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Electrical vehicles (EVs) have become a popular green transportation means recently
because they have lower energy consumption costs and produce less pollution. The success
of EVs relies on technologies to extend their driving range, which can be achieved by the
good deployment of EV recharging stations. This paper considers a special EV network
composed of fixed routes for an EV fleet, where each EV moves along its own cyclic tour
of depots. By setting up a recharging station on a depot, an EV can recharge its battery
for no longer than a pre-specified duration constraint. We seek an optimal deployment
of recharging stations and an optimal recharging schedule for each EV such that all EVs
can continue their tours in the planning horizon with minimum total costs. To solve this
difficult location problem, we first propose a mixed integer program (MIP) formulation
and then derive four new valid inequalities to shorten the solution time. Eight MIP models,
which were created by adding different combinations of the four valid inequalities to the
basic model, have been implemented to test their individual effectiveness and synergy over
twelve randomly generated EV networks. Valuable managerial insights into the usage of
valid inequalities and the relations between the battery capacity and the total costs,
number of recharging facilities to be installed, and running time are analyzed.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

According to greenhouse gas emission statistics by the European Environment Agency (EEA), transportation has con-
tributed 22% of the total EU-28 greenhouse gas emissions (or 1030 million tons of CO2-equivalents) in 2012. It is believed
that the global warming caused by conventional fueled-based vehicles may be remedied by the adoption and popularity
of electrical vehicles (EVs) or other alternative-fuel vehicles (AFVs) because these vehicles consume less energy and produce
less pollution. More counties have set new environmental regulations or begun to provide incentives to push the greater use
of EVs to replace fuel-based vehicles. Some companies such as FedEx (FedEx, 2010, 2014), Frito Lay (Morris, 2012), and
Staples (Ramsey, 2010) have also introduced EV fleets for freight shipments.

There are two major obstacles that hinder the popularity of EVs: (1) the lack of recharging infrastructures due to high
installation costs, which in turn reduces the interest for customers to purchase EVs (MirHassani and Ebrazi, 2012; Kuby
and Lim, 2005), and (2) the limited driving range of EVs due to their lower energy efficiency and weight limitations
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(Lim and Kuby, 2010; Wang and Lin, 2009). These difficulties may be resolved, to some extent, by an effective deployment of
recharging stations and good recharging schedules for EVs. In particular, by setting up the right number of recharging
facilities in the right places, all EVs can be recharged whenever and wherever necessary, with the minimum total costs,
including facility setup and recharging operational costs. The cost savings would be even more significant for a
transportation network composed of fixed routes, as commonly seen in some logistics or bus companies, where each EV
periodically moves along a pre-specified sequence of depots or stops to collect or drop off cargo or people.

The optimization problem considered in this paper covers two difficult subproblems at the same time: (1) a special
facility location problem that seeks optimal locations to install recharging stations and (2) an optimal recharging schedule
for an EV fleet. The transportation network is composed of a set of EV routes, where each route is run by an EV periodically.
When an EV visits a depot on its route for conducting a transport operation or rest, it must obey a duration constraint (e.g.,
no longer than 1 h for a daytime transport task or no longer than 6 h for an overnight rest). This duration constraint is
necessary in our problem. Without considering the duration constraint, an EV can be recharged for as long as necessary
to minimize the total costs, which is not realistic. For example, an electric bus that picks up and drops off passengers should
not stop by an intermediate station for too long, or the on-board passengers will have a long waiting time to their destina-
tions. In addition, the length of the duration would also affect the location decisions for setting up recharging facilities.

If the depot is equipped with a recharging facility, the EV can be recharged to gain more battery power. A battery can, at
most, be recharged to its capacity, and an EV must maintain a sufficient battery level to reach its next depot at all times. As a
result, the optimal recharging schedule must be considered in conjunction with the locations to install recharging stations.
To this end, this paper first provides a mixed integer linear program to address both subproblems and then investigates how
the solution time can be further shortened by our proposed valid inequalities.

The paper is organized as follows: Section 2 reviews the related literature. In Section 3, we present a basic mixed integer
programming formulation for the problem, propose new valid inequalities, and demonstrate our formulation by a small
illustrative example. Extensive computational tests and analyses are reported in Section 4, where the performance of the
basic MIP model in conjunction with different combinations of added valid inequalities is compared. Section 5 summarizes
our findings and suggests several possible topics for future research.
2. Review of related literature

Our paper investigates a special facility location that has been extensively studied for decades. Here, we only review the
literature related to EV or AFV fleets and the literature regarding refueling scheduling problems.

Based on given potential locations, there are many studies examining the AFV refueling facility-location problem. Kuby
and Lim (2005) extended the flow capturing location model (FCLM) of Hodgson (1990) to give a flow refueling location
model (FRLM) that considers range-limited vehicles. In particular, FRLM calculates the optimal deployment for a given num-
ber of refueling stations to maximize the total refueled flow volume for given round-trip paths. Based on FRLM, Lim and Kuby
(2010) developed three heuristic algorithms to eliminate the pre-generation of all combinations of candidate locations
required in FRLM such that the model could be used for larger realistic networks. Capar and Kuby (2012) also proposed a
new mixed binary integer programming model to solve larger FRLM problems, which resolves the difficulty of having too
many generated candidate sites in the previous model. To the best of our knowledge, Capar and Kuby (2012) has tested
the largest network (1000 nodes, 80 O–D pairs) considered to date in the related literature for solving a relaxed FRLM
formulation called MBIP. Their model requires many new types of variables and constraints to ensure the same covering
rules for round trips. Capar et al. (2013) presented a generalized FRLM formulation based on covering the arcs that comprise
each path. Their new formulation is more efficient, compact, and flexible and can thus account for different fuel types and
geographic scales.

Lam et al. (2014) studied an EV charging station placement problem (EVCSPP) for seeking the best locations to construct
charging stations in smart city planning. In order to guarantee the charging station network spans the entire city, they gave a
mathematical programming model with quadratic constraints. They also proposed four solution methods (iterative MILP,
greedy approach, effective MILP, and Chemical Reaction Optimization heuristics).

Wang (2007) proposed a set covering model with nonlinear constraints to address the e-scooter recharging facility loca-
tion problem. Their model considers candidate sites located on a given route/path of a single origin and destination (O–D)
and is validated on an island to recharge the recreation-oriented e-scooters for tourists. Based onWang (2007), Wang (2008)
formulated a battery exchange station location model on a single path by a mixed integer program that can address multiple
O–D routing demands on that path. Then, Wang and Lin (2009) further extended the works of Wang (2008) to calculate a
minimum cost recharging facility location problem that considers intercity O–D round-trips based on a given
2-dimensional distance matrix between all candidate locations. A hybrid model with dual objectives of minimum cost
and maximum coverage was formulated by Wang and Wang (2010). Their hybrid model could account for the travel of both
long (inter-city) and short (intra-city) distances. However, both models (i.e., Wang and Lin, 2009 andWang andWang, 2010)
still require the recharging capacity constraints at recharging sites to be eliminated such that an exact algorithm, such as
branch-and-bound, can work properly.

MirHassani and Ebrazi (2012) formulated a flexible MIP model based on the same assumptions of FRLM (Kuby and Lim,
2005) and similar assumptions of Wang and Lin (2009). Their model was more efficient than previous set covering models
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and showed satisfactory performance in solving the flow-based maximum coverage form. Chung and Kwon (2015)
investigated a multi-period charging station location problem by extending FRLM. They have tested on the Korean
Expressway network of 324 nodes, 880 directed arcs, 104,652 paths, over 6 periods. Hosseini and MirHassani (2015b)
considered the traffic flow uncertainty in determining the locations for both permanent and portable refueling stations.

Lin et al. (2008) defined the fuel accessibility as the ease of accessing a refueling station whenever necessary and
proposed an MIP model to calculate optimal locations for installing hydrogen stations. They aimed to minimize the total time
of fuel-travel-back time (i.e., the total travel time for the fuel to travel from where it is burned back to the nearest station)
and assumed any point along the road network rather than the home or workplace to be the possible origin of the refueling
trip, which was more realistic.

Recently, Hosseini and MirHassani (2015a) considered the waiting time at capacitated recharging stations for given loca-
tions to build recharging stations. In particular, if the number of EVs exceeded the station capacity, a queue formed. Further-
more, if the waiting time was greater than some threshold, the model located one or more additional recharging stations.

Most of the literature reviewed above reserved an initial state for the fuel tank or battery at the origin of a path to one of
two possible settings: (1) a half-full tank (Kuby and Lim, 2005; Capar and Kuby, 2012; MirHassani and Ebrazi, 2012) or (2) a
full tank (Wang, 2007, 2008; Wang and Lin, 2009; Wang and Wang, 2010; Hosseini and MirHassani, 2015a). Such a fixed
setting is relaxed to be flexible (i.e., any value between 0 and capacity) in our model and Capar et al. (2013) because any
stop in a cyclic tour can be viewed as an origin, provided that a vehicle has sufficient fuel/battery to reach its next stop.

We also reviewed locomotive refueling literature related to our problem, but these works have not been noted in the
literature concerning EV facility locations. In particular, locomotives usually move along a fixed route periodically, and a
refueling operation is similar to a recharging operation. The locomotive refueling problem raised in the problem solving
competition (RAS, 2010) held by the Railway Application Section (RAS) of INFORMS in 2010 has detailed the problem
description, and Nourbakhsh and Ouyang (2010), Raviv and Kaspi (2012), and Kumar and Bierlaire (2015) solved this
problem by using MIP formulations and valid inequality techniques. In general, previous locomotive refueling research
works have focused more on an optimal refueling plan that minimizes the total costs of facility installation and fuel
consumption. Their formulation can more accurately capture fuel consumption than most EV facility location models.
This is especially useful when the refueling costs vary at different geographical sites. In addition, keeping track of fuel
consumption can help estimate the time of refueling. In other words, this formulation can help more accurately estimate
the recharging time for EVs, which is crucial for real-world applications in logistics or bus companies.

Based on these observations, this paper provides a new formulation that takes advantage of the conventional locomotive
refueling models and follows the duration constraints that are encountered more frequently in EV applications but rarely
seen in EV related literature. We believe by considering the tactical or operational recharging planning and duration con-
straints into the strategic locational decisions (Berger et al., 2007; Derigs et al., 2013; Lin et al., 2011), it would be more ben-
eficial in practice. Although we derive our own valid inequalities using techniques similar to those used by Raviv and Kaspi
(2012) and Kumar and Bierlaire (2015), our work is the first to employ such techniques in the EV facility location literature.
Moreover, our comparative analyses on the effectiveness of valid inequalities are new, useful, and more complete than the
locomotive refueling literature. Finally, we add the duration constraints that are commonly seen in EV practices but not in
railroad fields. Duration constraints are important because they regulate the upper bound of recharging time at a station.
Previous EV facility location models usually assumed the battery to be full or half-full upon departure. Such assumptions
are somewhat oversimplified such that the time required for recharging is usually neglected in the related EV facility
location literature.

In summary, our paper differs from previous works in the following aspects: First, we calculate detailed optimal recharg-
ing plans (i.e., battery level increase and time spent at each station) in addition to the optimal location decisions. This is more
realistic and commonly seen in logistics or bus companies but is often ignored in the EV-related literature. Our formulation
also resolves the full or half-full departure tank assumption, which is unrealistic but commonly used in most EV facility
location literature. Second, to meet the needs of contracted shipping of freight or people in practice, we first introduce
the duration constraints associated with each stop for each EV and then derive its possible extension to the time window
constraints. Third, we attempt to address networks of larger scales (with a size up to 187 nodes, 224 arcs, and 200 O–D pairs),
whereas most previous studies conducted experiments on networks of smaller sizes (e.g., fewer than 50 nodes and O–D
pairs) or simpler structures (e.g., on a set of fewer than 20 paths). Finally, to further shorten the solution time, we introduce
several classes of valid inequalities and analyze their effectiveness, which is new to the EV facility location literature.
3. Mathematical programming models

3.1. Definitions and notations

We consider a transportation network constructed by several fixed routes, where each route is periodically run by an EV
during the planning horizon (e.g., 2 weeks). Let Q represent the set of fixed routes run by jQ j EVs. These routes form an EV
transportation network G ¼ ðN;AÞ, where N and A denote the depot and arc sets passed by all EVs, respectively. Suppose that
an EV route q passes nq stops (k ¼ 1;2; . . . ;nq) and returns to its origin (k ¼ 1) during the planning horizon (e.g., 2 weeks). Let
gðq; kÞ represent the index of the depot that corresponds to the kth stop of an EV route q. In other words, the fixed cyclic route
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q is composed of nq arcs: ðgðq;1Þ; gðq;2ÞÞ � ðgðq;2Þ; gðq;3ÞÞ – � � � � (ðgðq;nq�1Þ; gðq;nqÞÞ � ðgðq;nqÞ; gðq;1ÞÞ. Note that some
stops in a route may correspond to the same depots geographically.

For each EV q arrives at its kth stop (or, depot gðq; kÞ), let xaq;k and xdq;k denote the battery level of arrival and departure; yq;k
is the amount of electricity to be recharged with unit cost Cgðq;kÞ at that stop, which cannot exceed Rq;k , the electricity upper
bound to be supplied; Eq;k is the minimum battery power required to move to the next (i.e., the kþ 1th) stop. Let U P Eq;k be
the battery capacity for each EV. If we install a recharging facility with a unit-period fixed cost, S, at depot i 2 N, we set
v i ¼ 1; otherwise, v i ¼ 0. To simplify the problem, we assume a recharging facility has unlimited charging outlets. To illus-
trate our settings, suppose a recharging facility costs 260,000 to be installed and is expected to work for 5 years, whereas the
duration of a planning horizon is 2 weeks. Then there will be 5 ⁄ (52/2) = 130 periods for using a recharging facility, and thus
S = 260,000/130 = 2000 here in our formulation.
3.2. A basic MIP formulation (M0) and an illustrative example

We can give a mixed integer program, denoted by (M0), for our problem as follows:
Minimize Z ¼
X
q2Q

Xnq
k¼1

Cgðq;kÞyq;k þ S
X
i2N
v i ðM0Þ
Subject to
xdq;k � xaq;k � yq;k ¼ 0 8q 2 Q ; k ¼ 1;2;3; . . . ;nq ð1Þ
xdq;k � xaq;kþ1 ¼ Eq;k 8q 2 Q ; k ¼ 1;2;3; . . . ;nq � 1 ð2Þ
xdq;nq � Eq;nq ¼ xaq;1 8q 2 Q ð3Þ
yq;k 6 Rq;kvgðq;kÞ 8q 2 Q ; k ¼ 1;2;3; . . . ;nq ð4Þ
xdq;k 6 U 8q 2 Q ; k ¼ 1;2;3; . . . ; nq ð5Þ
xdq;k; x

a
q;k; yq;k 2 Rþ 8q 2 Q ; k ¼ 1;2;3; . . . ; nq ð6Þ

v i 2 f0;1g 8i 2 N ð7Þ
The objective value Z is composed of two parts: the operational costs of recharging, denoted by
P

q2Q
Pnq

k¼1Cgðq;kÞyq;k , and
the fixed setup costs S

P
i2Iv i. Constraints (1)–(3) model the relation of flow balance. In particular, constraint (1) indicates the

battery level of departure xdq;k equal to its initial level of arrival xaq;k plus yq;k, the amount of electricity recharged. Constraints

(2) and (3) regulate the difference in battery level change between consequent depots xdq;k � xaq;kþ1 to be the required battery
level consumption Eq;k.

Constraint (4) can be viewed as the duration constraint, which determines whether a recharging operation is possible,
depending on whether a recharging facility is installed. In particular, an EV q can be recharged at the kth stop (i.e.,
yq;k > 0), only if a recharging facility has been installed at depot i ¼ gðq; kÞ (i.e., v i ¼ 1). In addition, the amount of recharged
electricity yq;k cannot exceed the available upper bound Rq;k, which has been pre-specified, depending on the duration of that

visit. For example, if an EV q stays at its kth and k0th stops for, at most, 30 min and 60 min, respectively, then Rq;k should be
approximately half of Rq;k0 . Similarly, an EV that stays overnight at a depot equipped with a recharging facility might very
likely recharge its battery to its capacity U.

Constraint (4) can be extended to conventional time window constraints. In particular, we can define new variables taq;k
and tdq;k to represent the arrival and departure time for an EV q that visits its kth stop. Then, tdq;k � taq;k becomes the duration for
its stay. If we further define a constant recharging rate, aq;k, then the amount of recharged battery level can be calculated by
yq;k ¼ aq;kðtdq;k � taq;kÞ, which should be less than or equal to Rq;k, for a recharging operation.

The upper and lower bound constraints (5) and (6) force an EV to be recharged to a level that is no greater than its battery
capacity U but is still sufficient to reach each next stop (such that xaq;k P 0).

To illustrate our MIP model M0, we use a small EV network of 3 EV routes of Q ¼ fq1; q2; q3g, whose parameters are shown
in Fig. 1, to explain our formulation.

In this example, depots 1 and 5 can be viewed as overnight depots, where an EV can be recharged to its battery capacity.
The objective is to minimize Z = 3.4y1;1 + 3.5y1;2 + 3.1y1;3 + 3.04y1;4 + 3.1y1;5 + 3.5y1;6 + 3.1y2;1 + 3.5y2;2 + 3.18y2;3 + 3.5y2;4 +

3.1y3;1 + 3.1y3;2 + 3.14y3;3 + 3.1y3;4 + 3.1y3;5 + 3.1y3;6 + 3.14y3;7 + 3.1y3;8 + 500
P7

i¼1v i. For the case of q ¼ 1, k ¼ 5, the flow

balance constraints (1)–(3) can be written as xd1;5 � xa1;5 � y1;5 ¼ 0 , xd1;5 � xa1;6 ¼ 350, and xd1;6 � 300 ¼ xa1;1; the corresponding
depot has an index i ¼ gð1;5Þ ¼ 3. Thus, constraint (4) is expressed by y1;5 6 350v3, and constraint (5) is expressed by

xd1;5 6 700.



Fig. 1. A small illustrative EV network.
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3.3. New MIP formulations by adding new classes of valid inequalities

The basic MIP formulation M0 is in a compact form, namely, removing any of constraints (1)–(8) would lead to an incor-
rect solution. In our preliminary computational tests, we found that M0 may require a longer running time for larger or more
difficult cases. To further shorten the solution time, we may define new variables or derive new constraints in the hope of
cutting off the fractional extreme points when solving for the linear programming relaxation problems in the branch-and-
bound scheme. To this end, we introduce a new binary variable zq;k for each EV q at its kth stop to indicate whether a
recharging operation is occuring (zq;k ¼ 1) or not (zq;k ¼ 0). Then, we can relate zq;k and yq;k by constraint (8) and (7

0
), which

are similar to constraint (4) and (7), respectively.
yq;k 6 Rq;kzq;k 8q 2 Q ; k ¼ 1;2;3; . . . ; nq ð8Þ

zq;k 2 f0;1g 8q 2 Q ; k ¼ 1;2;3; . . . ;nq ð70 Þ
Adding constraint (8) alone to M0 is not helpful for shortening the solution time because thus far, zq;k has no relation to
the objective function or other constraints. Therefore, we derive additional constraints to regulate zq;k and other variables. In
particular, we have derived four classes of new valid inequalities based on the following 3 observations.

3.3.1. Observation 1
If the accumulated electricity levels required to move EV q along contiguous segments gðq; ksÞ � � � � � gðq; ktÞ have

exceeded the battery capacity U, then we must recharge the battery at least once on an intermediate depot selected from
{gðq; ks þ 1Þ; gðq; ks þ 2Þ, . . .,gðq; kt � 2Þ; gðq; kt � 1Þ} during this trip.

Based on this observation, we can derive our first class of valid inequalities from the EV point of view, as constraints (9)
illustrated in Table 1:

The left column of Table 1 lists four conditions where a recharging operation is necessary with respect to an EV. These
four conditions differ from one another depending on the boundaries of the route segments to be checked. Take the EV route
Table 1
Proposed first class of valid inequalities.

Cyclic EV route segments and conditions Constraints (9)

(a) Segments: gðq; ksÞ � � � � � gðq; ktÞ
1 6 ks 6 kt � 2; kt 6 nq

U 2 Pkt�2
k¼ks

Eq;k;
Pkt�1

k¼ks
Eq;k

h i
Pkt�1

k¼ksþ1zq;k P 1

(b) Segments: gðq; ksÞ � � � � � gðq;nqÞ � gðq;1Þ
ks 2 ½1;nq � 1�; kt ¼ 1

U 2 Pnq�1
k¼ks

Eq;k;
Pnq

k¼ks
Eq;k

h i
Pnq

k¼ksþ1zq;k P 1

(c) Segments: gðq; ksÞ � � � � � gðq;nqÞ � � � � � gðq;2Þ
ks 2 ½1;nq�; kt ¼ 2

U 2 Pnq

k¼ks
Eq;k;

Pnq

k¼ks
Eq;k þ Eq;1

h i
Pkt�1

k¼1 zq;k P 1

(d) Segments: gðq; ksÞ � � � � � gðq;nqÞ � gðq;1Þ � � � � � gðq; ktÞ
ks 2 ½1;nq�; kt 2 ½3;nq�
U 2 Pnq

k¼ks
Eq;k þ

Pkt�2
k¼1 Eq;k;

Pnq

k¼ks
Eq;k þ

Pkt�1
k¼1 Eq;k

h i
Pnq

k¼ksþ1zq;k þ
Pkt�1

k¼1 zq;k P 1



Table 2
Proposed second class of valid inequalities.

Cyclic EV route segments and conditions Constraints (10)

(a) Segments: gðq; ksÞ � � � � � gðq; ktÞ
1 6 ks 6 kt � 2; kt 6 nq

U 2 Pkt�2
k¼ks

Eq;k;
Pkt�1

k¼ks
Eq;k

h i
Pkt�1

k¼ksþ1vgðq;kÞ P 1

(b) Segments: gðq; ksÞ � � � � � gðq;nqÞ � gðq;1Þ
ks 2 ½1;nq � 1�; kt ¼ 1

U 2 Pnq�1
k¼ks

Eq;k;
Pnq

k¼ks
Eq;k

h i
Pnq

k¼ksþ1vgðq;kÞ P 1

(c) Segments: gðq; ksÞ � � � � � gðq;nqÞ � � � � � gðq;2Þ
ks 2 ½1;nq�; kt ¼ 2

U 2 Pnq

k¼ks
Eq;k;

Pnq
k¼ks

Eq;k þ Eq;1
h i

Pkt�1
k¼1 vgðq;kÞ P 1

(d) Segments: gðq; ksÞ � � � � � gðq;nqÞ � gðq;1Þ � � � � � gðq; ktÞ
ks 2 ½1;nq�; kt 2 ½3;nq�
U 2 Pnq

k¼ks
Eq;k þ

Pkt�2
k¼1 Eq;k;

Pnq

k¼ks
Eq;k þ

Pkt�1
k¼1 Eq;k

h i
Pnq

k¼ksþ1vgðq;kÞ þ
Pkt�1

k¼1 vgðq;kÞ P 1
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q1 in Fig. 1 as an example: an EV with full battery departing from depot 1 can, at most, reach depot 3 because
E1;1 þ E1;2 6 U 6 E1;1 þ E1;2 þ E1;3. This implies z1;2 þ z1;3 P 1. Similarly, z1;3 þ z1;4 P 1, z1;4 þ z1;5 P 1, z1;5 þ z1;6 P 1,
z1;6 þ z1;1 P 1, and z1;1 þ z1;2 P 1. Note that the last two inequalities are raised for the sake of periodical movement for
EVs. Based on these cyclic constraints, we do not need to force an EV to have full battery power from its origin.

Based on the same observation, but from the point of view of the depot, we can also formulate another class of valid
inequalities, as constraints (10) illustrated in Table 2.

The conditions of constraint (10) are exactly the same as those of constraint (9). To ensure that a recharging operation is
feasible, we have to install recharging facilities on some of those candidate depots. Take the EV route q1 in Fig. 1 as an exam-
ple: z1;2 þ z1;3 P 1 implies v2 þ v3 P 1. Similarly, v3 þ v4 P 1, v4 þ v3 P 1, v3 þ v2 P 1, v2 þ v1 P 1, and v1 þ v2 P 1. Note
that some constraints may be identical if the route segments cover the same set of depots.

3.3.2. Observation 2
For each EV q, the total electricity required to finish the route equals

Pnq
k¼1Eq;k , which implies it has to be recharged at

least dPnq
k¼1Eq;k=Ue times.

This observation gives the following valid inequality:
Xnq
k¼1

zq;k P
Xnq
k¼1

Eq;k=U

& ’
8q 2 Q ð11Þ
Take EV route q1 in Fig. 1 as an example: the entire route requires 300 + 350 + 320 + 320 + 350 + 300 = 1940 units of electric-

ity, which indicates that it has to be recharged at least d1940=700e ¼ 3 times. Thus, we add a new constraint
P6

k¼1z1;k P 3.
Similar, for EV route q3, it requires a total of 2800 units of electricity. Thus, we add a new constraint ofP8

k¼1z3;k P d2800=700e ¼ 4.

3.3.3. Observation 3
For each EV q, it can only be recharged at a depot that has been equipped with a recharging facility.
In particular, this gives the following valid inequality:
zq;k 6 vgðq;kÞ 8q 2 Q ; k ¼ 1;2;3; . . . ; nq ð12Þ

Take EV route q1 in Fig. 1 as an example: we can add the following new constraints: z1;2 þ z1;3 P 1, z1;4 6 v4 , z1;5 6 v3 ,

and z1;6 6 v2 . Although constraint (12) seems intuitive, it turns out to be extremely effective based on our computational
tests in next section, where more extensive tests are conducted and analyzed.

4. Computational experiments and analyses

4.1. Settings for our computational experiments

To evaluate the performance of different valid inequalities, we set seven new MIP models, i.e., M1, M2, . . ., and M7, of the
same objective function but with different composition of constraints, as listed in Table 3.

By comparing the performance of M0 and M1, we can learn the effectiveness caused by introducing constraint (10). Sim-
ilarly, we can evaluate the performance of constraint (9), (11) and (12) by comparing the solution times of M2, M3, and M4 to



Table 3
MIP models and their composition.

Models Constraints Comments

M0 (1)–(7) The original basic MIP model.
M1 (1)–(7) + (10) Adding (10) to M0. (related with v i only)
M2 (1)–(70), (8) + (9) Adding (70), (8), (9) to M0 (zq;k related)
M3 (1)–(70), (8) + (11) Adding (70), (8), (11) to M0 (zq;k related)
M4 (1)–(70), (8) + (12) Adding (70), (8), (12) to M0 (zq;k related)
M5 M4 + (10) Adding (10) to M4
M6 M5 + (9) Adding (9) to M5
M7 M6 + (11) Adding (11) to M6
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that of M0. After learning the effectiveness of individual constraints (9)–(12), we combine several of them in decreasing
order of their individual effectiveness to construct the hybrid models M5, M6, and M7. This is based on the intuition to seek
better combinations of effective constraints. Finally, by checking the performance of the hybrid models M5, M6, and M7, we
can identify the most effective combination of valid inequalities to be applied to calculate the optimal recharging facility
locations and recharging schedules for EVs.

We tested all 8 MIP formulations (i.e., M0, M1, . . ., M7) using Gurobi 6.0.3 on a personal computer with UBUNTU 13.10 OS,
8 GB RAM, and Intel Core i7-920 CPU of 2.67 GHz. Four families (i.e., SP1, SP2, SP3, and SP4) of 12 random transportation
networks, modified from the INFORMS RAS 2010 Problem Solving Competition (RAS, 2010), were generated for our tests,
where each family contains 3 random networks of similar size and number of routes. The base network is shown in
Fig. 2. Details of the network parameters such as the number of nodes jNj, arcs jAj, and EV routes jQ j are listed in Table 4.
In particular, we randomly select jQ j 2 f50;100;150;200g routes from the base network, whose layout may differ for differ-
ent combinations of selected routes. Among those many random networks generated by the same jQ j, we select 3 networks
for that family. Note that large networks may not necessarily take more time to solve because the network layout may be a
more important factor than the actual running time. Thus, we generated 12 random networks of different layouts and sizes
for our testing. We set the planning horizon to 12 days. During this period, an EV may have run for 1, 2 or 3 round trips. The
duration constraint for each EV to stay at each stop on its route was previously specified.

4.2. Comparative running time analyses on the effectiveness of valid inequalities

Table 5 records the running time (s) taken by M0, M1, . . ., M7 for each of the 12 random test networks. Because there was
no clear connection between the running time and network size, we focused our analysis on the comparative performance of
Table 4
Parameter settings of the 12 random networks.

SP 11 SP12 SP13 SP21 SP22 SP23 SP31 SP32 SP33 SP41 SP42 SP43

jNj 142 148 153 169 169 175 180 184 184 181 181 187
jAj 168 172 179 193 202 204 214 216 220 214 214 224
jQ j 50 50 50 100 100 100 150 150 150 200 200 200
S ¼ 7000 U ¼ 5500
Rq;k 2 f1375;5500g Cgðq;kÞ 2 ½2:96;3:56� Eq;k 2 ½170;1115�

Fig. 2. The base network.



Table 5
Running time (s) of 8 MIP models on 12 test networks.

M0 M1 M2 M3 M4 M5 M6 M7

SP11 399 287 399 399 394 240a 323 272
SP12 115 136 115 115 98 95a 99 119
SP13 356 392 356 356 328 316a 368 363
SP21 938 531 937 938 383a 432 632 601
SP22 1008 1311 1654 1007 967 822a 997 1122
SP23 138 119 132 138 96a 114 117 105
SP31 228 251 297 355 519 217a 349 294
SP32 1216 699 843 1218 1064 672 854 417a

SP33 820 472 554 784 1591 411a 460 1285
SP41 977 486 1618 1618 582 579 442a 1082
SP42 189 172 152 161 148 190 142a 153
SP43 132 134 132 132 131a 134 142 155

a To represent the minimum computational time among all 8 models.
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different models. To this end, we normalized the running time for each category of 3 test networks, as shown in Figs. 3–6,
with respect to the minimum time taken by the 8 models.

Fig. 3 shows that M5 is the most efficient and stable model. M4 performs the second best for SP12 and SP13 but performs
poorly for SP11. M7 perform the third best in the sense that it can address SP11 better than the other models can, except for
M5. Among the 4 models that add individual valid inequalities (i.e., M1, M2, M3, and M4), M1 and M4 show better perfor-
mance. Based on these results, we make the following observations:
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� Hybrid models (M5–M7) seem to perform better than individual models (M1–M4), but this result is mainly caused by
constraints (10) and (12).

� Constraints (10) and (12) are better valid inequalities in general, and combining the two would work the best. More
specifically, constraint (10) is effective for SP11, and constraint (12) is effective for SP12 and SP13.

� Constraint (9) and (11) are not helpful for the SP1 family.
� Adding valid inequalities may not necessarily help for all cases. For example, although constraint (10) shortened the solu-
tion time for SP11, it slowed down the model for SP12 and SP13.

Similar to the results shown in Fig. 3, all of the hybrid models show better performances than do most of the individual
models, except for M4, when solving the SP2 family. Nevertheless, by comparing the performances of M6 and M7 and of M2
and M3, as shown in Fig. 4, we learn that adding constraints (9) and (11) will cause even longer solution times. Constraint
(10) slightly increases (and also decreases) the efficiency in some cases. Constraint (12) is the major key to the time saving of
hybrid models in solving for the SP2 family.

For solving the SP3 family, Fig. 5 suggests constraint (10) is the most effective and can even be improved in conjunction
with constraint (12). On the contrary, adding constraint (12) alone actually causes the most harm to performance. Constraint
(11) has similar characteristics to constraint (12). In particular, adding constraint (11) alone worsens the performance, but it
may save some time in some cases (e.g., SP31, SP32). Constraint (9) does not have a substantial impact on the efficiency.

When solving for the SP4 family, M6 performs the best. M1 and M4 perform better than the other models do, i.e., con-
straints (10), (12), and (9) perform better than (11), in this order. In Fig. 6, most models show similar performance for solving
SP43 and SP42. When solving SP41, constraints (9) and (11) even slow down the basic model M0, but the effect of constraint
(9) can be remedied by constraints (10) and (12).

In summary, based on our tests, the effectiveness of individual valid inequalities are ranked as follows: (12), (10), (9), and
(11). Compared with constraints (9) and (11), which define the lower bound for zq;k, constraint (12) defines the upper bound
for zq;k. This may explain why constraints (9) and (11) are not as effective. We suspect that the effectiveness of constraint (10)
might be caused by the fact that constraints over nodes are more effective than constraints over EVs. In particular, a node
may be passed by several EV routes. As a result, whether to install a recharging facility over a single node will affect more
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EV routes at the same time, which makes constraint (10) stronger than constraints (9) and (11). In addition, constraint (10)
employed in conjunction with (12) should have better synergy effects, which explains the best performance of M5.

Adding more valid inequalities may not necessarily guarantee improved performance, but adding more effective valid
inequalities according to their effectiveness rank does lead to better performances. This observation is useful, especially
for more difficult cases that require solutions within limited time windows.

4.3. Sensitivity analyses

To have more managerial insights, we conducted several analyses on the performance change in number of recharging
stations to be installed (Figs. 7–9), and total cost (Figs. 10–12) incurred by varying the value of the battery capacity (U), upper
bound on the amount of recharged electricity (R), and the fixed cost for installing a recharging facility (S). Without loss of
generality, we choose the test network SP43 (187 nodes, 224 arcs, and 200 routes) as described in Table 4, for conducting
sensitivity analysis. For convenience, we denote R0 and S0 to represent the vectors of the original Rq;ks and S for test network
SP43, respectively.
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In our experiments, we observe that larger battery capacity, smaller upper bound for non-overnight recharging, or larger
fixed cost may lead to longer solution time. Since the difficulty of the MIP mainly caused by the integral decisions, and larger
U and S, as well as smaller R, make the locational integral decisions to select better recharging sites more important.
Otherwise (i.e., smaller U and S , and larger R), the locational integral decisions might become less important than the linear
recharging decisions (i.e., how much electricity to be recharged), which makes the problem to be simpler to solve.

Figs. 7–9 indicate larger U , R , and S lead to install fewer recharging stations. Indeed, if the battery has larger capacity, or it
can be recharged more electricity in each station, then we will need fewer recharging stations. Moreover, since if we consider
the unit recharging cost Cgðq;kÞ may vary at different location, by reducing the fixed cost for installing a recharging station, we
may have better chance to install more recharging stations on places with cheaper recharging unit costs.

Since the fixed cost is usually more significant than the recharging cost, larger U and R lead to the decisions to install more
recharging facilities (see Figs. 7 and 8), which in turn incur larger total cost, as shown in Figs. 10 and 11. On the other hand,
even if increasing U might discourage the installation of new recharging facilities (see Fig. 9), recharging facilities are still
necessary to keep all EVs on-road. Considering the system requires at least some minimum number of recharging facilities,
increasing the fixed cost U would still incur larger total cost.
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Note that the change in R can provide somemanagerial insights as follows: First, if we consider R to be set by some kind of
contract (e.g., an electric bus that can be recharged at a station for no longer than 30 min; or an electric truck that stops by a
convenient store but has to departure within 30 min to head for its next stop), then by negotiating a better value of R one
may lead to more savings in the total costs. Second, from another point of view, the value of R also depends on the effective-
ness of recharging equipment’s. For example, if we employ a faster recharging equipment, more electricity can be recharged
within the same duration, which would lead to the same effects of larger R and thus decrease the number of recharging
stations.

From these sensitivity analysis, we can roughly assess the benefits of adopting new battery technology to determine
whether doing so is worthwhile in terms of the savings in total cost or number of recharging facilities.

5. Conclusions and discussions

More logistics and transport companies are expected to use EV fleets in the near future for transporting materials or peo-
ple. This paper considers a special transport network where each EV moves along the same route periodically in a planning
horizon. Each EV route is a round trip composed of a cyclic sequence of depots, where an EV can stop to transport materials
(or people), rest, or recharge its battery within a pre-specified duration limit. Our model can be easily extended to account
for conventional time window constraints associated with a visit made by an EV q at its kth stop. We first propose a basic
compact MIP model (M0) to calculate an optimal deployment for recharging stations and an optimal recharging schedule for
the entire EV fleet. Then, we derive four valid inequalities based on insights observed from some necessary conditions to
recharge the battery. Although these new valid inequalities are derived in the hope of accelerating the solution procedure,
how they can be used in conjunction with each other to achieve better performance is not clear. To this end, we implemented
8 different MIP models by adding one or a few valid inequalities to M0 and tested their performance on 4 families of random
networks. The results suggest that combining valid inequalities according to the order of their effectiveness would produce a
better MIP model. In our case, adding constraints (12) and (10) to M0 would provide the most effective MIP model for all
cases. However, adding all or some of the new valid inequalities to M0 might not necessarily help improve the performance
and can even increase the solution time. Our comparative analyses and suggestions are important, especially when there is
not sufficient time to determine the optimal combination of constraints. In addition, our sensitivity analyses can help under-
stand the impact of the battery technology to the total costs, facility location plan, and solution time.

The contributions of this paper are threefold: First, we employ the techniques of valid inequalities (rarely seen in the EV
facility location literature), and conducted comprehensive computational experiments in comparing the performance of the
basic MIP model in conjunction with different combinations of added valid inequalities is compared. Some of our findings
may not be trivial. For example, introducing additional variable zq;k , and right additional constraints (12) would enlarge
the problem site but in fact boost the performance. Our results can serve as a good start for future study in designing better
constraints. Second, our proposed mathematical models, based on the locomotive refueling literature, can deal with partial
recharging, and calculate accurate battery level for each EV. This leads to more accurate estimate on the battery consumption
and recharging, so that it would give a more accurate recharging planning as well as facility location decisions, compared
with previous work. We think similar techniques may be employed to deal with more difficult problem such as the location
routing problem for an EV fleet (EVLRP). Third, we introduce the duration constraint, which is crucial to resolve the range
anxiety in practice, to make better and more practical decisions. In addition, we also explain how to extend our model to
deal with general time windows constraints.

For future research, we suggest investigating the topics of the optimal deployment for battery swap stations or the EVLRP.
The former differs from this paper in that the duration constraints for recharging can be neglected, but it would induce new
challenges on optimal battery inventory for each battery swap station; the latter is a more fundamental and challenging
problem than that presented in this paper. However, we suspect our techniques in modeling the detailed battery level might
be applicable to deal with EVLRP. In particular, an EVLRP also seeks best sites for installing recharging facilities, so that a fleet
of EVs could depart from a depot, visit customers to pick up or deliver shipments, be recharged on some sites, and return the

depot after completing all the shipments. Besides the variables (usually some binary variable like Xk
ij to represent whether

vehicle k travels directly from node i to j) and constraints (flow balance, set packing) in conventional LRP models, we can

associate with each vehicle k a battery power level b
_
k
i (and b

^
k
i ) to enter (and leave) node i . Suppose traveling on arc ði; jÞ

consumes Ek
ij units of electricity. Also, amount of recharged electricity on node i equals towk

i . Then, we can give the following

constraints: b
^
k
j ¼ b

_
k
i þwk

i , b
^
k
j � Ek

ijX
k
ij �M 1� Xk

ij

� �
6 b

_
k
j 6 b

^
k
j � Ek

ijX
k
ij þM 1� Xk

ij

� �
, and wk

i 6 Uv i , similar to our constraints

(1), (2), and (4). Note that we can also easily to employ the duration or time windows constraints on EVLRP, and these timing
constraints can help avoid the subtour elimination constraints commonly appeared in LRP models. However, how to design
good valid inequalities for EVLP remains challenging.
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