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Technological advances are bringing connected and autonomous vehicles (CAVs) to the
ever-evolving transportation system. Anticipating public acceptance and adoption of these
technologies is important. A recent internet-based survey polled 347 Austinites to under-
stand their opinions on smart-car technologies and strategies. Results indicate that respon-
dents perceive fewer crashes to be the primary benefit of autonomous vehicles (AVs), with
equipment failure being their top concern. Their average willingness to pay (WTP) for add-
ing full (Level 4) automation ($7253) appears to be much higher than that for adding par-
tial (Level 3) automation ($3300) to their current vehicles.
Ordered probit and other model specifications estimate the impact of demographics,

built-environment variables, and travel characteristics on Austinites’ WTP for adding var-
ious automation technologies and connectivity to their current and coming vehicles. It also
estimates adoption rates of shared autonomous vehicles (SAVs) under different pricing sce-
narios ($1, $2, and $3 per mile), choice dependence on friends’ and neighbors’ adoption
rates, and home-location decisions after AVs and SAVs become a common mode of trans-
port. Higher-income, technology-savvy males, who live in urban areas, and those who have
experienced more crashes have a greater interest in and higher WTP for the new technolo-
gies, with less dependence on others’ adoption rates. Such behavioral models are useful to
simulate long-term adoption of CAV technologies under different vehicle pricing and
demographic scenarios. These results can be used to develop smarter transportation sys-
tems for more efficient and sustainable travel.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction and motivation

Car travel is relatively unsafe, costly, and burdensome. Roughly 2.2 million Americans are injured in crashes each year,
resulting in over 30,000 fatalities (NHTSA, 2014b). The economic cost of these crashes is roughly $300 billion, which is
approximately three times the U.S.’s annual congestion costs (Cambridge Systematics, 2011). Connected and autonomous
vehicles (CAVs) provide a solution to the burden of car travel, and have the potential to reduce a high proportion of the
90% of crashes that result from driver error (NHTSA, 2008). CAVs represent the biggest technological advances in personal
transport that the world has seen in over a century, with a promising future of safer and more convenient transportation.
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CAVs are no longer a fantasy, and may soon become a daily mode of transport for hundreds of millions of people. Several
mainstream companies, such as Google and Audi are developing and testing their own prototypes (Smiechowski, 2014). With
rapid advances in vehicle automation and connectivity, the U.S. National Highway Traffic Safety Administration (NHTSA, 2013,
2014a) has recognized key policy needs for CAVs. California, Nevada, Florida, andMichigan have legislation to allowAV testing
on public roads (Schoettle and Sivak, 2014a). Navigant Research (2014) estimated that 75% of all light-duty-vehicle sales
around the globe (almost 100 million annually) will be autonomous-capable by 2035. In accordance with this timeline,
Litman (2014) expects that AVs’ beneficial impacts on safety and congestion are likely to appear between 2040 and the year
2060. If AVs prove to be very beneficial, Litman (2014) suggests that human driving may be restricted after the 2060.

Successful implementation of CAV technologies will require public acceptance and adoption over time, via CAV purchase,
rental, and use (Heide and Henning, 2006). In the past three years, many researchers (Casley et al., 2013; Begg, 2014;
Kyriakidis et al., 2014; Schoettle and Sivak, 2014a, 2014b; Underwood, 2014) and consulting firms (J.D. Power, 2012;
KPMG, 2013; Vallet, 2013; Seapine Software, 2014; Continental, 2015) have conducted surveys and focus groups to under-
stand the public perception about CAV’s benefits and limitations. These studies provide descriptive statistics regarding pub-
lic awareness, concerns, and expected benefits of smart-vehicle technologies, but they do not indicate how an individual’s
demographics (e.g., age, income, and education) and built-environment factors (e.g., employment density, population den-
sity, and area type) affect their opinions and willingness to pay (WTP) for such technologies.

This study designed and disseminated a survey for adult residents of Austin, Texas and received 358 completed responses.
Those data facilitate a variety of perception and attitude analyses, using various econometric models. Response variables
include respondents’ WTP for Level 3 AVs,3 Level 4 AVs, and CVs; adoption rates of shared AVs under different pricing scenar-
ios; adoption timing of CAV technologies; and home location decisions after AVs become a common travel mode. Motivations
for each behavioral model are provided below.

Estimating an individual’s or household’s WTP for Level 3 AVs, Level 4 AVs, and CVs is useful in identifying the demo-
graphic characteristics and land use settings of early, as well as late, adopters. Such information helps policymakers and plan-
ners predict near-term and long-term adoption of CAV technologies and devise policies to promote optimal adoption rates.

While AVs are set to emerge on the public market, they may quickly offer another mode of transportation: shared auton-
omous vehicles (SAVs). SAVs offer short-term, on-demand rentals with self-driving capabilities, like a driverless taxi
(Kornhauser et al., 2013; Fagnant et al., 2015). SAVs may overcome the limitations of current carsharing programs, such
as vehicle availability, because travelers will have the flexibility to call a distant SAV. Several studies (e.g., Burns et al.,
2013; Fagnant and Kockelman, 2014) have shown how SAVs may reduce average trip costs by 30% to 85%, depending on
the cost of automation and expected returns on the fleet operator’s investment. Fagnant and Kockelman’s (2015) agent-
based simulation concluded that dynamic ridesharing (DRS) has the potential to further reduce total service times (wait
times plus in-vehicle travel times) and travel costs for SAV users, even after incorporating extra passenger pick-ups,
drop-offs, and non-direct routings. Chen et al. (2015) extended some of that work, and examined the performance (including
profitability) of a fleet of shared electric AVs, across a 100-mile-diameter region. Pivoting off those simulations, this study
explores the factors affecting SAV adoption rates under three pricing scenarios: $1, $2, and $3 per occupied-mile traveled.

After AV adoption by neighbors and friends, individuals may gain confidence in such vehicles and/or sense social pres-
sures, prompting them to purchase such technologies. Thus, this study estimates the adoption timing of AVs (e.g., will the
respondent ‘‘never adopt” an AV, wait until 50% of his/her friends adopt an AV – or just 10% of his/her friends adopt one,
or try to obtain an AV as soon as such vehicles are available on the market).

More efficient use of travel time (by allowing work or cell-phone conversations, for example) while riding in AVs may
encourage individuals to shift their home locations to more remote locations, to enjoy lower land prices (and thereby bigger
homes). Thus, AVs can exacerbate urban sprawl and increase a region’s vehicle-miles traveled (VMT). However, a high den-
sity of low-cost SAVs in downtown areas may counteract such trends. Given the major land use shifts that could occur, this
study also explores the factors associated with residential shifts, as motivated by AV and SAV access.

This work’s behavioral model parameter estimates may vary in other spatial and temporal settings, as individuals are
more aware of these technologies elsewhere and learn over time. However, these results are helpful to communities and
nations in simulating long-term (e.g., years 2025 and 2040) adoption of CAV technologies, under different energy- and
vehicle-pricing, demographic, and technology scenarios. For example, Bansal and Kockelman (2015) used such behavioral
models in their simulation-based framework to forecast Americans’ adoption rates of CAV technologies over 30 years. The
following sections describe related studies, the survey’s design, many summary statistics, choice model specifications, key
findings, and study conclusions.
2. Literature review

This section summarizes the key findings of recent public opinion surveys about adoption of CAVs. Casley et al. (2013)
conducted a survey of 467 respondents to understand their opinions about AVs. The results indicate that approximately
30% of respondents were willing to spend more than $5000 to adopt full automation in their next vehicle purchase and
3 NHTSA (2013) defined five levels of automation: Levels 0, 1, 2, 3, and 4 imply no automation, function-specific automation, combined-function automation,
limited self-driving automation, and full self-driving automation, respectively.
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around the same proportion of respondents showed interest in adopting AV technology, four years after its introduction on
the market. 82% of respondents reported safety as the most important factor affecting their adoption of AVs, 12% said leg-
islation, and 6% said cost.

Begg (2014) conducted a survey of over 3500 British transport professionals to understand their expectations and issues
related to the growth of driverless transportation in London. 88% of respondents expected Level 2 vehicles to be on the road
in the U.K. by the year 2040; 67% and 30% believe the same for Level 3 and Level 4 vehicles, respectively. Furthermore,
approximately 60% of respondents supported driverless trains in London, and the same proportion of respondents expected
AVs to be safer than conventional vehicles.

Kyriakidis et al. (2014) conducted a survey of 5000 respondents across 109 countries by means of a crowd-sourcing inter-
net survey. Results indicate that respondents with higher VMT and who use the automatic cruise control feature in their cur-
rent vehicles are likely to pay more for fully-automated vehicles. Approximately 20% of respondents showed a WTP of more
than $7000 for Level 4 AVs, and approximately the same proportion of respondents did not want to pay more to add this
technology to their vehicle. Most importantly, 69% of respondents expected that fully-automated vehicles are likely to gain
50% market share by the year 2050.

Schoettle and Sivak (2014a) surveyed 1533 respondents across the U.K., the U.S., and Australia to understand their percep-
tions about AVs. Results indicate that approximately two-thirds of respondents had previously heard about AVs. When
respondents were asked about the potential benefits of Level 4 AVs, 72% expected fuel economy to increase, while 43%
expected travel time savings to increase. Interestingly, 25% respondents were willing to spend at least $2000 to add full
self-driving automation in the US, while same proportion of respondents in the UK and Australia were willing to spend
$1710 and $2350, respectively. However, 54.5% respondents is the U.S., 55.2% in the U.K., and 55.2% in Australia did not want
to pay more to add these technologies. When asked about their activities (e.g., work, read, and talk with friends) while riding
in Level 4 AVs, the highest proportion, 41%, of respondents said they would watch the road even though they would not be
driving. Results of one-way analysis of variance indicated that females aremore concerned about AV technologies thanmales.

Underwood (2014) conducted a survey of 217 experts. 80% of respondents had a master’s degree, 40% were AV experts,
and 33% were CV experts. According to these experts, legal liability is the most difficult barrier to fielding Level 5 AVs (full
automation without a steering wheel), and consumer acceptance is the least. Approximately 72% of the experts suggested
that AVs should be at least twice as safe as the conventional vehicles before they are authorized for public use. 55% of
the experts indicated that Level 3 AVs are not practical because drivers could become complacent with automated opera-
tions and may not take required actions.

CarInsurance.com’s survey of 2000 respondents found that approximately 20% of respondents were interested in buying
AVs (Vallet, 2013). Interestingly, when respondents were presented with an 80% discount on car insurance for AV owners,
34% and 56% of respondents indicated strong and moderate interest in buying AVs, respectively. When respondents were
asked to choose the activities they would like to perform while riding in AVs, the highest share of respondents (26%) chose
to talk with friends. Survey results also indicate that approximately 75% of respondents believed that they could drive more
safely than AVs. Only 25% would allow their children to ride to school in AVs, unchaperoned. When asked who they would
trust most to deliver the AV technology, the highest proportion (54%) of respondents said traditional automobile companies
(e.g., Honda, Ford, and Toyota), instead of other companies (e.g., Google, Microsoft, Samsung, and Tesla). Seapine Software’s
(2014) survey of 2038 respondents reported that approximately 88% of respondents (84% of 18–34 year-olds and 93% of
65 year-olds), were concerned about riding in AVs. 79% of respondents were concerned about AV equipment failure, while
59% and 52% were concerned about liability issues and hacking of AVs information systems, respectively.

J.D. Power (2012) conducted a survey of 17,400 vehicle owners before and after revealing the market price of 23 CAV
technologies. Prior to learning about the market price, 37% of respondents showed interest in purchasing the AV technology
in their next vehicle purchase, but that number fell to 20% after learning that this technology’s market price is $3000. 18–
37 year old male respondents living in urban areas showed the highest interest in purchasing AV technology.

A KPMG (2013) focus group study, using 32 participants, notes that respondents became more interested in AVs when
they were provided incentives like a designated lane for AVs, and learned their commute time would be cut in half. In con-
trast to Schoettle and Sivak’s (2014a) findings, the focus group’s discussion and participants’ ratings for AV technology sug-
gests that females are more interested in these technologies than males. While focus group females emphasized the benefits
of self-driving vehicles (e.g., mobility for physically challenged travelers), males were more concerned about being forced to
follow speed limits. Interestingly, the oldest participants (60+ year-old) and the youngest (21–34 year-olds) expressed the
highest WTP in order to obtain self-driving technologies. Continental (2015) surveyed 1800 and 2300 respondents in Ger-
many and the United States, respectively. Approximately 60% of respondents expected to use AVs in stressful driving situ-
ations, 50% believed that AVs can prevent accidents, and roughly the same number indicated they would likely engage in
other activities while riding in AVs.

Recently, Schoettle and Sivak (2014b) surveyed 1596 respondents across the U.K, the U.S., and Australia to understand their
perceptions about CVs. Surprisingly, only 25% of respondents had heard about CVs.When asked about the expected benefits of
CVs, the highest proportion, 85.9%, of respondents expected fewer accidents and the lowest proportion, 61.2%, expected less
distraction for the driver. Approximately 84% of respondents rated safety as themost important benefit of CVs, 10% saidmobil-
ity, and 6% said environmental benefits. Interestingly, 25% respondents were willing to spend at least $500, $455, and $394 in
the U.S., the U.K, and Australia, respectively, to add CV technologies. However, 45.5%, 44.8%, and 42.6% of respondents did not
want to pay anything extra to add these technologies in the U.S., the U.K., and Australia, respectively.
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As mentioned above, these past studies reveal important information about individual perceptions of CAV technologies,
but none has explored various related aspects, such as adoption rates of SAVs under various pricing scenarios, home-location
choices when SAVs and AVs become common modes of transport, and peer-pressure effects on the adoption time of AVs.
Moreover, econometric analysis is missing in all of these studies, but is crucial for devising efficient policies to increase mar-
ket penetration of emerging transportation technologies. This study explores statistical and practical significance of relation-
ships between respondents’ demographics and built-environmental attributes, and their WTP for CAVs, adoption rates of
SAVs, residence-shift decisions, and adoption timing of AVs using univariate and bivariate ordered probit (OP) models. These
behavioral models will be very useful in forecasting adoption of CAV technology and land use changes under different pricing
scenarios.
3. Survey design and data processing

The data were collected via a survey in Austin, Texas from October to December 2014 using ‘‘Qualtrics”, a web-based sur-
vey tool. Exploring respondents’ preferences for adoption of emerging vehicle and transport technologies, the survey asked
52 questions regarding respondents’ perceptions of AV technology upsides and downsides, ridesharing, and carsharing.
Respondents were also asked about their WTP for CAVs, adoption rates of SAVs in different pricing scenarios, future
home-location decisions, adoption timing of AVs, current travel patterns, and demographics.

Austin neighborhood associations were first contacted via email and passed the survey requests to their respective res-
idents. A total of 510 respondents initiated the survey; only 358 of them completed it. However, 11 of those were not Aus-
tinites and thus were excluded from the sample, resulting in a total sample of 347 adults (over 18 years of age). The sample
over-represented women, middle-aged persons (25–44 year-old) and those with a bachelor’s degree or higher.

Therefore, the survey sample proportion in each demographic class was scaled using the 2013 American Community Sur-
vey’s Public Use Microdata Sample (PUMS, 2013) for the Austin. The population weights were calculated by dividing the
sample into 72 categories based on gender, age, education, and household income (HHI). To understand the impact of
built-environment factors (e.g., employment density, population density, and area type) on preferences, respondents’ home
addresses were geocoded4 using Google Maps API and spatially joined with Austin’s traffic analysis zones (TAZs) using open
source Quantum GIS.
4. Data set statistics

Table 1 summarizes the demographic, built-environment, zone-level,5 and technology-related variables after correction for
biased-sample’s demographics. This study uses these variables as the predictors in many model specifications. Prior to using
these predictors, each respondent’s record was population-weighted to provide relatively unbiased model calibration.

4.1. Current technology awareness

To better understand the future adoption of smart transportation technologies and strategies, it is important to explore
respondents’ current awareness about them. Table 1 indicates that in general, Austinites are tech-savvy; 92% of the
population-weighted sample carry or own a smartphone, 80% have heard of Google’s self-driving car, and 60% consider
anti-lock braking systems (ABS, required on all cars sold in the U.S. since September, 2011) to be a form of vehicle automa-
tion (which it is: Level 1 automation). Probably, due to popularity of carsharing (Car2Go and Zipcar) and ridesharing (UberX
and Lyft) companies in Austin, 95% and 85% of respondents are familiar with both of them, respectively.

4.2. Key response variables

Table 2 summarizes the key response variables estimated in this study. At a cost of more than $5000, 24% and 57% of
respondents were willing to add Level 3 and Level 4, respectively, to their next vehicle purchase. As expected, the average
WTP (of the population-corrected sample) for Level 4 automation ($7253) is much higher than that for Level 3 automation
($3300). Apparently, AVs may not impact residential land-use patterns much, since 74% of respondents expect to stay at their
current location even after AVs and SAVs become common modes of transport.6 30% showed interest in using AVs as soon as
they are available for mass market sales in the U.S. Interestingly, approximately half of the respondents would prefer their fam-
4 For respondents, who did not provide their street address or recorded incorrect addresses, their internet protocol (IP) locations were used as the proxies for
their home locations.

5 The TAZ-level variables were obtained by spatial mapping of respondents’ home locations with a TAZ-level shape files, obtained from Austin’s Capital Area
Metropolitan Planning Organization.

6 Prior to asking a question about residence-shift decisions, respondents were informed that self-driving vehicles will make travel much easier for many
people. By being able to sleep on the road, some travelers may decide to live farther from the city center, their workplaces, their children’s schools, or other
destinations (in order to access less expensive land for a larger home or parcel, for example). On the other hand, by living in more urban locations, one will be
able to more quickly (and less expensively) access a shared fleet of self-driving vehicles (at a rate of say, $1.50 per mile of travel), allowing them to let go of cars
they presently own, and turn to other transport options.



Table 1
Population-weighted summary statistics of explanatory variables (Nobs = 347).

Type Explanatory Variables Description Mean SD Min. Max.

Demographic & built-environment
predictors

Drive alone for work trips Indicator for drive alone 0.49 0.50 0 1
Drive alone for social trips Indicator for drive alone 0.29 0.45 0 1
Distance from workplace Miles 4.75 5.37 0.50 17.50
Distance from downtown Miles 6.75 5.08 0.50 17.50
Gender Indicator for male 0.50 0.50 0 1
U.S. driver license Indicator for having driver’s

license
0.98 0.13 0 1

Number of children Per household 0.40 0.80 0 5
Education level Indicator for bachelor’s degree 0.59 0.49 0 1
Employment status Indicator for full-time worker 0.59 0.49 0 1
Age Years 36.58 15.72 21 70
Annual VMT Miles 9578 5631 2500 22,500
Annual household income $ per year 59,453 44,178 5000 250,000
Household size 2.57 1.41 1 7
Past crash experiences Count 1.62 1.38 0 5

Zone-level predictors Population density Persons per square miles 6096 6074 0 38,945
Household density Households per square mile 3040 3055 0 18,620
Total employment density Persons per square mile 7435 17,472 0 110,596
Basic employment density Persons per square mile 231.92 747.66 0 7658
Retail employment density Persons per square mile 827.03 1501 0 11,219
Service employment density Persons per square mile 2101 9216 0 85,841
Area type Indicator for urban areas 0.87 0.33 0 1
Median household income $ per year 49,289 37,717 0 248,203

Technology-based predictors Have heard about Google car Indicator for who have heard. . . 0.80 0.40 0 1
ABS is a form of automation Indicator for who think. . . 0.59 0.49 0 1
Carry smartphone Indicator for who carry. . . 0.92 0.27 0 1
Familiar with carsharing Indicator for familiarity with. . . 0.95 0.21 0 1
Familiar with UberX or Lyft Indicator for familiarity with. . . 0.88 0.32 0 1

Table 2
Population-weighted results for response variables (Nobs = 347).

Response variables Percentages Response variables Percentages

WTP for adding level 3 automation Residence-shift due to AVs

<$2000 48 Close to central Austin 14
$2000–5000 28 Stay at the same location 74
>$5000 24 Farther from central Austin 12

WTP for adding level 4 automation Adoption timing of AVs

<$2000 34 Never 19
$2000–5000 18 When 50 friends adopt 26
$5000–10,000 19 When 10 friends adopt 25
>$10,000 28 As soon as available 30

WTP for SAVs ($1/mile) WTP for SAVs ($2/mile)

Rely less than once a month 35 Rely less than once a month 57
Rely at least once a month 24 Rely at least once a month 28
Rely at least once a week 28 Rely at least once a week 12
Rely entirely on SAV fleet 13 Rely entirely on SAV fleet 3

WTP for SAVs ($3/mile) WTP for adding CV technology

Rely less than once a month 70 Not interested 26
Rely at least once a month 26 Neutral 19
Rely at least once a week 2.1 Interested 55
Rely entirely on SAV fleet 1.9
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ily, friends, or neighbors to use AVs prior to their adoption. Only 15% and 3% of respondents expected to use SAVs once a week at
a cost of $2 per mile and $3 per mile, respectively.7 Reponses like these imply that most respondents are not willing to spend
more for SAV use than what UberX and Lyft currently charge (about $1.50 per mile). However, with social acceptance of AVs and
the reliability of SAVs for longer-distance trips, future SAVs costs may fall. At a cost of $1 per mile, 41% of respondents expected
7 Before asking about respondents’ adoption rates of SAVs in different pricing scenarios, they were informed that the taxis in Austin presently cost about
$2.50–3.50 per mile of travel, UberX and Lyft currently charge about $1.50 per mile of travel, and Car2Go charges $0.80–1.25 per mile, within its operating
geographic area (and $15 per hour for parking outside geographical area).



Table 3
Population-weighted results for opinion-based questions on AVs and CVs (Nobs = 347).

Type Opinion-based questions Not interested Slight
interested

Very
interested

Interest in having Level 4 AVs 19% 40% 41%
Concerns with level 4 AVs Very worried Slightly

worried
Not worried

Equipment or system failure 50% 38% 12%
Legal liability for drivers or owners 36% 42% 22%
Hacking the vehicle’s computer systems 30% 44% 26%
Traveler’s privacy disclosure 31% 39% 30%
Interactions with conventional vehicles 48% 33% 19%
Learning to use self-driving vehicles 6.9% 29.1% 64%
Affordability of a self-driving vehicle 38% 39% 23%

Benefits of level 4 AVs Very likely Somewhat
likely

Unlikely

Fewer crashes 63% 26% 11%
Lesser traffic congestion 45% 24% 31%
Lower vehicle emissions 48% 40% 12%
Better Fuel Economy 58% 32.8% 9.2%

Tasks while riding AVs Yes No

Text or Talk 74% 26%
Sleep 52% 48%
Work 54% 46%
Watching movies or play games 46% 54%
Look out the windows of the vehicle 77% 23%

Like to ride AVs Yes No

Along freeways or highways 73% 27%
Along city streets 46% 54%
In congested traffic 70% 30%

Opinion about CV technology Yes No

Have heard of CVs 53% 47%

Already using Interested Not interested

Internet surfing via an in-built car screen 4.3% 31.7% 64%
Reading and dictating email while driving 6.2% 39% 54.8%
Operating phone via steering wheel control 12% 48% 40%
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to use SAVs at least once a week. Only 26% of respondents rejected a proposal of adding connectivity8 to their vehicles at a cost
of less than $100.
4.3. Other opinions about AVs and CVs

Table 3 summarizes the individuals’ perceptions about the benefits and concerns of CAVs. 19% of respondents were not at
all interested in owning Level 4 AVs. Respondents indicated three main issues regarding AVs: 50% of respondents were con-
cerned about equipment or system failure, while 48% and 38% were concerned about interactions with conventional vehicles
and affordability, respectively. Only 7% of respondents were apprehensive about learning to use AVs. 31% of respondents
believe that AVs cannot help with calming congestion, making this the ‘‘least likely” AV benefit (among plausible options
tested). When asked about the other three benefits (fewer crashes, lower emission, and better fuel economy), respondents
considered them almost equally likely, but a reduction in crashes received maximum (63%) support. 75% of respondents indi-
cated wanting to talk or text with friends and look out of the window while riding in AVs – making these the two most
appealing tasks for respondents while traveling in Level 4 AVs. More than 70% of respondents would like to ride in AVs
on freeways, high-speed highways, and congested traffic, while only 46% would let the vehicles drive themselves on city
streets. Surprisingly, only 47% of respondents have heard about CVs.9 It is worth noting that only 4.3% of respondents are cur-
rently surfing the internet and 6.2% are emailing while driving (conventional vehicles), but 31.7% and 39% are interested in add-
ing these technologies to their vehicles, respectively.
8 Before asking about WTP for CVs, respondents were advised that connectivity can be added to an existing vehicle, requiring one’s smartphone plus extra
equipment (a DSRC chip and inertial sensor) costing less than $100.

9 Before asking questions about CVs in the survey, we provided very detailed information about them, like the following: Connectivity can be added to an
existing vehicle that would require one’s smartphone plus extra equipment (DSRC chip and inertial sensor) costing less than $100.



Table 4
Population-weighted results of opinion-based questions on carsharing and ridesharing.

Type Opinion-based questions Yes No Skipped

Carsharing program member 14.8% 80% 5.2%
A carsharing member because Program saves money 6.4% 8.4% 85.2%

Program saves time 6.2% 8.6% 85.2%
Environment friendly program 7.1% 7.7% 85.2%
Do not own a vehicle 1.8% 13% 85.2%

Not a carsharing member because Unreliable car availability 5.2% 74.8% 20%
Not available near home 14% 66% 20%
Own a vehicle 66% 14% 20%
Relay on transit or walking 41% 39% 20%
Costly 16% 64% 20%
Other stated reasons include inadequate capacity,
fleet looks unsafe, no parking near office

Used UberX or Lyft as a passenger 27% 61% 12%
Used Uber because Saves time 17% 10% 73%

Saves money 13% 14% 73%
To avoid drive after drinking 14% 13% 73%
To try it out 16% 11% 73%

Yes No

Comfort in ridesharing Stranger for short duration (in day-time) 51% 49%
Friend of one of my Facebook friends (never met before) 53% 47%
Regular friends & family 90.8% 9.2%

Note: Nobs = 347. In the survey, carsharing and ridesharing questions were dynamically designed with skip logic and conditional branching. For example,
respondents who were not familiar with carsharing were not asked whether they are carsharing members or not. Such responses were considered in the
‘‘Skipped” category.
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4.4. Carsharing and Ridesharing Opinions

Table 4 summarizes opinions regarding adoption of carsharing (Car2Go or Zipcar) and ridesharing (UberX or Lyft). 14.8%
of respondents were a member of a carsharing program at the time of the survey (Fall 2014). Among these respondents, 42%
chose such a program because they believe it saves time and money, and 48% because they believe it is environmentally
friendly. Interestingly, only 12% of carsharing members (1.8% of all respondents) are part of the program because they do
not own a vehicle. Most non-carsharing members either own a vehicle or rely on transit and walking. Only 20% of non-
carsharing members did not choose such programs because they perceived carsharing to be costlier than the other modes,
and 17.5% and 6.5% did not choose due to vehicles’ unavailability near their homes, and the unreliability of vehicle availabil-
ity at other places, respectively.

Almost 30% of respondents had used Uber or Lyft at least once as a passenger, and 50–60% of such users chose these ser-
vices in order to save time or/and money (versus a bus or taxi, for example), to avoid driving after drinking alcohol, or to
simply try them out. 50% of respondents were comfortable in sharing a ride with a stranger for short durations during
the day or with a friend of one of their Facebook friends. Interestingly, 9.2% of respondents did not want to share a ride with
their friends or family members.

5. Model estimation

This study estimated adoption rates of SAVs under three pricing scenarios ($1, $2, and $3 per mile), interest in having
one’s existing vehicle become a CV (for under $100), adoption timing of AVs, and future home-location shifts (after AVs
and SAVs become common modes of transport) using univariate OP specifications in Stata 12 software (Long and Freese,
2006). The univariate OP model specifications are presented here in the context of interest in adding connectivity. The main
equation for this specification is as follows (Greene, 2012):
y�i ¼ b0xi þ ei ð1Þ

where subscript ‘i’ denotes an individual observation, y�i represents the individual’s latent inclination to add connectivity at a
cost of less than $100, xi represents a vector of covariates for each individual, b0 represents a vector of regression coefficient,
which are to be estimated, and ei represents a random error term assumed to follow a standard normal distribution.

For this example, two thresholds (l1 through l2) were estimated to distinguish the three categories, where l1 represents
the threshold between ‘‘not interested” and ‘‘neutral” and l2 – is the threshold between ‘‘neutral” and ‘‘interested in adding
connectivity at a cost of less than $100”. Under this specification, the opinion probabilities are as follows:
Pr ðnot interestedÞ ¼ Prðy�i 6 l1Þ ð2Þ



10 In s
individu
11 To
predicto
for each
12 Mc
Lnull den
13 Thi
Sivak’s
14 As
15 Litm

8 P. Bansal et al. / Transportation Research Part C 67 (2016) 1–14
PrðneutralÞ ¼ Prðl1 6 y�i 6 l2Þ ð3Þ
PrðinterestedÞ ¼ Prðy�i P l2Þ ð4Þ

The WTP for AVs (Level 3 and Level 4) had two related response variables and so were jointly estimated using seemingly

unrelated specifications10 of the bivariate OP model11 (as described in Sajaia (2008)).
Initial model specifications included all Table 1’s explanatory variables. The models were re-estimated using stepwise

elimination by removing the covariate with the lowest statistical significance until all p-valueswere less than 0.32, which cor-
responds to a |Z-stat| of 1.0. Although most of the explanatory variables enjoy a p-value greater than .10 (|Z-stat| > 1.645), it
was not used as a statistical significance threshold here, due to the slightly limited sample size (n = 347). If more sample
observations were available (say n = 1000), statistical significance could have improved for many explanatory variables.
Explanatory variables with p-value less than .01 (|Z-stat| > 2.58) are considered highly statistically significant predictors.

Practical significance is generally more meaningful than statistical significance. This study considers an explanatory vari-
able practically significant if a one-standard-deviation increment in it leads to a significant shift in the response variable. In
this paper, response variables are probabilities of ordered choice options, so an explanatory variable is considered to be prac-
tically significant if the predicted probabilities (i.e., the DPri shown in Tables 5–9) change by more than a factor of 1.3 or less
than a factor of 0.7. In other words, there is at least 30% shift in the predicted probability (which could be from 0.50 to 0.67 or
to 0.35). If the shift in the model-predicted probability exceeds 50% (i.e., the ratio of the two is more than 1.5 or less than
0.50), the explanatory variable is defined here as highly practically significant. McFadden’s R-square12 and adjusted R-
square are also provided, to characterize all models’ goodness of fit.
5.1. Willingness to pay for AVs

Table 5 summarizes the bivariate OP model estimates of WTP for adding Level 4 automation (of < $2000, $2000–5000,
$5000–10,000, or > $10,000) and WTP for Level 3 automation (< $2000, $2000–5000, or > $5000). Results indicate that male
respondents with a greater number of children, living in higher-income neighborhoods, and who drive alone for social trips,
ceteris paribus, are willing to pay more to add Level 3 and Level 4 automation to their next vehicle. In contrast, licensed dri-
vers living in more job-dense neighborhoods, and who are familiar with carsharing and ridesharing companies are estimated
to pay less to add Level 3 and Level 4 automation to their next vehicles, ceteris paribus.13 Perhaps individuals who are familiar
with carsharing and ridesharing would rather rely on low-cost SAVs instead of buying a new vehicle with added automation
technology. Interestingly, individuals who travel more (exhibit higher annual VMT) and who live farther from their workplace
exhibit higher WTP for adding Level 4 AVs, but lower WTP for Level 3 AVs. Perhaps the opposite signs, but practical significance
of both attributes for the WTP of Level 3 and Level 4 AVs reflect the individuals’ perception that they would be able to use their
travel time (for work, sleep, or other meaningful activities) in a Level 4 AVs, but not in Level 3 AVs.

In addition, everything else is equal, older persons are predicted to have a significantly lowerWTP for AVs (in a practically
and statistically significant sense). Perhaps they are concerned about learning to use AVs and do not trust these technologies.
Practically significant and positive associations between the number of crashes experienced by an individual and their WTP
for AVs indicates that such persons may be anticipating the safety benefits of AVs.14 Respondents who drive alone for work
trips are estimated to have a (practically and statistically) significantly higher WTP for AVs, indicating the possibility of shifting
commuters to SAV fleets in the future. A high correlation coefficient estimate across these two OP equations (q = +0.921)
strongly supports the use of a seemingly unrelated bivariate OP specification here.
5.2. SAV adoption rates under different pricing scenarios

Table 6 shows the OP model estimates of SAVs’ adoption rates (i.e., relying on it less than once a month, at least once a
month, at least once a week, or entirely on SAV fleet) in three pricing scenarios ($1 per mile [Model 1], $2 per mile [Model 2],
and $3 per mile [Model 3]). Results indicate that full-timemale workers living in urban areas, ceteris paribus, are likely to use
SAVs more frequently, but consistent with the findings of the WTP for AVs’ model, licensed drivers are estimated to use SAVs
less frequently under all three pricing scenarios (everything else held constant). Perhaps many licensed drivers are con-
cerned about losing the excitement of driving after AVs become a common mode of transport.15 Or they may have a hard
eemingly unrelated specifications, error terms are only correlated across choices of the individual, but are independent and homoscedastic across the
als.

estimate WTP for SAVs, complex trivariate OP model specifications could be used, but it would have only slightly improved statistical significance of
rs, without affecting the magnitude and sign of the coefficients much. Therefore, to control the complexity, three univariate OP models were estimated
of the three cost scenarios ($1, $2, and $3 per mile).

Fadden’s R-square = 1� logðLfullÞ
logðLnull Þ and McFadden’s adjusted R-square ¼ 1� ðlogðLfullÞÞ�n

logðLnull Þ , where n is the number of parameters in the fitted model, and Lfull and
ote the likelihood values of the fitted model and only-intercept (with no explanatory variable) model, respectively.
s study’s finding about the relationship between respondents’ gender and WTP for AVs are aligned with that of J.D. Power’s (2012) and Schoettle and
(2014a) study. Similarly, Kyriakidis et al. (2014) observed the positive correlation between income and WTP for AVs, which is quite intuitive.
discussed earlier, the highest population-weighted proportion (63%) of respondents rated fewer crashes as a ‘‘very likely” benefit of AVs.
an (2014) anticipates that if AVs are successful, human driving could be restricted after 2060.



Table 5
Willingness to pay for autonomous vehicles (bivariate ordered probit model results).

Covariates (WTP for level 4) Coef. Z-stat DPr1 DPr2 DPr3 DPr4

Number of past crash experiences 0.309 2.36 �35.3% �12.4% 9.6% 46.8%
Familiar with carsharing (1 = yes) �1.149 �1.52 22.4% 1.7% �8.4% �21.6%
Familiar with UberX or Lyft (1 = yes) �1.400 �1.59 27.3% 1.3% �14.6% �23.7%
Drive alone for work trips (1 = yes) 0.616 1.72 �28.8% �6.2% 7.5% 31.1%
Drive alone for social trips (1 = yes) 0.833 2.28 �25.6% �8.0% 8.6% 28.1%
Log (annual VMT) 0.329 1.39 �20.2% �15.7% 7.5% 32.7%
Distance from workplace (miles) 0.087 2.96 �22.3% �13.9% 16.6% 27.3%
Gender (1 = male) 0.442 1.28 �18.2% �4.0% 5.7% 21.6%
U.S. driver license (1 = yes) �1.159 �1.36 18.3% 1.6% �6.8% �18.0%
Number of children 0.341 1.66 �15.5% �16.4% 7.6% 21.7%
Age �0.039 �4.02 53.5% �12.4% �21.5% �45.0%
Total employment density (per mi2) �3.37E�04 �1.83 21.9% 3.7% �8.2% �21.2%
Median household income ($ per year) 7.29E�06 1.95 �23.8% �15.8% 7.2% 34.2%

Thresholds Coef. Std. Dev.

<$2000 vs. $2000–5000 �7.401 0.386 – – – –
$2000–5000 vs. $5000–10,000 �6.514 0.299 – – – –
$5000–10,000 vs. >$10,000 �5.503 0.447 – – – –

Covariates (WTP for Level 3) Coef. Z-stat DPr1 DPr2 DPr3

Number of past crash experiences 0.217 1.59 �24.1% 11.0% 32.4%
Carry smartphone (1 = yes) 0.708 1.18 �10.5% 5.3% 16.5%
Familiar with carsharing (1 = yes) �1.631 �1.37 20.1% �15.9% �20.1%
Familiar with UberX or Lyft (1 = yes) �1.203 �1.49 19.9% �10.8% �25.8%
Drive alone for work trips (1 = yes) 0.539 1.46 �31.4% 28.1% 26.3%
Drive alone for social trips (1 = yes) 1.102 3.08 �15.9% 18.4% 12.9%
Log (annual VMT) �0.470 �1.75 25.6% �15.8% �33.1%
Distance from workplace (miles) �0.085 �2.83 22.8% �14.5% �27.4%
Gender (1 = male) 0.507 1.48 �14.4% 5.8% 25.4%
U.S. driver license (1 = yes) �1.623 �1.77 16.3% �8.6% �24.8%
Number of children 0.485 2.32 �20.3% 8.9% 27.4%
Age �0.031 �2.53 35.6% �26.4% �37.3%
Total employment density (per mi2) �2.30E�05 �2.11 16.2% �8.6% �24.7%
Median household income ($ per year) 8.26E�06 1.79 �18.9% 7.2% 32.2%

Thresholds Coef. Std. Dev.

<$2000 vs. $2000–5000 �8.865 0.488 – – –
$2000–5000 vs. >$5000 �7.323 0.373 – – –

Correlation coefficient: 0.921 McFadden’s R-square: 0.101 McFadden’s adjusted R-square: 0.061

Notes: Nobs = 347. ‘‘Log (Annual VMT)” was used as an explanatory variable in the model, but corresponding DPr’s were calculated with respect to ‘‘Annual
VMT”. All Z-stats with |Z-stat| > 2.58 are in bold, and indicate highly statistically significant predictors. All DPr’s with |DPri| > 30% are in bold, and indicate
practically significant predictors.
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time envisioning life without a privately held vehicle, and becoming largely reliant on SAVs. The practically significant positive
associations of indicator variables (whether an individual has heard about Google’s self-driving car and if an individual thinks
that ABS is form of automation), in all three pricing-scenarios, suggests that tech-savvy individuals are more likely to be fre-
quent SAV users. Similarly, those living in more densely populated neighborhoods expect higher SAV adoption rates (in all three
models), perhaps due to less convenient parking facilities and lower vehicle ownership rates in these areas (Celsor and Millard-
Ball, 2007).

A highly practically significant and positive relationship between the home-distance from one’s workplace and SAV adop-
tion rates in Models 1 and 2 suggests that these workers are more likely to use SAVs more often at current carsharing and
ridesharing prices. Although this variable (respondents’ distances from their workplace) does not appear in Model 3’s final
specification, another covariate, distance from downtown, may be capturing its effect.16 The individuals living farther from
downtown, all other attributes remaining constant, are expected to use SAVs less frequently at $3 per mile. Consistent with find-
ings of the WTP for AVs’ model, older persons are predicted to use SAVs less frequently, but individuals who have experienced
more crashes in the past, ceteris paribus, have a practically significant inclination to use SAVs more frequently, even at $2 and $3
per mile (more than what carsharing companies and UberX or Lyft currently charge). The practical significance and negative
association of the familiarity-with-carsharing indicator with SAV adoption rates in Models 2 and 3 suggest that individuals
who already know carsharing’s current price may not be willing to pay more to use comparably convenient SAVs. A highly prac-
tically significant and negative relationship of an individual’s annual VMT with SAV adoption rate (found only in Model 3) is as
expected because SAVs at $3 per mile may lead to a high annual travel cost for these individuals.
16 The correlation coefficient of distance from work-place and distance from downtown is 0.53.



Table 6
SAV adoption rates under different pricing scenarios (ordered probit model results).

Covariates (Model 1: $1 per mile) Coef. Z-stat DPr1 DPr2 DPr3 DPr4

Have heard about Google car (1 = yes) 1.835 2.91 �32.6% �15.5% 26.1% 58.1%
ABS is a form of automation (1 = yes) 0.903 2.54 �37.9% �9.8% 39.9% 29.6%
Distance from workplace (miles) 0.126 4.20 �49.6% �2.5% 36.6% 63.7%
Gender (1 = male) 0.325 1.12 �10.6% �3.0% 7.9% 18.2%
U.S. driver license (1 = yes) �1.267 �1.85 15.6% 2.7% �11.9% �20.9%
Number of children �0.194 �1.25 12.4% 2.3% �9.5% �15.5%
Employment status (1 = full-time worker) 0.403 1.10 �11.3% �3.2% 8.5% 20.5%
Area type (1 = urban) 0.493 1.15 �13.0% �3.8% 9.7% 15.6%
Population density (per mi2) 2.59E�04 2.20 �44.4% �12.4% 32.3% 66.8%
Households density (per mi2) �5.67E�04 �2.11 25.2% �11.9% �11.1% �24.2%
Basic employment density (per mi2) �2.60E�04 �1.67 13.1% 6.4% �10.0% �26.6%

Thresholds Coef. Std. Dev.

Will rely less than once a month vs. Will rely at least once a month �0.043 0.577 – – – –
Will rely at least once a month vs. Will rely at least once a week 1.246 0.122 – – – –
Will rely at least once a week vs. Will rely entirely on SAV fleet 3.058 0.728 – – – –

McFadden’s R-square: 0.120 McFadden’s adjusted R-square: 0.090

Covariates (Model 2: $2 per mile) Coef. Z-stat DPr1 DPr2 DPr3 DPr4

Have heard about Google car (1 = yes) 0.821 1.37 �15.3% 11.3% 37.9% 17.8%
ABS is a form of automation (1 = yes) 0.940 2.68 �22.1% 34.1% 24.7% 23.3%
Number of past crash experiences 0.155 1.02 �9.5% 8.9% 28.6% 12.5%
Familiar with carsharing (1 = yes) �2.281 �1.25 22.8% �22.4% �42.1% �69.5%
Distance from workplace (miles) 0.124 2.94 �40.5% 51.7% 21.7% 21.3%
Household size 0.310 1.97 �16.3% 18.5% 27.6% 17.4%
Gender (1 = male) 0.690 2.00 �10.5% 13.0% 15.1% 18.2%
U.S. driver license (1 = yes) �1.432 �1.98 12.3% �11.1% �26.6% �24.4%
Number of children �0.542 �1.97 13.1% �17.7% �24.5% �12.1%
Age �0.014 �1.20 25.6% �39.2% �22.5% �18.4%
Employment status (1 = full-time worker) 0.839 2.28 �15.3% 19.7% 27.9% 16.3%
Area type (1 = urban) 0.694 1.36 �11.9% 10.9% 23.4% 12.7%
Population density (per mi2) 2.64E�04 2.14 �28.4% 35.3% 45.1% 19.6%
Households density (per mi2) �6.52E�04 �2.26 17.5% �25.3% �22.2% �18.8%
Basic employment density (per mi2) �1.82E�04 �1.12 5.4% �5.7% �14.5% �15.9%

Thresholds Coef. Std. Dev.

Rely less than once a month vs. Rely at least once a month �1.275 0.625 – – – –
Rely at least once a month vs. Rely at least once a week 0.468 0.448 – – – –
At least once a week vs. Rely entirely on SAV fleet 2.425 0.819 – – – –

McFadden’s R-square: 0.129 McFadden’s adjusted R-square: 0.079

Covariates (Model 3: $3 per mile) Coef. Z-stat DPr1 DPr2 DPr3 DPr4

Have heard about Google car (1 = yes) 1.473 2.21 �10.7% 25.1% 18.0% 36.4%
ABS is a form of automation (1 = yes) 1.431 3.28 �20.3% 51.7% 29.5% 17.2%
Number of past crash experiences 0.183 1.23 �11.3% 29.2% 32.9% 23.6%
Familiar with carsharing (1 = yes) �1.948 �3.05 15.3% �39.4% �21.7% �34.7%
Annual VMT �5.32E�05 �1.65 20.3% �52.3% �17.8% �10.8%
Distance from downtown (miles) �0.064 �1.63 10.3% �22.7% �22.9% �26.1%
Gender (1 = male) 0.658 1.76 �8.1% 17.8% 14.3% 15.9%
U.S. driver license (1 = yes) �1.864 �2.56 12.1% �28.2% �12.1% �16.2%
Age �0.029 �2.30 10.2% �21.8% �11.5% �12.5%
Employment status (1 = full-time worker) 1.022 2.49 �16.2% 41.5% 10.7% 26.6%
Area type (1 = urban) 0.762 1.13 �10.4% 26.4% 17.7% 15.5%
Population density (per mi2) 9.52E�05 3.06 �13.1% 31.8% 35.1% 17.8%
Retail employment density (per mi2) 1.70E�04 1.20 �11.4% 27.9% 12.8% 14.4%
Service employment density (per mi2) �6.66E�05 �3.10 5.4% �15.7% �10.1% �12.1%

Thresholds Coef. Std. Dev.

Rely less than once a month vs. Rely at least once a month �1.177 0.621 – – – –
Rely at least once a month vs. Rely at least once a week 1.646 0.789 – – – –
At least once a week vs. Rely entirely on SAV fleet 3.068 0.462 – – – –

McFadden’s R-square: 0.171 McFadden’s adjusted R-square: 0.105

Notes: Nobs = 347. All Z-stats with |Z-stat| > 2.58 are in bold, and indicate highly statistically significant predictors. AllDPr’s with |DPri| > 30% are in bold, and
indicate practically significant predictors.
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Table 7
Willingness to pay for connected vehicles (ordered probit model results).

Covariates Coef. Z-stat DPr1 DPr2 DPr3

Have heard about Google car (1 = yes) 1.196 2.15 �32.4% �17.3% 21.1%
Number of past crash experiences 0.290 2.03 �34.3% �19.2% 23.2%
Carry smartphone (1 = yes) 1.026 1.88 �12.8% �11.0% 10.2%
Drive alone for work trips (1 = yes) 0.895 2.32 �13.1% �16.3% 12.1%
Drive alone for social trips (1 = yes) 0.627 1.44 �21.0% �11.7% 12.9%
Annual VMT 5.77E�05 1.63 �22.7% �33.9% 22.1%
Distance from workplace (miles) 0.057 1.71 �20.9% �17.6% 16.3%
Area type (1 = urban) 0.728 1.55 �20.3% �15.4% 14.1%
Household density (per mi2) 1.96E�04 1.88 �28.2% �24.9% 21.5%

Thresholds Coef. Std. Dev.

Not interested vs. Neutral 1.042 0.403 – – –
Neutral vs. interested 2.082 0.462 – – –

McFadden’s R-square: 0.127 McFadden’s adjusted R-square: 0.083

Notes: Nobs = 347. All Z-stats with |Z-stat| > 2.58 are in bold, and indicate highly statistically significant predictors. AllDPr’s with |DPri| > 30% are in bold, and
indicate practically significant predictors.
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5.3. Willingness to pay for CVs

Table 7 summarizes the OP model estimates of the WTP for CVs (i.e., not interested, neutral, or interested in adding con-
nectivity to current vehicle at a cost of less than $100). These estimates indicate that respondents living farther from their
workplace in higher household density urban neighborhoods, who carry a smart phone, and drive alone for work and social
trips, ceteris paribus, are estimated to have greater interest in adding connectivity to their current vehicles. Perhaps the indi-
viduals who have higher annual VMT, have experienced more accidents, and have heard about Google’s self-driving car, all
other predictors remaining constant, are able to evaluate and appreciate the safety benefits of low-cost connectivity. There-
fore, the corresponding predictors enjoy positive and practically significant relationships with WTP for CVs.

5.4. Adoption timing of AVs

Table 8 summarizes the OP model estimates of the adoption timing of AVs (i.e., never adopt AVs, adopt AVs when 50% of
friends adopt, when 10% of friends adopt, or as soon as available on the market). AV adoption by older licensed drivers living
farther from their workplace in high basic employment density neighborhoods, ceteris paribus, is more likely to depend on
their friends’ adoption rates. However, males with higher HHI, living in urban neighborhoods, and who travel more, all other
attributes remaining constant, are estimated to have a practically significant inclination to adopt AVs,with less dependence on
their friends’ adoption rates. The number of accidents experienced by the individual and the indicator variables, whether an
individual has heard about Google’s self-driving car and if an individual thinks that ABS is a form of automation, exhibit a pos-
itive and practically significant association with AV adoption timing. This relationship indicates that tech-savvy individuals,
who perceive the safety benefits of AVs, are more likely to adopt them with less dependence on their friends’ adoption rates.
Table 8
Adoption timing of autonomous vehicles (ordered probit model results).

Covariates Coef. Z-stat DPr1 DPr2 DPr3 DPr4

Have heard about Google car (1 = yes) 1.523 2.76 �34.5% �10.6% �9.1% 38.2%
ABS is a form of automation (1 = yes) 0.524 1.66 �24.1% �34.5% 22.4% 27.9%
Number of past crash experiences 0.323 2.60 �33.8% �22.1% �15.8% 51.9%
Log(Annual VMT) 0.408 1.64 �36.3% �24.1% 14.2% 35.1%
Distance from workplace (miles) �0.043 �1.44 25.3% 19.4% �12.3% �21.6%
Gender (1 = male) 0.603 1.98 �37.1% �15.4% 19.1% 22.1%
U.S. driver license (1 = yes) �1.548 �1.57 20.7% 14.5% �13.2% �15.5%
Age �0.013 �1.30 21.5% 29.8% �22.3% �21.7%
Annual household income ($ per year) 3.89E�06 1.92 �27.8% �35.9% 31.1% 23.2%
Area type (1 = urban) 0.798 2.21 �29.0% �26.6% 11.1% 32.8%
Basic employment density (per mi2) �5.44E�04 �3.41 26.3% 19.0% �7.3% �25.4%

Thresholds Coef. Std. Dev.

Never vs. 50% friends adopt �5.765 0.794 – – – –
50% friends adopt vs. 10% friends adopt �4.241 0.271 – – – –
10% friends adopt vs. As soon as available �2.973 0.780 – – – –

McFadden’s R-square: 0.097 McFadden’s adjusted R-square: 0.066

Notes: Nobs = 347. ‘‘Log (Annual VMT)” was used as an explanatory variable in the model, but corresponding DPr’s were calculated with respect to ‘‘Annual
VMT”. All Z-stats with |Z-stat| > 2.58 are in bold, and indicate highly statistically significant predictors. All DPr’s with |DPri| > 30% are in bold, and indicate
practically significant predictors.



Table 9
Home location shifts due to AVs and SAVs (ordered probit model results).

Covariates Coef. Z-stat DPr1 DPr2 DPr3

Carry smartphone (1 = yes) �0.926 �1.24 45.8% �6.1% �11.6%
Familiar with carsharing (1 = yes) �3.295 �2.62 53.7% �8.5% �15.3%
Drive alone for work trips (1 = yes) 0.530 1.32 �27.7% 4.9% 8.7%
Annual VMT �8.95E�05 �2.61 29.1% �4.2% �11.2%
Distance from workplace (miles) 0.044 1.14 �24.9% 2.9% 14.6%
Gender (1 = male) �0.882 �2.71 22.1% �2.6% �12.6%
Number of children 1.086 3.27 �17.2% �1.3% 22.5%
Education level (1 = bachelor’s degree holder) 0.676 1.60 �40.9% 3.2% 34.6%
Annual household income ($ per year) �3.40E�06 �1.49 19.2% �1.9% �14.1%
Employment status (1 = full-time worker) �0.636 �1.60 29.7% �3.6% �15.3%
Area type (1 = urban) �0.551 �1.08 43.8% �6.9% �10.2%
Household density (per mi2) 3.43E�04 3.35 �31.2% �2.8% 48.9%
Total employment density (per mi2) 1.70E�05 1.19 �29.2% 3.5% 12.2%

Thresholds Coef. Std. Dev.

Closer to central Austin vs. Stay at the same place �6.408 1.235 – – –
Stay at the same place vs. Farther from central Austin �1.034 2.345 – – –

McFadden’s R-square: 0.237 McFadden’s adjusted R-square: 0.156

Notes: Nobs = 347. All Z-stats with |Z-stat| > 2.58 are in bold, and indicate highly statistically significant predictors. AllDPr’s with |DPri| > 30% are in bold, and
indicate practically significant predictors.
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5.5. Home location shifts due to AVs and SAVs

Table 9 summarizes the OP model estimates of respondents’ home-location-shift decisions (i.e., shift closer to central
Austin, stay at the same location, or move farther from central Austin) after AVs and SAVs become common modes of
transport. Results indicate that respondents with a greater number of children, living farther from their workplace in high
employment density neighborhoods, and who drive alone for work trips, ceteris paribus, are predicted to shift farther from
central Austin. Perhaps these individuals are excited about lower land prices in suburbs and are comfortable using their
longer commute times to pursue other activities (e.g., working, talking with friends, and reading). People with Bachelor’s
degrees or higher, living in high household density neighborhoods, all other attributes remaining the same, also exhibit a
practically significant inclination to shift farther from central Austin. Perhaps these individuals are concerned about higher
land prices in the highly populated neighborhoods, and are keen on the benefits of moving to suburban areas after AVs
and SAVs become common modes of transport. In contrast, full-time working males, with higher HHI and higher VMT,
all other predictors remaining constant, are likely to shift closer to central Austin, perhaps to appreciate and adopt
low-cost SAVs’ higher level of service. As expected, tech-savvy respondents (i.e., who carry a smartphone and are familiar
with carsharing options), living in urban neighborhoods, ceteris paribus, are estimated to have a practically significant
propensity to shift closer to central Austin.
5.6. Policy implications

These behavioral models can be used to forecast the long-term adoption rates of CAV technologies (Bansal and
Kockelman, 2015). The forecasted technology adoption rates can help engineers, planners and policymakers modify devel-
opment projects and processes in commercial and residential areas, along roadways, and across complementary infrastruc-
ture. For example, SAV adoption reduces the need for abundant parking, and (private/personal) AV adoption reduces the
need for parking in higher-rent locations. More smart vehicles on the roadways enables more dynamic and optimal road
pricing policies, as well as better enforcement of speed limits and other desired behaviors. Reliable fleet-mix forecasts
can lead to smarter, safer, more connected, and more sustainable ground transportation systems.

Reliable availability of low-cost SAVs (with an option of dynamic ridesharing) may increase the shared vehicle market and
reduce private-vehicle ownership. However, such high levels of service can add new demands (and VMT) to the system,
resulting in a new for policies that restrain and manage travel (Anderson et al., 2014). Congestion pricing and credit-
based congestion pricing, reflecting vehicle size (and, for example, emissions rates) may be needed, using GPS or other tech-
nologies, to avoid bottlenecks, excessive delays, added emissions, and other issues associated with different vehicle types.
Lower perceived values of travel time may result in far-flung development that places additional loads on our existing road-
ways, suggesting a new avenue for more proactive land-use transportation planning and policy. This work examined the
characteristics of persons and households who are more likely to move away from versus toward the city center; such infor-
mation can be important in devising long-term land-use balance policies to slow or speed these shifts.

As suggested by this work, individuals anticipate substantial benefits from CAVs, but also perceive hurdles. If potential
barriers are not well understood and/or managed thoughtfully, they can slow AV adoption rates to socially sub-optimal
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levels. Armed with such information, public agencies can craft specific policies. For example, they may do best to help cit-
izens observe and directly experience CVs, AVs, and CAVs. Such experiences are essential ingredients for widespread and
rapid technology diffusion (Rogers, 2010). Anticipating sizable profit implications, many manufacturers and related
businesses also have strong interest in creating such opportunities. Key demographic factors and built-environment settings
identified here can help businesses and public agencies target groups with lower WTP values, for large-scale, real-world
pilots and implementation of successful public-private partnerships.
6. Conclusions

Survey results offer many meaningful insights regarding Austinites’ perceptions about CAV technology and related
aspects. Average WTP for Level 4 AVs ($7253) is much higher than that of Level 3 AVs ($3300). More than 80% of respondents
are interested in owning Level 4 AVs. For roughly 50% of the population, AV adoption rates appear to depend on adoption
rates of friends and neighbors. And more than 80% appear unwilling to pay more for a SAV service than current carsharing
and ridesharing companies are charging. More than 75% of respondents indicate interest in adding connectivity to their cur-
rent vehicles, if the cost is under $100. Equipment or system failure appears to be the key concern with AV use, while learn-
ing how to use the smart vehicle is the least concerning. Respondents believe fewer crashes to be AVs’ biggest or most likely
benefit, and less congestion to be the least likely benefit. The top two activity picks, while riding in an AV, are looking out the
window and talking with friends.

This study also estimated how respondent demographics, built-environment factors, and travel characteristics, impact
their opinions about the benefits and concerns for, and adoption of CAVs. For example, regression-model based WTP esti-
mates, SAV adoption rates (under different pricing scenarios), and AV adoption timing collectively suggest that high-
income tech-savvy17 males, living in urban areas and having greater crash experience have more interest in and a higher
WTP for these new technologies, with less dependence on friends’ adoption rates.18 Perhaps such individuals are more able
to appreciate and evaluate the safety benefits of smart technologies. Surveyed individuals also display a higher inclination to
ultimately move closer to central Austin, possibly to enjoy the high-density of low-cost shared fleets (SAVs). In contrast, older
licensed drivers expressed less interest in such technologies. They may be concerned about having to learn how to use CAVs and
SAVs, and licensed drivers may not be interested in losing the pleasure of driving entirely.

Individuals who drive more were found to be more likely to adopt AVs, with less dependence upon the adoption rates of
friends, and willing to spend more to add Level 4 automation and connectivity, but expressed less interest in adding Level 3
automation or using SAVs at a cost of $3 per mile. This result may be because those who travel longer distances by car can
expect to benefit more from safer, more automated, and connected travel with Level 4 technology; and they can perform
other activities en route (such as work, reading, and talking with friends). This is not so feasible with Level 3 AVs, because
drivers must be ready to take over the job of driving, rather quickly. Consistent with past carsharing studies (e.g., Celsor and
Millard-Ball, 2007), respondents who live in more densely populated neighborhoods were more interested in using SAVs
under all three pricing scenarios offered here, perhaps due to inconvenient parking facilities and lower vehicle ownership
rates in those locations.

Generally, drivers and passengers have different values of travel time, so both are likely to have different WTP to add CAV
technologies to their vehicles, among many other differences. The survey did not ask whether each respondent travels
mostly as a driver or as a passenger; it did ask whether they have a driving license, and 98% of respondents (all 18 years
or older) do. Therefore, it is difficult to know who among these rides mostly as a passenger. Future studies should ask
driver-vs.-passenger-type questions to help clarify such distinctions.

We live in a very early stage for public engagement with and understanding of CAVs and SAVs. As communities and indi-
viduals learn more about these emerging, vehicle-based technologies, their perceptions and expected or stated behavioral
responses are likely to change, in some cases rapidly. More work, similar to that shown here will be very helpful, in all set-
tings. Our society is facing an important and impending transition in transportation. Knowledge of underlying factors across
geographies and over time will be important in helping all relevant stakeholders – businesses, regulators, policymakers, and
the public at large – coordinate an effective and efficient transformation of our transportation systems.
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