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This paper presents a multimodal evacuation simulation for a near-field tsunami through
an agent-based modeling framework in Netlogo. The goals of this paper are to investigate
(1) how the varying decisn time impacts the mortality rate, (2) how the choice of different
modes of transportation (i.e., walking and automobile), and (3) how existence of vertical
evacuation gates impacts the estimation of casualties. Using the city of Seaside, Oregon
as a case study site, different individual decision-making time scales are included in the
model to assess the mortality rate due to immediate evacuation right after initial earth-
quake or after a specified milling time. The results show that (1) the decision-making time
(s) and the variations in decision time (r) are strongly correlated with the mortality rate;
(2) the provision of vertical evacuation structures is effective to reduce the mortality rate;
(3) the mortality rate is sensitive to the variations in walking speed of the evacuee popu-
lation; and (4) the higher percentage of automobile use in tsunami evacuation, the higher
the mortality rate. Following the results, this paper concludes with a description of the
challenges ahead in agent-based tsunami evacuation modeling and simulation, and the
modeling of complex interactions between agents (i.e., pedestrian and car interactions)
that would arise for a multi-hazard scenario for the Cascadia Subduction Zone.

Published by Elsevier Ltd.
1. Introduction

1.1. Near-field tsunami hazard

The Cascadia Subduction Zone (CSZ) is a major source for near-field tsunami through mega-thrust earthquake raptures
threatening the costal community life safety in the Pacific Northwest region (Goldfinger et al., 2012). A near-field tsunami
is likely to come onshore within 20–40 min after the initial earthquake, while a far-field tsunami (eq. distant-source) is typ-
ically 1000 km away from the area of interest which can take hours to reach seashores. Near-field tsunamis pose a greater
risk for coastal communities because the first waves can move on shore in minutes (40 min or less).

Essentially, tsunami warning times are much shorter than other natural disasters such as hurricanes and floods, and even
a well established system such as the Pacific TsunamiWarning Centre (PTWC) may not provide sufficiently long lead time for
evacuation before a disaster happens, especially for locally-generated tsunamis (Katada et al., 2006). The near-field tsunami
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event is particularly devastating because the tsunami arrives in a very short time after the earthquake. Under such circum-
stances, evacuation is the most important and effective method to save human lives because it is impractical to construct all
building to resist tsunami forces. The large-scale evacuation represents a complex system for transport operation and plan-
ning to minimize casualties, including the potential for critical infrastructure and communication systems to be damaged
from the earthquake (Lammel, 2011).
1.2. Evacuation modeling from natural hazards

Fig. 1 shows the length and time scales from the perspective of an evacuee for several types of natural hazards. Evacuation
plans for earthquakes and building fires generally occur over short time scales, seconds to a few minutes, and evacuees are
on foot to shelter in place or nearby. For example in the case of an earthquake, an evacuee might take refuge under a desk
within a few seconds of feeling the strong shaking of the building. On the other hand, evacuations from hurricanes often have
several hours to days of advanced warning, and evacuees rely on vehicles to seek shelter several miles away beyond the haz-
ard zone. Nearfield tsunamis present a complex case of multi-modal evacuation because the tsunami arrives within several
minutes of the earthquake and can travel several kilometers inland. Moreover, evacuees may be faced with choices of shel-
tering near place (vis-a-vis vertical evacuation) on foot or to travel outside of the inundation zone typically by car.

There is extensive emergency evacuation modeling research due to its significance to human life safety, and advances in
technology as is shown in Fig. 2. We are not planning to review each paper listed in Fig. 2 in this work, however interested
readers are directed to the original papers/reports for more information. Fig. 2 presents five distinct hazard groups whose
warning time increase from seconds level (i.e., earthquake) to hours range (i.e., hurricane) as is revealed in the hazard length
and time scales in Fig. 1. For earthquake and building fire with very short warning times, the mode of evacuation is primarily
on foot. However, for wildfire and hurricane with relatively longer warning time, people generally drive to evacuate the
affected areas to safer places. Near-field tsunami represents the middle range of the five hazard groups in terms of warning
time scales which is typically in the range from 20 min to 40 min. Therefore, transportation evacuation modes, may be mul-
timodal rather than a single mode.
1.3. Tsunami evacuation modeling

Recent research efforts have begun using agent-based modeling frameworks for hurricanes and coastal community tsu-
nami evacuation (Mas et al., 2011); however the existing tsunami evacuation research models typically assumes 100%
pedestrian walking with little consideration of other modes of transportation such as auto-mobiles or bicycles. This is
despite recent work where it was observed that a large number of evacuees left from low-topography areas by car (Mas
et al., 2011).
Fig. 1. Time and length scales from evacuees perspective for different hazards.



Fig. 2. A brief summary of evacuation models for varying hazards (the warning time increases from left to right).
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In the past decades, approaches to model the evacuation scenarios such as static networks (shortest path, minimum cost
network flow, or quickest path), dynamic networks, and traffic assignment have been widely employed to model the evac-
uation scenario (Hamacher and Tjandra, 2002). Wood and Schmidtlein (2012) used a least cost distance to assess pedestrian-
evacuation potential from CSZ-related tsunamis in the US Pacific Northwest. A typical example of evacuation simulation
based on static concepts is MASSVAC (Hobeika et al., 1994). An integrated GIS-based simulator framework, which employed
the shortest-path algorithm, was developed by Katada et al. to improve evacuation efficiency (Katada et al., 2006). Chalmet
et al. (1982) suggested using the dynamic network to model the circumstance that many occupants evacuated in minimum
time. Sheffi et al. (1982) proposed the NETVAC model for simulating the traffic pattern under an emergency evacuation sce-
nario. Lovs (1998) presented the way-finding problem in emergency evacuation using various models in a mathematical set-
ting, providing various models. However, these methods bear the flaws that it is hard to be implemented in the real world.
For example, shortest path solution does not consider congestion effects, which tend to underestimate the travel times, and
the shortcoming of static assignment is that it does not possess the consideration of the time-of-day dynamics (Lammel,
2011). They neglect central behavioral aspects like panic or herding behavior as well (Lammel, 2011). Traditional methods
lack the capacity to describe the individuals decision-making behavior in that circumstance, nor fully incorporate the poten-
tial interaction effects between evacuees. Human behavior is highly complex, and is the most difficult aspect of the evacu-
ation process and hard to model in mathematical equations (Mas et al., 2011). The desired approach for the evacuation
problem is an iterative learning method, which could be improved by agent-based modeling and simulation (ABMS)
(Lammel, 2011). ABMS is situated to offer meaningful insights to the mechanisms and preconditions for decision making
processes under pressure and panic.

An agent-based modeling and simulation (ABMS) is an approach to simulate the interactions and actions of the autono-
mous decision-making entities, assessing the effect as a whole to capture the emergent phenomena. Hundreds of agents
operate concurrently to investigate the connection between the macro and micro level individuals behavior (Mas et al.,
2011). Each agent individually assesses its situation and makes an evacuation decision on the basis of a set of rules
(Dawson et al., 2011). The ABM has demonstrated it can provide insights that are not available from other methods and cap-
tures both the natural and human system dynamics (Dawson et al., 2011). For example, Chen and Zhan (2006) introduced an
agent-based technique to model the traffic flow and investigate collective behavior of evacuees. Liu et al. (2009) proposed a
dynamic route decision model based on multi-agents by considering group evacuation. Mas et al. (2011, 2012) presented a
new method for start time evacuation decision-making modeling under tsunami scenarios. An agent-based simulation
model of multi-agents in a hypothetical community to study the influence of behavior on warning dissemination is sug-
gested by Nagarajan et al. (2012). Similarly, Dawson et al. (2011) employed the dynamic agent-based model to manage flood
incidents. Uno and Kashiyama (2008) proposed an emergency evacuation simulation system based on multi-agent models.
Karon et al. (2011) presented a simulation of tsunami inundation in Oregon area as well. Efforts to model the tsunami evac-
uation process have also included the least-cost-distance (LCD) models. LCD model focuses on evacuation landscape features
(Wood and Schmidtlein, 2013) and uses geographic information system (GIS) to find the shortest path to safe spots from
hazard zones (Wood and Schmidtlein, 2012). Agent based modeling focuses on the evacuees behavior and incorporates
the dynamic travel costs when deciding travel speed and the location of evacuees. Further, agent-based models may serve
practitioners who are developing preparedness plans for a site-specific tsunami scenario.
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1.4. Agent-based modeling in transportation

Agent-based modeling and simulation is widely used in transportation (Zheng et al., 2013). Multiple platforms have been
introduced as applications of agent-based modeling in transportation. One example is the MATSim (Multi-Agent Transport
Simulation project (Lammel et al., 2010)) which was initially developed for the simulation of vehicular traffic flow for large
cities or even regions (Lammel et al., 2010). Agent-based models are also used in travel demand modeling (Zhang and
Levinson, 2004) and freight transport analysis combining with macro-level traffic models Holmgren et al. (2014). TRANSIMS
(TRansportation Analysis and SIMulation System) is an activity-based travel demand modeling and simulation tool which
was initially developed to simulate individual travelers in a regional transportation network as well as transit system
through activity-based travel demand modeling and it can also be used for planning the evacuation of metropolitan areas
(Zheng et al., 2013). Zheng et al. (2013) also reviewed a few other multi-agent activity-based platforms including Sacramento
Activity-Based Travel Demand Simulation Model (SACSIM) (Bradley et al., 2010), Simulator of Activities, Greenhouse Emis-
sions, Networks, and Travel (SimAGENT) (Goulias et al., 2011), Open Activity–Mobility Simulator (OpenAMOS) (Pendyala
et al., 2005), and Integrated Land Use, Transportation, Environment (ILUTE) (Salvini and Miller, 2005). In addition, Yin
et al. (2014) presented an agent-based travel demand model system for hurricane evacuation to simulate six household
activity-travel decision-making strategies and evaluated their effectiveness. Recently, Xiong et al. (2015) developed an
agent-based en-route diversion model to evaluate the dynamic behavioral responses and network performance through
macroscopic fundamental diagrams for real-time operational applications, while Ma et al. (2015) used an agent-based opti-
mization model and a lagrangian relaxation-based heuristic within a mesoscopic dynamic traffic simulator to evaluate the
personalized real-time traffic information provision strategies such as when and where to provide the information and what
are the alternative routes.

Interested readers are referred to (Bazzan and Klugl, 2013) and references therein for a detailed review of the agent-based
modeling techniques for traffic and transportation applications. The authors of this research chose to use NetLogo (Wilensky,
1999) mainly because under evacuation circumstances, drivers and pedestrians act in an unexpected panic situation and the
traditional driver behavior models such as car-following and lane-changing behavior might fail to capture the conditions in
emergency. NetLogo (Wilensky, 1999) offers flexibility to model the agent-to-agent interactions and the heterogeneous
decision-making behavior and how that combination impacts life safety.

1.5. Social vulnerability

Compounding the challenges of simulating individual decision-making behavior is the extent of social vulnerability
across a geographic region. Social vulnerability to natural hazards is not constant throughout a community and varies
due to the unique conditions, needs, and constraints of the subcultures that exist within that community. Factors that
may interfere with the evacuation capacity surrounding a disaster include: single female-headed households, being elderly,
racial/ethnic minority, living in a rural region, living in institutions or congregate care, suffering from a physical or mental
disability, requirement for ongoing medical assistance, and having limited transportation options (Beaulieu and Tootle,
2010). Integrating the perspectives and contributions of these populations into evacuation simulations is especially impor-
tant because the chances for greater victimization during a disaster are unevenly distributed in society, as are opportunities
for enhanced safety (Tierney et al., 2001; Morrow, 2008). At the same time, the resilience of vulnerable populations and the
perspective that they can bring to disaster risk reduction cannot be underestimated (Cramer, 2012; Schoch-Spana et al.,
2008).

It is not population and socio-economic characteristic per se that indicate vulnerability; rather it is the extent that such
features limit access to resources necessary to prepare, respond and recover from a disaster (NRC, 2006; NRC, 2012). Social
science research has demonstrated that gender (Fothergill, 1996; Enarson and Morrow, 1998; Fordham, 1999), race and class
(Perry and Lindell, 1991; Peacock et al., 2000; Cutter et al., 2001), and age (Ngo, 2001) are among the most important indi-
cators of vulnerable individuals and social groups (NRC, 2006). To the extent that evacuation modeling can begin to capture
the diversity of evacuee socio-demographic characteristics, as well as decision-making modeling, the more precise will be
the predictions.

Unfortunately, due to social and technological complexities and the state of modeling technology, some important factors
have been omitted by researchers when simulating the tsunami evacuation. Developing an effective evacuation strategy
requires not only understanding spatial differences in geophysical risk, but also social vulnerability (Chakrabority and
Montz, 2005). The connection to place, household evacuation logistics (Lindell et al., 2011), and personal familiarity with
evacuation routes (Dow and Cutter, 2002) would significantly influence the decision making time. Furthermore, it was found
that transient residents (i.e., tourists) were more likely to evacuate faster than the permanent residents (Charnkol and
Tanaboriboon, 2006). Thus, differential reaction times would lead to different evacuation and transportation impacts. Also,
research from a survey for the 1995 Kobe earthquake shows that residents with local knowledge may choose a different
route and the mode of evacuation (walk, auto-mobile) (Liu et al., 2009). Rational choice approaches (Bogard, 1988) suggest
that people behave in a rational manner based on their knowledge, efficiency and resources; therefore, every evacuee will
choose the optimal evacuation strategy under their given circumstance, which would lead to a, so called, Nash equilibrium
(Lammel, 2011). In addition, different from existing transportation simulations, since any location outside the inundation
zone is regarded to be safe and could therefore be a possible destination, the destinations of evacuation are not known in
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advance (Lammel, 2011). The ability to choose a route to safety, directly instead of seeking a safe location aimlessly is crucial
to evacuation efficiency. In the case of an anticipated detour, forecasting technologies should have the capacity to model the
logistical impacts in order to aid disaster preparations.

1.6. The motivation

The goal of this research is to investigate the impacts of different evacuee decision-making times on the estimation of
casualties in a multi-modal tsunami evacuation. The motivations are three folded: (1) a real evacuation is most likely to
be multi-modal instead of a single mode; (2) the length of the decision-making process regarding when and how to evacu-
ate; and (3) existence of vertical evacuation sites is crucial to life safety benefits (i.e., mortality rate). Another motivation is to
develop a framework that can include a more comprehensive multi-hazard and multi-modal evacuation scenario for the CSZ
event, however we are only focusing on tsunami in this research. In particular, this research will model the evacuees
decision-making behavior during the near-field tsunami evacuation event which can lead to a better comprehension of
transportation impacts under various evacuation scenarios (e.g., whether to evacuate or not?Which mode of transportation?
Which route to take?). According to a survey in Mas et al. (2011), 57% of the interviewees evacuated immediately after the
earthquake while 37% had delayed their evacuation. A general evacuation model may provide the regional perspective, but
site-specific case studies are useful for emergency planning at those specific locations (Wood and Schmidtlein, 2013). Thus,
this study plans to use the city of Seaside, Oregon as a case for the multi-modal agent-based evacuation model, where tour-
ists and sizeable residential population are constantly threatened by near-field tsunamis (Wood and Schmidtlein, 2012).

2. Tsunami evacuation model

2.1. Agent-based modeling environment

Our tsunami evacuation model was constructed using NetLogo modeling environment which is a high level integrated
modeling platform through agent-based programming language (Wilensky, 1999). This modeling environment enables
the exploration of emergent phenomenon in a multi-agent system, and it allows users to modify parameters through sliders
and visualize the simulation environment. This feature has turned NetLogo into an increasingly popular tool for research due
to its extensive documentation, the existence of good tutorials, and a large library of preexisting models (Klugl and Bazzan,
2012). The main part of complexity in evacuation modeling is caused by interactions between agents. Since NetLogo is a
high-level platform for simulating complex and stochastic systems, the model is developed in this platform. The model uses
GIS data as input for transportation network. Fig. 3 shows a screen capture of the tsunami evacuation model as an example.

We note that for this simulation we are modeling only the consequences of the tsunami hazard, and we do not include
direct consequences of the earthquake on the population or the constructed environment. We assume that there are not
casualties or injuries resulting from the earthquake or any damage to surface streets, bridges or buildings. For the agent
behavior, we assume that all agents are autonomous, that their choices are not influenced by the behavior of others, and that
their behavior does not change with time. In other words, an agent that initially chooses ‘‘no action” cannot change this
behavior even if neighboring agents are evacuating.

2.2. Model components

The model requires a number of precomputed data files containing the population distribution, street grid, evacuation
destinations, and the inundation hazard. Each of these data files are discussed briefly.

2.2.1. Population density model
There can be a high spatio-temporal variability of community population density based on factors such as the weather,

time of day, week, or season. Moreover, a given population will contain a number of different segments such as residents or
transients (i.e., tourists) who will respond differently for a given hazard. There are also wide distributions in age as well as
other factors affecting social vulnerability as discussed earlier. For this simulation, we represent two population classes (res-
idents, tourists) and place the population across several zones, with the population density increasing at the waterfront and
beach area. For the simulations presented here, this would represent a crowded peak summer weekend which is considered
the worst case scenario with approximately the same number of tourists and residents which adds up to 2500 evacuees.

2.2.2. Road network
The evacuation road network was constructed using the open street map by cutting out the area of interest (i.e., Seaside,

OR in this case) and saving as an OSM file. The road network is extracted from the OSM file with their coordinates. In the
simulation, it is assumed that all the agents (i.e., residents and tourists) have to follow the road network to the tsunami shel-
ters. The use of other alternatives such as swimming across the river or cutting through fields or parking lots are prohibited.
In addition, a conservative assumption has been made. All of the roads are considered as a one-way one-lane street with
30 mph speed limit towards outside of the inundation zone.



Fig. 3. The NetLogo tsunami model of Seaside, Oregon.
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2.2.3. Tsunami shelters
For this simulation, we identified eight evacuation areas located outside of the tsunami inundation zone based on the hor-

izontal evacuation maps provided by the Oregon Department of Geology andMineral Industries (Priest et al., 2013). For these
simulation, we assume that there is unlimited capacity for people and cars at the shelter areas. In addition to these eight
locations, we include three fictitious vertical evacuation structures within the inundation zone for some simulations. Vertical
evacuation shelters have been placed in the areas where population of evacuees were concentrated the most. Here, we
assume an unlimited capacity for sheltering and that the shelter is of sufficient height and strength to withstand the tsunami
forces (FEMA, 2008).
2.2.4. Tsunami inundation
For the tsunami inundation, we simulate the Cascadia Subduction Zone event using the ComMIT/MOST model developed

by NOAA and used for tsunami evacuation mapping in the US (Titov and Gonzalez, 1997). For this simulation, the maximum
extent of inundation is consistent with estimates of the inundation for a probable event with approximately a 500 year
return interval (Venturato et al., 2007). The model provides time variation of the flow depth and speed throughout the model
domain. We note that these simulations use a ‘bare earth model, meaning that the influence of large roughness features such
as buildings and groups of buildings are not included in the flow. It is likely that the constructed environment would increase
flow speeds along evacuation routes running parallel to the main flow direction (Park et al., 2013).
2.3. Agent decisions

For a given population, road network, tsunami shelter, and inundation scenario, the model can be run with several
options related to the human decisions and are described below.
2.3.1. Agent choices: Options 0, 1, 2, and 3
Each agent can make one the following choices. Option 0 is no action where the agent chooses not to evacuate. We

assume that the agent is located at ground level and outside. In other words, we assume they are not in their car, nor are
they in a building that would provide them shelter if no actions were taken. Option 1 is horizontal evacuation on foot.
For this option, we assume that the agent is knowledgeable of the most efficient route to the nearest tsunami shelter outside
the inundation zone. Option 2 is horizontal evacuation by car. Similar to Option 1, we assume that the agent knows the most
efficient route. We also assume that the car is located nearby and the time that it takes to go to the car is modeled in the
differences in milling time as discussed in the next section. Option 3 is vertical evacuation. For this option, an agent may
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choose to seek refuge in a vertical evacuation structure if that is a closer alternative. For the case of Seaside, OR, an agent
assigned Option 3 will not cross the river toward the hazard area and instead will seek refuge via horizontal evacuation.

The probability for choosing an option can be specified for each simulation for the two population classes. For example,
for a given simulation, the resident population may have 5% who choose no action (Opt 0), 50% who choose horizontal evac-
uation on foot (Opt 1), 25% who choose horizontal evacuation by car (Opt 2), and 20% who choose vertical evacuation on foot
(Opt 3). The tourist population can have a different distribution to account for differences in tsunami awareness, access to
vehicles, local route knowledge or other factors. It is possible to assign a 100% probability to both classes to limit only one
option. This could be used to force, all agents to choose horizontal evacuation to test the current evacuation plan for a com-
munity (Opt 1 = 100%). As mentioned earlier, we assume that agents act independent of others (there are no social groups).
2.3.2. Decision time with variations
One of most important decisions that evacuees should make is the departure time. We continue to confront important

challenges regarding evacuation lead times, the accuracy and reliability of the information that is being communicated,
and in our ability to elicit the appropriate response from decision makers and the general public (NRC, 2006). While much
research has been done related to hurricane and flood preparation time (Lindell et al., 2002; Kang, 2004), research is needed
to assess the extent to which evacuation preparation time has occurred for rapid-onset hazards, such as tsunamis (NRC,
2006). The timing of evacuee responses can have a significant effect on traffic congestion and bottlenecks during an evacu-
ation (Naser and Birst, 2010). The model simulates the evacuation time in two different ways:

� Immediate evacuation: in which evacuees start the evacuation immediately after the Tsunami alarm.
� Delayed evacuation: in which evacuees postpone their departure time. In this work, as suggested by Mas et al. (2011),
agents follow a Rayleigh distribution for deciding their evacuation departure time.

The total decision time for an evacuee is a complex process involving psychological preparation for the emergency evac-
uation involving a series of stages to confirm whether there is an immediate threat and what action should be taken
(Sorensen, 2000). For this model, we simplify and combine these processes by specifying a delay time (s) and a probability
of action using a Rayleigh distribution (Tweedie et al., 1986; Lindell and Prater, 2007) with a scale parameter r given as
PðtÞ ¼ 0 if 0 < t < s
1� e�ðt�sÞ2=ð2r2Þ if t > s

�

where t is the time in minutes after the earthquake. Both s and r can vary for each option and can vary between population
class, allowing the model to evaluate mortality as a function of the decision time for a fairly wide range of conditions. Fig. 4
shows an example with s ¼ 5 min (that is, the decision making process takes at least 5 min for all agents) and a range of
values for r. As the value of r increases, the distribution times of agents taking action increases. For example, when
r ¼ 1:0, it takes sþ 3:0 min for 99% of the agents to have taken action. When r increases to 4.0 to initiate an action, only
50% of the agents will have taken action after sþ 4:7 min and 99% will have taken action after sþ 12:1 min. Table 1 sum-
marizes the variation in time required as a function of r.
Fig. 4. Use of s and r to represent milling time and variation in milling time. For this example, s = 5 min.



Table 1
Time in minutes required for agents to initiate an action after the initial delay time as a function of sigma assuming a Rayleigh
distribution.

r Percent of agents initiating actions

50% 95% 99%

1.0 1.2 2.4 3.0
2.0 2.4 4.9 6.1
4.0 4.7 9.8 12.1
8.0 9.4 19.6 24.3
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2.3.3. Evacuation speed
Evacuation speed is a critical parameter to estimate mortality rates for near-field tsunamis (Wood and Schmidtlein,

2012). For agents traveling on foot, we assign a mean speed u, of u ¼ 1:5 m/s for a fast walk (Knoblauch et al., 1995). We
include a normal distribution to represent a range of walking speeds for a given population in Fig. 5. When sig = 0.2 m/s, this
would cover a range from slow walk (1 m/s) to slow run (2 m/s). Typical jogging paces range from 15 min/mile (1.8 m/s) for a
slow run to 10 min/mile (2.7 m/s) for a moderate run (TRB, 2010). An extremely fast running pace would be equivalent to a
7 min/mile (3.8 m/s). The agent is assigned a constant walking speed, and there is no effect from topography or influence
from the speed of other agents.

In modeling the evacuation by car, we assume that the time required to get to their car is a function of the s and r. One
exception would be for agents not on a grid such as agents on the beach at the start of the simulation. In this case, agents are
assigned the walking speed and take a direct path to the road network after which time their classification changes and the
agents speed is governed by the car model. In this model, we set the maximum speed limit, and acceleration and deceleration
limits. We assume that there is no damage from the local earthquake (the roads are clear), no accidents, and unlimited capac-
ity in the evacuation areas.

In this work, we considered a variable maximum speed for cars. To incorporate car–car interaction, cars speeds are cal-
culated regarding how dense the cars are surrounding you. Cars speed up with the variable acceleration, which can be
adjusted in the model, if there is no car ahead. Otherwise, they slow down to the speed of their adjacent car. According
to previous efforts regarding traffic flow simulation in NetLogo (Wilensky, 1999), the state of panic in evacuation simulation
correlates with acceleration and deceleration of cars. In case of evacuation, acceleration and deceleration are much higher
than the average, which typically results in much greater average evacuation time and traffic congestions.
2.3.4. Casualty model
The casualty model is based on a critical water depth, hc , defined as the water depth above the local grade. If the water

depth exceeds hc at an agents location, then the agent is counted as a fatality. Although studies have shown that many factors
Fig. 5. Normal distribution of pedestrian walking speed.
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determine the probability of drowning, including age, water temperature, mental well-being (Yeh, 2010), the critical depth is
a reasonable first approximation for the purposes of this model. Future iterations may contain a more complex casualty
model involving a persons shape and the flow speed conditions (Yeh, 2010).

3. Study area

3.1. CSZ scenario

For this project, we model the nearfield tsunami arising from the Cascadia Subduction Zone (CSZ) shown in Fig. 6(a). The
Cascadia Subduction Zone (CSZ) measures 1000 km in length and extends from the Mendocino Ridge off the coast of north-
ern California to northern Vancouver Island, British Columbia (Fig. 6). A near-field event generated from the CSZ is expected
to cause widespread damage to the northwest Pacific coast of North America with the first waves arriving in the tens of min-
utes. The last great CSZ event occurred more than three centuries ago on 26 January 1700 and was a full length rupture. The
event is estimated to have had a moment magnitude (MW ) between 8.7 and 9.2, and a slip of 19 m (Satake et al., 2003). The
average recurrence interval between full length CSZ events is 530 years, and the next event is estimated to have a 7–12%
probability of occurrence by 2060 (Goldfinger et al., 2012).

3.2. Seaside, OR

The city of Seaside (Fig. 6(b)) was chosen for this study because it has been identified as having a high risk to the CSZ
tsunami (Wood, 2007). This is due, in part, to the proximity to the CSZ (Fig. 6(a)), fairly flat topography, and the location
of the tsunami shelter areas at more than 1.5 km from the shoreline. The Necanicum River which flows from south to north,
bisecting the city, is spanned by 5 bridges and creates additional complexity for the multi-modal evacuation. The current
tsunami evacuation plan for the area calls for horizontal evacuation on foot, and the option of vertical evacuation has only
be discussed in recent years as a possible option. No comprehensive studies exist which explore the feasibility of vertical
evacuation. In addition to Seaside, there are several other towns along the coast with a high risk to nearfield tsunamis,
including Ocean Shores, WA, and Long Beach, WA (Wood and Schmidtlein, 2013).

4. Model results

4.1. General behavior of model

Fig. 7 shows an example of the model simulation starting with time t = 0 representing the end of the initial shaking due to
the earthquake. For this simulation, we assume that no evacuation takes place during the earthquake itself. Fig. 7(a) shows
the initial population divided between residents (yellow) and tourists (brown). The agents have the 4 options as described
earlier, and they evacuate to either vertical evacuation structures within the inundation zone or to designated shelter outside
the zone. Agents change color depending on their option and mode of transportation (Fig. 7(b) and (c)). After approximately
Fig. 6. (a) Location of Cascadia Subduction Zone in North Amerak and Seaside study area; (b) overivew of Seaside study area with designated horizontal
evacuation shelters.



Fig. 7. Example of model simulation.
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30 min, the tsunami reaches the shore and fatalities occur when the inundation level exceed 0.5 m (Fig. 7(d)). The tsunami
has inundated the first part of Seaside after 38 min, crossing the Necanicum River (Fig. 7(e)), and finally the tsunami reaches
the runup limit approximately 1 km inland, 12 min after reaching the shoreline.
4.2. Model sensitivity

4.2.1. Model sensitivity to critical depth
Fig. 8 shows the mortality rate as a function of critical depth, hc , used as the criteria to determine the casualty of an agent.

For this simulation, all agents were prescribed Option 1 (horizontal evacuation on foot), with a walking speed of 1:1 m/s and
immediate evacuation ðs ¼ 0;r ¼ 0Þ. Under this scenario, the models predicted similar results for a range of depths from
0:5 < hc < 3 m. Although our model results were not sensitive to the choice of hc , we can seek improvements to the model
by considering alternative casualties models that consider age and gender (Yeh, 2010), hydrodynamic forces (Koshimura
et al., 2006), and other factors (Jonkman et al., 2008).
Fig. 8. Mortality rate as a function of critical depth hc (m).



Fig. 9. Influence of delay time (s) on mortality rate with fixed scale parameter (r ¼ 2:0).

Fig. 10. Influence of scale parameter (r) on mortality rate with fixed delay time (s ¼ 0).
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4.2.2. Model sensitivity to s and r
As discussed in Section 2.3.3, we model the decision time with two parameters s and r, where s represents the delay time

(no agents evacuate for t < s) and r is a scale parameter representing the variability in the cumulative probability distribu-
tion based on a Rayleigh distribution.

Fig. 9 shows the model sensitivity to s. For this scenario, r is kept constant (r ¼ 2:0) and s varies from 0 (immediate evac-
uation) to 20 min. As expected, the mortality rate increases significantly as the delay time increases. Fig. 10 shows the model
sensitivity to r. Here, s is set to zero, and r varies from 0 (immediate evacuation) to r ¼ 16. As expected, Fig. 10 shows a
large increase in mortality rate as the variability in departure times increases. In reality, both tau and sigma can be varied
based on an agents classification (e.g., resident or transient) and evacuation choice.
4.3. Evacuation options

4.3.1. Option 1: Horizontal evacuation on foot
Fig. 11 shows the effect of the walking speed on mortality rate where the walking speed is modeled as a normal distri-

bution with mean speed u and standard deviation sigma (sig). For these simulations, we use s ¼ 5 min delay from the time of
the earthquake to the start of evacuation with a r ¼ 2 (e.g., 95% of the population would have taken action approximately
10 min after the earthquake). There were N ¼ 2405 agents and we assumed no difference between tourists and residents. In
this figure, the mean walking speed varies from 1:0 to 2:25 m/s and three values of sig were used: sig = 0.1 (circles) repre-
senting a low variance (that is, most evacuees will move near the mean speed), sig = 0.2 (square), sig = 0.4 (diamond).



Fig. 11. Influence of mean and variance of walking speeds on mortality rates considering horizontal evacuation on foot. Circles (sig = 0.1), squares
(sig = 0.2), diamonds (sig = 0.4).

Fig. 12. Mortality rate of drivers as a function of percent of agents choosing to evacuate by car.
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As expected, Fig. 11 shows that the walking speed has a strong influence on the mortality rate. For walking speeds in
excess of 2.5 m/s (running), the mortality rate was near 0%, and then the mortality rate increases sharply to above 25%when
the speed drops to 1:0 m/s (slow walk). Moreover, the variability in walking speed has a strong effect. For example, at u ¼ 1:5
m/s in the top figure, there is about a 5-fold increase in mortality if there is a wide range of walking speeds (i.e., sig is increas-
ing from 0:1 to 0:4). This highlights the need to look at mobility issues for effective tsunami evacuation planning.
4.3.2. Option 2: Horizontal evacuation by car
Traffic congestion conditions will likely increase as the number of vehicles on the road at any one time increases (Spiess,

1990). To test the capability of the model to simulate traffic congestion using NetLogo model library: Traffic Basic, we con-
sidered agents choosing horizontal evacuation by either foot (Option 1) or by car (Option 2), varying the percentage from 0
(on foot) to 100% (by car). Fig. 12 shows the mortality rate of agents who evacuated by car as a function of the percent of
agents choosing that option. The figure shows that the mortality rate of drivers increases significantly as more and more
agents choose to evacuate by car because congestion increased on several of the roads leading to the evacuation shelters.



Fig. 13. Influence of vertical evacuation options on mortality rates as a function of walking speed. Open symbols for horizontal evacuation (Opt 1), solid
symbols for vertical and horizontal evacuation (Opt 2).
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For example, the mortality rate of drivers increases by a factor 3:5 as the percent of agents evacuating by car increases from
10% to 70%.

We note that in this scenario, we made several assumptions that minimized congestion and increased survivability of
agents traveling by car, including unlimited car capacity at each tsunami shelter and basic interaction of cars and pedestri-
ans. Furthermore, we did not include a probability of accidents or breakdowns that would increase delays, nor did we
attempt to model agents who would abandon their cars and continue on foot. Factors such as bridge failure and landslides
due to the earthquake or other technological failures such as signal timing that would affect surface transportation were not
included. Future efforts will have to consider these factors to develop realistic scenarios for multi-modal tsunami evacuation.

4.3.3. Option 3: Horizontal and vertical evacuation
For the case of u ¼ 1:5 m/s, there is a 7-fold decrease in the mortality rate with the inclusion of vertical evacuation struc-

ture. Fig. 13 shows the influence that three vertical evacuation structures would have on the mortality rate for walking
speeds in the range 1 < u < 2:25 m/s for the case of s ¼ 5 and r ¼ 2 as seen previously in Fig. 11. This dramatic decrease
in the mortality rate with the inclusion of vertical evacuation structures highlights the need to further investigate the role
that the vertical evacuation option may play in Seaside and other coastal communities threatened by near-field tsunami haz-
ard. Vertical evacuation, where evacuees seek refuge in a structure within the inundation zone, has been shown to be effec-
tive during the 2011 Tohoku tsunami for cases where the evacuation structure was of sufficient height to avoid overtopping
and sufficient strength to withstand the hydrodynamic forces (Chock et al., 2013).
5. Summary, conclusions and future work

This paper presented a near-field multimodal tsunami evacuation study through an agent-based modeling environment.
The research questions were how variations in decision-making time (i.e., s and r) and the choices of transportation modes
impact the coastal community life safety (i.e., mortality rate) using Seaside, Oregon as a case study. We used an agent-based
modeling environment NetLogo to model and simulate the (1) the sensitivity of mortality rate to the tsunami wave critical
depth (hc); (2) the mortality rate to variations in decision-making time (s and r); and (3) the mortality rate to the choice of
evacuation options (i.e., horizonal evacuation on foot, horizontal evacuation by car, and both horizontal and vertical
evacuation).

The results show that (1) the mortality rate is sensitive to the decision-making time s which is a ‘‘delay time” or ‘‘milling
time” and the scale parameter r; (2) the variations in walking speed has significant impacts on the number of casualties in
the horizontal evacuation on foot; (3) the provision of vertical evacuation structures is very effective to reduce the mortality
rate; and (4) the mortality rate increases as the number of evacuee who used automobile to evacuate increases as a result of
congestion and bottleneck effects.

Future research will be based on current work and extended to include (1) partial damage to the transportation network
(i.e., single bridge failure or combination of bridge failures after an earthquake) considering bridge vulnerability; (2) trans-
portation behavioralmodels such as amodified Greenshieldsmodel to better capture the bottleneck effects; (3) realistic inter-
action rules among agents (i.e., pedestrian and car interaction) to provide more accurate representation of the multimodal
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evacuation; (4) howmortality rate varies when the population (residents and tourists) distribution is different (i.e., an earth-
quake happens over the day or during night); (5) incident scenario analysis such as people who used their cars to evacuate at
the beginning but abandon the car in the middle of congestion and changed to horizontal evacuation on foot; (6) different
information provision and propagation strategies (i.e., communication tower or mouth to mouth) to increase the evacuation
efficiency and congestion mitigation strategies (i.e., contra-flow lanes); and (7) validation of the agent-based model using
empirical data from 2011 Tohoku event for multiple cities in Japan.
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