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Wireless communications among vehicles, roadside infrastructures, and traffic manage-
ment centers can enable the development of next-generation Intelligent Transportation
Systems so as to tackle basic traffic problems associated with driving safety, road conges-
tion, and vehicle emissions. This paper analytically investigates the instantaneous commu-
nication capacities of vehicular ad hoc networks (VANETs), which measure the upper
bounds of the message transmission rates of vehicles. Subject to interference among wire-
less transmissions, the broadcast capacity is defined by the maximum number of successful
receivers, and the unicast capacity by the maximum number of successful senders. With
the protocol communication model and uniform vehicular traffic patterns, we derive
closed-form formulas for the capacities as functions of transmission range r, interference
ratio d, vehicular density q, and channel capacity W. We show that broadcast capacities
are approximately W

ð2þdÞrqþ1 for uni-directional communications, and 2W
ð2þdÞrqþ1 for bi-

directional communications; while unicast capacities are approximately W
ð1þdÞrqþ1 for uni-

directional communications, and W
ð1þdÞrqþ1 for bi-directional communications. For general

vehicular traffic patterns, an optimization model is proposed to calculate the capacities,
and a genetic algorithm integrated with the protocol communication model is developed
to solve the optimization problem. Finally, the impacts of different transmission ranges,
interference ratios, and shock waves on communication capacities are analyzed.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

With the rapid development of information technologies, connected vehicles equipped with wireless communication
devices have become more popular for enabling advanced transportation management system (ATMS) (Aoki and Fujii,
1996) and advanced traveler information system (ATIS) (Yang and Recker, 2005). With traffic information collected by con-
nected vehicles, basic traffic problems associated with driving safety, road congestion, and vehicle emissions can be more
easily tackled (Luo and Hubaux, 2006). A number of efforts are underway to investigate connected vehicles as a means of
developing ‘‘internet on roads”, such as Fleetnet (Franz et al., 2001) and CarTALK (Reichardt et al., 2002). Recker et al.
(2008) proposed Autonet, which used vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications to lever-
age cooperative, vehicle-centric pervasive computing as a platform for transportation management; meanwhile, Autonet
integrated a bundle of services supporting an arbitrary collection of transportation management applications.
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In a road network, connected vehicles equipped with Dedicated Short Range Communication (DSRC) devices form a
mobile ad hoc network (MANET), which is also called vehicular ad hoc network (VANET). VANETs have quite distinct features
from other wired or wireless communication networks: (i) they are decentralized autonomous systems; (ii) there is no
energy constraint practically, as communication devices can be charged by car engines or batteries; (iii) the communication
network topology is highly dynamic due to vehicle movements; (iv) vehicles usually have well-defined driving behaviors
related to departure times, routes, lanes, and acceleration rates in a road network, and their positions in a road network
are governed by various traffic laws; and (v) DSRC devices will penetrate the market gradually. Therefore, the distribution
in VANETs of equipped vehicles, i.e., communication nodes, is random, dynamic, and non-uniform.

Two basic characteristics of VANETs are critical for determining communication delays and reliability (Ma et al., 2011),
and for designing message routing algorithms (Li and Wang, 2007):

1. The connectivity of such communication networks defines the coverage as well as the maximum information propagation
distance. In the literature, the connectivity of VANETs has been well analyzed. Jin and Recker (2006, 2010) proposed
recursive models to calculate the connectivity of VANETs for uniform and general vehicular traffic patterns. They showed
that such vehicular traffic patterns as shock waves, market penetration rates (MPRs) of equipped vehicles, and transmis-
sion ranges would determine the connectivity of a VANET. Wang (2007) applied a transient Markov process to model
information propagation along a traffic stream, where communication nodes follow the homogeneous Poisson distribu-
tion, and approximated the information propagation distance with a Gamma distribution; the author also developed
closed-form formulas for the expected distance and its variance. Ukkusuri and Du (2008) analytically studied the connec-
tivity of VANETs, in which they considered VANETs as a nominal system with disturbance; they also explored the con-
nectivity at every time step with the consideration of traffic flow feature.

2. Communication throughputs and capacities measure information transmission rates. By the communication throughput,
we mean the average transmission rate of vehicles under given conditions of vehicular traffic patterns, MPRs of equipped
vehicles, transmission ranges, choices of senders and receivers, and signal interferences. Yang and Jin (2015) derived
closed-form solutions for the communication throughputs of VANETs. With a protocol communication model, the study
showed that communication throughputs were functions of vehicular traffic patterns, transmission ranges, MPRs of vehi-
cles equipped with wireless communications, percentages of senders, and so on. In the literature, there have been differ-
ent definitions of communication capacities for general wireless communication networks, which are the maximum per-
node transmission rates of vehicles. Gupta and Kumar (2000) derived that with n randomly located nodes, if each node
was capable of transmitting messages atW bits per second without interference and using a fixed transmission range, the
capacity was achieved as a function of W

n�logn under a non-interference protocol. If the nodes were optimally placed in a disk

within the region A, the capacity was determined by the value of
ffiffiffiffiffiffiffiffiffi
A=n

p
. Extending the static networks, Grossglauser and

Tse (2002) studied a mobile ad hoc network and showed that the node mobility increased the communication capacity
dramatically. Li et al. (2001) studied the capacity of wireless ad hoc network via NS-2 simulation. Yi et al. (2003) inves-
tigated the influence of directional antennas on increasing the capacity of a wireless network. Negi and Rajeswaran
(2004) obtained the capacity of wireless ad hoc network with ultra wide band communication model. Moreover, capac-
ities of multicast communications were also estimated with the consideration of message routing algorithms (Wang
et al., 2008, 2011). One pioneering study on communication capacities of VANETs was done by Du et al. (2009), where
the capacity of the entire network was defined as the maximum number of successful concurrent transmissions. They
proposed an integer programming (IP) model to study the broadcast capacity of VANETs.

In this article, we extend the study on communication throughputs of VANETs in Yang and Jin (2015) and propose ana-
lytical and optimization models for both broadcast and unicast communication capacities of VANETs. Here, we only consider
single-hop communications, where at any time slot a successful transmission occurs directly from one sender to one receiver
without any intermediate nodes. Even though equipped vehicles can move as fast as 80 mph in VANETs, their displacements
during each packet transmission time are rather small (in the order of 4 meters during 100 ms, which is the time for one
DSRC transmission) (Chen et al., 2010). Thus, we are concerned with communication capacities of instantaneous VANETs.
In this paper, we first analytically estimate communication capacities under uniform traffic streams, where vehicles are
evenly placed with the same spacing. Similar to the throughputs, the capacities are functions of the transmission range r,
the interference ratio d, and vehicular density q or vehicle distribution. However, they are not functions of the percentage
of senders as the throughputs. Moreover, we extend the IP models in Du et al. (2009) and calculate communication capacities
under general traffic streams. To satisfy the design of connected vehicle applications, the IP models are also extended to esti-
mate both broadcast and unicast capacities under uni- and bi-directional communications (Tse and Viswanath, 2005). Fur-
thermore, we apply a genetic algorithm (Barricelli, 1954; Goldberg, 1989) to solve for the capacities numerically. Finally, we
compare communication throughputs estimated in Yang and Jin (2015) with the capacities to validate both analytical and
numerical solutions proposed in this paper.

This study is highly related to but different from Du et al. (2009). In both studies, we are interested in estimating instan-
taneous communication capacities. But in this study we apply the protocol communication model based on interference
ranges to capture the interferences among transmissions, and the physical model based on signal-to-interference-and-
noise ratio (SINR) was used in Du et al. (2009). The physical model is more related to physical layer considerations, but
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the protocol model is capable of approximately capturing the impacts of signal interferences; more importantly, the protocol
model enables us to derive closed-form formulas for communication capacities as well as solve the corresponding IP model
more efficiently. In addition, this study is an extension of but different from Yang and Jin (2015). In both studies we consider
instantaneous information propagation and apply the same protocol communication model for given vehicular traffic pat-
terns. But in Yang and Jin (2015), the percentage of senders and, therefore, that of receivers are assumed to be given a priori;
in contract, in this study we attempt to select a set of senders from all nodes so as to achieve maximum broadcast and uni-
cast capacities efficiently.

The rest of the paper is organized as follows. Section 2 introduces a protocol communication model and defined the com-
munication capacities of VANETs. Section 3 derives closed-form solutions for the communication capacities under uniform
traffic streams. Section 4 constructs an optimization model for the capacities and develops a genetic algorithm to search for
solutions efficiently. Section 5 applies the optimization model and the genetic algorithm to calculate the communication
capacities along an uniform traffic and a shock wave. Finally, Section 6 concludes the work in this paper.
2. Definitions of communication capacities

Suppose that there are n vehicles on the road, and they are all equipped with wireless communication devices, i.e., the
MPR of the equipped vehicles is 100% (For the MPR less than 100%, only the equipped vehicles are considered). Their loca-
tions are denoted by xi; i ¼ 1;2; . . . ;n, and they are numbered from downstream to upstream. We assume that if i < j, then
xi P xj (see Fig. 1). Table 1 lists all notations defined in this paper.
2.1. A protocol communication model

Different from wired communications, wireless communications have two fundamental aspects: signal fading and inter-
ference (Tse and Viswanath, 2005). In this subsection, a protocol communication model presented in Gupta and Kumar
(2000) is introduced to describe the necessary conditions that a transmission is successfully received by a recipient over
one hop. If vehicle i transmits a message to vehicle j; i; j ¼ 1;2; . . . ;n; i– j, this message is successfully received by vehicle
j if and only if.

1. vehicle j is inside of the transmission range of vehicle i, i.e.,
jxi � xjj 6 ri; ð1Þ

where ri is the transmission range of vehicle i;
2. vehicle j should be outside the interference range of every other vehicle k that is simultaneously transmitting messages

ð8k 2 S; k– i; jÞ; i.e.,
jxk � xjj > ð1þ dkÞrk; ð2Þ

where rk is the transmission range of vehicle k, dk represents the interference ratio dk P 0, and ð1þ dkÞrk is the interfer-
ence range of vehicle k.

In the model, the transmission range is mainly determined by the transmission power and signal fading. The interference
ratio is generally determined by the strength of signals and background noise. One common setting of the transmission range
and the interference range is 250meter and 550meters respectively; here the interference ratio is 1.2 (Li et al., 2001). That is,
a transmission between a sender and a receiver is successful only when the receiver is within the transmission range of the
sender, but outside the interference ranges of other senders. From (1) and (2), we can see that the success of a transmission is
determined by the distance between the sender and the receiver in a traffic stream, the transmission range of the sender, and
the interference ratios of all other senders.

In this study, we assume that all vehicles have omni-directional antennas, which allow vehicles to send messages to all
directions. To define the communication capacities of VANETs, two communication methods, including uni-directional and
bi-directional communications, are introduced to manage transmissions. In uni-directional communications, messages are
transmitted from downstream senders to upstream receivers; i.e., upstream vehicles will only receive downstream traffic
information. For some applications of VANETs in transportation systems, uni-directional communications are reasonable,
since an upstream accident usually will not change the driving behaviors of a downstream vehicle. Then, it is not necessary
to transmit upstream incident information to downstream vehicles. In contrast, bi-directional communications, where a sen-
der will send messages to both upstream and downstream vehicles, are also important in reality. The method has benefits on
communication reliability, message routing strategies, etc. Also, it is widely applied in various VANET applications, such as
vehicle-signal coordination systems (Kamalanathsharma et al., 2015; Yang et al., 2016), which require one vehicle to com-
municate with both downstream traffic signals and upstream approaching vehicles.

We first define a binary random variable, Si, to represent senders. If node i is a sender, Si ¼ 1; otherwise, Si ¼ 0. We denote
the set of the senders by S ¼ fi : Si ¼ 1g, and the set of the other vehicles, which are automatically receivers, by R. The col-



Fig. 1. Distribution of equipped vehicles along a signal-lane freeway segment.

Table 1
Notations.

Deterministic variables
xi Location of vehicle i
ri Transmission range of vehicle i
di Interference ratio of vehicle i
n Total number of vehicles in the area of study
L Road length
Pi Number of successful receivers of a sender i
K Number of successful senders
W Wireless channel bandwidth
C1
b Broadcast capacity of uni-directional communications

C2
b Broadcast capacity of bi-directional communications

C1
u Unicast capacity of uni-directional communications

C2
u Unicast capacity of bi-directional communications

Random variables
Si 1: vehicle i is a sender; 0: otherwise
Yij 1: a successful communication from vehicle i to j; 0: otherwise

Regions and sets
Ti Transmission region of vehicle i
Ii Interference region of vehicle i
Ci Successful coverage of vehicle i
S Sender set
R Receiver set
S Sender selection
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lection, S ¼ fS1; S2; . . . ; Sng, is defined as the sender selection set. The transmission region of vehicle i is denoted byTi, and its
interference region by Ii.

From (1) and (2), the interference region of the sender i in a VANET is defined as
Ii ¼ ðxi � ð1þ diÞri; xi þ ð1þ diÞriÞ: ð3Þ

Note that the interference range is always bi-directional. For uni-directional communications, the transmission region of i is
Ti ¼ ðxi; xi þ ri�: ð4aÞ

For bi-directional communications, the transmission region is
Ti ¼ ½xi � ri; xiÞ [ ðxi; xi þ ri�: ð4bÞ

Then, the successful coverage of the sender i is
Ci ¼ Ti \ \k–i;k2SIk

� �
; ð5Þ
where Ik is the complement region of Ik. And, the successful coverage of all senders is
CðSÞ ¼ [i2SCi: ð6Þ

We also denote the set of successful receivers of the sender i by Ti,
Ti ¼ fjjj 2 R; xj 2 Cig: ð7Þ

The number of elements in Ti is denoted by Pi, which is the number of the successful transmissions of vehicle i, and the
number of total successful transmissions by PðSÞ, then
PðSÞ ¼
X
i2S

Pi: ð8Þ
For each sender i, when Pi ¼ 0; i.e., when it does not have any successful receivers, we say i is an unsuccessful sender. We
define KðSÞ as the number of successful senders:
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KðSÞ ¼
X

i2S;Pi>0

1: ð9Þ
Note that, in the problem of searching for the communication capacity, the optimization argument can also be written as
the sender selection of variable S. There are totally 2n possible sender sets. The solution of the optimization problems always
exists, and the largest number of transmissions should not be greater than n� 1. If all nodes are within the transmission
range of one node, then maxSPðSÞ ¼ n� 1.

Lemma 2.1. For an unsuccessful sender i, we have
PðSÞ 6 PðS n figÞ;
KðSÞ 6 KðS n figÞ; ð10Þ
where S n fig represents the sender selection set which has all elements in S except Si. Therefore in the optimal solution, unsuc-
cessful senders shall not exist.
Proof. When Pi ¼ 0, for the new sender selection set S0 ¼ S n fig, there is a new set of non-senders R0 ¼ R [ i � R. For
j 2 S0, there is Cj � C0

j. Thus, Tj #T0
j, and Pj 6 P0

j. h

Another property is that, in the optimal solution, the successful coverage of all senders should not overlap; i.e.,
Ci \ Cj ¼ £; i– j: ð11Þ
2.2. Definitions of capacities

In VANETs, information can be disseminated through various methods, and there are two most common modes: broad-
cast and unicast (Tse and Viswanath, 2005). Broadcast communications allow one sender to transmit messages to all possible
nodes in the network; while unicast communications only allow one sender to transmit messages to a single, designated
node. Note that a successful receiver must receive a message from one and only one successful sender, but a successful sen-
der can send messages to multiple receivers. In broadcast, all successful transmissions contribute information dissemination,
but in unicast only one transmission from one sender is effective. Therefore, the performance of broadcast communications
is determined by the number of successful receivers, while that of the unicast communications by the number of successful
senders. Moreover, successful transmissions in both modes are governed by the aforementioned protocol communication
model.

In the broadcast communication, one sender transmits messages to all other vehicles within its transmission region. Then,
the broadcast capacity, the maximum per-node transmission rate (Gupta and Kumar, 2000), is defined as the product of the
maximum number of successful concurrent transmissions and the per-node wireless channel bandwidth, W

n , i.e,
Cb ¼ max
S

PðSÞ �W
n
: ð12Þ
In the unicast communication, one sender only transmits messages to one specific destinations. Generally, message routing
algorithms, such as ad hoc on demand distance vector routing (Perkins et al., 2003) and dynamic source routing (Johnson and
Maltz, 1996), are associated with unicast communications of VANETs (Li and Wang, 2007; Bernsen and Manivannan, 2009).
The unicast capacity is governed by both routing algorithms and optimal assignments of senders and receivers (Wang et al.,
2008, 2011). However, introducing routing algorithms with multi-hop communications significantly increases the complex-
ity of the analysis. As a starting point, we investigate the instantaneous unicast capacity under the single-hop communica-
tion, where one sender only sends messages to a nearby destination in one hop. Hence, only the optimal assignment of
senders and receivers is required to identify the highest message transmission rate of the unicast communication. The uni-
cast capacity is defined as the product of the maximum number of successful concurrent senders and the per-node channel
bandwidth, i.e.,
Cu ¼ max
S

KðSÞ �W
n
: ð13Þ
Given the vehicle distribution on a road, i.e, the locations of vehicles fxkg; k ¼ 1;2; . . . ;n, the transmission range rk, and the
interference ratio dk, both broadcast and unicast capacities can be calculated numerically with the model in Section 2.1.
Moreover, the studies of capacities also provide the optimal assignment of senders and receivers in a VANET. In the future,
with the cooperations of connected and automated vehicles, the optimal assignment can be applied to maximize the com-
munication efficiency.
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3. Communication capacities in uniform traffic

In this section, we will analytically study the communication capacities of VANETs in uniform traffic. Considered a
straight road with length L and a constant vehicle density q, the number of vehicles on the road is n ¼ qL, and their locations
are xk ¼ ðn� kÞ=q; k ¼ 1;2; . . . ;n. The spacings of all vehicles are the same, s ¼ 1=q (see vehicles in Fig. 1 with the same spac-
ing). Moreover, we assume that all vehicles are equipped with wireless communication devices, i.e., they are all potential
senders and receivers. To simplify the analysis of capacities, we start with the assumption that all vehicles have the same
communication range, r, and interference ratio, d.

From the protocol model proposed in Section 2, if both vehicle i and k are successful senders, vehicle j is a successful recei-
ver of i, and vehicle l is a successful receiver of k, then they should satisfy the constraints of the protocol model (1) and (2). As
shown in Fig. 2, the distance between two closest successful receivers j and l cannot be smaller than dr:
1 As s
vehicles
vehicles
jxj � xlj P jxj � xkj � jxl � xkj P ð1þ dÞr � r ¼ dr: ð14Þ
3.1. Broadcast capacity

In the broadcast communication, one sender transmits messages to all vehicles within its own transmission region. To
achieve the broadcast capacity, a sender shall try to cover as many vehicles within its transmission region as possible, to
reduce the number of vehicles interfered, and to increase the number of vehicles receiving messages successfully. With this
idea, the uni-directional capacity C1

b and the bi-directional capacity C2
b are analyzed below.

Without loss of generality, we assume that uni-directional communications only allow message transmissions from
downstream to upstream. That is, for a given successful sender, all vehicles within the transmission region have to receive
messages from that sender; while only upstream vehicles can receive them successfully (see Fig. 3(a)). The distance between
the farthest receiver and all the other senders should be greater than ð1þ dÞr (2), which indicates the length of the interfer-
ence region of one successful sender is
LI ¼ jxf � xij þ ð1þ dÞr; ð15Þ

where xf and xs is the locations of the farthest receiver and the sender, respectively. (1) indicates that an equipped vehicle
can send messages to another one successfully only when their distance is less than the transmission range r. In uniform
traffic, the minimum distance between two vehicles is constant and equals the spacing, s. To identify whether there exist
successful communications, r and s shall be compared. In the following, formulas for broadcast capacities are derived under
different values of r.

1. If r < s, it is impossible to find two vehicles satisfying (1); i.e., there is not any successful transmission. Hence, the
communication capacity is
C1
b ¼ 0: ð16Þ

2. If r P s, the distance between the farthest receiver and the sender is
jxf � xsj ¼ brqc � s ¼ r
s

j k
� s;

where b�c finds the integer floor of a given value. Then the number of vehicles that receive messages successfully from the
sender is n1 ¼ brqc. In addition, the number of vehicles that are interfered by one successful transmission and fail to
receive messages is

n2 ¼ dð1þ dÞrqþ �e;
where d�e finds the integer ceiling of a given value, � is a small positive value, and �� 1.
Hence, the average number of vehicles interfered by the successful transmission is n3 ¼ n1 þ n2. The broadcast capacity in
the uniform traffic is obvious with the consideration of the road boundaries.1

C1
b ¼ n

n3

� �
� n1 þminfn0 � 1; n1g

� �
�W
n
; ð17Þ

where n0 ¼ modðn;n3Þ, and modða; bÞ is a modulo operation that finds the remainder of the division of a by b.

In the bi-directional communication, a successful sender transmits messages to all vehicles in both the upstream and the
downstream transmission regions. The optimal assignment of senders and receivers is shown in Fig. 3(b). (15) is also
hown in Fig. 1, traffic bounds are defined as the two ends of the road: x ¼ 0 and x ¼ L. In this study, we only consider communication capacities among
inside the segment, 0 < x < L. Hence, we assume that the impact of other vehicles beyond the segment is neglected, and the transmissions to these
are not counted in the capacity estimation.



Fig. 2. Distance among two closest successful receivers.
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applicable for bi-directional communications. Considering the uniform traffic, we obtain the following results for the broad-
cast capacity, C2

b .

1. If r < s, it is impossible to find two vehicles satisfying (1); i.e., there is not any successful transmission. Hence, the
communication capacity is
C2
b ¼ 0: ð18Þ

2. If r P s, without considering the influence of the traffic boundaries, we derive that for each successful sender, the
average number of successful receiver is 2 � n1, and the average number of vehicles interfered by one successful trans-
mission is n3. With the optimal assignment of all senders in the network, we can find the broadcast capacity.
If n < n3, the capacity is
C2
b ¼ minf2n1;n� 1g½ � �W

n
: ð19aÞ

If n P n3, the broadcast capacity is

C2
b ¼ n

n3

� �
� 2n1 þ nB

� �
�W
n
; ð19bÞ

where nB is determined by the road boundaries (see Fig. 4). When n0 6 n1, the one closest to the road boundary is firstly
assigned as the sender as shown in Fig. 4(a), then the number of successful receivers in the n0 vehicles is 2ðn0 � 1Þ � n1. If
the value is smaller than 0, then we remove the sender, and set all the n0 vehicles near the boundary be unsuccessful
receivers. That is, nB ¼ maxf0;2n0 � n1 � 2g. If n1 < n0 6 2n1 þ 1, the assignment of the senders and receivers near the
boundary is shown in Fig. 4(b), where the (n0 � n1)th vehicle from the boundary is set as the sender then all other vehicles
are successful receivers. If n0 > 2n1 þ 1, there are totally 2n1 vehicles receiving messages from one sender successfully,
and the others are interfered by the sender (see Fig. 4(c)). Hence, the boundary effect, nB, is determined by the formula
below.
(a) Uni-directional communication

(b) Bi-directional communication

Fig. 3. Optimal node assignments for broadcast capacities in uniform traffic.



(a) n0 ≤ n1

(b) n1 < n0 ≤ 2n1+1

(c) n0 > 2n1+1

Fig. 4. Boundary effect of bi-directional broadcast communications.
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nB ¼
maxf0;2n0 � n1 � 2g n0 6 n1

n0 � 1 n1 < n0 6 2n1 þ 1
2n1 n0 > 2n1 þ 1

8><
>: :

If the road length is sufficiently long; i.e., if the total number of vehicles n is very large, and n � n0, then the boundary
effect can almost be ignored (see (17) and (19a)). In that sense, the uni-directional broadcast capacity is proportional to
n1
n3
, and bi-directional 2�n1

n3
, which are equivalent to rq

ð2þdÞrqþ1 and 2rq
ð2þdÞrqþ1, respectively. Further, when either the transmission

range or the vehicle density are large; i.e., when rq� 1, the uni-directional and bi-directional broadcast capacities can be
further simplified into 1

2þdW and 2
2þdW , respectively. Thus the uni-directional capacity is approximately half of the bi-

directional capacity. This is intuitively true, as in the bi-directional broadcast communication, a sender can transmit mes-
sages to all potential receivers at both upstream and downstream transmission regions. While in the uni-directional com-
munication, a successful sender only transits messages to the receivers in its downstream transmission region, which is
just half of that in the bi-directional communication.

3.2. Unicast capacity

In this subsection, we estimate the unicast capacity under an uniform traffic stream. Based on the definition in Section 2.2,
the capacity is determined by the maximum number of the successful senders, which is achieved by minimizing the average
interference region of each sender. In order to minimize the region, only the closest vehicle of a given sender is chosen as its
successful receiver.

In the uni-directional communication, the optimal assignment of senders and receivers are shown in Fig. 5(a), and trans-
missions only occur from downstream to upstream. With this assignment, the capacity of the unicast communication, C1

u , is
analyzed below.

1. If r < s, there is not any successful transmission (1). So, the unicast capacity is
C1
u ¼ 0: ð20Þ

2. If r P s, the length of the interference region of an successful transmission is

LI ¼ jxs � xcj þ ð1þ dÞr;
where xc is the closest vehicle in the upstream of the sender. In the uniform traffic, there is

jxs � xcj ¼ s:



(a) Uni-directional communication

(b) Bi-directional communication

Fig. 5. Optimal node assignments for unicast capacities in uniform traffic.
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Hence, the average number of vehicles interfered by one successful transmission is n4 ¼ 1þ n2. Then the unicast
capacity is

C1
u ¼ n

n4

� �
þminfmodðn;n4Þ � 1;1g

� �
�W
n

ð21Þ

In the bi-directional communication, the optimal assignment of senders and receivers are shown in Fig. 5(b). Different
from the uni-directional communication, the bi-directional communication allows transmissions from upstream to down-
stream. The capacity of the unicast communication, C2

u, can be analyzed in the following steps.

1. If r < s, there is not any successful transmissions (1). So, the unicast capacity is
C2
u ¼ 0: ð22Þ

2. If r P s, based on the optimal assignment in Fig. 5(b), the average number of vehicles interfered by two consecutive
unicast transmissions is
2

n5 ¼ 2
ð1þ dÞr

s
þ �

	 

:

Since r P s, there is n5 P 4. Hence, the unicast capacity is determined by the formula below with the boundary effect.

C2
u ¼ 2

n
n5

� �
þ nU

� �
�W
n
; ð23Þ

where nU represents the number of successful senders at the boundary of the segment. If n0
0 ¼ 1 (see Fig. 6(a)), where n0

0 is
the number of vehicles associated with the road boundary and n0

0 ¼ modðn;n5Þ, the vehicle cannot be a successful sender
or receiver, i.e., nU ¼ 0. If 2 6 n0

0 6 n5
2 þ 1, the assignment of the senders and receivers near the boundary is shown in Fig. 6

(b), and there is nU ¼ 1. Fig. 6(c) shows the assignment of senders and receivers when n5
2 þ 2 6 n0

0 < n5, and there is
nU ¼ 2.2 Hence, the value of nU are determined by the formulas below.
If n5 ¼ 4, then

nU ¼ 0 n0
0 ¼ 1;

1 2 6 n0
0 6 n5

2 þ 1:

(

If n5 > 4, then

nU ¼
0 n0

0 ¼ 1;
1 2 6 n0

0 6 n5
2 þ 1;

2 n5
2 þ 2 6 n0

0 < n5

8><
>:
Here, the n5 shall be greater than 4; otherwise, the condition, n5
2 þ 2 6 n0

0 < n5, does not exist.



(a) n′0 = 1

(b) 2≤ n′0 ≤ n5
2 +1

(c) n52 +2≤ n′0 < n5 and n5 > 4

Fig. 6. Boundary effect of bi-directional unicast communications.
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Similar to the broadcast communication, if the road length is long enough, i.e., n � n4 and n � n5, the boundary effect can
be ignored (see (21) and (23)). Therefore, the uni- and bi-directional capacities are functions of 1

n4
and 2

n5
, which are equivalent

to 1
2þð1þdÞrq and 1

1þð1þdÞrq, respectively. Here, the capacities from the uni- and bi-directional communications are quite similar.

The results can be explained by the mechanism of the unicast communication, with which one sender can only send mes-
sages to one receiver regardless of uni- or bi-directional communications. Hence, the number of successful senders will be
similar in the two types of communications.

Note that the analysis in this section only applies to uniform traffic streams. In reality, due to traffic waves and random-
ness in human driving behaviors, exactly uniform traffic with evenly distributed vehicles is rarely observed. But, the traffic
state near the uniform condition can still be observed once a road reaches a steady state. Hence, the analysis here can be used
to estimate communication efficiency of these networks approximately. Moreover, a lot of advanced traffic control systems,
such as green driving (Yang and Jin, 2014) and vehicle platooning with cooperative adaptive cruise control (Milanés et al.,
2014), require vehicles to travel with a steady speed and maintain a constant spacing. In the future, with the increase of
the penetration rate of connected and automated vehicles, it becomes more possible to achieve the optimal steady state
and to maintain uniform traffic conditions on the road. In that sense, the analysis of communication capacities under uni-
form traffic streams will be important on establishing efficient communications and designing reliable applications.
4. An optimization formulation and its numerical solution

In Section 3, we have analytically investigated communication capacities under uniform traffic streams. But, when it goes
to general (non-uniform) traffic, where the spacings of vehicles are not the same, analytical capacity estimations will be very
difficult due to the unknown distribution of vehicles on the road. Du et al. (2009) constructed integer programming (IP) mod-
els to search for uni-directional broadcast capacities numerically. In this section, we extend the models for both uni- and bi-
directional broadcast and unicast communications with the protocol communication model, and develop a genetic algorithm
to estimate communication capacities under general traffic patterns efficiently.
4.1. An optimization model for communication capacities

In this subsection, we construct an optimization model for communication capacities in general traffic. We first define
one Bernoulli random variable, Yij, to identify successful transmissions. If vehicle i sends packages successfully to vehicle
j;Yij ¼ 1; otherwise, Yij ¼ 0; 8i; j ¼ 1;2; . . . ;N. To generalize the applications of the model, we assume that vehicle
i ði ¼ 1;2; . . . ;NÞ has its own transmission range, ri, and interference ratio, di. From the protocol model, if a vehicle is a suc-
cessful sender, it has at least one successful receiver. For a successful receiver, it has only one successful sender, and satisfies
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(1) and (2). Moreover, the objective of the study is to search for the best assignment of senders to maximize the total number
of successful transmissions. Hence, the broadcast capacity can be obtained by the following optimization problem.
max
Xn
i¼1

Xn
j¼1

Yij �Wn ð24aÞ
s.t.
SkYijðjxk � xjj � ð1þ dkÞrkÞ P 0; i– k; i– j; k– j; j ¼ 1; . . . ;n; ð24bÞ
Yijjxi � xjj 6 ri; i– j; j ¼ 1; . . . ;n; ð24cÞ

Sj þ
Xn
i¼1

Yij 6 1; j ¼ 1; . . . ;n; ð24dÞ

Xn
i¼j

Yij ¼ 0; j ¼ 1; . . . ;n; ð24eÞ

Si ¼ max
j

fYijg; i ¼ 1; . . . ; n; ð24fÞ
Yij ¼ f0;1g; i; j ¼ 1; . . . ;n: ð24gÞ
The constraints are explained in the following:

1. (24b) gives the constraint of the protocol model for a successful transmission: if both vehicles i and k are successful
senders, and j is a successful receiver of node i, then the distance between k and j should be greater than ð1þ dkÞrk.

2. (24c) indicates that, for a successful transmission, the distance between a sender i and its receiver j is smaller than
the transmission range ri. At the same time, this constraint ensures that the capacity is 0; i.e., Yij ¼ 0, when the trans-
mission range ri is smaller than the spacing of any two vehicles jxi � xjj; 8i– j; j ¼ 1;2; . . . ;n.

3. (24d) means that, for a given vehicle j, it could not be a sender or a receiver at the same time.
4. (24e) shows the constraint of the uni-directional communication, with which a successful transmission only happens

from downstream vehicles to upstream vehicles, and the reverse transmissions are prohibited. If the bi-directional
communication is considered, (24e) should be removed. This revision extends the study in Du et al. (2009) to model
the capacities of bi-directional communications.

5. (24f) defines the relationship between a successful sender and its relative successful transmissions. It also indicates
that a successful transmission only has one successful sender.

6. (24g) shows the definitions of variable Yij’s.

(24) can also be applied to estimate unicast capacities, which are estimated by maximizing the number of the successful
senders, by replacing (24a) with (25). All the constraints remain the same.
max
Xn
i¼1

Si �Wn ð25Þ
Based on the microscopic traffic flow models, such as car-following models and lane-changing models, vehicle distribu-
tions on roads are obtainable. The problem of estimating communication capacities becomes how to find the solutions for
(24a) and (25). But, when the number of vehicles on a road is very large, the computational complexity would be very high.
In the next subsection, we propose a genetic algorithm to solve this optimization problem efficiently.

4.2. Genetic algorithm

The aforementioned subsection indicates that the communication capacities of a VANET are not only determined by the
communication characteristics, including transmission range ri and influence ratio di, but also related to the distribution of
equipped vehicles, fxi; i ¼ 1;2; . . . ;ng. In a transportation network, even though the locations of equipped vehicles are
restricted by the network topology, road traffic signals, and driving behaviors, randomness of vehicular locations due to
human driving behaviors still exists and makes it very difficult to find a mathematical solution for capacities under general
traffic pattern. In this subsection, we propose a genetic algorithm, which has a distinct advantage on solving optimization
problems with random variables (Goldberg, 1989), to find communication capacities (24) and (25). Lemma 2.1 is also applied
to improve the computational efficiency of the algorithm.

The genetic algorithm is an optima-searching algorithm to mimic the natural selection and mutation processes of genet-
ics (Goldberg, 1989). This algorithm starts with a set of solutions called initial population. Solutions from one population are
taken and used to form a new population. This is motivated by a hope that the new population will be better than the old
one. Solutions which are selected to form new solutions are chosen according to their fitness. The more suitable they are, the
more chances they have to reproduce.
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This study aims at finding a set of senders, S, to maximize the number of successful senders or receivers as well as to
estimate capacities. Fig. 7 illustrates the process of the algorithm, and the details of the algorithm are described below.

1. Randomly generate a sender selection set from n vehicles, Sk; k ¼ 1;2; . . . ; P (P is the population size);
2. Calculate the number of successful transmissions or senders (throughput) of each solution in the population with the

communication model described in Section 2.2;
3. Create a new set of solutions by repeating the following steps until the number of solutions in the new set is P;

(a) Choose the solution with the largest throughput as the first offspring of the new population;
(b) Randomly choose a pair of solutions from the old population;
(c) Randomly select a cross point with the probability pc between ½1;n� 1�, and cross the two selected solutions to

create two new solutions;
(d) Assume that each vehicle has pm probability to be mutated, i.e., each one has pm probability to change its states

(sender, non-sender);
(e) Place the new solutions in the new population until there are P solutions there;

4. Replace the old population with the new one as the next generation;
5. If the iteration number is larger than the maximum generation G or the capacity does not change in T generations,

stop; otherwise, go to step 2.

In the application of the genetic algorithm, randomly selecting cross point and mutation point is not efficient. Lemma 2.1
indicates that removing unsuccessful sender will increase the value of the objective function. Then, in the algorithm, if one
sender is not successful in current generation, we will choose a larger value for pm to make it a receiver in the next gener-
ation. Moreover, (11) shows that the successful coverage of all senders should not overlap each other, so we increase pm for
the uncovered nodes to make them be senders in the next generation.
5. Numerical results

In this section, we simulate several traffic streams to verify the analytical study in Section 3 and the optimization model
in Section 4. MATLAB R2009b is applied to model VANETs, including vehicle dynamics and wireless communications with
the protocol model.Based on the protocol model, we search for the maximum number of successful senders or receivers
under this set. Assume that all selected senders are transmitting messages simultaneously, then the rest of the vehicles
can be assigned into three different states: receiver, interfered node and uncovered node. If one vehicle is in the transmission
region T of a sender, it is defined as a receiver. If a node is in the interference region I of a sender, it is called a interfered
node. For all other vehicles, they are set as the uncovered nodes. In our study, we want to maximize the number of the suc-
cessful senders or receivers, depends on whether we are interested in unicast or broadcast communication capacities. Hence,
for one vehicle j, if it is a receiver of vehicle i, and it is not interfered by the other senders, j is a successful receiver of vehicle i.
And simultaneously, vehicle i is a successful sender.

5.1. Communication capacities under uniform traffic

We consider a uniform traffic stream at density q ¼ 20 veh/km on an uninterrupted freeway section. Vehicles are dis-
tributed on the road, ½0; L� km, with the same spacing s ¼ 1=q ¼ 0:05 km. We set L ¼ 5 km, i.e., the number of vehicles is
n ¼ 100, and the location of vehicle i as xi ¼ ðn� iÞs; i ¼ 1;2; . . . ;n. Suppose that all vehicles are equipped with wireless com-
munication devices. We arbitrarily set a various communication ranges r ¼ f50;100;150;200;250g meters and interference
ratios d ¼ f0;1g. 3 In this simulation, we consider a constant wireless channel bandwidth, W ¼ 6 Mbps (Jiang et al., 2008).

For the genetic algorithm, the initial population is randomly generated and the population size P is set as 30. The cross
rate pc is 0.6, while the mutation rate is pm ¼ 0:0333. The stopping criteria of this algorithm is that the total number of gen-
erations is larger than G ¼ 500 or the capacity does not change in T ¼ 100 generations. In each generation, if one vehicle is
not covered by any transmissions, or it is an unsuccessful sender, the mutation rate is increased to 10 	 pm.

Fig. 8 illustrates the process of the genetic algorithm on searching for the broadcast communication capacity with
r ¼ 150 m and d ¼ 1. The genetic algorithm iterates the population about 270 times to reach the capacity, which indicates
the computational complexity for this scenario is approximately 270
 30 ¼ 8100. Compared with the complexity of the
optimization problem, 2100, the genetic algorithm is much more efficient on searching for the capacity.

Table 2 shows the uni-directional broadcast and unicast capacities under different communication ranges and interfer-
ence ratios. The analytical (from the theoretical formulas in Section 3) and the simulated (from the optimization model
and the genetic algorithm in Section 4) results are consistent with each other. This serves as a validation for our analysis
in Section 3. Table 2 also indicates that, with a larger transmission range, the broadcast capacity gets larger, while the unicast
capacity becomes smaller. This is intuitively correct, since in the broadcast communication more vehicles can be covered by
3 The maximum transmission range of IEEE 802.11p is set as 1000 m (Fisher, 2007), and one common setting of the interference ratio is d ¼ 1:2 (Li et al.,
2001).



Fig. 7. Flow chart of the genetic algorithm.
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Fig. 8. Broadcast capacity estimation with the genetic algorithm: r ¼ 150 m, d ¼ 1.
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Table 2
Comparisons of analytical and simulated uni-directional communication capacities under an uniform traffic.

Transmission range (m) 50 100 150 200 250

BrO-adcast d ¼ 0 Analytical 1.97 2.40 2.57 2.63 2.70
Simulated 1.93 2.40 2.57 2.63 2.70

d ¼ 1 Analytical 1.50 1.73 1.80 1.93 1.97
Simulated 1.43 1.73 1.80 1.93 1.97

Uni-cast d ¼ 0 Analytical 1.97 1.50 1.20 1.03 0.90
Simulated 1.97 1.50 1.20 1.03 0.90

d ¼ 1 Analytical 1.50 1.03 0.77 0.60 0.53
Simulated 1.43 1.03 0.77 0.60 0.53
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senders with a larger transmission range, but in the unicast network, the larger range indicates more vehicles are interfered
by a single sender. It is also straightforward to predict that a larger interference ratio reduces both broadcast and unicast
capacities.

Table 3 shows the bi-directional broadcast and unicast capacities. As predicted by the analytical results in Section 3, the
broadcast capacities with bi-directional communications are almost twice of those with uni-directional communications4;
the unicast capacities with bi-directional communications are only slightly higher than those with uni-directional communica-
tions. Moreover, Table 3 indicates that with larger transmission ranges, the broadcast capacities will be larger, while the unicast
capacities become smaller. The trend is similar to the uni-directional communications.
5.2. Communication capacities under a shock wave

In this subsection, we consider the communication capacities on an single-lane road with a stream of traffic subjected to a
shock wave. Initially, there are n ¼ 150 vehicles located on the section ½0;4000� m, and their locations are
4 Due
xkð0Þ ¼
4000� 16:67k 1 6 k 6 60
3000� 33:33ðk� 60Þ 61 6 k 6 150

�
:

The leading vehicle 1 is traveling with a constant speed, v1ðtÞ ¼ 5:11 m/s. And, Newell’s car-following model (26) (Newell,
2002) is applied to describe the dynamics of all vehicles.
xkðt þ sÞ ¼ minfxk�1ðtÞ � d; xkðtÞ þ usg; ð26Þ
where d; s; u represent jam spacing, time gap, and free flow speed, respectively. In this simulation, we set d ¼ 9 meters,
s ¼ 1:5 s, and u ¼ 30 m/s. With these settings, a shock wave is generated on the road. Similar to the experiment in Section 5.1,
we let W ¼ 6 Mbps. The traffic stream is simulated for 150 s. Fig. 9 shows the simulated trajectories of all vehicles, where a
shock wave is formed and traveling backward with a constant speed.

With the same parameter settings of the communication and the genetic algorithm in Section 5.1, both uni- and bi-
directional broadcast and unicast capacities are estimated at t ¼ 0;54 s in Table 4. The results indicate that a shock wave
slightly increases the broadcast capacities and reduces the unicast capacities. This phenomena is consistent to the analysis
in Section 3, which shows that under the same communication settings, a denser traffic only increase the broadcast capacity
slightly due to boundary effect, and decreases the unicast capacity. The conclusion is contradict to common observations that
denser traffic generates more transmission conflicts so as to reduce communication efficiency. However, the common obser-
vation is based on the assumption that the percentage of simultaneous senders are almost the same. But in the estimation of
communication capacities, an optimal percentage of senders is chosen to maximize the transmission rate. With a denser traf-
fic, the percentage of senders is smaller to find the capacity. This phenomenon is also verified in Yang and Jin (2015). More-
over, Fig. 10 shows the broadcast and unicast capacities under uni- and bi-directional communications with r ¼ 150 m and
d ¼ 0. We see that the shock wave increases both uni- and bi-directional broadcast capacities, and reduces unicast capacities.

In Yang and Jin (2015), close-form formulas for the mean uni-directional communication throughputs of VANETs are
developed. This study is highly related to the capacity analysis, as the capacity is the maximum value of throughput. Here,
we compare the average throughput and the capacity when a shock wave is propagating on the road. Using the example
above, We calculate both broadcast and unicast capacities and throughputs under different time steps with r ¼ 150 m
and d ¼ 0. Results in Fig. 11 indicate that the calculated capacities are larger than the theoretical throughput. Intuitively, this
is correct, as the capacity is the maximum value of the throughput. The figures also illustrate that a shock wave increases
both the capacity and the throughput under the broadcast communication, while decreases them under the unicast commu-
nication. However, the effect of traffic patterns on the communication capacities is not very significant. Moreover, we see
throughputs and capacities have the similar trends when they are experiencing a shock wave.
to node assignments at the road boundaries, the bi-directional broadcast capacities are not exact twice of uni-directional capacities.



Table 3
Comparisons of analytical and simulated bi-directional communication capacities under an uniform traffic.

Transmission range (m) 50 100 150 200 250

BrO-adcast d ¼ 0 Analytical 3.97 4.80 5.03 5.27 5.17
Simulated 3.73 4.43 4.63 5.03 5.17

d ¼ 1 Analytical 3.00 3.37 3.60 3.83 3.67
Simulated 2.63 3.23 3.30 3.67 3.53

Uni-cast d ¼ 0 Analytical 3.00 1.97 1.50 1.20 1.03
Simulated 2.83 1.80 1.43 1.07 0.97

d ¼ 1 Analytical 1.97 1.20 0.90 0.67 0.53
Simulated 1.87 1.13 0.83 0.67 0.53
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Fig. 9. Vehicular trajectories in a shock wave.
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6. Conclusion

In this paper, we investigated the communication capacities to measure wireless message transmission efficiency of
VANETs for uniform and general vehicular traffic patterns. The numbers of concurrent successful senders and receivers were
applied to derive both broadcast and unicast capacities, respectively, and the optimal assignments of senders and receivers
under both uniform and general traffic streams were chosen to estimate the capacities and to maximize message transmis-
sion efficiency of a fully connected and automated vehicle system in the near future. In this paper, we first analytically esti-
mated the broadcast and unicast capacities of uni-directional and bi-directional communications under uniform traffic. We
derived the capacities as functions of the vehicular density q, the communication range r, and the interference ratio d. The
analysis showed that, for uni-directional communications, the broadcast capacity is approximately proportional to rq

ð2þdÞrqþ1

(17), while the unicast capacity 1
2þð1þdÞrq (21). For bi-directional communications, the broadcast capacity is approximately

proportional to 2rq
ð2þdÞrqþ1 (19a), while the unicast capacity 1

1þð1þdÞrq (23). We developed an optimization model and a genetic

algorithm integrated with the protocol communication model to search for the capacities. The crossing and mutation
probabilities of the genetic algorithm were adjusted based on traffic patterns and communication properties to improve
the efficiency of the algorithm. This methodology had potential on obtaining communication capacities in general traffic,
Table 4
Broadcast and unicast communication capacities under a shock wave ðd ¼ 0; n ¼ 150Þ.

Transmission range (m) 50 100 150 200 250

Uni-directional Broadcast t ¼ 0 1.93 2.33 2.57 2.60 2.73
t ¼ 54 2.00 2.40 2.60 2.63 2.80

Unicast t ¼ 0 1.47 0.97 0.67 0.53 0.47
t ¼ 54 1.23 0.73 0.53 0.43 0.40

Bi-directional Broadcast t ¼ 0 3.93 4.57 4.83 5.00 5.03
t ¼ 54 4.13 4.80 4.87 5.03 5.20

Unicast t ¼ 0 2.03 1.20 0.73 0.63 0.53
t ¼ 54 1.77 0.97 0.67 0.57 0.47



0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

Time (second)

C
ap

ac
ity

 (M
bp

s)

uni−directional broadcast
bi−directional broadcast
uni−directional unicast
bi−directional unicast
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340 H. Yang, W.-L. Jin / Transportation Research Part C 72 (2016) 325–341
and it was a fundamental work of future capacity studies. Moreover, the influence of traffic dynamics on communication
capacities had been investigated. A shock wave in a traffic stream could increase broadcast capacities while decreasing uni-
cast capacities.

In the future we will consider the impact of multi-hop communications and message routing algorithms on both broad-
cast and unicast capacities. We also plan to apply the analysis of communication capacities to develop efficient message
routing algorithms in VANETs. Furthermore, we will analyze more general and realistic traffic and communication scenarios
with considerations of market penetration rates of equipped vehicles, stop-and-go waves, SINR communication model, etc.
In addition, we will analytically estimate communication capacities under general traffic patterns, and integrate the analysis
with advanced traffic control systems, such as green driving and cooperative adaptive cruise, to improve their reliability and
efficiency.

Acknowledgments

We would like to thank two anonymous reviewers for many insightful comments, which have helped to substantially
improve the presentation of this paper. We would also like to thank Dr. Di Wu and Professor Amelia Regan for their helpful
discussions. Support of University of California Transportation Center is acknowledged.

References

Aoki, M., Fujii, H., 1996. Inter-vehicle communication: technical issues on vehicle control application. IEEE Commun. Mag. 34 (10), 90–93.
Barricelli, N. et al, 1954. Esempi numerici di processi di evoluzione. Methodos 6 (21–22), 45–68.

http://refhub.elsevier.com/S0968-090X(16)30190-5/h0005
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0010


H. Yang, W.-L. Jin / Transportation Research Part C 72 (2016) 325–341 341
Bernsen, J., Manivannan, D., 2009. Unicast routing protocols for vehicular ad hoc networks: a critical comparison and classification. Pervasive Mobile
Comput. 5 (1), 1–18.

Chen, R., Jin, W.-L., Regan, A., 2010. Multi-hop broadcasting in vehicular ad hoc networks with shockwave traffic. In: 7th IEEE Consumer Communications
and Networking Conference. IEEE, pp. 1–5.

Du, L., Ukkusuri, S., Yushimito Del Valle, W., Kalyanaraman, S., 2009. Optimization models to characterize the broadcast capacity of vehicular ad hoc
networks. Transport. Res. Part C 17 (6), 571–585.

Fisher, W., 2007. Development of DSRC/WAVE Standards. IEEE, Annapolis.
Franz, W., Eberhardt, R., Luckenbach, T., 2001. Fleetnet-internet on the road. In: 8th World Congress on Intelligent Transport Systems.
Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading Menlo Park.
Grossglauser, M., Tse, D., 2002. Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Trans. Netw. 10 (4), 477–486.
Gupta, P., Kumar, P., 2000. The capacity of wireless networks. IEEE Trans. Inform. Theory 46 (2), 388–404.
Jiang, D., Chen, Q., Delgrossi, L., 2008. Optimal data rate selection for vehicle safety communications. In: 5th ACM International Workshop on VehiculAr

Inter-NETworking. ACM, pp. 30–38.
Jin, W.-L., Recker, W.W., 2006. Instantaneous information propagation in a traffic stream through inter-vehicle communication. Transport. Res. Part B 40 (3),

230–250.
Jin, W.-L., Recker, W.W., 2010. An analytical model of multihop connectivity of inter-vehicle communication systems. IEEE Trans. Wirel. Commun. 9 (1),

106–112.
Johnson, D.B., Maltz, D.A., 1996. Dynamic source routing in ad hoc wireless networks. In: Mobile Computing. Springer, pp. 153–181.
Kamalanathsharma, R.K., Rakha, H.A., Yang, H., 2015. Networkwide impacts of vehicle ecospeed control in the vicinity of traffic signalized intersections.

Transport. Res. Rec. (2503), 91–99
Li, F., Wang, Y., 2007. Routing in vehicular ad hoc networks: a survey. IEEE Veh. Technol. Mag. 2 (2), 12–22.
Li, J., Blake, C., De Couto, D., Lee, H., Morris, R., 2001. Capacity of ad hoc wireless networks. In: 7th Annual International Conference on Mobile Computing

and Networking. ACM, pp. 61–69.
Luo, J., Hubaux, J.-P., 2006. A survey of research in inter-vehicle communications. In: Embedded Security in Cars. Springer, pp. 111–122.
Ma, X., Zhang, J., Wu, T., 2011. Reliability analysis of one-hop safety-critical broadcast services in VANETs. IEEE Trans. Veh. Technol. 60 (8), 3933–3946.
Milanés, V., Shladover, S.E., Spring, J., Nowakowski, C., Kawazoe, H., Nakamura, M., 2014. Cooperative adaptive cruise control in real traffic situations. IEEE

Trans. Intell. Transport. Syst. 15 (1), 296–305.
Negi, R., Rajeswaran, A., 2004. Capacity of power constrained ad-hoc networks. 23rd Annual Joint Conference of the IEEE Computer and Communications

Societies, vol. 1. IEEE.
Newell, G., 2002. A simplified car-following theory: a lower order model. Transport. Res. Part B 36 (3), 195–205.
Perkins, C., Belding-Royer, E., Das, S., 2003. Ad hoc on-demand distance vector (AODV) routing, pp. 90–100.
Recker, W.W., Jin, W.-L., Yang, X., Marca, J., 2008. Autonet: inter-vehicle communication and network vehicular traffic. Int. J. Veh. Inform. Commun. Syst. 1

(3), 306–319.
Reichardt, D., Miglietta, M., Moretti, L., Morsink, P., Schulz, W., 2002. CarTALK 2000: safe and comfortable driving based upon inter-vehicle-communication.

IEEE Intelligent Vehicle Symposium, vol. 2. IEEE, pp. 545–550.
Tse, D., Viswanath, P., 2005. Fundamentals of Wireless Communication. Cambridge Univ Pr.
Ukkusuri, S., Du, L., 2008. Geometric connectivity of vehicular ad hoc networks: analytical characterization. Transport. Res. Part C 16 (5), 615–634.
Wang, C., Gou, T., Jafar, S.A., 2011. Multiple unicast capacity of 2-source 2-sink networks. In: 2011 IEEE Global Telecommunications Conference. IEEE, pp. 1–

5.
Wang, X., 2007. Modeling the process of information relay through inter-vehicle communication. Transport. Res. Part B 41 (6), 684–700.
Wang, Z., Sadjadpour, H.R., Garcia-Luna-Aceves, J., 2008. A unifying perspective on the capacity of wireless ad hoc networks. In: The 27th IEEE Conference on

Computer Communications. IEEE.
Yang, H., Ala, M.V., Rakha, H., 2016. Eco-cooperative adaptive cruise control at signalized intersections considering queue effects. In: Transportation

Research Board 95th Annual Meeting. No. 16-1593.
Yang, H., Jin, W.-L., 2014. A control theoretic formulation of green driving strategies based on inter-vehicle communications. Transport. Res. Part C 41, 48–

60.
Yang, H., Jin, W.-L., 2015. Instantaneous communication throughputs of vehicular ad hoc networks. Transport. Res. Part C 53, 19–34.
Yang, X., Recker, W.W., 2005. Simulation studies of information propagation in a self-organizing distributed traffic information system. Transport. Res. Part

C 13 (5–6), 370–390.
Yi, S., Pei, Y., Kalyanaraman, S., 2003. On the capacity improvement of ad hoc wireless networks using directional antennas. In: 4th ACM International

Symposium on Mobile Ad Hoc Networking & Computing. ACM, pp. 108–116.

http://refhub.elsevier.com/S0968-090X(16)30190-5/h0015
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0015
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0020
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0020
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0025
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0025
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0030
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0035
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0040
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0045
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0050
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0055
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0055
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0060
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0060
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0065
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0065
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0070
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0075
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0075
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0080
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0085
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0085
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0090
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0095
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0100
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0100
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0105
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0105
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0110
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0120
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0120
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0125
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0125
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0130
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0135
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0140
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0140
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0145
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0150
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0150
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0155
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0155
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0160
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0160
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0165
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0170
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0170
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0175
http://refhub.elsevier.com/S0968-090X(16)30190-5/h0175

	Instantaneous communication capacities of vehicular ad hoc networks
	1 Introduction
	2 Definitions of communication capacities
	2.1 A protocol communication model
	2.2 Definitions of capacities

	3 Communication capacities in uniform traffic
	3.1 Broadcast capacity
	3.2 Unicast capacity

	4 An optimization formulation and its numerical solution
	4.1 An optimization model for communication capacities
	4.2 Genetic algorithm

	5 Numerical results
	5.1 Communication capacities under uniform traffic
	5.2 Communication capacities under a shock wave

	6 Conclusion
	Acknowledgments
	References


