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A smartphone can be utilized as a cost-effective device for the purposes of intelligent trans-
portation system. To detect the movement and the stationary statuses in the motorized
and non-motorized modes, this study develops a new inference engine, including two sets
of rules. The first sets of rules are defined by the related thresholds on the features of
smartphone sensors while the second sets are extracted from the human knowledge to
improve the results of the first rules. The experimental results reveal that by utilizing
Inertial Measurement Unit (IMU) sensors in the proposed inference engine, it is possible
to save 40% energy in comparison with the previous research. Moreover, this engine
increases the accuracy of the motorized mode detection to 95.2% and determines the sta-
tionary states in motorized mode with 97.1% accuracy.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The ability of smartphones to recognize driver behavior encourages researchers to analyze the data provided by smart-
phone sensors for Intelligent Transportation Systems (ITS). Zhang et al. (2010) used the data generated by smartphones to
recognize driver behavior, Bhoraskar et al. (2012) and Eriksson et al. (2008) used it to detect road abnormalities, Mohan et al.
(2008) to monitor traffic, and White et al. (2011) to detect accidents. A drawback to these approaches is that a great deal of
smartphone data concerns time intervals for which the driver is outside of the vehicle. These parts are not useful for ITS
applications and their storage and processing are expensive and may cause false detection. On the other hand, the use of
smartphones in some ITS applications requires prepossessing to detect whether or not the smartphone is inside a vehicle.
This prepossessing phase must be done continuously over the course of a day (Ghorpade et al., 2015). For example, for acci-
dent detection, road surface classification, and connection between on-board devices and drivers, such preprocessing is
important.

To respond to this need, the present study developed a method of recognizing the motorized mode independent of motor-
ized mode and traffic conditions. Good accuracy and low energy consumption are two important properties of this solution.
Because other solutions based on GPS consume a large amount of energy and their accuracy is dependent on the environ-
ment, it is reasonable to search for better alternatives to GPS sensors. Previous techniques independent of GPS (or Wi-Fi)
suffer from low accuracy. Major efforts in this area have been reviewed by Engelbrecht et al. (2015) and Hoseini-
Tabatabaei et al. (2013).
Iran.
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Table 1 compares recent literature on smartphone-based systems in transportation concepts. The determination of smart-
phone location and scientific gaps in the methods are presented based on application category. The similarity of sensor data
for motorized and non-motorized modes, particularly under stop and continual stop-and-go conditions, and the use of the
smartphones by users make it difficult to detect the motorized intervals accurately (Garg and Singh, 2014). Some drawbacks
of published efforts are as follows:

� Use of sensors with high energy consumption or unavailability of continuous sensors (Reddy et al., 2010; Gong et al.,
2012)

� Use of heavy processing methods (Hemminki et al., 2013)
� Inability to distinguish between stationary and moving states in motorized mode (Manzoni et al., 2010)
� Low accuracy (Miluzzo et al., 2008; Wang et al., 2010).

Zheng et al. (2010) determined the walking, biking, bus travel, and vehicle travel modes using GPS. The walking mode was
detected with 83% accuracy compared with the vehicle mode. High energy consumption of GPS sensors and the inability to
Table 1
Contributions of the smartphone based intelligent transportation systems.

Name Category Contribution of the paper Necessary comments

Aldunate et al. (2013) Accident detection They assumed that the
smartphones are inside the
vehicles without any
contribution for finding its
location

Accident detection with threshold velocity
of 60 km/h to distinguish between
motorized and non-motorized modes

White et al. (2011) Accident detection and
traffic monitoring

Usable only for high speed situations

Vaiana et al. (2014) Driver behavior recognition
Fazeen et al. (2012)
Chaovalit et al. (2013)
Paefgen et al. (2012)
Chu et al. (2014)
Eren et al. (2012)
Eriksson et al. (2008) Pavement monitoring
Mednis et al. (2011)
Bhoraskar et al. (2012)
Perttunen et al. (2011)
Astarita et al. (2012)
Thiagarajan et al. (2010) User tracking Walking mode detection Using high energy consuming GPS sensor

and Wi-Fi to detect non-walking states
including biking, all stationary states,
working with smartphone in stationary
states and in vehicle

Reddy et al. (2010) Mode detection Motorized mode detection Detection with 94% accuracy by using high
energy consuming sensor GPS

Gong et al. (2012) Detection with 92% accuracy by using high
energy consuming sensor GPS

Zheng et al. (2010) Detection with 83% accuracy by using high
energy consuming sensor GPS

Sohn et al. (2006) Detection with 85% accuracy, however
low accuracy for stationary mode
detection (<60%)

Hemminki et al. (2013) Detection with 85% accuracy, however
low accuracy in sensitive application such
as accident detection

Wang et al. (2010)

Manzoni et al. (2010) Detection with 82% accuracy, however
low accuracy in sensitive application such
as accident detection

Miluzzo et al. (2008) Detection with 69% accuracy
Anderson and Muller (2006)
Yang (2009) Detection with 66% accuracy using

simplified features and somewhat high
energy consumption

Wang et al. (2009) Detection with 74% accuracy
Mohan et al. (2008) Pavement monitoring and

Traffic condition
Using Accelerometer and GSM without
any report for motorized mode detection

Hong et al. (2014) Driver behavior Recognition They are activated by users Connection with OBD
Dai et al. (2010) Manual activation and installation in each

tripWahlstrom et al. (2015)
Johnson and Trivedi (2011)
Castignani et al. (2013)
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detect and analyze stationary states were drawbacks of their research. Gong et al. (2012) used a GPS device and geographical
information from ArcGIS to determine the modes based on recorded locations and speeds. The need to send data to a center
for analysis was an important limitation of their paper.

The proposed method distinguishes between walking mode and other modes with 92% accuracy. Reddy et al. (2010) esti-
mated vehicle travel modes with 94% accuracy using an accelerometer and GPS. Although this accuracy is acceptable, the
method consumed a high amount of energy. In addition, disconnection of GPS in segments such as tunnels made it difficult
to cover the results for all situations. Some researchers have used low energy sensors such as GSM or accelerometers. Sohn
et al. (2006) used GSM to distinguish 85% of motorized, stationary, and walking modes. Because movement at low velocity in
congestion (under 15 km/h) was considered to be a walking mode, the performance of their method was insufficient. This
method was also sensitive to the density of BTS antennas and travel behavior.

In contrast to GSM and GPS, the accelerometer can be applied to record gestures and instantaneous accelerations. Thus, it
is a good candidate for mode detection. Miluzzo et al. (2008) also used the accelerometer so as to determine the user status
such as walking, running, sitting and standing. The modes with 69% accuracy were detected when the smartphone was
inside the vehicle. Nevertheless, detection was properly done when the smartphone was outside the vehicle. Manzoni
et al. (2010) by means of Fast Fourier Transformation on the obtained wave form of accelerometer data achieved a total
of 82% difference between walking and vehicle modes. Nevertheless, the accuracy for the stationary mode was about 70%.
Moreover, utilizing the accelerometer by Wang et al. (2010) reveals 79% accuracy in the detection of walking and vehicle
modes.

Some features of the accelerometer wave which include skewness, kurtosis, variance and distance between peaks have
been considered by Hemminki et al. (2013) to detect various traveling modes. The energy consumption of the proposed tech-
nique exploiting 78 different features is 70% greater than the previous research performed by Wang et al. (2010). Their
results show that the detection of walking, vehicle movement and stationary modes was about 85%. Some other related work
can be found in the study of Adil Mehmood Khan et al. (2014).

In continuation of these studies, in this paper, a new method of using smartphone sensors fusion to detect motorized
modes and their stationary states in real-time implementation was proposed. In order to reduce the energy consumption,
Inertial Measurement Unit (IMU) sensors including accelerometer, gyroscope and magnetometer were applied. The magne-
tometer is utilized for pre-processing and filtering noises. The gyroscope is used to determine non-motorized modes, and
lastly, the accelerometer is utilized to extract stationary and moving statuses. Extracting modes and statuses are carried
out via a rule-based inference engine by extracting the rules from the gyroscope and the accelerometer features and by com-
bining with the human knowledge. The details of this system will be discussed in the later part of the study. Section 2
includes some preliminaries. Section 3 presents the proposed inference engine. Section 4 investigates the energy consump-
tion and Section 5 presents the results with some necessary discussion. The last section ends the paper with a brief
conclusion.
2. Preliminaries

Smartphones include a set of sensors like GPS, accelerometer, gyroscope, camera and microphone. Each sensor has capa-
bilities and disadvantages for using it in transportation applications. Nevertheless, the sensors can be chosen to prepare data
for ITS application based on the following conditions:

– Convenience application under different circumstances without any limitation to a particular boundary or certain
conditions.

– Consuming low energy due to continuous requirement for long-term sampling.
– Adequate accuracy and high sampling rate.

Based on these conditions, the accelerometer, the gyroscope and the magnetometer known as IMU sensors, are good
options for ITS applications. In contrast to the sensors like GPS turned on by a user or an application, IMU sensors indepen-
dent of being used are always activated. In the following, their abilities are given briefly.

Accelerometer: This low energy consuming sensor can be utilized to identify the user activities based on the acceleration
records. The high accuracy of this sensor to sense the smallest changes and gestures along the three directions and its
high sampling rate makes this sensor applicable for modes determination purposes. Nevertheless, this sensor cannot
detect the velocity. It is also important to reorient the device to the vehicle orientation in order to determine the accel-
eration of the vehicle.
Magnetometer: This sensor measures the magnetic field of the device along three axes. This magnetic field also includes
the magnetic field of the earth. So, it can be utilized as a digital compass. Using this ability and its fusion with the gyro-
scope, it is possible to detect the angle between the device and the coordination axis of the base (Renaudin et al., 2010).
This smartphone feature is called the orientation sensor. This sensor also consumes low energy.
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Gyroscope: Gyroscope is a sensor that presents angular velocity of rotation along three axes. Its low energy consumption
and high accuracy in recording the smallest change directions have made it a good choice for detecting behaviors and
maneuvers.

In summarizing the previous research, several researchers utilized the accelerometer for mode detection. Although
under ideal conditions, the accelerometer is able to detect the differences between the walking mode and the motorized
mode with a high accuracy, the different road conditions, level of congestion, bumps, and driving styles may lead to differ-
ent changes in the results of this sensor. Furthermore, changing the vehicle, playing with smartphone, continuous stop-
movement, and common usage of the smartphone, such as gaming cause other changes similar to the motorized mode.
Using gyroscope and magnetometer as well as accelerometer, provides a better occasion to recognize the time intervals
of the motorized modes. Fig. 1 depicts the results of an experiment, as well as data collected from IMU sensors of a Galaxy
smartphone in one hour. This figure demonstrates that non-motorized transportation mode was better determined by the
gyroscope than the accelerometer. On the other hand, the accelerometer is better than the gyroscope in terms of recogniz-
ing stationary states. Based on these traces, this study tries to use a fusion of IMU sensors to recognize the transportation
modes.
2.1. Modes and statuses

This study attempts to discover situations where the smartphone is located inside the vehicles. These situations include
all motorized modes independent of vehicle types such as private cars, motorcycles, buses or subway trains. Moreover, this
study identifies the situations where vehicle stops due to various reasons like traffic jam or a red light and detects stationary
statuses from moving statuses of the motorized mode. Non-motorized mode can be referred when the device is not located
in a motorized vehicle. In this mode, the smartphone may be moved by the user through walking, running, biking, jumping,
going up and down the stairs or using elevator and escalator.

The stationary or the moving situation in a mode is also determined via the use of statuses. Thus, stationary status in
motorized mode may occur when a vehicle stops in a traffic jam or behind a red light. In addition, moving status in non-
motorized mode may occur when the smartphone is moved by the user through walking, running, etc.

Based on these terms, four different mode-status pairs are recognized in this study, these include the following:
Fig. 1. Motorized vs. non-motorized mode during an hour of IMU data on Samsung Galaxy N8000.
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� The moving status in non-motorized mode (MNM).
� The moving status in motorized mode (MM).
� The stationary status in non-motorized mode (SNM).
� The stationary status in motorized mode (SM).

3. The proposed inference engine

3.1. Data acquisition

In the proposed inference engine, IMU sensors data in three axes are recorded continuously. A 2-Hz sampling rate is con-
sidered for this study. This sampling rate strongly reduces the computation process and memory space when compared with
similar studies. In this study, we define a segment to include 6 samples or covering 3 samples. Two consequence segments
overlap in 3 samples (Fig. 2). Determining segment size less than 6 samples, reduces the ability of motorized mode detection,
and determining segment size greater than 6 samples increases computation time and complexity.

The motorized or non-motorized segments cover situations where smartphone is inside or outside the vehicle. In addi-
tion, the stationary segment can be detected in the motorized or non-motorized situations.

A window includes 40 segments or 120 samples in each axe of each sensor. Each window is assigned to the motorized
mode or the non-motorized mode by the proposed engine. Motorized windows alongside stationary segments are stored
for future analyses of ITS applications.

3.2. Filtering noises by magnetometer

Sudden jerks and movements of the smartphone, when it is picked up or when it falls from the hands cause intensive
shocks to gyroscope and accelerometer sensors. The analysis of the shocks influences the states and modes causing false
detections. Different methods are utilized to filter these data, as a costly process, one can refer to Fast Fourier Transformation
(FTT) on the accelerometer data (Figo et al., 2010; Hemminki et al., 2013; Manzoni et al., 2010; Wang et al., 2010). But in the
proposed engine, a low-cost method is implemented to detect jerks and to remove their influences. Sudden movements and
direction changes make quick changes in this sensor during a unit of time, as a result of the measurement of the earth mag-
netometer. These sudden changes do not take place along with transportation modes. So, samples corresponding to these
changes are removed from accelerometer and gyroscope data (Fig. 1).

3.3. Feature extraction

Three features are introduced in the following sub-section, to determine the moving status in the non-motorized mode,
the stationary status and the moving status in the motorized mode, applying gyroscope and accelerometer sensors.

3.3.1. Determining the moving status in the non-motorized mode by gyroscope
Although non-motorized mode can be detected through the use of accelerometer and gyroscope, gyroscope is more suit-

able due to its accuracy when compared to the accelerometer. It should be noted that the moving vehicle in straight line does
not affect the angular velocity of the smartphone. On the contrary, the non-motorized movement causes significant angular
velocity to the smartphone (Fig 1). In order to reduce the computational cost of reorientation of the smartphone with the
direction of vehicle or user movement, L2-Norm of the three dimensions of gyroscope is taken into consideration. This value
is independent of the smartphone direction. Let gxt ; gyt

; gzt be the angular velocity of smartphone in x, y and z axes in the time
sample t, respectively. The new gyroscope feature Gls is defined with Eq. (1) as the average of L2-Norm of gyroscope vectors
in 6 samples of segment s:
Gls ¼ 1
6

X3sþ5

t¼3s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
xt þ g2

yt
þ g2

zt
2
q� �

ð1Þ
Fig. 3A shows Gls values for the moving status in the motorized and non-motorized modes. The moving status of the non-
motorized mode can be determined by applying appropriate threshold h for Gls, so we would have:
Gls > h ) s is non-motorized segment ð2Þ

In the next subsection, the method of determining threshold for Gls will be described.
...

First segment

One second Second segment

Fortieth segment

A minute

Sample

Fig. 2. A segment and a window for analyzing smartphone sensors data.



Fig. 3. (A) Values of in the moving status in motorized and non-motorized mode. (B) Values of in moving and stationary status in motorized mode.
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3.3.2. Determining stationary status by an accelerometer
Any movement of the smartphone causes swings and changes in accelerometer for either non-motorized or the motor-

ized modes. Thus, the stationary status is expected if significant changes are not recorded by the accelerometer.
Based on this claim to recognize stationary status, if ðaxt , ayt ; azt Þ is the acceleration vector in time sample t, the feature ât

can be defined as the following L2-Norm of acceleration vectors:
Table 2
Dataset

Feat

Gls
qs

ds
ât ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2xt þ a2yt þ a2zt

q
ð3Þ
The variation of the acceleration changes in the stationary status is less than the acceleration changes in the moving sta-
tus. Consequently, if qs signifies the variance of the acceleration of the segment s in the next 6 time samples, it can be utilized
to identify the stationary status of the motorized or non-motorized mode. Based on this, similar to the previous section, it is
simple to define an appropriate threshold such as c such that:
qs < c ) s is stationary segment ð4Þ

Details of finding the threshold are given in the next subsections.

3.3.3. Determining the moving status in the motorized mode
Segments which are neither the stationary status nor the non-motorized mode can be considered as the moving status in

the motorized mode. Nevertheless, some user’s activities with smartphone such as calling up, gaming, message sending and
browsing may satisfy Eqs. (2) and (4). So, the motorized segments must be separated from these segments. Since the effect of
the moving state in the motorized mode on the accelerometer and the gyroscope can be sensed simultaneously, the ratio of
Gls and qs can be considered as follows:
ds ¼ Gls

qs
for each segment s ð5Þ
The moving status of the motorized mode can be determined by applying an appropriate threshold for ds. Note that this
threshold is applied on the segments similar to the motorized mode. Let k be the threshold for ds, as a result, in each segment
such as s, one can check the following:
ds < k and Glshh and qsic ) s is the moving segment in the motorized mode ð6Þ

Low processing overhead is one of the key points in these three features (Gls;qs; ds), which demonstrates that our

approach is more effective when compared with the previous studies where FFT in high sampling rates has been utilized
(Hemminki et al., 2013; Wang et al., 2010; Manzoni et al., 2010).
3.4. Determining thresholds

To determine thresholds for the above-mentioned features, optimal thresholding method is utilized based on the mini-
mum error. This method has been applied in image processing to recognize an object region from the background of the
s in each feature.

ure S1 S2 Universal set

fMNMg fMMg fAll moving segmentsg
fSMg fMMg fAll motorized segmentsg
fMMg fusing phone in SNMg fSegments satisfy Glshh and qsicg
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Fig. 4. Determining optimal threshold base on distribution function.
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image (Kittler and Illingworth, 1986). There are two regions or two sets of data in each of the proposed feature. Thresholds
are utilized to separate these two sets by determining a boundary between them. For instance, the threshold h for the feature
of the moving status in non-motorized mode by gyroscope (Gls) determines the boundary of MNM dataset from MM.

Table 2 illustrates the various couples of separated sets S1 and S2 which are considered in this study. If the distribution
function of these sets is determined, as shown in Fig. 4, it is possible to separate them. Since according to the law of total
probability, for each sample, one can write:
PðxÞ ¼
X2
i¼1

PðxjSiÞ � PðSiÞ ¼ PðS1Þ � ps1ðxÞ þ PðS2Þ � ps2ðxÞ ð7Þ
where PðS1Þ and PðS2Þ are the prior probabilities of S1 and S2 sets and ps1ðxÞ and ps2ðxÞ are the probabilities of x belonging
to S1 and S2, respectively. If t is considered as a threshold, the probability of error in each set is given by:
Es1ðtÞ ¼
Z t

�1
ps2ðxÞdx; Es2ðtÞ ¼

Z 1

t
ps1ðxÞdx
The total probability of false detection that must be minimized is as follows:
Min EðxÞ ¼ Pðs2Þ � Es1ðxÞ þ Pðs1Þ � Es2ðxÞ ð8Þ

To minimize (8), the following ordinary differential system should be solved:
dEðtÞ
dt

¼ dðPðS2Þ � R t
�1 ps2ðxÞdxþ PðS1Þ � R1

t ps1ðxÞdxÞ
dt

¼ 0 ð9Þ
Based on the first fundamental theorem of calculus, we have:
PðS1Þ � ps1ðtÞ ¼ PðS2Þ � ps2ðtÞ ð10Þ

Thus, after determining distribution functions of datasets and solving (10), the threshold t can be obtained. As a result of

unpredictable probability of sets, the same probability can be usually considered for both PðS1Þ and PðS2Þ.
With this method, it is possible to find the threshold values h; c and k for three features (Gls;qs; ds) and based on these

parameters, the inference engine rules can be implemented to recognize modes and statues. Details of computation are given
in the later part of this study.

3.5. Inference engine

Features introduced in the previous subsection are applied in the proposed inference engine given in Fig. 5 where the
transitions between the states are defined according to the rules presented in Table 3. In each window, the mode is deter-
mined by this inference engine based on the current state and the rules.

In this inference engine, the following situations are considered to define the rules based on the features:

– Non-motorized mode: This situation corresponds to the times at which the smartphone device is outside the vehicle and
the stationary states are neglected and sensor data are not stored.

– NtoMTransit: In this situation, evidence indicates the moving states of the motorized mode. Nevertheless, these pieces of
evidence must be verified by the other rules. The state of the smartphone may change to the motorized mode or return to
the non-motorized mode, depending on the rules.

– MtoNTransit: In this situation, there are some evidences which show that the smartphone owner is outside of the vehicle.
But these evidences must be verified by the other rules. Depending on the rules, the state of the smartphone may be chan-
ged to the non-motorized mode or returns to the motorized mode.
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Fig. 5. An inference engine for mode detection based on the rules given in Table 3.

Table 3
Rules for Inference engine Presented in Fig. 5.

Name Type of rules Rule description

Rule A Feature The observation of Gþ
ls in a segment transfers from Motorized mode to MtoNTrans state

Rule B Feature The observation of Gþ
ls in 5 consequent segments transfers from MtoNTrans to Non-motorized mode state

Rule C Feature If Gþ
ls is not observed in MtoNTrans state, the state is transferred to Motorized mode

Rule D Feature The observation of q�
s in Motorized mode or Non-motorized mode, does not change the state

Rule E Feature The observation of qþ
s in Motorized mode and the observation of Gþ

ls in Non-motorized mode do not change the state
Rule F Feature The observation of q�

s in 2 consequent segments in Motorized mode transfers the state to Stationary state
Rule G Feature The observation of qþ

s in Motorized mode transfers the state to Moving state
Rule H Feature The observation of qþ

s and G�
ls in Non-motorized mode transfers the state to NtoMTrans state

Rule J Feature The observation of d�s in NtoMTrans transfers the state to Motorized mode
Rule K Feature The observation of q�

s and Gþ
ls in NtoMTrans transfers the state to Non-Motorized mode

Rule L Refined The motorized segments less than 5 s in the Non-motorized mode are not valid
Rule M Refined The Non-motorized segments less than 5 s in the Motorized mode are not valid
Rule N Refined Segments in 10 s before and after each changing mode is determined similarly based on the most frequently label

Where:
Gþ
ls means Gls > h and G�

ls means Gls 6 h.
qþ
s means qs P c and q�

s means qs < c.
d�s means ds < k
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– Motorized mode: This situation corresponds to the times at which the smartphone is inside the vehicle. In this state, all
data are stored and according to the rules, stationary status is separated from the moving status and their time intervals
are sent to ITS applications.

In addition to the rules extracted from features, some refined rules are defined in Table 3, based on human knowledge and
expertness. These refining rules increase the accuracy of the motorized mode detection and eliminate noisy segments. Some
refining rules may be violated in the theory but in practice, applying these rules does not remove the useful motorized
modes.
4. Efficiency of the proposed system

The energy consumption of the smartphone sensors and the applications for N8000 Samsung are illustrated in Table 4.
Similar results are presented in other smartphones (Reddy et al., 2010). As can be seen, GPS and Wi-Fi consume more energy
than other sensors. This is the main shortcoming of the studies utilizing these sensors (Reddy et al., 2010). In addition, the
lack of access to satellites or access points exists. By contrast, IMU sensors consume low amount of energy and because of
continuous activeness and availability, the usage of these sensors is value added.



Table 4
Applications and sensor energy consumption in
Samsung N8000.

Sensors and applications Power (mw)

GPS 433
Wi-Fi 1000
LCD light 700
Phone Idle 20
Active Call 780
Video player 900
Bluetooth 230
Accelerometer 2
Magnetometer 10
Gyroscope 4

Fig. 6. The CPU energy usage for calculating features.

Table 5
Comparison of energy consumption.

Mode detection system Energy (mw)

Hemminki et al. (2013) 85
Wang et al. (2010) 50
Reddy et al. (2010) 240
The proposed engine 35
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Other issues leading to energy consumption are related to recording and processing of data. In most of the previous stud-
ies, Fast Fourier Transformation (FFT) is utilized for calculating features (Thiagarajan et al., 2010). Moreover, studies have
shown that the energy consumption in the high rate sampling is 3 times more than that of the low rate sampling (Balan
et al., 2014; Yan et al., 2012). Consequently, the high sampling rate increases the CPU usage to calculate features, such as
variance and FFT (Yan et al., 2012). Fig. 6 illustrates the CPU energy usage for calculating FFT in different sampling rates ver-
sus the energy usage for calculating the features of the proposed engine on a Samsung N8000 smartphone. In a study by
Wang et al. (2010), FFT was calculated for 256 samples of the accelerometer wave for every 8 s which consumed 50 MW.
Hemminki et al. (2013) also proposed a method with 70% increased energy consumption compared with the latter study,
whereas our approach exploits 240 samples every minute and consumes less than 35 MW. Table 5 compares the perfor-
mance of our proposed engine with the previous mode detection systems. The obtained results reveal that in comparison
with the similar methods based on IMU sensors (Wang et al., 2010), the proposed method saves 40% energy and in compar-
ison with GPS-based methods (Reddy et al., 2010), the proposed method saves 600% energy.
5. Accuracy of the proposed system

5.1. Experimental setup

To analyze the strength of the proposed system, 9 different users with different models of smartphones were considered
in this study (Table 10). The experiment intends to detect the motorized and non-motorized travel modes. The motorized
modes include car, bus, subway, and motorcycle and the non-motorized modes include walking, running, going up and down
the stairs and using elevator. The smartphone was located in different places such as in the pocket, in the bag and inside the
car seat. During the experiment, the smartphone was randomly used for calling, sending messages, checking emails and



Table 6
Distribution of different travel mode.

Mode Min Stationary intervals

Walk 250 –
Run 5 –
Going U/D Stairs 20 –
Car 300 15
Bus 200 85
Subway train 75 30
Motorcycle 45 5
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gaming. The experiment includes the different traffic conditions such as congestion, traffic light and stop-movement condi-
tions in the motorized modes. The position and the velocity of the smartphone are also recorded by GPS to compare the
results and the time intervals are noted by users. Table 6 presents the distribution of travel modes and status.
5.2. Calculating and validating thresholds and refined rules

To utilize inference engine, in the first step, thresholds must be determined. To determine thresholds, Eq. (10) is applied
based on the mean and the standard deviation values of datasets. Based on this, the sensor data obtained from more than
30,000 segments in a period of two days are considered as the training data. Then, for each set, the best fit distribution func-
tion is estimated (Appendix A). For instance, segments where the smartphone is being used by the user in the stationary non-
motorized mode is referred to as {Using in SNM} set and the segments where the smartphone is located inside a moving
vehicle is referred to as {MM} set. The distribution function of values of ds in these sets is estimated as lognormal distribution
with the mentioned means and standard deviations in Table 7. In Appendix A, distribution functions of six sets (two sets for
each three thresholds) are estimated. Table 7 shows the means and the standard deviation for each set and the calculated
threshold for each feature by Eq. (10).

To validate thresholds obtained by statistical method, we applied learning machine techniques and compared the accu-
racy and the precision of results. Based on this, an artificial neural network (NN), KNN, Naïve Bayes (NB) and SVM classifiers
in MATLAB 2013b are applied for the binary classification of the data of the experiment given in Table 7. The thresholds
obtained from these techniques for the first feature Gls and the precision of the classification between the motorized and
non-motorized statuses are compared in Table 8. It can be noted that almost similar precision and the accuracy of our sta-
tistical approach along with the best results of the machine learning algorithms have occurred and therefore the proposed
statistical approach is valid. Note that the experimental thresholds in Table 8 are obtained by smoothly increasing the value
of the considered feature until the classes are changed.

To validate the refined rules and to present the results of these rules on the accuracy of the motorized mode detection, the
training data are fed to the proposed inference engine. Thereafter, the time intervals which are detected as motorized mode
are compared to the ground-truth. Table 9 shows the accuracy of the mode detection based on the application of the refining
rules in the training data.
Table 7
Means and standard deviations of datasets and thresholds value.

Features Datasets Dist. func. Parameters Threshold Value

Gls fMNMg Lognormal (3P) r = 0.27 l = 0.77 c = -1.14 h 0.26
fMMg Gen. Logistic k = 0.3 r = 0.02 l = 0.085

qs fSMg Lognormal r = 1.03 l = �4.05 c 0.09
fMMg Lognormal r = 1.156 l = �0.78

ds fMMg Lognormal r = 1.083 l = �1.42 k 0.85
{Using in SNM} Lognormal r = 1.40 l = 1.08

Table 8
The accuracy and the precision of different classifiers compare with statistical method.

Obtained threshold Precision Accuracy

SVM 0.86 82 89
NN 0.25 93 95
NB 0.323 92 95
KNN 0.225 94 95
Statistical (our approach) 0.26 93 95



Table 9
The accuracy of motorized mode detection after applying refined rules.

Applying rules Precision of motorized mode detection (%)

Nothing 93
Rule L 93.7
Rule M, L 96.2
All rules (L, M, N) 97.1

Table 10
Precision and recall for different users.

User Phone Motorized vehicle Mode accuracy (%) False positive (%) False negative (%) Stationary accuracy (%)

User1 Samsung Note C,M 97.4 4 2.3 99
User2 Samsung Tab S,B 96.3 3 1.5 98.2
User3 Huawei S,B 98 2 0 100
User4 Samsung S6 S 92.3 2.6 11 92.5
User5 Samsung Galaxy S,B 95.5 0.3 9 91.5
User6 Sony C 96.3 3 1.5 98.2
User7 Samsung Tab S 92.5 5.3 4 96
User8 Alcatel C 93.5 0.5 10 100
User9 Nexus C 95 4 2 98.5

Average results 95.2 2.7 4.6 97.1

B: Bus; C: Car; M: Motorcycle; S: Subway train.
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5.3. Results of the proposed engine

To evaluate the performance of the proposed engine, the collected data were divided into one-minute windows and were
imported to the inference engine consecutively. Thereafter, the recognized mode and status intervals were stored to be com-
pared with ground truth. Table 10 presents the accuracy of the motorized mode detection for 9 users with different smart-
phones and their stationary statuses in each smartphone.

The false positive demonstrates the percentage of intervals detected as the motorized mode but smartphone in these
intervals was not located inside the vehicle. The false negative represents the percentage of intervals where the smartphone
is located inside the vehicle, but the proposed engine cannot detect these intervals as the motorized mode. Results presented
in Table 10 demonstrate that the average of the accuracies of the proposed inference engine is greater than 95.2% for the
motorized detection. In detecting stationary status in the motorized mode, the average of the accuracies is 97.1%. These
results confirm the capability of the proposed inference engine.

Fig. 7A illustrates the results of the motorized intervals detected by the proposed inference engine compared with ground
truth during a day. According to these results, false detection has occurred in the first segments of the changing mode.
Because of transit states including MtoNTrans and NtoMTrans, the inference engine preserves the previous mode. So in some
cases with few lags, the inference engine needs sufficient evidence to detect the changing mode. This delay is normally less
than 2 min.

To compare the results of the proposed inference engine with the learning machine techniques, we utilized Neural Net-
work (NN), Naïve Bayes (NB) and Decision Tree (DT) in MATLAB 2013b, and evaluated their results for mode detection by
considering the ground-truth data. Table 11 presents the precision of these methods when compared with the proposed
inference engine. It is obvious that the performance of the proposed inference engine is essentially better than the applied
machine learning algorithms.

In addition, Fig. 7B illustrates the results of motorized intervals detected by ANN compared with ground truth during
the course of one day. By comparing this figure with Fig. 7A, one can understand that the false detection of the proposed
Table 11
Comparison between the precision of motorized
mode detection by learning machine techniques vs.
the proposed inference engine.

Techniques Precision (%)

NB 85
DT 90
NN 89
Inference engine 95.2



Fig. 7. The comparison between the detected mode by inference engine and ground-truth (a) and between neural network and ground-truth (B).
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inference engine is strictly less than the same results of the ANN algorithm which proves the performance of the proposed
inference engine.

5.4. Discussion

To compare the performance of the proposed inference engine with the related studies, two issues must be taken into
consideration:

First; this study does not focus on the detection of motorized types such as car, bus or subway. Using this model, sensors
data of smartphone are effectively prepared for ITS applications, including detection of the motorized type or recognition of
the congestion. In some related research (Sohn et al., 2006; Reddy et al., 2010), three modes (motorized, non-motorized and
stationary) have been investigated and in other cases different types of motorized mode have been recognized. In latter
cases, the accuracy of all motorized modes is considered for comparison with the proposed inference engine in this study.
Also, in all related studies, the stationary statuses were assumed to be in some time intervals where the smartphone does not
Table 12
The accuracy of mode detection in different systems.

Methods Used Sensor(s) Accuracy of detection

Motorize mode Stationary mode

Reddy et al. (2010) GPS, Accelerometer 94 95.6
Gong et al. (2012) GPS,GIS 92 92
Zheng et al. (2010) GPS 83 85
Sohn et al. (2006) GSM 85 60
Hemminki et al. (2013) Accelerometer 85 80
Wang et al. (2010) Accelerometer 79 90
Manzoni et al. (2010) Accelerometer 82 70
Milluzzo et al. (2008) Accelerometer 69 50
Android APIb Accelerometera 81 –
Android APIc Accelerometera 70 –

The proposed approach Accelerometer, gyroscope, magnetometer 95.2 97.1

a Another used sensor are not mentioned.
b confidence value more than 50.
c confidence value more than 75 (Google, 2016).
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move. But in our proposed engine, the stationary status is referred to the situations where the smartphone is located inside a
stopped vehicle, and this recognition is more difficult than the previous detection, due to the impact of vehicle engine on the
smartphone sensors especially on the accelerometer. Table 12 shows the accuracy of the motorized mode and stationary sta-
tus detection for the previous research and the results of the proposed inference engine. It can be noted that the results of the
proposed inference engine for mode detection and stationary detection is certainly better than the previous studies.

Secondly; because of the limitation of the smartphone batteries, memory usage and also processing hardware, the energy
consumption, the amount of saved data and the processing needs of models are very important concepts. Although the mem-
ory usage in the proposed inference engine is less than that in other studies, due to the ignoring of unused interval times and
appropriate sampling rate, the memory usage of the mode detection algorithms is not significant and can be neglected com-
pared with other smartphone applications. In contrast, energy consumption for sensors and processing power for running
algorithms still remain as the two significant challenges facing ITS applications. As presented in Fig. 8, neither the usage
of battery drained sensors such as GPS nor the usage of inexact procedure causes the proposed inference engine to provide
a good opportunity to detect modes with a reasonable accuracy compared to previous studies.
6. Conclusion

Using smartphone is one of the most cost effective approaches to collect and to process information in different contexts
of ITS applications. This device includes variant sensors such as accelerometer, gyroscope, magnetometer and GPS which can
be utilized for accident detection, evaluation of driver behavior, traffic monitoring, and road pavement management. But
usable and relevant information for ITS applications should be acquired from the large amount of data collected by this
device.

In this study, a new inference engine was proposed to detect time intervals at which the smartphone is inside the vehicle
together with stationary status when the vehicle stops due to various reasons like traffic jam or red light. To detect these
intervals, in the first step, the outlying and noisy data are filtered by the magnetometer. Thereafter, motorized modes and
their status are detected via an inference engine. Changing state in this inference engine is based on two categories of rules.
The first sets of rules are extracted based on the features of gyroscope and accelerometer. The second ones are defined based
on the human knowledge to increase the accuracy of detection and to remove false positives.

The proposed method detects 95.2% of the time intervals at which the smartphone is inside the vehicle, although the best
result was reported by Reddy et al. (2010) with 94% accuracy by consuming high energy sensors, while our system saves
energy as well. Moreover, the proposed engine determines the stationary status in the motorized mode with at least an over-
all accuracy of 97.1% which is better than the previous studies.

Note that the proposed engine for mode detection is dependent on IMU sensors which are always active and accessible. In
comparison with Wi-Fi and GPS, IMU sensors consume low energy. Moreover, the proposed method applies low power fea-
tures to develop an inference engine. In comparison with the similar methods based on IMU sensors, the proposed method
saves 40% energy and in comparison with the methods based on GPS sensors, the proposed method saves 600% energy.
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Appendix A. Estimation distribution function for datasets
Feature
 Datasets
 Dist. func.
 Parameters
 Statistical test (Kolmogorov–Smirnov)
Statistic
 a
 Critical value
 Result
Gls
 fMNMg
 Lognormal (3P)
 r = 0.27 l = 0.77 c = �1.14
 0.04644
 0.05
 0.06634
 Pass

fMMg
 Gen. Logistic
 k = 0.3 r = 0.02 l = 0.085
 0.01626
 0.05
 0.04292
 Pass
qs
 fSg
 Lognormal
 r = 1.03 l = �4.05
 0.04851
 0.05
 0.07091
 Pass

fMMg
 Lognormal
 r = 1.156 l = �0.78
 0.02714
 0.05
 0.05436
 Pass
d fMMg Lognormal r = 1.083 l = �1.42 0.0604 0.05 0.08 Pass
s
{Using in SNM}
 Lognormal
 r = 1.40 l = 1.08
 0.0588
 0.05
 0.101
 Pass
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