes. The uncongested traffic value function in this model has
the following form:
Table 1
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and a0 ¼ 1 m=s2 is used to normalize the acceleration. They proposed the following value function for the congested traffic
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At each evaluation stage, based on drivers’ perception of their surrounding traffic condition, drivers employ the
corresponding value functions to evaluate the gains from the chosen acceleration. They introduced a binary probabilistic
regime selection mechanism into the evaluation stage where drivers use the resulting utility to evaluate each acceleration
value, given by:
UPTðanÞ ¼ PðCÞ � UC
PT þ PðUCÞ � UUC

PT ð3Þ

where UPT , PðCÞ, and PðUCÞ denote the expected value function, the probabilities of driving in a congested traffic condition
(C), and the probability of driving in an uncongested traffic condition (UC), respectively. The utility of each choice is calcu-
lated using the following equation:
Y ¼ bK þ e ð4Þ

where K, b, and e denote a vector of variables (see Table 1), a vector of unknown parameters to be estimated, and error term
with iid Gumbel distribution, respectively. The Gumbel distribution for the error term results in a binary logit expression:
PðCÞ ¼ eYðCÞ

eYðCÞ þ eYðUCÞ
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Table 1 shows the calibration results for b0. Note that it is assumed that drivers choose the acceleration value function that

gives them the higher value for the observed acceleration. Once the expected value function is calculated, total utility func-
tion of acceleration can be formulated as follows:
UðanÞ ¼ ð1� pn;iÞUPTðanÞ � pn;iwckðv;DvÞ ð6Þ
l covariates, their definitions, and their calibrated values (Talebpour et al., 2011).

type Definition Coefficients Unites

Model constant �37.8195 –
Driver’s speed 1.7535 m/s
Average headway between driver i and her leaders in all lanes. A value of 9999 is assigned if there is
no leader

0.0459 s

Average relative speed between driver i and her leaders in all lanes. A value of 999 is assigned if
there is no leader

0.3259 m/s

Average headway between driver i and her followers in all lanes. A value of 9999 is assigned if there
is no leader

0. 0931 s

Average relative speed between driver i and her followers in all lanes. A value of 999 is assigned if
there is no leader

�1.0300 m/s

Driver’s average surrounding density. It is defined as the total density (over the number of lanes) 0.5911 veh/km/lane
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where pn;i,wc , and kðv;DvÞ denote the crash probability, crash weighting parameter, and crash seriousness term, respectively
(see Talebpour et al., 2011 for more details). Finally, to reflect the stochastic response adopted by the drivers, the logistic
functional form specified by Hamdar (2009) is used to calculate the probability density function:
gðanÞ ¼
ebPT Uðan ÞR amax

amin
ebPT Uða0 Þda0

amin < an < amax

0 Otherwise

8<
: ð7Þ
where bPT reflects the sensitivity of choice to the utility UðanÞ. Note that this study adopted Talebpour et al.’s (2011) accel-
eration framework to model car-following behavior in the absence of communication.

4.2. Modeling communication-ready vehicles

These vehicles are expected to have the capability of sending/receiving information to/from other vehicles and infrastruc-
ture based equipment. Assuming reliable connectivity in the vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communications networks, each vehicle will receive information about other vehicles in this network. The driver also
receives real-time updates about the TMC decisions (e.g., real-time changes in speed limit). However, this information
may not be available at all times and locations, and drivers’ behavior may change according to the amount of information
they receive. Accordingly, four scenarios can be defined: Active/Inactive Vehicle-to-Vehicle Communications and Active/
Inactive Vehicle-to-Infrastructure Communications.

4.2.1. Active Vehicle-to-Vehicle communications
Considering the flow of information in a V2V/V2I communications network, drivers are certain about other drivers’

behaviors. Moreover, they are aware of driving environment, road condition, and weather condition downstream of their
current location. Therefore, a deterministic acceleration modeling framework is suitable for modeling this environment. This
paper utilizes Intelligent Driver Model (IDM) (Kesting et al., 2010) to model this connected environment. While capturing
different congestion dynamics, this model provides greater realism than most of the deterministic acceleration modeling
frameworks.

IDM specifies a following vehicle’s acceleration as a continuous function of the vehicle’s current speed, the ratio of the
current spacing to the desired spacing, and the difference between the leading and the following vehicles’ velocities. Percep-
tive parameters such as desired acceleration, desired gap size, and comfortable deceleration are considered in this model
(Kesting et al., 2010; Treiber et al., 2000):
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where dn, Tn, an, bn, sn0, and vn
0 are parameters to be calibrated. Note that the braking term in the IDM is designed to preclude

crashes in the simulation.

4.2.2. Inactive Vehicle-to-Vehicle communications
In this driving environment, no active communication exists between vehicles. In case that V2I communications are

unavailable, drivers’ only sources of information are road signs and their perception of surrounding traffic condition. Drivers’
behavior in this case can be modeled similar to the case that vehicles have no communication capability. In the presence of
V2I communications, drivers directly receive information about the TMC decisions. Drivers’ behavior in this case can be mod-
eled similar to the case that vehicles have active V2I communications.

4.2.3. Active Vehicle-to-Infrastructure communications
From the TMC point of view, active V2I communications will provide a basis to detect individual vehicle trajectories

which can be used as high precision input data to traffic control algorithms. From the driver’s standpoint, V2I communica-
tions do not directly influence the drivers’ acceleration choice. Therefore, the acceleration modeling approach under active
V2I communications depends on the availability of V2V communications. However, active V2I communications will provide
real-time information about the TMC decisions (e.g. speed limit update in a speed harmonization system) which aim to
improve safety and mobility. Note that in this framework, TMC decisions about the speed limit is modeled by updating dri-
vers’ desired speed.

4.2.4. Inactive Vehicle-to-Infrastructure communications
In this driving environment, no direct communication exists between vehicles and the TMC. Without V2V communica-

tions, drivers’ only sources of information are road signs and their perception of surrounding traffic condition. Drivers’
behavior in this case can be modeled similar to the case that vehicles have no communication capability. In the presence
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of V2V communications, drivers may receive information about the TMC decisions from other vehicles (if at least one vehicle
in the V2V communications network receives information from the TMC). Drivers’ behavior in this case can be modeled sim-
ilar to the case that vehicles have active V2I communications.

4.3. Modeling autonomous vehicles

Considering the ability of autonomous vehicles to constantly monitor other vehicles in their vicinity, an autonomous
vehicle is certain about other drivers’ behavior. Moreover, these vehicles can react almost instantaneously to any changes
in the driving environment (the reaction time of these vehicles can be estimated based on the sensing delay and any
mechanical delays). Therefore, a deterministic acceleration modeling framework is suitable for modeling this environment.
This paper presents an approach to model autonomous vehicles based on the previous studies by Van Arem et al. (2006) and
Reece and Shafer (1993). The main contribution of this approach is considering sensor characteristics in the modeling pro-
cess. In other words, individual sensors are simulated in order to create the input data for the acceleration model. Note that
this study assumes that all autonomous vehicles are equipped with similar sensors.

Fig. 1 illustrates the sensor formation on an autonomous vehicle. These sensors are (Smart Micro) Automotive Radar
(UMRR-00 Type 30) with 90 m ± 2.5% detection range and ±35� horizontal Field of View (FOV). Each sensor updates the sens-
ing information every 50 ms and can track up to 64 objects.

Since an autonomous vehicle can only observe vehicles that are located in its sensors detection range, it is reasonable to
assume that the speed of the autonomous vehicle should be low enough to allow it to stop at the sensors detection range.
This is equivalent to assume that there is a vehicle at a complete stop right outside of the sensors detection range, which
cannot be spotted by the sensors at the time of decision making. Moreover, if a leader is spotted, it is reasonable to assume
that the speed of the autonomous vehicle should be low enough to allow it to stop if its leader decides to decelerate with its
maximum deceleration rate and reach a full stop. Considering the maximum possible deceleration for the autonomous vehi-
cle and its leader, maximum safe speed can be calculated using the following equations:
Dxn ¼ ðxn�1 � xn � ln�1Þ þ vnsþ v2
n�1

2adeccn�1

ð9Þ

Dx ¼ minfSensor Detection Range;Dxng ð10Þ

vmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2adecci Dx

q
ð11Þ
where n and n� 1 present the autonomous vehicle and its leader, respectively. xn is the location of vehicle n, ln is the length
of vehicle n, vn is the speed of vehicle n, s is the reaction time of vehicle n, and adecc

n is the maximum deceleration of vehicle n.
Fig. 2 illustrates the concept of maximum safe speed; any speed below the maximum safe speed curve is considered to be
safe.

In addition to the safety constraint, the vehicle movement model should be considered. This study adopted the model by
Van Arem et al. (2006) to calculate the acceleration of the autonomous vehicle at every decision point:
adnðtÞ ¼ kaan�1ðt � sÞ þ kvðvn�1ðt � sÞ � vnðt � sÞÞ þ kdðsnðt � sÞ � sref Þ ð12Þ

where ad

n is the acceleration of vehicle i and ka, kv , and kd are model parameters. sn is the spacing and sref is the maximum
between minimum distance (smin), following distance based on the reaction time (ssystem), and safe following distance (ssafe). In
this study, minimum distance is set at 2.0 m and ssystem and ssafe is calculated as follows:
Fig. 1. Radar sensor formation on an autonomous vehicle.



Fig. 2. Maximum safe speed curve (Reece and Shafer, 1993).
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ssafe ¼ v2
n�1

2
1

adeccn

� 1
adeccn�1

� �
ð13Þ
ssystem ¼ vns ð14Þ

Finally, the acceleration of the autonomous vehicle can be calculated using the following equation:
anðtÞ ¼ minðadnðtÞ; kðvmax � vnðtÞÞ ð15Þ
where k is a model parameter. In this study, based on the recommendations of Van Arem et al. (2006), k ¼ 1:0, ka ¼ 1:0,
kv ¼ 0:58, and kd ¼ 0:1.
5. Stability analysis

Stability of simple acceleration models has been studied extensively in the literature (Treiber and Kesting, 2013; Wilson
and Ward, 2010). However, most of these studies focused on linear stability of simple acceleration models (Treiber and
Kesting, 2013; Wilson and Ward, 2010) and only a few studies investigated the linear stability of mixed traffic flows and/
or more complex acceleration models. An example of these works is a study by Ward (2009) in which the string stability
of a mixed car-truck traffic flow was investigated. Following Ward’s guidelines and based on the presented acceleration
framework, this section presents an analytical investigation of linear string stability under different market penetration rates
of connected and autonomous vehicles.

It should be noted that car-following dynamics cannot be fully captured through linearization and non-linear stability
analysis should be performed. Unfortunately, except for very abstract models, non-linear stability analysis is not analytically
tractable. Therefore, in addition to the analytical investigation, this section presents a simulation based approach to inves-
tigate string stability under different market penetration rates of connected and autonomous vehicles using the presented
acceleration framework.

5.1. Analytical investigation of string stability

Stability of car-following models has become a topic of interest in Mathematics and Theoretical Physics since 1990s
(Wilson and Ward, 2010). Two types of car-following stability has been defined in the literature (Treiber and Kesting,
2013; Wilson and Ward, 2010): local stability and string stability. Assume that a car-following model is simply formulated
by a coupled differential equations (Treiber and Kesting, 2013; Wilson and Ward, 2010):
_xn ¼ vn ð16Þ

_vn ¼ f ðsn;Dvn;vnÞ ð17Þ

Empirical observations suggest that there exists an equilibrium speed-spacing relationship (Treiber et al., 2000). In other

words, there exist a function v ¼ VðsÞ such that f ðs�;0;Vðs�ÞÞ ¼ 0 for all s� > 0. s� is called equilibrium spacing and Vðs�Þ
denotes the speed at equilibrium. local stability is defined based on the vehicle’s response to the change in motion of its lea-
der (Zhang and Jarrett, 1997). Consider a finite platoon of vehicles at equilibrium ðs�;Vðs�ÞÞ. If vehicle i deviates from equi-
librium (for instance, by applying a small change in speed), the resulting perturbation will propagate to the upstream traffic.
Consequently, vehicles iþ 1, iþ 2, . . ., iþ nwill be forced out of equilibrium to react to this perturbation (this phenomenon is
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called shockwave formation and propagation). If the car-following model of interest is locally stable, the perturbation will
decay exponentially through time and vehicles will eventually return to the equilibrium condition (Wilson and Ward,
2010). Fig. 3 illustrates this concept, where all vehicles eventually return to the equilibrium condition.

String stability is defined based on the propagation of a fluctuation in one vehicle’s motion to the upstream traffic (Zhang
and Jarrett, 1997). Consider an infinite platoon of vehicles at equilibrium ðs�;Vðs�ÞÞ. Similar to the local stability, if vehicle i
deviates from equilibrium, the resulting perturbation will propagate to the upstream traffic. If the car-following model of
interest is string stable, the perturbation will decay as it propagates upstream (Treiber and Kesting, 2013; Wilson and
Ward, 2010). Otherwise, two different regimes can be observed (Treiber et al., 2007): oscillatory regime in which perturba-
tions grow as they propagate upstream but do not lead to a collision and collision regime in which a perturbation leads to
crashes. Fig. 3 illustrates these concept, where the fluctuations in spacing decrease or increase as the shockwave propagates
upstream. Note that local stability is essential for any acceleration model since driver behavior is locally stable in reality.
However, string stability is not always observed in empirical data (depending on the characteristics of drivers and traffic
regime).

As mentioned previously, the studies of string stability mostly focused on one simple car-following models and few stud-
ies including a study by Ward (2009) investigated the string stability of a heterogeneous traffic flow. This study adopts the
finding of Ward’s study to investigate the effects of connectivity and automation on the string stability of traffic flow. Con-
sidering small perturbations in headway and speed of a vehicle in a platoon of infinite length, sl ¼ s� þ �sl and v l ¼ Vðs�Þ þ �v l,
and linearizing Eqs. (16) and (17) about the equilibrium, Ward calculated the following instability condition for a heteroge-
neous traffic flow (Ward, 2009),
Fig. 3.
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where n denotes different vehicle types and the expansion coefficients are
f ns ¼ @f ðsn;Dvn; vnÞ
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Following Eq. (18), the stability of different combinations of regular, connected, and autonomous vehicles are investigated
in the following sections. Note that the n subscript is dropped in the following sections unless otherwise necessary.

5.1.1. Homogenous traffic flow
In this section, stability of homogenous platoons of vehicles are investigated for three different vehicle types. In case of a

platoon of regular vehicles, for simplicity and tractability of analytical derivations, the acceleration model of Hamdar et al.
(2008) is used in this section. This model is simpler than the presented model in Section 4.1 and does not distinguish
between congested and uncongested traffic regimes (this model calculates the prospect index based on only Eq. (1)). Due
to the probabilistic nature of this acceleration model, calculating the derivatives (i.e. f ns , f

n
Dv , and f nv ) can be very challenging.

Therefore, this section adopts the Wiener process to reflect drivers’ estimation error in calculating optimal acceleration.
Based on the Wiener process, drivers’ acceleration choice can be captured by the following equation,
aðtÞ ¼ a�ðtÞ þ raðtÞyðtÞ ð19Þ

where a�ðtÞ is the optimal acceleration choice at time t, raðtÞ denotes the variance of acceleration choice at time t, and yðtÞ is
the standard Wiener process,
yðtÞ ¼ yðt � DtÞe�Dt=s þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24Dt=s

p
ðz� 0:5Þ ð20Þ
where z � uniformð0;1Þ, s denotes correlation time and Dt is the simulation update time. Note that yðtÞ is not a function of s,
Dv , or v. Assuming perfect decision makers, who choose optimal acceleration at all times (raðtÞ equal to zero), simplifies
Acceleration profiles for a platoon of vehicles in a (a) string stable regime, (b) unstable oscillatory regime, and (c) unstable collision regime (Treiber
ting, 2013; Wilson and Ward, 2010).
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Eq. (19) to finding the optimal acceleration at time t. Assume c ¼ wm ¼ 1 in Eq. (1) (linear value function), total utility can be
written as follows (Hamdar, 2009),
Fig
UPTðajs;Dv ;vÞ ¼ a�wcUðzðajs;Dv ;vÞÞ ð21Þ
where UðzÞ is the density of a Gaussian, zðajs;Dv;vÞ ¼ Dvþ1
2as�s

s
av , and
sðs;DvÞ ¼
s
Dv Dv > s

smax

smax Otherwise

(

Maximizing the Eq. (21), by taking the derivatives with respect to acceleration, leads to the following equation for the
optimal acceleration (Hamdar, 2009),
a� ¼ 2
smax

s
smax

� Dv þ avz�
� �

ð22Þ
where
z� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
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ð23Þ
Combining Eqs. (19), (22), and (23), the partial derivatives at equilibrium can be calculated as follows,
f s ¼
2

s2max
ð24Þ
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ð25Þ
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Through calculating the partial derivatives, the stability of a platoon of regular vehicles can be evaluated based on
Eq. (18). Fig. 4a presents such a stability analysis for a platoon of regular vehicles with infinite length (infinite number of
vehicles). In this figure, typical values of model parameters (see Table 2) are used to plot Eq. (18) against equilibrium speed.
Fig. 4a reveals that a platoon of regular vehicles (with parameters values of Table 2) is string stable for equilibrium speeds
below 3.5 m/s. For any speed above 3.5 m/s the platoon becomes string unstable.

In case of a platoon of connected vehicles, the partial derivatives of the Intelligent Driver Model (IDM) can be calculated as
follows:
f s ¼
2�a
se

s0 þ Tve

se

� �2

ð27Þ
. 4. Stability of a platoon of (a) regular vehicles and (b) connected vehicles with infinite length (values below zero indicates the instability).



Table 2
Acceleration model parameters and their typical values for the
simplified car-following model of Hamdar (2009).

Parameters Typical value

Velocity uncertainty variation coefficient a ¼ 0:08
Weighing factor for accidents wc ¼ 100000:0
Maximum anticipation time horizon smax ¼ 4:0 s
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� �
ð29Þ
Note that relative speed is set to zero at equilibrium (i.e. Dve ¼ 0). Fig. 3b presents the stability analysis results for a
platoon of connected vehicles with infinite length. Typical values of IDM model parameters (see Table 3) are used to plot
Eq. (18) against equilibrium speed. Note that the partial derivatives of IDM (Eqs. (27), (28), and (29)) are functions of vehicle
speed and gap at equilibrium; therefore, the following relationship between speed and equilibrium gap is used to simplify
the stability analysis (Treiber and Kesting, 2013):
seðvÞ ¼ s0 þ vTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v

v0

� �d
r ð30Þ
Fig. 4b reveals that a platoon of connected vehicles (with parameter values of Table 3) is string stable for equilibrium
speeds below 3.5 m/s and string unstable for speeds above 3.5 m/s.

In case of a platoon of autonomous vehicles, it is assumed that the acceleration of the leader is zero during the estimation
time. This is a limiting assumption, however, it simplifies the calculation of partial derivatives. Considering this assumption,
the partial derivatives become constant and no longer functions of equilibrium speed or equilibrium gap:
f s ¼ kd ð31Þ

f Dv ¼ kv ð32Þ

f v ¼ �kds ð33Þ

Therefore, the model is always string stable for the parameter values presented in the previous section (i.e. ka ¼ 1:0,

kv ¼ 0:58, and kd ¼ 0:1).

5.1.2. Heterogeneous traffic flow
In this section, stability of heterogeneous platoons of vehicles with infinite length are investigated for different combina-

tions of regular, connected, and autonomous vehicles and different market penetration rates of connected and autonomous
vehicles. To magnify the effects of connectivity and automation on stability of traffic flow, parameters of regular vehicles are
adjusted (wc is reduced to 10000.0) to create a very unstable traffic flow in a platoon of regular vehicles. The first case inves-
tigates the driving environment consists of regular and connected vehicles. Following the Ward’s approach in Eq. (18), the
instability condition can be written as follows:
ð1� wCÞðf Cs Þ
2 f R

2

v
2

� f RDv f
R
v � f Rs

" #
þ wCðf Rs Þ

2 f C
2

v
2

� f CDv f
C
v � f Cs

" #
< 0 ð34Þ
where wC denotes the market penetration rate of connected vehicles and R and C stand for regular and connected vehicles,
respectively. Fig. 5a shows the stability analysis results for a platoon of regular and connected vehicles under different
Table 3
Acceleration model parameters and their values for
the Intelligent Driver Model.

Parameters Typical value

Free acceleration exponent d ¼ 4:0
Desired time gap T ¼ 2:0 s
Jam distance s0 ¼ 2:0 m
Maximum acceleration �a ¼ 4:0 m=s2

Desired deceleration b ¼ 2:0 m=s2
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Fig. 5. Stability of a platoon of (a) regular and connected vehicles and (b) regular and autonomous vehicles (values below zero indicates the instability).
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market penetration rates of connected vehicles. This figure clearly reveals that higher market penetration rate of connected
vehicles improves the stability of traffic flow and increases the speed threshold in which traffic becomes unstable (critical
speed). Similar to the first case, in a driving environment consists of regular and autonomous vehicles, the instability con-
dition can be written as follows:
ð1� wAÞðf A
s Þ

2 f R
2

v
2

� f RDv f
R
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" #
þ wAðf Rs Þ
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2
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� f A
Dv f

A
v � f A

s
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< 0 ð35Þ
where wA denotes the market penetration rate of autonomous vehicles and A stands for autonomous vehicles. Fig. 5b shows
the stability analysis results for a platoon of regular and autonomous vehicles under different market penetration rates of
autonomous vehicles. Similar to Fig. 5a, higher market penetration rate of autonomous vehicles improves the stability of
traffic flow. Comparing Fig. 5a and b, it is clear that autonomous vehicles are more effective than connected vehicles in
increasing the stability of traffic flow (at the same market penetration rate).

To extend the above discussion, a sensitivity analysis on model parameters is presented in Figs. 6–8. Fig. 6 presents the
results of sensitivity analysis for different parameters of automated vehicles at different market penetration rates of auto-
mated vehicles. The sensitivity analysis results indicate that, at low market penetration rates, lower values of kv and higher
values of kd result in a more stable system. On the other hand, at high market penetration rate, the system is not very sen-
sitive to the value of kd, while stability increases as kv increases. In other words, at low market penetration rates, automated
vehicles need to be more aggressive in response to distance and less aggressive to speed difference to enhance stability. At
high market penetration rates, automated vehicles need to be only aggressive to speed difference to improve stability.

Figs. 7 and 8 present the results of sensitivity analysis for different parameters of connected vehicles at different market
penetration rates of connected vehicles. Fig. 7 shows the critical speed for different values of sn0 and dn at different market
penetration rates. The results indicate that, in general, the system is more stable at low values of dn. Particularly, at low pen-
etration rates, the system is not stable except for very low values of dn. As the market penetration rate increases, the system
becomes more stable and the effect of sn0 is more obvious. At low penetration rate, stability does not depend on the value of
sn0, while at high market penetration rates, the system becomes less stable as sn0 increases. Fig. 8 indicates the critical speed
for different values of sn0 and Tn. This figure also confirms that stability does no depends on the value of sn0 at low market
penetration rates. The results indicate that as Tn increases, critical speed increases (expect for very large values of Tn).

Finally, the third case investigates the driving environment consists of regular, connected, and autonomous vehicles.
Fig. 9 shows the speed threshold in which traffic becomes unstable for all combinations of market penetration rates of con-
nected and autonomous vehicles. This figure reveals that low market penetration rates of autonomous vehicles do not result
in significant stability improvements, whereas stability is improved even at low market penetration rates of connected vehi-
cles. On the other hand, high market penetration rates of autonomous vehicles result in more stable traffic flows compare to
high market penetration rates of connected vehicles. Moreover, at low market penetration rates of autonomous vehicles,
critical speed increases linearly with the increase in the market penetration rate of connected vehicles.

5.2. Simulation-based investigation of string stability

The simulation-based investigation of string stability is performed by adapting the methodology proposed by Treiber
et al. (2007). Following this methodology, the occurrence of different stability regimes (stable, oscillatory, and collision) is
investigated for different platoon sizes, reaction times, and market penetration rates of connected and autonomous vehicles.
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Fig. 6. Critical speed (m/s) for different values of kd and kv at different market penetration rates of automated vehicles, (a) 10%, (b) 25%, (c) 50%, (d) 75%, and
100%.
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Treiber et al. (2007) proposed some criteria to categorize stable regime, oscillatory regime, and collision regime. Based on
these criteria, if a < 3 m=s2 at all times and the platoon reaches the steady-state condition with a ¼ 0 m=s2 at some point
after the perturbation, the acceleration behavior is considered to be string stable. On the other hand, collision regime is iden-
tified if perturbations lead to a crash (Spacing < 0 m) at some point in the simulation. Finally, oscillatory regime is identified
if neither of these cases is recognized.

Platoons with 100, 80, 60, 40, and 20 vehicles are simulated on a one-lane highway (no lane-changing) with an infinite
length. Initial headway between the vehicles is set to 1 s and desired speed is set to 25 m/s. To create a perturbation, once the
steady state condition is reached, the leader of the platoon is slowed down at the rate of �2 m/s2 for 10 s. Note that for these
simulations, the typical values of model parameters are used (see Tables 4 and 5) and no driver heterogeneity is considered.
Moreover, based on the findings of Talebpour and Mahmassani (2014), it is assumed that reaction time of connected vehicles
is 50% less than regular vehicles. Note that reaction time is considered as the delay in the driver’s response to the changes in
the leader’s acceleration/speed. A rolling horizon approach is implemented in the simulations to consider this delay. The
time steps in the simulation experiments are set to 100 ms.

Fig. 10 shows the string stability as a function of reaction time and platoon size for different market penetration rates of
connected and autonomous vehicles. It should be noted that investigating string stability requires infinite number of
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Fig. 7. Critical speed (m/s) for different values of sn0 and dn at different market penetration rates of automated vehicles, (a) 10%, (b) 25%, (c) 50%, (d) 75%, and
100%.
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vehicles. Consequently, the reaction time for string stability is given by the vertical asymptotes of the thresholds in Fig. 10. As
a general observation, regardless of vehicle types in the platoon, stability threshold increases as platoon size decreases.
Fig. 10a presents the thresholds in which stable regime becomes oscillatory and oscillatory regime turns into collision
regime in a platoon of regular vehicles. For instance, a platoon of 60 vehicles is stable at reaction times Rt < RCr;1

t ¼ 0:6 s.
Oscillatory regime started after this point and small perturbations started to grow and propagate upstream. At reaction times
Rt > RCr;2

t ¼ 1:1 s, this instability leads to crashes and collision regime is identified. It is important to note that these thresh-
olds increase (stability increase) as the number of vehicles in a platoon decreases.

Fig. 10b–e investigate the impact of different market penetration rates of connected and autonomous vehicles on the sta-
bility of traffic flow. Fig. 10b presents the simulation results for 10% market penetration rate of connected vehicles. Compar-
ing this figure with Fig. 10a reveals that connected vehicles can improve the stability of traffic flow even at low market
penetration rates (RCr;1

t is higher in this case). The effect is more obvious for small and large platoon sizes. On the other hand,

the threshold for collision regime (RCr;2
t ) is not improved at this market penetration rate and the threshold values are similar

to the values in Fig. 10a.
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Fig. 8. Critical speed (m/s) for different values of sn0 and Tn at different market penetration rates of automated vehicles, (a) 10%, (b) 25%, (c) 50%, (d) 75%, and
100%.

A. Talebpour, H.S. Mahmassani / Transportation Research Part C 71 (2016) 143–163 157
Fig. 10c shows the simulation results for 90% market penetration rate of connected vehicles. A comparison of this figure
with Fig. 10a and b indicates some improvements in both oscillatory and collision regimes thresholds, especially for small
platoon sizes. For instance, oscillatory regime threshold is improved by 93% for a platoon of 20 vehicles, while this threshold
is only improved by 18% for a platoon of 100 vehicles (see Fig. 10a–c).

Autonomous vehicles have similar effects on oscillatory regime threshold in lowmarket penetration rates (except for very
small platoons in which more improvements are observed with connected vehicles). For instance, for a platoon of 40 vehicles
and 10%market penetration rate, the oscillatory regime threshold is 0.7 s for both connected and autonomous vehicles. How-
ever, the impact is higher at 90% market penetration rate (compare 0.7 s for connected vehicle with 1.0 s for autonomous
vehicles). Lower reaction time and less uncertainty are the main reasons for this difference. On other hand, the impact of
autonomous vehicles on collision threshold is significant even at very low market penetration rates. In other words, since
autonomous vehicles are certain about other vehicles’ movements and have a very low (0.1 s) reaction time, they can damp
small perturbations in traffic and prevent shockwaves from propagating upstream at the onset of shockwave formation. At
low penetration rates, the impact is minimal, however, at high penetration rates huge improvements can be observed (see
Fig. 10d and e).



Fig. 9. Critical speed (m/s) at different market penetration rates of connected and autonomous vehicles for a platoon of regular, connected, and autonomous
vehicles with infinite length (any speed value above the critical speed results in an unstable traffic flow).

Table 4
Acceleration model parameters and their typical values for car-following model
of Talebpour et al. (2011).

Parameters Typical value

Sensitivity exponents of the generalized utility c ¼ c0 ¼ 0:2
Asymmetry factor for negative utilities wm ¼ w0

m ¼ 2:0
Velocity uncertainty variation coefficient a ¼ 0:08
Weighing factor for accidents wc ¼ 100000:0
Maximum anticipation time horizon smax ¼ 4:0 s
Logit uncertainty parameter (intra-driver variability) b ¼ 5:0
Maximum acceleration amax ¼ 4 m=s2

Minimum acceleration amin ¼ �8 m=s2

Table 5
Acceleration model parameters and their typical
values for IDM (Kesting et al., 2010).

Parameters Typical value

Free acceleration exponent d ¼ 4:0
Desired time gap T ¼ 1:5 s
Jam distance s0 ¼ 2:0 m
Maximum acceleration a ¼ 1:4 m=s2

Desired deceleration b ¼ 2:0 m=s2
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6. Throughput analysis

In addition to the string stability of traffic flow, investigating the throughput improvements is also an essential element in
assessing the effects of connected and autonomous vehicles on traffic flow. Accordingly, this section presents an investiga-
tion of the throughput improvements under different market penetration rates of connected and autonomous vehicles. All of
the simulations in this section are performed on a hypothetical one-lane highway with an on-ramp located in the middle of
the segment. Fig. 11 shows the geometric characteristics of this hypothetical segment. Note that a gap-acceptance based
lane-changing model is selected for merging maneuvers.

The first set of simulations investigates the effects of connected vehicles on throughput and scatter in fundamental dia-
gram of traffic flow. Note that the main-line flow is set to 1800 veh/h/lane in the first and second sets of simulations. Fig. 12
shows the fundamental diagrams for 6 different market penetration rates of connected vehicles. It is obvious that throughput
(or breakdown flow rate) increases as market penetration rate increases. Moreover, fundamental diagrams show that scatter
increases as market penetration rate increases from 0% to 50%. After this point, the scatter starts to decrease and at 90% mar-
ket penetration rate, the entire inflow (main-line plus ramp) is accommodated and no breakdown and/or scatter in funda-
mental diagram is observed.



Fig. 10. String stability regimes as a function of reaction time and platoon size for different market penetration rates of connected and autonomous
vehicles, (a) only regular vehicles, (b) 10% connected vehicles, (c) 90% connected vehicles, (d) 10% autonomous vehicles, and (e) 90% autonomous vehicles
(the blue line indicates the oscillation threshold and the red line indicates the collision threshold). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 11. Geometric characteristics of the hypothetical simulation segment.
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Fig. 12. Fundamental diagrams from simulating a platoon of regular and connected vehicles for different market penetration rates of connected vehicles:
(a) 0% connected vehicles, (b) 10% connected vehicles, (c) 50% connected vehicles, (d) 70% connected vehicles, (e) 90% connected vehicles, and (f) 100%
connected vehicles.

Fig. 13. Fundamental diagrams from simulating a platoon of regular and autonomous vehicles for different market penetration rates of autonomous
vehicles: (a) 0% autonomous vehicles, (b) 10% autonomous vehicles, (c) 50% autonomous vehicles, (d) 70% autonomous vehicles, (e) 90% autonomous
vehicles, and (f) 100% autonomous vehicles.
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The second set of simulations investigates the effects of autonomous vehicles on throughput and scatter in fundamental
diagrams. Fig. 13 shows the fundamental diagrams for 6 different market penetration rates of autonomous vehicles. Similar
to Fig. 12, scatter in fundamental diagrams increases as market penetration rate increases from 0% to 50% and decreases after
this point. Moreover, at high market penetration rates, no scatter is observed in fundamental diagrams. While Figs. 2 and 13
result in similar conclusions, comparing them side by side reveal that autonomous vehicles are more effective in increasing
throughput and reducing scatter in fundamental diagram.
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Finally, the third set of simulations investigates the simultaneous effects of autonomous and connected vehicles on
throughput and scatter in fundamental diagram. More precisely, while the number of regular vehicles is kept at 10% (of
the total vehicles), six combinations of different market penetration rates of connected and autonomous vehicles are simu-
lated. Note that the main-line flow is set to 2200 veh/h/lane in these simulations. Fig. 14 illustrates the fundamental dia-
grams from these simulations. This figure suggests that scatter in fundamental diagram is negligible as long as the
number of autonomous vehicles is more than connected vehicles (see Fig. 14a–c). The scatter in fundamental diagram
increases dramatically once the number of connected vehicles increases and becomes more than autonomous vehicles (com-
pare Fig. 14c and d). However, scatter is negligible at very high market penetration rates of connected vehicles (see Fig. 14f).
Moreover, Fig. 14 suggests that throughput is higher in a system dominated by autonomous vehicles (compare 2500 veh/h/
lane in Fig. 14a and b with 2200 veh/h/lane in Fig. 14f).

Finally, Fig. 15 shows the maximum throughput for all combinations of market penetration rates of connected and auton-
omous vehicles. This figure reveals that high market penetration rates of autonomous vehicles result in higher throughput
Fig. 14. Fundamental diagrams from simulating a platoon of regular, connected, and autonomous vehicles for different market penetration rates of
connected and autonomous vehicles: (a) 0% connected vehicles and 90% autonomous vehicles, (b) 20% connected vehicles and 70% autonomous vehicles, (c)
40% connected vehicles and 50% autonomous vehicles, (d) 50% connected vehicles and 40% autonomous vehicles, (e) 70% connected vehicles and 20%
autonomous vehicles, and (f) 90% connected vehicles and 0% autonomous vehicles.

Fig. 15. Maximum throughput (veh/h/lane) at different market penetration rates of connected and autonomous vehicles for a platoon of regular, connected,
and autonomous vehicles with infinite length.
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compare to high market penetration rates of connected vehicles. Moreover, at low market penetration rates of autonomous
vehicles, throughput increases linearly with the increase in market penetration rates of connected vehicles. In overall, this
figure reveals that these technologies have the potential to improve the throughput by more than 100%.
7. Conclusion

Connected and autonomous vehicles will shape the future of the road transportation system. These technologies are
intended to enhance mobility, safety, comfort, and fuel consumption, while reducing emissions. However, the amount of this
improvement is unknown and despite the extensive efforts in the literature to analyze their impacts on driving environment,
there is still a need for more comprehensive studies. This paper presents an effort to investigate the effects of connected and
autonomous vehicles on driving environment. Accordingly, a microscopic simulation framework is presented, which recog-
nizes different vehicle types and uses different existing models to capture the interactions between regular, connected (at
different levels of communication), and autonomous vehicles.

By employing the presented framework, this study offers analytical and simulation-based investigations of the string sta-
bility of mixed traffic streams with varying percentages of the three types of vehicles. Such mixed traffic scenarios are espe-
cially important because they correspond to likely evolutionary paths for the introduction and market penetration of these
vehicle capabilities. The analytical studies revealed that connected and autonomous vehicles can improve the string stability
of traffic flow. Automation is likely to be more effective than connectivity alone in preventing shockwave formation and
propagation, which is also confirmed by simulation results. Simulation results also revealed that oscillation and collision
thresholds increase as platoon size decreases/market penetration rate increases.

Finally, the effects of connected and autonomous vehicles on throughput are investigated through a series of simulations.
The simulation results revealed that scatter in fundamental diagrams increases as market penetration rate of connected/
autonomous vehicles increases from 0% to 50% and decreases after this point. However, the throughput increases as market
penetration rate increases. The simulation results also showed that autonomous vehicles result in higher throughput com-
pare to connected vehicles at similar market penetration rates. Substantial potential throughput increases are possible under
certain market penetration scenarios. Extending the acceleration framework to include driver’s anticipation is the subject of
future research. Note that several models could be potentially used to model regular, connected, and automated vehicles. The
model selection in this paper was based on the current state-of- the-art in modeling these vehicles. Therefore, the results
presented in this paper are illustrative and explanatory, and accurate modeling requires actual observations of the real-
world implementation of these systems.
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