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This paper proposes to optimally configure plug-in electric vehicle (PEV) charging
infrastructure for supporting long-distance intercity travel using a general corridor model
that aims to minimize a total system cost inclusive of infrastructure investment, battery
cost and user cost. Compared to the previous work, the proposed model not only allows
realistic patterns of origin–destination demands, but also considers flow-dependent
charging delay induced by congestion at charging stations. With these extensions, the
model is better suited to performing a sketchy design of charging infrastructure along
highway corridors. The proposed model is formulated as a mixed integer program with
nonlinear constraints and solved by a specialized metaheuristic algorithm based on
Simulated Annealing. Our numerical experiments show that the metaheuristic produces
satisfactory solutions in comparison with benchmark solutions obtained by a mainstream
commercial solver, but is more computationally tractable for larger problems. Noteworthy
findings from numerical results are: (1) ignoring queuing delay inducted by charging
congestion could lead to suboptimal configuration of charging infrastructure, and its effect
is expected to be more significant when the market share of PEVs rises; (2) in the absence
of the battery cost, it is important to consider the trade-off between the costs of charging
delay and the infrastructure; and (3) building long-range PEVs with the current generation
of battery technology may not be cost effective from the societal point of view.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Successful transition to alternative fuel vehicles (AFV) demands well planned supporting infrastructure, especially a net-
work of refueling stations. The problem of optimally designing the refueling network has been studied separately for differ-
ent AFVs, see e.g. Stephens-Romero et al. (2010) and Nicholas et al. (2004) for hydrogen vehicles, Frick et al. (2007) for
compressed natural gas vehicles, and Frade et al. (2011), Dashora et al. (2010) and Sweda and Klabjan (2011) for PEVs,
including plug-in hybrid electric vehicles (PHEV) such as Chevrolet Volt and battery electric vehicles (BEV) such as Nissan
Leaf. We shall focus on PEVs in this paper because of their high energy efficiency (Romm, 2006; Eberhard and
Tarpenning, 2006), the ability to substitute electricity for petroleum and the potential to reduce the carbon footprint
(Samaras and Meisterling, 2008; Crist, 2012).
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The design of charging infrastructure is a facility location problem, which may be classified as ‘‘covering point demand”
(e.g., Toregas et al., 1971; Daskin, 1995), ‘‘capturing origin–destination (O–D) demand” (Ghosh and McLafferty, 1987;
Hodgson, 1990; Ghosh, 1991) and considering both types of demand (so-called hybrid models) (Goodchild and Noronha,
1987; Hodgson and Rosing, 1992). The point demand approach has been a popular choice in the context of locating charging
stations for PEVs. The idea is to place these stations near the urban activity centers (e.g. home, shopping malls and work-
places) so as to minimize the access cost of PEV owners. With this approach the charging design problem is typically formu-
lated as a set covering or P-median facility location problem (e.g. Dashora et al., 2010; Pan et al., 2010; Frade et al., 2011;
Chen et al., 2013; Sweda and Klabjan, 2011; He et al., 2013; Huang et al., 2015; Ghamami et al., 2016). The point demand
approach does not typically address intercity trips traditionally made using passenger vehicles. The premise of our study
is that making charging facilities available along the corridors where these long-distance trips concentrate is important to
resolving the range anxiety issue that has been considered a critical obstacle to PEV adoption (Hidrue et al., 2011; Shiau
et al., 2009).

Flow capturing facility location models (FCLM) (e.g. Hodgson, 1990) are better suited to tackle intercity trips. Kuby and
Lim (2005) and Kuby and Lim (2007) are among the early efforts to apply the FCLM in the context of the refueling problem
for range-limited vehicles. The objective of these refueling location models is to locate refueling facilities to maximize the
total vehicle flows refueled. Lim and Kuby (2010) propose a few efficient heuristic algorithms for solving this type of prob-
lems. The refueling station location problem studied in Wang and Lin (2009) and Wang andWang (2010) also considers O–D
demands. Yet, instead of trying to maximize flow being captured, their model minimizes the total facility cost while ensuring
all flows are properly served according to a ‘‘refueling logic”. Nie and Ghamami (2013) propose a conceptual model to ana-
lyze travel by PEVs along a long corridor. The objective of their model is to select the battery size and charging capacity to
meet a given level of service in such a way that the total social cost is minimized. In a similar spirit, Sathaye and Kelley
(2013) develop a continuous facility location model (Daganzo, 2005) for the optimization of PEV charing facility deployment
for highway corridors. Unlike Nie and Ghamami (2013), their model does not consider the battery cost. Rather, the focus is to
complement private charging infrastructure by publicly funded charging stations, while considering demand uncertainty.
Mak et al. (2013) propose a robust location model of battery swapping stations, which also considers demand uncertainty
explicitly.

The analysis of Nie and Ghamami (2013) reveals the interesting tradeoff between charging capacity, battery size and the
level of service experienced by PEV drivers (measured by the extra time spent on charging). Yet, a couple of simplifying
assumptions make their model unsuitable even for sketchy design in a practical setting. These include: (1) trips take place
between a single origin–destination pair with a fixed refueling logic; (2) each station is equipped with as many charging
capacities as required to accommodate all PEVs as if they would use the facility simultaneously. The first assumption
restricts the analysis to trips connecting two ends of a single corridor, and the second leads to potential overbuilding of
charging capacities. This study aims to operationalize Nie and Ghamami (2013)’s corridor model by relaxing the above
assumptions. Notably, the proposed general model will consider congestion at the charging stations (i.e., the fact that PEV
drivers may wait in the line during peak periods), and how the flow-dependent queuing delay affects the optimal configuration
of infrastructure and optimal refueling decisions. To the best of our knowledge, few have endogenized the waiting cost at
charging stations in the context of modeling PEVs. A notable exception, De Weerdt et al. (2013), considers queuing delay
at charging stations but their focus was on optimal routing instead of infrastructure planning. While the proposed model
is labeled as ‘‘general”, our focus is still on tandem linear corridors, which implies that the general route choice is not explic-
itly considered. The reason for this simplification is twofold. First, for the intercity travel that motivates this study, it is not
uncommon that only one viable route is available for a given O–D pair. Second, the model proposed herein can be readily
extended to cases involving multiple routes between O–D pairs, which could elevate computational challenges (because
of the need to partially enumerate routes) but only add modest analytical complexities.

Because the general corridor model is formulated as a mixed integer nonlinear program, solving it poses a significant
challenge. While off-the-shelf solvers for such problems do exist, we note that these general purpose tools often scale poorly.
To address this limitation, a specialized metaheuristic solution method based on Simulated Annealing (SA) is developed and
compared against a popular commercial solver in several numerical experiments. Note that the SA algorithm has been suc-
cessfully employed to solve challenging optimization problems in general (e.g. Boston and Bettinger, 1999; Baskent and
Jordan, 2002; McKendall et al., 2006; Dong et al., 2009), and facility location problems in particular (e.g. Murray and
Church, 1996; Arostegui et al., 2006; Paik and Soni, 2007; Davari et al., 2011; Zockaie et al., 2016).

For the remainder, Section 2 presents the model formulation, followed by the development of a specialized solution algo-
rithm in Section 3. Section 4 presents the setting and results of numerical experiments. Section 5 concludes the study with
remarks on directions for future research.
2. Model formulation

Consider a set of tandem linear highway corridors that are divided into N segments with uniform length h (see Fig. 1). The
corridors consist of a set of nodes denoted as X ¼ f0;1; . . . ;Ng, with 0 and N being the first and last nodes, respectively. Each
highway segment is identified by its end node – that is, the index of the segment from node n� 1 to n is n. Without loss of
generality, we assume that the length of each corridor is the multiple of h. Thus, the starting and ending nodes of any



Fig. 1. Illustration of tandem linear highway corridors.
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corridor belong to X, and the union of these end nodes is denoted as R � X. All trips are assumed to occur between a pair of
nodes r and s in R (0 6 r < s 6 N).P � X denotes a set of nodes at which charging facilities can be built. Let v rs and drs be the
free flow speed and the potential demand (i.e. number of PEVs owned) between O–D pair rs. Assume all PEV trips take place
in a fixed time period T0 and be uniformly distributed within T0. f

rs denotes the average trip frequency of the PEV trips taking
place between r and s during T0 (measured as trips/hour). Thus, the total number of PEV trips between r and s within T0 can
be written as drsf rsT0.

A binary variable xl;8l 2 P is used to represent the location decision at candidate node l. That is, xl ¼ 1 if a charging facil-
ity is built, and 0 otherwise. Accordingly, zl;8l 2 P represents the total number of chargers installed at l, which is modeled as
a discrete variable. The charging power of each charger is denoted as P. Thus, at each charging facility, the power supply is

given by zlP. Furthermore, let yijrs be the PEV flow from O–D pair rs that travel from node i to node j without stopping at any
node l 2 fiþ 1; . . . ; j� 1g. This variable represents the demand traveling from origin node r to destination node s that charge
at nodes i and j but not at any other nodes l between i and j. The flow from O–D pair rs that stops at node l can be represented

by
Pl�1

i¼r y
il
rs

1. We further define the total number of cars charging at station l, denoted as gl, as
1 For
either a
3. More
the flow
gl ¼
X
rs2H

Xl�1

i¼r

yilrs ð1Þ
where H is the set of all valid O–D pairs.
Following Nie and Ghamami (2013), we introduce a parameter b to represent the battery performance in terms of mile

driven in each unit of battery energy. Assuming PEVs would recharge the battery to full every time they stop, the amount of
energy needed by all PEVs from O–D pair rs at node l is
gl
rs ¼

Xl�1

i¼r

yilrs
hðl� iÞ

b
ð2Þ
Since the unit of gl
rs is energy consumed in T0, it is called power demand of O–D pair rs at node l. The average time taken to

charge gl
rs is estimated as
slrs ¼ a
gl
rs

zlP
ð3Þ
where a > 1 represents battery’s charging efficiency (see Nie and Ghamami, 2013). The total power demand at node l is given
Gl ¼
X
rs2H

gl
rs ð4Þ
When Gl < zlP, i.e. the total power demand is smaller than the total supply, there is no waiting time for an available charger
and thus, delay only includes the charging time as

P
rsslrs. When Gl > zlP, i.e. the total power demand is larger than the total

supply, PEV drivers will have to wait in a queue to be charged at the station l. Using the deterministic queuing theory, the
average waiting time can be computed as (see Fig. 2)
wl ¼ 0:5T0
Gl

zlP
� 1

� �
ð5Þ
example, suppose that, in Fig. 1, the demand between the origin node 0 and the destination node 4 needs to charge at least once and they can charge
t node 2 or 3. Let us assume that there are 100 PEV drivers, traveling from node 0 to node 4, of which 40% charges at node 2 while the rest charge at node
specifically, 40 drivers stop only at node 2 to charge before reaching node 4, while the other 60 drivers stop only at node 3. Using the proposed notation,
s can be represented as y0104 ¼ 0; y0204 ¼ 40; y0304 ¼ 60; y1204 ¼ 0; y2404 ¼ 40; y3404 ¼ 60.



Fig. 2. Estimation of charging and waiting time at a charging facility.
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All PEVs are assumed to be equipped with the same type of battery that contains energy E. The anxiety-free range of the
battery is given as hbE, where h 2 ð0;1Þ is the range tolerance – that is, travelers would recharge when the battery is depleted
100h% of its capacity. We note again that all vehicles are assumed to be fully charged when they depart from the origin and
every charging station.

Now we are ready to formulate the PEV charging location and battery choice problem as the following mixed integer non-
linear program.
min
x;y;z;l;E

X
l2P

ðCl
pxl þ zlPCs þ cplÞ þ

X
rs2H

drsCeE ð6aÞ

subject to

Xs

j¼nþ1

ynjrs �
Xn�1

i¼r

yinrs ¼
drsf rsT0 n ¼ r

�drsf rsT0 n ¼ s
0 otherwise

8><
>: ; 8n 2 X; rs 2 H ð6bÞ

yilrs 6 xlM; 8l 2 P; rs 2 H ð6cÞ
zl 6 xlM; 8l 2 P ð6dÞ
bhE� ðj� iÞh 6 lijM; 80 6 i < j 6 N ð6eÞ
bhE� ðj� iÞh P ðlij � 1ÞM; 80 6 i < j 6 N ð6fÞ
yijrs 6 lijM; 80 6 i < j 6 N; rs 2 H ð6gÞ
X
rs2H

slrs þ
0:5T0ðGl � zlPÞ

zlP
gl 6 pl; 8l 2 P ð6hÞ

X
rs2H

slrs 6 pl; 8l 2 P ð6iÞ

xl 2 f0;1g; 8l 2 P ð6jÞ
yijrs P 0; 80 6 i < j 6 N; rs 2 H ð6kÞ
lij 2 f0;1g; 80 6 i < j 6 N ð6lÞ
zl is integer;pl P 0; 8l 2 P ð6mÞ
The objective function consists of (1) the infrastructure investment on the charging facilities, (2) the monetary value of total
time spent on charging the battery and waiting in the queue at the charging stations, and (3) the total battery cost of the PEV

fleet. In (6a), Cl
p denotes the cost of infrastructure investment on building a charging station at node l 2 P (measured in $ per

station), Cs is the unit cost of building the charging capacity (measured in $ per kW), c is the value of time ($ per hour), and Ce

is the unit battery cost ($ per kW h). Clearly, the main tradeoff here is between investment in charging infrastructure(xl; zl),
cost of manufacturing batteries (E), and the user cost (pl).
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Constraints (6b) state the flow conservation conditions at an intermediate stop l for each O–D pair. Constraint (6c) dic-
tates that only when a charging facility is built at node l, the node can be used by a PEV as an intermediate stop. Note that M
here is a large number. Constraint (6d) dictates that only nodes with charging stations can accommodate charging spots.
Constraints (6e)–(6g) state that no flow is allowed between node pair ij unless the distance between i and j is smaller than
the anxiety-free range. Note that lij is an auxiliary binary variable used to test range feasibility. That is, if the distance
between i and j is smaller than the anxiety-free range, lij is equal to one; otherwise it is equal to zero. Constraint (6g) states

that the flow between i and j; yijrs is equal to zero, if the distance between i and j is larger than the anxiety-free range.
The combination of Eqs. (6h) and (6i) defines the delay (pl). If the supply is larger than the demand, Gl � zlP would be

negative. Thus, Eq. (6h) will become redundant and the delay will be defined by Eq. (6i), as just the charging time. On the
other hand, if the demand is larger than the supply, Gl � zlP would be positive, which makes Eq. (6i) redundant, and as a
result Eq. (6h) will be used to calculate the delay. Constraint (6i) is introduced to avoid negative values of Gl�zlP

zlP
to affect

the amount of charging time delay. It is worth noting that Constraint (6h) is nonlinear and, hence, is difficult to deal with.
Finally, Constraints (6j)–(6m) identify integer variables and non-negativity.

Table 1 summarizes the number of the constraints and variables of the presented optimization model, as a function of
network size (i.e., number of O–D pairs, nodes and candidate nodes for building charging stations).

Note that the optimal solution to this Mixed Integer non-linear problem is not unique. For a simple explanation, consider
the example illustrated in Fig. 1 with nodes 1 and 4 being the origin and destination respectively. Suppose (1) that the range
of the PEVs is such that users would have to charge either at node 2 or node 3 to complete their trip, (2) that the cost of
building charging stations is not location specific and (3) that the demand is low enough so that all users may be served
simultaneously by one charging station with the minimum capacity. In this case, building a minimum capacity charging sta-
tion at either node 2 or 3 would be optimal, which shows the optimal solution to this problem is not unique in general.

3. Solution algorithm

The optimization model presented in the previous section is a mixed integer problem with non-linear constraints, which
is known to be NP-hard. Commercial solvers such as Knitro (Waltz and Plantenga, 2009) can solve such problems via branch-
and-bound techniques. Yet, because these solvers may not fully exploit the special structure of the problem, their perfor-
mance typically degrades quickly as the problem size grows (see numerical experiments for test results based on Knitro).
Tackling large-scale NP-hard problems often calls for metaheuristics that are designed to find good approximate solutions
quickly. In light of this, a metaheuristic based on Simulated Annealing (SA) is developed in this section. We shall validate
its computational promise by comparing it with Knitro.

The proposed algorithm decomposes the charging station design and battery choice problem into two subproblems: (1)
configure charging stations and battery size using a modified Simulated Annealing (SA) algorithm, (2) determine the optimal
flow and the total delay for a given configuration of charging station and battery size.

In the first subproblem, the battery size E is discretized into a set of energy levels. One can simply add E into the set of
integer variables and search the optimal combination using SA. Because the discrete set of E is typically small and it has a
distinctive physical meaning (all other integer variables are related to charging), a simpler approach is adopted here: we
solve multiple instances of the original problem, each corresponding to a fixed discrete value of E, and then find the optimum
from all solutions. The complexity of each instance is lower because it does not have to consider the choice of battery size.

The second subproblem is a linear program that can be viewed as a traffic assignment problem over a special linear net-
work with multiple O–D pairs. Let us first explain how this network is constructed, given O–D demands, battery size E, and
the choice of charging infrastructure. Suppose we start from the set of discrete nodes shown in Fig. 1. At first, feasible links,
i.e., those that are no longer than the anxiety-free travel distance, are added into the network (see Fig. 3(a)). Specifically, a
link should be added from i to j if
ðj� iÞh 6 bhE ð7Þ
Table 1
Number of constraints and variables.

Constraints
Constraint (6b) jRSjðN þ 1Þ
Constraint (6c) jRSj NðN�1Þ

2
Constraint (6e)–(6g) NðN�1Þ

2
Constraint (6h) and (6i) N � 1

Variables
y jRSj NðN�1Þ

2
l NðN�1Þ

2
z Z
x;p N � 1
E 1



Fig. 3. Illustration of network construction process.
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In the second step, once the location of charging stations is fixed, the set of feasible links is reduced to those no longer than
bhE and with a charging station or an origin or a destination node at each end (see Fig. 3). Consequently, an optimal assign-
ment of PEV flows will be performed over a simplified network GðM;AÞ where M ¼ R

T
P, and
A ¼ ijj0 6 i < j 6 N; i; j 2 M; ðj� iÞh 6 bhEf g

The solution of this assignment problem is the focus of the next subsection.

3.1. The assignment problem

Once the network is constructed, the original problem is reduced to assigning all O–D flows so that the total travel delay
associated with charging is minimized. This problem can be formulated as follows:
min
y

X
l2P

cpl ð8aÞ

subject to

X
j:nj2A

ynjrs �
X
i:in2A

yinrs ¼
drsf rsT0 n ¼ r

�drsf rsT0 n ¼ s

0 otherwise

8><
>: ; 8n 2 M; rs 2 H ð8bÞ

yilrs 6 Mxl; 8l 2 P; il 2 A; rs 2 H ð8cÞ
zl 6 xlM; 8l 2 P ð8dÞ
X
rs2H

slrs þ
0:5T0ðGl � zlPÞ

zlP
gl 6 pl; 8l 2 P ð8eÞ

X
rs2H

slrs 6 pl; 8l 2 P ð8fÞ

yijrs P 0; 8ij 2 A; rs 2 H ð8gÞ
pl P 0; 8l 2 P ð8hÞ
Note that the number of chargers (z), the location of charging facilities (x), the battery size (E), and the auxiliary variable (l)
are all treated as inputs. Accordingly, the objective function contains only the ‘‘flow-dependent” travel delay and the only
decision variable is the assigned flow vector y, while p is a state variable. Using the definition of slrs in Eq. (3), we have
X
rs2H

slrs ¼
X
rs2H

a
gl
rs

zlP
¼ a

zlP

X
rs2H

gl
rs ¼

a
zlP

Gl ð9Þ
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Thus, Constraints (8f) and (8e) can be simplified as
aGl 6 plzlP; 8l 2 P ð10Þ
ðaþ 0:5T0glÞGl � 0:5T0zlPgl 6 plzlP; 8l 2 P ð11Þ
respectively. Note that (11) is still a nonlinear constraint because of the definition of gl.
The above assignment problem (8) has only one nonlinear constraint and no integer variables, and can be solved by com-

mercial NLP solvers such as Knitro (Byrd et al., 2005). Specialized algorithms for solving the assignment problem (see e.g.
Patriksson, 1994) may be adapted to solve the problem efficiently. Yet, we shall explore this possibility in a follow-up study,
since the focus of the present study is on the metaheuristic for searching the optimal combination of x and z. We now turn
our attention to this effort.

3.2. A Simulated Annealing (SA) algorithm

Metaheuristics based on Simulated Annealing is inspired by annealing in metallurgy (see Metropolis et al., 1953; Zockaie
et al., 2016). Its iterative process resembles the heating and controlled cooling of a solid material to increase the size of its
crystals and reduce their defects. At the cooling stage, an equilibrium state should be achieved at each temperature before
moving to a lower temperature. The final solution is achieved at the minimum or final temperature.

An SA-based algorithm typically has two main steps (Zockaie et al., 2016). In the first, it searches over the feasible set of
the integer solutions, starting from a current feasible solution and then moving to a neighbor feasible solution. The second
step compares the objective functions of the current and the new solutions, and based on the difference, replaces the current
solution with the new one with a probability. The probability is gradually reduced as the solution process proceeds. SA
schemes allow larger objective function values (worse solutions) relative to the current solution be accepted, which offers
a mechanism to avoid getting trapped in local optimum solutions. This feature is very useful when the problem is known
to have multiple local optima. A recent paper by Zockaie et al. (2016) shows that the SA algorithm is able to solve flow cap-
turing mixed integer programs (MIPs) efficiently.

The SA scheme is adapted to solve Problem (6) in this paper as follows. To find an initial solution (x and z), the basic cor-
ridor model (Nie and Ghamami, 2013) is adopted because it gives closed form approximate solutions. Since the basic corridor
model can only handle a single O–D, we aggregate demands from multiple O–D pairs so that the model only considers O–D
pairs between neighboring nodes inH. For instance, let H ¼ fA� C;B� Cg, and the corresponding demands are dAC and dBC .
In the initialization, the demand pattern of the corridor will be viewed as between A� B and B� C, and the demand between
A� B is set to dAC and the demand for B� C is set to dAC þ dBC . The travel frequency for each segment is taken as the average
of all O–D pairs passing through the segment. We set the value of z also based on the assumption of the basic corridor model,
which requires that the number of chargers is enough to avoid waiting at the stations.

We proceed to explain how to obtain a neighbor solution. The basic idea is as follows. According to the type of perturba-
tion, each location is associated with a weight factor (e.g., total flows, total delays). Then, the location is picked randomly, but
those with larger weight factors will have a higher probability of being selected. More specifically, we define
UðlÞ ¼
Xl

i¼1

/i ð12Þ
where /i is the weight factor and UðlÞ is the cumulative weight factor. Then the location l is selected if it satisfies the
following
Uðl� 1Þ
UðNÞ 6 q 6 UðlÞ

UðNÞ ð13Þ
where q is a random number drawn from a uniform distribution between 0 and 1, written as q ¼ U½0;1�.
In addition, the following rules will be used to guide the perturbation process.

Rule 1 When a new station is to be added or new chargers are to be added to a station, each location lwill be weighted based
on the total delay, i.e. /l ¼ pl. This means the stations with higher delay will receive priority.

Rule 2 When a new station is to be removed, each location l will be weighted based on the inverse of total flow, i.e.,
Ul ¼ 1=

P
i

P
r

P
sy

il
rs. This implies that the stations with small flows will receive priority.

Rule 3 When chargers are to be removed from a station, each location lwill be weighted based on the infrastructure cost, i.e.

/l ¼ Cl
pxl þ zlPCs. This implies that the station with high infrastructure cost will get priority.

If the perturbed solution improves the objective function value, it will be accepted. Otherwise, the probability of accep-
tance depends on how much worse it is compared to the current solution and the current annealing ‘‘temperature”. Finally,
note that there are two sets of integer variables x and z. Each time only one set will be perturbed, and we switch between the
two sets whenever a perturbed solution is accepted.
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Algorithm 1. Simulated Annealing Algorithm
1:
 Input: Maximum number of temperature changes K0, Maximum number of inner iterations at each temperature
K1, battery energy level E.
2:
 Output: x�; z� for the given E.

3:
 Initialize:

4:
 Set a state variable w ¼ 0, which indicates that the perturbation will be made to x. w ¼ 1 when the perturbation is

for z.

5:
 Set the current temperature stage t ¼ 0, choose the initial temperature ut .

6:
 Initialize xt and zt based on the basic corridor model of Nie and Ghamami (2013), as described above. Set

X0 ¼ P
ix

i, the total number of stations built in the initial solution.

7:
 while t < K0 do

8:
 Set inner iteration index k ¼ 0. Set xk ¼ xt ; zk ¼ zt .

9:
 while k < K1 do
10:
 Perturbation.

11:
 if w ¼ 0 thenP

12:
 if ix

k
i 6 X0 then
13:
 Add a station at a selected location by invoking Rule 1.

14:
 else

15:
 Set a random number c ¼ U½0;1�.

16:
 if c > 0:5 then add a station at a selected location by invoking Rule 1.

17:
 else remove a station at a selected location by invoking Rule 2.

18:
 end if

19:
 end if

20:
 else

21:
 Set a random number c ¼ U½0;1�.

22:
 if c > 0:5 then

23:
 add one charger at a selected location by involving Rule 1, if possible.

24:
 else

25:
 remove one charger at a selected location by involving Rule 3, if possible.

26:
 end if

27:
 end if

28:
 Set k ¼ kþ 1 and the perturbed solution as xk; zk. Draw a random number c 2 U½0;1�.

29:
 Set Ck and Ck�1 be the objective function values associated with the perturbed and current solutions (the

assignment problem has to be solved for each solution).
k k�1

� �

30:
 if Ck P Ck�1 and exp C �C

ut
> c then

k k�1 k k�1
31:
 Discard the perturbed solution, i.e. set x ¼ x ; z ¼ z .

32:
 end if

33:
 end while

34:
 Set t ¼ t þ 1; xt ¼ xk; zt ¼ zk, and ut ¼ hu0, where h ¼ 0:85 (see Zockaie et al., 2016).

35:
 end while

36:
 Set x� ¼ xt ; z� ¼ zt .
Details of the SA procedure developed in this paper are summarized in Algorithm 1. Note that Algorithm 1 assumes the
battery energy level E is given. In order to search for the optimal E, one has to call the algorithm once for each discrete value
of E.
4. Numerical experiments

Numerical experiments conducted in this section are designed to (1) examine the computational performance of the pro-
posed metaheuristic, compared to that of using Knitro directly to solve (6a), (2) understand how the planning of charging
station is affected by queuing delay at the charging stations and more realistic representation of O–D demands; and (3) iden-
tify the sensitivity of the results to critical input parameters. The SA algorithm is coded in MATLAB and all experiments are
conducted on a 64-bit WINDOWS desktop computer with an Intel(R) Core(TM) i5-2400 CPU@3.10 GHz and 8 GB RAM. The
Knitro solver used in this study is called using AMPL (IBM, 2010).

4.1. Default parameters

Default values of the parameters used in the model are listed in Table 2, which are mainly adopted from the basic corridor
model (Nie and Ghamami, 2013). For simplicity all parameters are assumed not to vary with location or O–D pairs, even



Table 2
Parameters definitions and default values.

Parameter Description Unit Value

a Energy efficiency (converting energy/power ratio to charging time) – 1.3
b Battery performance mile

kW h 2.5

c Value of time
$

h
18

T0 Time period h 1
Cp Fixed construction cost of charging stations k$ 520
Ce Unit manufacturing cost of battery $

kW h 650

Cs Per spot construction cost of recharging outlet $
kW 500

h Range tolerance (confident range) – 0.8
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though the model can capture such variations. We note that all capital costs (charging facility and battery) are later amor-
tized based on the life of the facility.

The Chicago–Madison–Minneapolis corridor (see Fig. 4) is used in our case study to analyze intercity travel. The spatial
demand profile is estimated based on the 1995 American Travel Survey (ATS) data. Table 3 shows the origin–destination
pairs, the distance, demand and frequency of travel between each O–D pair. In the base case all electric vehicles are assumed
to have an average range of 100 miles with a 40 kW h battery. Nie and Ghamami (2013) show that a reasonable level of ser-
vice can only be achieved with Type III (fast) chargers. We thus assume all installed chargers will have a power of 50 kW, a
typical value for Type III chargers.

Unless otherwise specified, the parameter values presented in this section will be used throughout this section.

4.2. Algorithm performance

We first examine how the performance of the SA algorithm may vary with the number of main and inner iterations (K0

and K1), and then compare the performance of the SA algorithm with that of Knitro.
Sensitivity analysis for different combinations of inner and main iterations shows that for the tested combinations, the

best objective function value achieved seems not highly sensitive to the number of iterations. There is no clear indication
that a higher number of iterations would help reduce the objective function value, as one might expect. On the other hand,
the computational time does increase quickly with the number of iterations. The results suggest that after the number of
inner and main iteration each reach 25, the final objective function no longer improves. We thus choose K0 ¼ K1 ¼ 25 for
the remaining experiments.

Table 4 compares the results given by the SA algorithm and Knitro for three different demand levels of the Chicago-
Madison corridor (the small problem with one O–D pair connected by a short corridor). Note that the low demand level
in the table is the level reported in Table 3 demand, whereas the medium and high demand levels are five and ten times
of the base value, respectively. The results show that directly solving the problem using Knitro is faster for the small problem
than the proposed SA algorithm, but it leads to loss of accuracy ranging from about 2% for the high demand case to about 15%
for the low demand case. For larger problems, the Knitro solver used in this study failed because it was unable to find any
feasible solutions to Problem (6). Yet, the proposed SA-based solution method succeeded in finding a solution in all cases.
These results indicate that the proposed SA algorithm scales better. More importantly, it can get comparable (if not consis-
tently better) solutions than commercial MIP solvers, which we believe offer a reasonable guarantee of the solution quality.
A more rigorous assessment of the solution quality (e.g. by developing a tight lower bound for the original problem) is
beyond the scope of this paper and will be left to a future study.

4.3. Main results

Fig. 5 reports the optimal configuration of charging stations for the Chicago–Madison–Minneapolis corridor with current
demand levels (solved by the SA method). The solution places five charging stations along the corridor, with two medium
sized stations (more chargers) and the other three small charging stations.

We compare the above solution with that of the basic corridor model (Nie and Ghamami, 2013), which assumes that each
station holds enough chargers to serve all potential PEV users. We recall that the general corridor model proposed in this
paper allows the queuing delay at the charging station and so the number of chargers may be optimally determined.

Fig. 6 compares the optimal configurations obtained by the two models. In the plots, the circles represent the charging
stations and the size of the circle visualizes the number of chargers in that station. As expected, the basic model produces
an identical number of chargers at each station. On the contrary, the general corridor model is able to differentiate the size of
charging station based on the demand pattern and the tradeoff between infrastructure and user costs.

Table 5 further compares the two models under different levels of demand. We expect that, as the demand level rises,
more PEV users would need to charge, and therefore, the impact of queuing delay would become more prominent. The
results reported in Table 5 confirms exactly that expectation. In all cases, we found that the basic model overestimates



Fig. 4. Chicago–Madison–Minneapolis corridor origin–destination pairs and candidate nodes for building charging stations.

Table 3
Origin–destination pairs along Chicago–Minneapolis corridor.

Origin–destination pairs Chicago–Madison Madison–Minneapolis Chicago–Minneapolis

Distance (mile) 150 270 420
Electric vehicle demanda 937 487 1588
Frequency (trip per year) 2.99 1.72 1.84

a Considering 0.5 percent penetration rate (see: http://www.hybridcars.com/December-2012-dashboard, Last visited: 02-17-2015).

Table 4
Comparison of algorithm performance with commercial solvers for Chicago–Madison corridor.

Demand level Low Medium High

Objective function ($) Heuristic 6872.03 33,804.91 67,554.65
Solver 8167.49 35,194.30 68,916.29

Relative error (%) 15.9 3.95 1.98

Solution time (s) Heuristic 129.86 141.52 147.57
Solver 28.45 30.27 33.79

Number of solution variables 932
Number of constraints 1858
Number of O–D pairs 1
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the number of charging spots and the total system cost, even though it avoids queuing delay completely. These findings indi-
cate that ignoring queuing delay could lead to suboptimal configuration of charging infrastructure, and this effect will be more sig-
nificant as PEVs gain more market share in the future.
4.4. Sensitivity to battery size

The battery size is an important factor affecting the location of charging stations. Larger batteries are more expensive
to manufacture but they typically require a sparser charging network (hence lower infrastructure cost). In all experiments

http://www.hybridcars.com/December-2012-dashboard


Fig. 5. Optimal configuration of charging stations on Chicago–Madison–Minneapolis corridor.

Fig. 6. Configuration of charging stations in basic vs. general corridor models.

Table 5
Comparison of basic corridor model and general corridor model considering different demand levels.

Demand level Low Medium High

Objective function Basic corridor model 22,653.7 112,129.0 223,973.0
General corridor model 22,532.8 110,397.1 221,332.6

Total number of spots Basic corridor model 90 450 900
General corridor model 35 130 275
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Fig. 7. Various cost at optima for different types of batteries (Chicago–Madison–Minneapolis Corridor).

400 M. Ghamami et al. / Transportation Research Part C 68 (2016) 389–402
conducted so far, the battery size is fixed at 40 kW h. This section explores the sensitivity of the model to the battery size.
The demand level is set to the ‘‘high” level, i.e. ten times of the default value given in Table 3.

Fig. 7(a) reports the charging infrastructure cost and delay cost for different battery sizes. As expected, the infrastructure
cost decreases as the battery size (hence the range) grows. However, as the battery size increases, the total charging delay
costs remain at roughly the same level until the battery capacity reaches 100 kW h. A close look reveals that the benefit of
cutting the infrastructure investment is initially greater than reducing the charging delay, because the initial increases in the
battery sizes enables the elimination of some charging stations. When the battery size increases from 80 kW h to 100 kW h,
that change is not sufficient to eliminate another station. In this case, it is more effective to reduce the queuing delay than to
reduce the number of chargers. This finding suggests that at this demand level (ten times of the current value), installing
more chargers at existing stations is more cost effective than allowing drivers to wait for charging. However, reducing charg-
ing delays may not be sufficient to justify the investment on new stations.

Fig. 7(b) shows how the total cost changes with the battery size. It is clear that the total battery cost is about 20 times of
the combined infrastructure and delay costs when the battery size is 40 kW h. As the battery size increases, the percentage of
the battery cost in the total cost grows even greater. Thus, with the current battery technology, minimizing social cost seems
to require small batteries being used with dense charging stations and potentially high charging delays. In other words,
building long-range PEVs may not be cost effective from the societal point of view until the unit battery cost is reduced significantly.
We note that, however, excessive charging in long-distance trips may slow down the transition to PEVs, which in turn may
increase the long-term environmental costs associated with GHG and air pollutant emission.
5. Conclusions

We proposed and solved a general corridor model for optimally configuring charging infrastructure to support long-
distance intercity travel. The model aims at minimizing the total system cost, inclusive of infrastructure investment, battery
cost and user cost. By ‘‘general” we mean the proposed model generalizes a previous model developed by Nie and Ghamami
(2013) by (1) allowing realistic patterns of O–D demands, and (2) considering flow-dependent charging delay induced by
congestion at charging stations. With these extensions, the model is better suited to performing a sketchy design of charging
infrastructure along highway corridors.

The general corridor model is formulated as a mixed integer program with nonlinear constraint and solved by a special-
ized metaheuristic algorithm based on Simulated Annealing. We found that the algorithm produces satisfactory solutions in
comparison with benchmark solutions obtained by Knitro, a widely used commercial solver for this type of problem. Yet, the
metaheuristic algorithm scales much better and hence holds promises for large-scale applications in practice. Important
findings from our numerical experiments are summarized in the following.
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� Ignoring queuing delay inducted by charging congestion could lead to suboptimal configuration of charging infrastruc-
ture, and this effect can become more significant as PEVs gain more market share in the future. Because it tends to over-
build charging capacity, the basic corridor model of Nie and Ghamami (2013) leads to higher system costs compared to
the general model, even it eliminates queuing delays.

� The magnitude of the charging delay cost is comparable to that of the infrastructure cost, while the battery cost is almost
an order of magnitude higher. Thus, in the absence of the battery cost, it is important to consider the trade-off between
the costs of charging delay and the infrastructure.

� Building long-range PEVs with the current generation of battery technology may not be optimal from the societal point of
view. Smaller batteries with dense charging networks may be more cost effective.

The natural next step is to further generalize the corridor model to allow route choices between a given O–D pair. As men-
tioned in the introduction, we believe that this can be achieved without further complicating the modeling and solution pro-
cess much, provided that the number of routes is few and hence enumeration would not be prohibitively expensive. In this
paper we solve the assignment problem using Knitro. However, many efficient solution algorithms exist that can take advan-
tage of the special structure of the problem (see e.g. Nie, 2010, for a recent review). A future computation study can explore
how much efficiency can be gained by applying one of the specialized traffic assignment algorithms.
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