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The concept and contents of driving safety field theory were presented in our previous
study. On this basis, this study focus on driving safety field theory modeling and applica-
tion. First, a general model is presented, which considered the driver-vehicle-road interac-
tions. The model include the following three parts: (i) driver behaviors, which are
determined by driver characteristics, such as physical-psychological, cognition, driving
skill, and traffic violations; (ii) vehicle characteristics, which are determined by velocity
vectors and virtual masses of vehicles; (iii) road conditions, which are determined by vir-
tual mass of on road non-moving objects, types of traffic signs, road adhesion coefficient,
road slope, road curvature, and visibility. In order to establish concrete functional forms,
the specific model is presented. This specific model provides a method for virtual mass cal-
culation and describes the field strength and field force in detail. After that, a driving safety
indicator namely DSI is defined. Finally, a vehicle collision warning algorithm based on
driving safety field model is presented. This algorithm used a new index namely RDSI to
evaluate the driving risk level. The effectiveness of this collision warning algorithm is ver-
ified by field experiments.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Advanced driver assistance systems (ADAS) have played an important role in improving driving safety. Since the 1990s,
automotive companies have been proposing and applying several driving safety assistance algorithms to their driver safety
assistance products. However, these algorithms were fairly simplistic. For longitudinal safety, in particular, the safety dis-
tance model is used to describe a vehicle’s safety state. When the following distance between leading and following vehicles
is less than the safety distance, the assistance system sounds an alarm and engages the brake on the following vehicle. Many
safety distance models determine the vehicle’s safety state by analyzing the safety distance between leading and following
vehicles during relative movement (Abdel-Aty et al., 2006; Caliendo et al., 2007). Time to collision (TTC) (Kiefer et al., 2006)
and time headway (THW) (Yiğiter et al., 2014) have been widely used as parameters for measuring the longitudinal driving
risk. For lateral safety, driver safety assistance algorithms are based mainly on a car’s current position (CCP) (Heddebaut
et al., 2005), time-to-lane cross (TLC) (Mammar et al., 2006), and variable rumble strip (VRBS) (Pilutti and Ulsoy, 2003).
The existing safety models are based mainly on vehicle kinematics and dynamics, and their descriptions of vehicle driving
safety are generally based on information of the vehicle’s state, such as position, velocity, acceleration, and yaw velocity, in
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addition to information about the vehicle’s relative movement, relative velocity, and relative distance. However, it is difficult
for these models to reflect the effects of a greater number of traffic factors on driving safety, describe interactions among
driver behavior characteristics, vehicle states, and road environment, or provide accurate judgment bases for vehicle control.
On the basis of the risk homeostasis theory (RHT) and the stimulus-response concept, Lu et al. (2012, 2013) proposed a
desired safety margin (DSM) model, which serves as a new way to explain car following. In addition, the drivability maps
method was well applied in the researches of intelligent vehicle control (Neuhaus et al., 2009; Tawari et al., 2014;
Schwarz and Behnke, 2014). In order to estimate the risk effects of distracted driving, Przybyla et al. (2015) incorporated
a dynamic, data-driven car-following model in an algorithmic framework. Similarly, M. Wang et al. (2015) presented an
approach to generate optimal lane change decisions in the predicted future, including strategic overtaking, cooperative
merging and selection of a safe gap. On the other hand, artificial potential field theory have been widely used for motion
planning and collision avoidance for automated vehicles and robots. The first application of artificial potential field for
mobile robot obstacle avoidance was by Khatib (1986), he proposed the virtual obstacle concept to escape local minimums
in local path planning based on artificial potential field approach. Over the following decade, artificial potential field theory
was widely used in mobile robot path planning (Warren, 1990; Rimon and Koditschek, 1992; Kitamura et al., 1995; Veelaert
and Bogaerts, 1999), in the meanwhile, intelligent transport system have been promoted rapidly (Van Der Laan et al., 1997;
Bourhis et al., 2001; Cui and Ge, 2003; Li et al., 2004; Beard et al., 2005). Because the advantage of the artificial potential field,
some researchers used it to study the autonomous vehicle control. Rossetter and Gerdes (2006) proposed a method by which
an energy term consisting of the vehicle’s kinetic energy and the artificial potential energy can be bounded, leading to a
bound on lateral deviation; instead of, this method is only applicable to lane-keeping scenarios. In the last decade, the ITS
technologies developed rapidly, and the applications of artificial potential field theory become more and more mature
and widespread. Pengfei et al. (2011) improved the simulation accuracy of car-following model and describing the charac-
teristics of car-following driving behavior by using artificial potential field theory. In order to reduce the risk of vehicle col-
lision, some researchers put their focus on right-turning traffic collision scenarios (Dabbour and Easa, 2014) or general traffic
scenarios (Ward et al., 2015). Moreover, artificial potential theory is beneficial for transportation research (Jacob and
Abdulhai, 2010; Suzuki et al., 2010). In 2013, Raksincharoensak et al. (2013) proposed a braking assistance system algorithm
for collision avoidance, designed based on pedestrian motion prediction and risk potential. Recently, Ni (2013) introduced a
Field Theory with an emphasis on traffic flow modeling at the microscopic level. In this theory, highways and vehicles were
perceived as a field by a driver whose driving strategy is to navigate through the field along its valley. Similarly, Jian et al.
(2014) proposed a perceived potential field and an aggregated force field for navigation of pedestrians in a walking domain
with poor visibility or complex geometries, but this research mainly focuses on the pedestrian. To better adapt safety algo-
rithms to driver behavior, an algorithm that autonomously learns driver characteristics was proposed by researchers at Tsin-
ghua University based on the recursive least-square method with a forgetting factor; this algorithm was used in an adaptive
longitudinal driver assistance system (Wang et al., 2013). However, there are some drawbacks to the existing safety-
assistance methods. Firstly, only a limited number of driving safety influence factors and their effects are considered. Sec-
ondly, most applications of these methods are limited to simple scenarios. Furthermore, these methods are difficult to adapt
to increasingly complex traffic environments, particularly the vehicle kinematics- and dynamics-based methods.

Recently, a new research method for driving safety, called the driving safety field, was proposed (J. Wang et al., 2014,
2015). This method uses field theory to represent the driving risk due to various traffic factors, and it could be used to eval-
uate potential driving risk in real traffic scenarios. In this study, we formulated a general model of the driving safety field and
proposed a novel vehicle collision warning algorithm based on the driving safety field. This algorithm overcomes some of the
aforementioned drawbacks, and can be applied to multi-vehicle scenarios.

The rest of this paper is arranged as follows. In Section 2, the new concept and modified general model of the driving
safety field is described briefly. In Section 3, a specific model of driving safety field is proposed. In Section 4, a vehicle col-
lision warning algorithm is designed based on the specific driving safety field model. In Section 5, three experimental vehi-
cles are introduced and field experiments are described. The vehicle collision warning algorithm is verified by applying it in a
typical car-following scenario on a multi-lane road. Section 6 presents the discussions of this study. Section 7 presents the
conclusions of this study.
2. General model of driving safety field

In this section, the driving safety field concept is introduced. Based on J. Wang et al. (2014, 2015), the driving safety field
model comprises the potential, kinetic, and behavior fields, ES, ER, EV , and ED denoting the field strength vectors of the driv-
ing safety field, potential field, kinetic field, and behavior field, respectively, the driving safety field model can be expressed
as
ES ¼ ER þ EV þ ED ð1Þ

The field strength vectors in (1) describe the potential driving risks due to traffic factors in actual scenarios. The risk is

measured by the possibility of an accident and the severity of such an accident. For non-moving objects of the first category,
according to the above analysis, the field strength vector ER1;aj at ðxj; yjÞ in the potential field formed by a non-moving object a
at ðxa; yaÞ on the road is
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ER1;aj ¼ ER1;ajðRa;Ma; rajÞ ð2Þ

where Ma is the virtual mass of object a, and Ra is the road condition influencing factor at ðxa; yaÞ, raj ¼ ðxj � xa; yj � yaÞ is the
distance vector.

For non-moving objects of the second category, the lane marker model was employed. As Fig. 1 shows, the field strength
vector ER2;aj at ðxa; yaÞ of the potential field owing to lane marker a is
ER2;aj ¼ ER2;ajðLTa;Ra;D; rajÞ ð3Þ

where LTa is the type of lane marker a, which is determined by local traffic laws and regulations, for example, the value of
lane marker 1 (white solid line) is larger than that of lane marker 2 (white dotted line); D is the lane width;
raj ¼ ðxj � xa; yj � yaÞ is the distance vector between lane marker a and the center of mass of the vehicle (which is shown
as a white rectangle in Fig. 1.

Mi is used to measure the potential driving risk due to the attributes of object i. Here, the potential driving risk mainly
refers to potential losses due to a collision between object i and a vehicle. This risk is associated with the attributes of
the object, such as its mass, type, moving state, and, in particular, speed. The virtual mass Mi of object i is defined as
Mi ¼ Miðmi; Ti;v iÞ ð4Þ

where mi is the actual physical mass, Ti is the type, and v i is the velocity of object i. Moreover, object i can be either non-
moving or moving.

Ri is used to indicate the potential driving risk due to the road conditions at ðxi; yiÞ. Here, the potential driving risk refers
mainly to both the possibility and severity of a collision between object i and a vehicle. These road conditions include the
road adhesion coefficient, road slope, road curvature, and visibility. Ri; the influencing factor pertaining to road conditions
at ðxi; yiÞ, is defined as
Ri ¼ Riðdi;li;qi; siÞ ¼ WdðdiÞ �WlðliÞ �WqðqiÞ �WsðsiÞ ð5Þ

where di is the visibility, li is the road adhesion coefficient, qi is the road curvature, and si is the slope of the road at the
position of object i. Wd, Wl, Wq, Ws express the risk evaluation functions of di, li, qi, si, respectively.

The kinetic field is a physical field that denotes the influence of moving objects on driving safety. Here, moving objects
refer to those that can actually collide with vehicles and cause significant losses. The field strength vector EV ;bj at ðxj; yjÞ of the
kinetic field formed by a moving object b at ðxb; ybÞ on the road is
EV ;bj ¼ EV ;bjðRb;Mb; rbj;vbÞ ð6Þ

where vb is the velocity vector of object b. EV ;bj is directed along the gradient descent direction of the field strength, which is
also away from object b.

The behavior field is a physical field that denotes the influence of driver behavior characteristics on driving safety. The
field strength vector ED;cj at ðxj; yjÞ in the behavior field formed by the driver of vehicle c (not the controlling vehicle) at
ðxc; ycÞ is
ED;cj ¼ EV ;cj � DRc ¼ EV ;cj � ðx1 � DRp;c þx2 � DRc;c þx3 � DRs;c þx4 � DRv;cÞ ð7Þ

where DRc is the driver risk factor associated with the driver of vehicle c, and EV ;cj is the field strength vector of the kinetic
field formed by vehicle c. DRp;c , DRc;c , DRs;c , DRv ;c express the risk factors of physical-psychological, cognition, driving skill, and
traffic violations, respectively. The driver risk factor DRc is a dimensionless value between 0 and 1 that is determined accord-
ing to the driver’s performance in the above four aspects, and the xiði ¼ 1;2;3;4; Þ is the weight coefficient.

(1) Field force on vehicle: A vehicle in the driving safety field, which includes the three aforementioned fields, experiences
a field force that denotes the current driving risk associated with the vehicle. The field strength vector, road conditions
at the vehicle’s location, vehicle’s attributes, and driver’s behavior characteristics determine the field force acting on
the vehicle. Consider the driving safety field formed by object i. In this field, the field force on the vehicle j at ðxj; yjÞ is

F ij ¼ FðEij;Mj;Rj;DRjÞ ð8Þ
where Eij is the field strength vector of the driving safety field at ðxj; yjÞ, and F ij is the field force.
raj
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Fig. 1. Diagram of lane marker model.
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The field force can be a good indicator of the magnitude and direction of driving risk due to a single object. However, the
resultant force, which is the vector sum of field forces, does not reflect the combined driving risk due to multiple objects. This
is because forces are vectors and opposite vectors cancel each other, but the driving risk would only increase without coun-
teraction. Therefore, vectors do not reflect the combined driving risk, and a scalar is needed to denote the combined driving
risk when a vehicle is influenced by multiple objects.

(2) Safety potential energy and its change rate with time: As mentioned previously, the driving safety field formed by
object i is a vector field. A vehicle j in this field is acted upon by field force F ij, and the direction of F ij is the same
as that of Eij, which is the gradient descent direction of Eij, such that F ij ¼ jF ijjð�rEij=jrEijjÞ. Based on this, we can cal-
culate the curl of F ij as
curl F ij ¼ r� F ij

¼ r� jF ijj �rEij

jrEijj
� �

¼ � jF ijj
jrEijj r � @jEijj

@x
iþ @jEijj

@y
j

� �� �

¼ � jEijj
jrEijj

@2jEijj
@x@y

� @2jEijj
@y@x

 !

¼ 0

ð9Þ
Therefore, the driving safety field formed by object i is a conservative vector field (or an irrotational field).
For such a conservative vector field, there exists a scalar potential, whose gradient is the field force. We denote this scalar

potential as safety potential energy (SPE), which is the energy that a vehicle has due to the conservative field force acting on
it in a driving safety field. Taking as an example the driving safety field formed by object i, after defining the safety potential
energy of vehicle j as zero when the distance between vehicle j and object i is infinite in this driving safety field, we can
obtain the safety potential energy of vehicle j as
SPEij ¼ �
Z rij

1
F ij � dr ð10Þ
where SPEij is the safety potential energy of vehicle j in the driving safety field formed by object i, and rij is the distance vec-
tor between vehicle j and object i. As mentioned previously, F ij is a repulsive force. Therefore, SPEij, the calculation result of
(10), is positive. SPEij is decided by the position of vehicle j, and it reflects the distribution of driving risk in space. A large SPEij

value reflects high risk.
Moreover, the driving risk varies not only with space but also with time. However, the safety potential energy represents

only the spatial variability of driving risk. Therefore, another physical index is necessary to denote the temporal variability of
driving risk. In this paper, the change rate of safety potential energy with time ( _SPE ¼ dSPE

dt ) is used as this index. For SPEij, its
change rate with time is
_SPEij ¼ dSPE
dt

¼ dSPE
dr

� dr
dt

¼ �F ij � drdt ¼ F ij � ðv i � v jÞ ð11Þ
A positive _SPEij reflects an increasing SPEij, namely increasing risk to vehicle j due to object i.
The individual safety potential energy and its change rate with time have been defined as above. However, to obtain the

total safety potential energy and its temporal rate of change, simply adding the individual energy values is inadequate. This
is because the weights of the safety potential energies due to objects in different lanes are not equal. For example, for vehicle
j, the vehicle in the same lane may have greater influence than another vehicle in the adjacent lane. Meanwhile, for vehicle j,
the lateral position of the vehicle in the adjacent lane and lane width are two crucial factors that determine the weight. Here,
we explicate this phenomenon as the filtering effects of lane markers.
Lane marker a

dk

di

Vehicle i

Vehicle k

D/2
Vehicle j

D/2

Fig. 2. Multi-lane scenario.
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Additional details are given in the following case. A multi-lane scenario is shown in Fig. 2, in which three vehicles are
driving in three lanes (vehicle i in the middle lane, vehicle j in the right lane, and vehicle k in the left lane). di(or dk) is
the lateral distance between the mass center of vehicle i (or vehicle k) and the centerline of the right lane. In this case, vehicle
j is influenced by two driving safety fields formed by vehicle i and vehicle k. The total safety potential energy of vehicle j
(SPEj) is calculated as
SPEj ¼ hi � SPEij þ hk � SPEkj

hi ¼ hðdi;DÞ
hk ¼ hðdk;DÞ

8><
>: ð12Þ
where hið0 < hi 6 1Þ and hkð0 < hk 6 1Þ are the weights of SPEij and SPEkj, respectively, which represent the filtering effects
of lane marker a. hi increases with a decrease in di. Especially when di 6 D=2, hi ¼ 1. As (12) shows, lane marker a reduces the
influence of vehicles in other lanes on the driving safety of vehicle j.

(3) Driving safety index: Based on the safety potential energy and its temporal change rate, an integrated index called the
driving safety index (DSI) is proposed to denote the driving risk to a vehicle, which varies spatially and temporally. The
driving safety index of vehicle j is defined as
DSIj ¼ DSIðSPEj; _SPEjÞ ð13Þ

where DSIj, a dimensionless quantity, is the driving safety index of vehicle j. A large DSIj value reflects high driving risk to
vehicle j.

(4) Unified model of driving safety field: In summary, the unified model of the driving safety field is
SPEj ¼ SPER;j þ SPEV ;j þ SPED;j

¼
X
a

ðha � SPER;ajÞ þ
X
b

ðhb � SPEV ;bjÞ þ
X
c

ðhc � SPED;cjÞ

_SPEj ¼
X
a

ð _ha � SPER;ajÞ þ
X
b

ð _hb � SPEV ;bjÞ þ
X
c

_ðhc � SPED;cjÞ

¼ �
X
a

ðha � Faj � v jÞ þ
X
b

½hb � Fbj � ðvb � v jÞ� þ
X
c

½hc � Fcj � ðvc � v jÞ�

DSIj ¼ DSIðSPEj; _SPEjÞ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð14Þ
where SPER;j, SPEV ;j, and SPED;j are respectively the total safety potential energies of vehicle j in the potential field, kinetic
field, and behavior field; SPER;aj, SPEV ;bj, and SPED;cj are respectively the safety potential energies of vehicle j in the individual
potential field, kinetic field, and behavior field; and Faj, Fbj, and Fcj are respectively the field forces on vehicle j in the indi-
vidual potential field, kinetic field, and behavior field.

3. Specific model of driving safety field

In Section 2, the general theory of driving safety field was introduced. Without loss of generality, the exact functional
forms of the formulas were not given. In this section, based on our previous research and by learning from physical theories,
we proposed a specific model of the driving safety field in which the exact functional forms of the formulas are discussed.

3.1. Virtual mass

Virtual mass Mi is used to measure the potential driving risk due to the attributes (mass, type, and speed) of object i, and
the potential driving risk mainly refers to potential losses due to a collision between object i and a vehicle. For objects of the
same type, a greater physical mass and speed of the object reflect larger virtual mass and higher potential losses. Moreover,
with the same physical mass and speed, the potential loss due to a collision depends on the object type. For example, the loss
due to a collision between a pedestrian and a vehicle is larger than that due to a collision between an animal and a vehicle.
Therefore, the specific from of Mi can be defined as
Mi ¼ Miðmi; Ti;v iÞ ¼ mi � Ti � gðv iÞ ð15Þ

where gðv iÞ is a function of speed that is used to describe the influence of speed on driving risk. The calibration of gðv iÞ can be
implemented based on accident data.

Table 1 lists the road speeds and numbers of accidents of five main types of roads in China, 2013 (Transportation Bureau
of the Ministry of Public Security of the PRC, 2014). As shown in Fig. 3, by fitting the average number of fatalities per accident
as a power function of average road speed, we obtain
num ¼ 1:566� 10�14v6:687 þ 0:3345 ð16Þ

where num is the average number of fatalities per accident and v (km/h) is the average road speed.



Table 1
Road speed and accidents in China, 2013.

Road Design speed [km/h] Average speed [km/h] Number of accidents Number of fatalities Average number of fatalities

Highway 80–120 100 8693 5843 0.672
First-class road 60–80 70 18,198 6532 0.359
Second-class road 40–60 50 36,556 13,642 0.373
Third-class road 30–40 35 22,936 7499 0.327
Fourth-class road 30 30 15,956 5006 0.314
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Fig. 3. Relationship between average road speed and average number of fatalities per accident.
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Hence, gðv iÞ can be determined using the above formula. Finally, we obtain
Mi ¼ mi � Ti � ð1:566� 10�14v6:687
i þ 0:3345Þ ð17Þ
3.2. Field strength and field force

Based on the features of driving risk due to non-moving objects of the first category and by making analogy to electric
field, we express the field strength vector of such objects as:
ER1;aj ¼ ER1;ajðRa;Ma; rajÞ ¼ K � Ra �Ma

jrajjk1
� raj
jrajj ð18Þ
where K (>0) and k1 (>1) are undetermined constants. The direction of ER1;aj is the same as that of raj, which is the gradient
descent direction of the field strength.

Based on the features of driving risk due to non-moving objects of the second category (only lane marker is considered at
present) and using the spring model as a analogy, the field strength vector of such objects can be expressed as
ER2;aj ¼ ER;LðLTa;Ra;D; rajÞ ¼ LTa � Ra � D
2
� jrajj

� �k2

� raj
jrajj ð19Þ
where k2 is an undetermined constant greater than zero.
Compared with first-class stationary objects, the main difference is that the driving risk due to moving objects changes

with direction; when the distance is the same, driving risk to the vehicle will be larger when approaching the direction of
motion of a moving object. Here, the Doppler effect is used to describe the differences among the driving risks in each direc-
tion, which are caused by movement. The moving object b is considered to launch a wave of frequency f 0, and the receiver at
location ðxj; yjÞ receives a wave of frequency f 1. The higher the frequency of the received wave, the larger the influence of the
moving object b at this location will be. According to the Doppler Effect, we obtain
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f 1
f 0

¼ k3
k3 � jvbj cos hb ð20Þ
where k3 is the speed of the wave, and hb is the angle between vb and rij (clockwise is positive). The frequency of the wave
increases as the distance between the wave propagation direction and the direction of motion of the object decreases. This is
similar to the differences among driving risks in each direction due to movement. The variation of frequency can be used to
describe the influence of vehicle speed on driving risk. Hence, combined with potential field model, the strength of the
kinetic field can be expressed as
EV ;bj ¼ EV ðRb;Mb; rbj;vbÞ ¼ K � Rb �Mb � k3
ðk3 � jvbj cos hbÞ � jrbjjk1

� �rEV ;bj

jrEV ;bjj ð21Þ
where rEV ;bj is the gradient vector of EV ;bj, and the direction of EV ;bj is the same as the gradient descent direction of the field
strength. Therefore, according to (7) and (21), the specific strength of the behavior field can be obtained (see Figs. 4 through
6).

The kinetic field strength in (21) is shown in Fig. 7. The center of the kinetic field is the object’s center of mass. Contrary to
the behavior of the potential field formed by a nonmoving object, at an equivalent distance, the field strength increases as
the angle between the direction of motion of the object (vb) and the direction of rbj decreases. In addition, multiple moving
objects and the field strength of their corresponding kinetic fields are shown in Fig. 8, and the field strength of multi-vehicle
scenarios and their corresponding driving safety fields are shown in Fig. 9.

As mentioned previously, the field force on the vehicle is determined by the field strength vector, road conditions at the
vehicle’s location, the vehicle’s attributes, and driver’s behavior characteristics. Here, we define the specific form of (8) as
F ij ¼ FðEij;Mj;Rj;DRjÞ ¼ Eij �Mj � Rj � ð1þ DRjÞ ð22Þ
3.3. Indicators of driving safety

According to (7), (10), (18), (21), and (22), we obtain the safety potential energy of vehicle j under three types of driving
risks
SPER;aj ¼ KRaRjMaMj

ðk1�1Þjraj jk1�1

SPEV ;bj ¼ KRbRjMbMjk3
ðk1�1Þjrbj jk1�1 � ðk3�jvb j cos hbÞ1�k1

k3�jvb j

h i 1
k1

SPED;cj ¼ DRc � SEV ;cj

8>>>><
>>>>:

ð23Þ
Specifically, according to (19), the safety potential energy of vehicle j in the potential field formed by the lane marker a is
SPER;aj;L ¼ LTaRaRjMjð1þ DRjÞ
k2 þ 1

� D
2
� jrajj

� �k2þ1

ð24Þ
Moreover, according to (11) and (22), we can obtain the temporal change rate of safety potential energy
_SPEij ¼ MjRjð1þ DRjÞEij � ðv j � v iÞ ð25Þ
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ER1,aj|
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Fig. 4. Sketches of the potential field strength given by (18) (set K ¼ 0:5;Ra ¼ 1; k1 ¼ 1:2).
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Fig. 5. Sketches of the potential field strength given by (19) (set LTa1 ¼ 3; LTa2 ¼ 2;Ra ¼ 1; k2 ¼ 1:2).
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Afterwards, to obtain the total safety potential energy, the weights of individual safety potential energies should be
defined. According to (12), hi (the weight of SPEij) is defined as
Fig. 6.
R ¼ 1; T
hi ¼ hðdi;DÞ ¼ min
D
2di

� �k4

;1

( )
ð26Þ
where k4 (>0) is a undetermined constant.
Finally, we define the specific form of the driving safety index as
DSIj ¼ DSIðSPEj; _SPEjÞ ¼ a � SPEj þ ð1� aÞ � S _PEj ð27Þ
where a is weight, which is set to ensure balance between the spatial driving risk and the temporal driving risk.
|ER|
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|

non-moving 
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Nonmoving objects and the field strength of their corresponding potential field (set LTa1 ¼ 3; LTa2 ¼ 2;Ra ¼ 1; k1 ¼ 1; k2 ¼ 1:2; k3 ¼ 45;
¼ 1;K ¼ 0:5;DR ¼ 0:5).
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Fig. 7. Sketches of the potential field strength given by (21) (set K ¼ 0:5;Ra ¼ 1; k1 ¼ 1:2; k3 ¼ 45).
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Fig. 8. Moving objects and the field strength of their corresponding safety field (set LTa1 ¼ 0; LTa2 ¼ 0;Ra ¼ 1; k1 ¼ 1; k2 ¼ 1:2; k3 ¼ 45;R ¼ 1;
T ¼ 1;K ¼ 0:5;DR ¼ 0:5).
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4. Collision warning algorithm based on driving safety field model

4.1. Model application in typical multi-vehicle scenario

A typical multi-vehicle scenario is shown in Fig. 10, where three vehicles (vehicle 1: ego vehicle, vehicle 2: leading vehi-
cle, vehicle 3: adjacent vehicle) are driving along the center of their lanes. v1, v2, and v3 are velocity vectors of vehicle 1,
vehicle 2, and vehicle 3, respectively.

Driving safety of vehicle 1 is influenced by the current lane markers, vehicle 2, and vehicle 3. Meanwhile, considering that
vehicle 1 is driving along the centerline of its lane, where the field strength vectors of the driving safety field formed by the
lane markers are both zero, only vehicle 2 and vehicle 3 need to be considered. The influence of vehicle 2 and vehicle 3 on the
driving safety of vehicle 1 can be denoted as a driving safety field consisting of two parts: (i) the kinetic fields formed by
vehicles 2 and 3, and (ii) behavior fields formed by the drivers of vehicles 2 and 3. The field strength vectors of the above
two fields point from vehicle 2 and vehicle 3 toward vehicle 1. Moreover, according to the specific model given in above sec-
tion, we obtain
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Fig. 9. Multi-vehicle scenario and the field strength of their corresponding driving safety field (set LTa1 ¼ 3; LTa2 ¼ 2;Ra ¼ 1; k1 ¼ 1; k2 ¼ 1:2; k3 ¼ 45;R ¼ 1;
T ¼ 1;K ¼ 0:5;DR ¼ 0:5).
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Fig. 10. Typical scenario involving multiple vehicles.
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EV ;i1 ¼ K�Ri �Mi �k3
ðk3�jv i jcoshiÞ�jri1 jk1

� �rEV ;i1
jrEV ;i1 j

ED;i1 ¼ DRi � EV ;i1

Ei1 ¼ EV ;i1 þ ED;i1

SPEV ;i1 ¼ KRiR1MiM1ð1þDRiÞk3
ðk1�1Þjr21 jk1�1 � ðk3�jv i j cos hiÞ1�k1

k3�jv i j

h i 1
k1

SPED;i1 ¼ DRi � SEVi1

hi ¼ min D
2di

� �k4
;1

� 	

SPE1 ¼
X3
i¼2

½hi � ðSPEV ;i1 þ SPED;i1Þ�

_SPEi1 ¼ M1R1ð1þ DR1ÞEi1 � ðv i � v1Þ
_SPE1 ¼

X3
i¼2

ðhi � _SPEi1Þ

DSI1 ¼ a � SPE1 þ ð1� aÞ � _SPE1

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð28Þ
where EV ;i1 and ED;i1 are the field strength vectors acting on vehicle 1 in the kinetic field and behavior field formed by vehicle
i, respectively. Ei1 is the total field strength vector acting on vehicle 1 in the driving risk field formed by vehicle i. SPEV ;i1 and
SPED;i1 are the safety potential energies that vehicle 1 has in the kinetic field and behavior field formed by vehicle i, respec-
tively. SPE1 is the total safety potential energy. DSI1 is the driving safety index of vehicle 1, which represents the driving risk
that vehicle 1 faces. hi is the weighting factor of vehicle i, Mi is the virtual mass of vehicle i, and Ri is the influencing factor
pertaining to road condition at the location of vehicle i. ri1 is distance vector between vehicle 1 and vehicle i, di is the distance
between the mass center of vehicle i and the centerline of the right lane, and hi is the angle between the directions of v i and
ri1ði ¼ 2;3Þ. After simplifying (28), we obtain
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SPE1 ¼ KM1R1ð1þ DR1Þ �
X3
i¼2

hiRiMið1þDRiÞk3
ðk1�1Þjr21 jk1�1 � ðk3�jv i j cos hiÞ1�k1

k3�jv i j

h i 1
k1

� 	

_SPE1 ¼ KM1R1ð1þ DR1Þ �
X3
i¼2

hiRiMið1þDRiÞk3rEV ;i1 �ðv1�v iÞ
ðk3�jv i j cos hiÞ�jri1 jk1 �jrEV ;i1 j

DSI1 ¼ a � SPE1 þ ð1� aÞ � _SPE1

8>>>>>>><
>>>>>>>:

ð29Þ
4.2. Relative driving safety index

The driving safety index of vehicle 1 (DSI1) can denote the driving risk vehicle 1 faces. However, DSI1 is an absolute risk
index and its variation range is uncertain. Therefore, when using DSI1 to evaluate the driving risk directly, it is difficult to
determine the threshold of warning level of the collision warning algorithm. To solve this problem, a new index called
the relative driving safety index (RDSI) is proposed. And the relative driving risk index of vehicle 1 (RDSI1) is defined as
RDSI1 ¼ DSI1
DSI�

ð30Þ
where DSI� is the standard driving safety index of vehicle 1 in a specific scenario. As mentioned previously, TTC and THW
have been widely regarded to measure the potential driving risk in a car following scenario. Moreover the 1 s THW and
4 s TTC criterion is a suggested warning criterion (Janssen and Nilsson, 1992). Therefore, a typical dangerous scenario is
set as the specific scenario. In the scenario, vehicle 1 is following another vehicle (the same type, physical mass, road con-
dition influencing factor and driver risk factor with vehicle 1) with the 1 s THW and 4 s TTC. These two vehicles are both
driving along the centerline of their lane. Moreover, there are no other vehicles around. Different from DSI1, RDSI1 has a rel-
atively stable value range (see Fig. 11).

4.3. Collision warning algorithm based on driving safety field model

The collision warning algorithm of this system is designed based on the relative driving safety index (RDSI) and a three-
level (safe, dangerous, and very dangerous) warning effort is adopted.

(1) Warning Level I: safe
IF RDSI < W1; THEN CW ¼ 0:
W1 is the threshold of the safety driving state, CW is the warning level signal: CW ¼ 0 means no warning, safety; CW ¼ 1
means dangerous with a discontinuous buzzing for warning; and CW ¼ 2 means very dangerous with a steady buzzing for
warning.

(2) Warning Level II: dangerous
IF W1 < RDSI < W2; THEN CW ¼ 1:
W2 is the threshold of the dangerous driving state. When RDSI is larger than the threshold of the safety driving state, smaller
than that of the dangerous driving state, the warning level is dangerous. The system sends a discontinuous buzzing for
warning.

(3) Warning Level III: very dangerous
IF RDSI > W2; THEN CW ¼ 2:
When RDSI is larger than the threshold of the dangerous driving state, the warning level is very dangerous and the system
sends a discontinuous buzzing for warning.

5. Field experiments and analysis of results

5.1. Field experiments

Experiments using real vehicles were conducted to verify the warning algorithm. Twenty-four drivers (twenty male, four
female) were invited, with each driving on a straight urban four-lane road in Beijing (lane width = 3.75 m). The length of the
experimental route was about 6 km. The experiment scenario is shown in Fig. 12.

The experiments were conducted using three experimental vehicles, which are shown in Fig. 13(a). Each vehicle was
equipped with a GPS and an on-board computer to collect and record GPS position and time readings, which were used
for data synchronization. An oil pressure sensor and two acceleration sensors were attached to each vehicle to measure
the brake pressure and longitudinal and lateral acceleration, and all signals were sent to the CAN bus. The velocity, acceler-
ator pedal position, and brake pedal on/off signal were also collected from the CAN bus. During the experiments, the signals
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Fig. 11. Typical multi-vehicle scenario and the field strength of their corresponding safety field (set LTa1 ¼ 3; LTa2 ¼ 2;Ra ¼ 1; k1 ¼ 1; k2 ¼ 1:2; k3 ¼ 45;
R ¼ 1; T ¼ 1;K ¼ 0:5;DR ¼ 0:5).

Fig. 12. Real scenario.

Fig. 13. Experimental vehicles and Information flow.
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from the CAN bus were transmitted to the computer through a CAN card and recorded along with GPS information in a text
file. The data collection frequency was 5 Hz. The information flow is shown in Fig. 13(b).

The experiment route was the ShuiNan road, ChangPing district, northwest of Beijing. The experiments were conducted
under scenarios: a car-following scenario and a cut-in scenario (see Figs. 14 through 19).

(1) Car-following scenario

The subject drivers were asked to drive vehicle 1 following vehicle 2 with no other vehicles nearby. The speed of vehicle 2
was automatically controlled according to the equation v2 ¼ 45þ 20 sinð2pt=TÞ km=h. Moreover the period T (s), which
ranges between ½24;48�, changes after every period. T series were set as fð24;36Þ; ð30;30Þ; ð32;28Þ; ð25;35Þ;
ð34;26Þ; ð27;33Þg, which means the experiment of this scenario lasted 6 min in total for each driver. The longitudinal speed,
acceleration, GPS, brake signal and pressure of vehicles 1 and 2 were recorded during the experiment.

(2) Cut-in scenario

The subject drivers were asked to drive vehicle 1 following vehicle 2 with vehicle 3 running in the adjacent lane. Vehicle 2
moved in the same way as in the car-following scenario. Vehicle 3 drove in the adjacent lane, and kept itself between vehi-
cles 1 and 2 longitudinally.

In addition, during the experiment vehicle 3 was controlled to satisfied the following requirements: (i) running straight in
adjacent lane in most of test time; (ii) 4 times cut-in motion if a sizable gap were available during the experiment; and (iii) 9
times swing motion (shifted to the right lane as if a cut-in would happen but moved back quickly).

5.2. Comparison of RDSI and TTCi

TTCi (or TTC) is widely used in forward collision warning system, such as Kiefer’s CAMPmethod and improved safety indi-
cator based on TTC (Kiefer et al., 1999, 2005, 2006). In Kiefer’s research, a subject vehicle and a principle other vehicle were
used to research the examined drivers last-second braking and steering (or lane-change) judgments under a wide range of
vehicle-to-vehicle kinematic conditions decelerating and stationary trials. In this paper, the real vehicle experiment, we con-
sidered both car-following scenario and adjacent vehicle cut-in scenario, after the real vehicle experiment, we researched
both value of TTCi and RDSI. Our RDSI showed a high value when the brake pedal is pushed by the driver, the value of
TTCi also showed a rise tendency, but the changes are not very noticeable.

In addition, for this algorithm, we designed a real vehicle experiment to illuminate it. The value of RDSI represents the risk
state of vehicle. First, the surround traffic information was collected by using sensor and communication technologies, then,
RDSI could be evaluated by using Eqs. (23)–(30). This index is quite different with TTC or TTCi, but to a certain extent, there
are certain things in common between them.

During the real vehicles experiment, we got 300 min of valid data, including 150 min of car-following data in experiment
A, 100 min of vehicle 3 straight driving data and 50 min of vehicle 3 for 99 cut-in activities and 199 attempts to cut-in.

24 test drivers were invited to attend this experiment. We collected the data of vehicle state, and this histogram showed
the TTCi frequency distribution of 1 s before braking and 1 s after braking.

A total of TTCi data during 1 s before braking (namely TTCiB) included 1608 frames, every time we collected the data of 1 s

before braking for 6 frames, so the total time of the TTCiB data was 268 s, and the mean value was 0:0912 s�1. Similarly, a

total of TTCi data during 1 s after braking (namely TTCiA) included 1596 frames, the total time of the TTCiA data was
266 s, and the mean value was 0:0229 s�1. In this paper, we used the method of nonparametric test to measure the difference

of distribution between TTCiA and TTCiB, because both of them were not close to the normal distribution.
In order to receive an accurate test result, both Kolmogorov-Smirnov Z method and Mann-Whitney Umethods were used,

and both results shown the significant difference under the confidence level of 0.1%, that is to say, TTCiB was greater than

TTCiA obviously. The result means the brake pedal was pushed by test driver in vehicle 1 when the value of TTCi in a high
level, and loosen the brake pedal when the TTCi declined to a certain value. Therefore, TTCi could evaluate the driving risk of
vehicle 1 in the first experiment, and the large value of TTCi means a larger driving risk.

This histogram showed the RDSI1 frequency distribution of 1 s before braking and 1 s after braking. Similar to the above
data, a total of RDSI1 data during 1 s before braking (namely RDSIB1) included 1608 frames, the total time of the RDSIB1 data

was 268 s, and the mean value was 0:0912 s�1. Similarly, a total of RDSIB1 data during 1 s after braking (namely RDSIA1)

included 1596 frames, the total time of the RDSIA1 data was 266 s, and the mean value was 0:0229 s�1. We used the same

method to measure the difference of distribution between RDSIA1 and RDSIB1 in this part, and we also found that the significant
difference under the confidence level of 0.1%, that is to say, RDSI1 could also evaluate the driving risk of vehicle 1 in the first
experiment, and the large value of RDSI1 means a larger driving risk.

Those 24 test drivers were invited to attend the experiment B after they finished the first experiment. This time, we also
analyzed the TTCi frequency distribution of 1 s before braking and 1 s after braking.
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Fig. 14. Car-following scenario.
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The data of the 24 test drivers were collected in the experiment B. Similar to the experiment A, a total of TTCi data during

1 s before braking (namely TTCiB) included 1554 frames, the total time of the TTCiB data was 259 s, and the mean value was

0:0842 s�1. Similarly, a total of TTCi data during 1 s after braking (namely TTCiA) included 1536 frames, the total time of the

TTCiA data was 256 s, and the mean value was �0:0389 s�1. We used the same method to measure the difference of distri-

bution between TTCiA and TTCiB in experiment B, and we also found that the significant difference under the confidence level
of 0.1%.

But the data of TTCiB which value is less than zero accounts for 5.53% of the total, this percentage is much different from
the experiment A (0.37%). The above research mentioned a negative value of TTCi means the vehicle ahead was driving away,
this means safe. But the data of 5.53% means may be some scenarios in danger and therefore it cannot show the driving risk
correctly.

Similar to the above research, we compared the RDSI1 frequency distribution in 2 s including 1 s before braking and
another 1 s after braking.

In experiment B, a total of RDSI1 data during 1 s before braking (namely RDSIB1) included 1554 frames, the total time of the

RDSIB1 data was 259 s, and the mean value was 0:575 s�1. Similarly, a total of RDSI1 data during 1 s after braking (namely

RDSIA1) included 1536 frames, the total time of the RDSIA1 data was 256 s, and the mean value was 0:268 s�1. We used the

same method to measure the difference of distribution between RDSIA1 and RDSIB1 in experiment B, in contrast, we found that
the significant difference under the confidence level of 0.1%. Therefore, we can use RDSI1 to evaluate the driving risk.
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Fig. 15. Cut-in scenario.

Fig. 16. The TTCi frequency distribution during the brake activity in experiment A.



Fig. 17. The RDSI1 frequency distribution during the brake activity in experiment A.

Fig. 18. The TTCi frequency distribution during the brake activity in experiment B.
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5.3. Analysis of results

The three experimental vehicles were the same type of cars, in this case T1 ¼ T2 ¼ T3. Owing to the similar road condi-
tions of the lanes, the values of R1, R2, and R3 were equal. Moreover, the driver risk factors were assumed to be the same.
Hence, to simplify the calculation, we chose the following set of parameters: K ¼ 0:5, R1 ¼ R2 ¼ R3 ¼ 1, T1 ¼ T2 ¼ T3 ¼ 1,
DR1 ¼ DR2 ¼ DR3 ¼ 0:5, k1 ¼ 1, k3 ¼ 45, k4 ¼ 1, m1 ¼ m2 ¼ m3 ¼ 1400 kg, a ¼ 0:06.

Thereafter, according to Eqs. (29) and (30), the relative driving safety index of vehicle 1 ðRDSI1Þ is calculated in real time.
When RDSI1 reaches the threshold, the driver assistance system prompts the driver and then s/he starts to decelerate (by
releasing the accelerators pedal or braking) to avoid potential risk. We defined the threshold W1 and W2 at 50th and
90th percentiles of RDSI data respectively.

During this experiment, we attained a series of data for three vehicles, including 98 cut-in activities and 199 attempts to
cut-in. Some typical results are shown in Fig. 20. According to Fig. 20(a), the RDSI1 curve agrees with the TTCi curve
(TTCi ¼ ðv1 � v2Þ=jr21j), which means that in the experimental scenario, RDSI1 can represent the driving potential risk
because TTCi is admitted as an evaluation of potential risk. More interestingly, in Fig. 20(b), we observe that the driver begins
braking with a rather small TTCi value, which in this case is actually �0.005/s. This small value of TTCi represents ‘‘safe.”



Fig. 19. The RDSI1 frequency distribution during the brake activity in experiment B.
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Fig. 20. Experimental results.
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However, the driver applies brake, which implies that s/he thinks the driving state at that moment might be dangerous. The
reason is that at that moment, the possibility of vehicle 3 cutting in is relatively large. Hence, the driver brakes even though
vehicle 1 is far away. TTCi cannot show the influence of vehicle 3, and it is not reliable when the influence of vehicle 3 is
relatively large, especially at the moment at which vehicle 3 may cut in. In contrast, the RDSI1 curve maintains similar reli-
ability to help evaluate the driving risk compared with the curve in Fig. 20(a), which is because of the calculation of
RDSI1that has already contained the consideration of vehicle 3. In addition, this shows the advantages of the driving safety
field model in evaluating driving risk in multi-vehicle scenarios.
6. Discussion

The present study found the unified driving safety field theory with merged the parameters of drivers, vehicles, and envi-
ronment. This suggested that driving safety field can capture the state of driving risk in the traffic environment. This study
aim to establish the frame of a warning algorithm. Every factor in real traffic environment can be expressed by using the
algorithm, moreover it would benefit for detect the traffic risk and path planning. In physics, a field is a physical quantity
that has a value for each point in space and time (McMullin, 2002). In real traffic environment, in order to make the risk more
intuitive, the traffic risk is described by assigning a vector to each point on a map by using this method. Each vector repre-
sents the state of the risk at that point, thereby revealing the potential of this method in driving-safety research more
generally.

In this paper, we put in a great deal of effort on establishing the general model, the specific model and the collision algo-
rithm, compare to our presented study, the frame of the algorithm has become clearer. However, there are a few problems
remaining to be solved.
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(1) Driver behavior

Driver behavior is very complex, which is influenced by many factors, such as limited perception, response delay, distrac-
tion, inattention, haste, and fatigue. However, it’s not practical to consider all these factors in this paper. Therefore, we just
build a framework here to consider driver factors, and classified all these factors into four aspects, namely, physical-
psychological, cognition, driving skill, and traffic violations. In addition, we will continue implementing following researches
in this area.

(2) Parameter choice and calibration

This algorithm considered a number of parameters, such as the visibility, adhesion coefficient, road curvature, and the
slope of the road or the risk factors of driver’s physical-psychological, cognition, driving skill, and traffic violations, moreover,
this algorithm contains a few of dimensionless parameters. Every parameter has its own meaning. In this research, we did
not calibrated these parameters, more experiments should be conducted before we can come to a conclusion. We take much
more factors into account so that the algorithm can reflect real performance of the complicated traffic environment. The
modified algorithm is also effective under the present condition.

However, the parameters which are decided by traffic environment could be obtained by fitting traffic accident statistic
data. At present there had a lot of related research on traffic accidents data analysis. Kloeden et al. (2002) found a quanti-
tative relation between the traffic risk with urban roads speed limit. Cameron and Elvik (2010) proved the availability of
Nilsson’s Power Model by traffic accident statistic data analysis. Elvik (2013) presented a re-analysis of the Power Model
of the relationship between the mean speed of traffic and road safety. Ruikar (2013) studied Indian traffic accident casualties
by the traffic accident statistic data. The parameters of driver behavior could be obtained by detecting and analyzing human
body physiology signal, because when a human in danger or his mood changes, the signal of electrocardiogram, electroder-
mal activity and electroencephalogram will change accordingly (Holper et al., 2014; Dupuy et al., 2014; van Tricht et al.,
2014). Above all, it is certainly possible that the parameters for the driving safety field model will be calibrated in the future.

(3) Further explore of the theoretical structure

In present research of this paper, the vehicle dynamics has not yet been considered, because there are so many unknown
parameters need to ascertain in driving safety field theory, so, in the early stages of the formation of this theory, we should
simplify the frame of the model, but we will improve the model structure continuously by consider the acceleration/decel-
eration, lateral velocity of both ego vehicle and adjacent vehicles, and we also could consider the different driving conditions
such as the three stages of a rollover accident, including Pre-trip phase, Trip phase, and Post-trip phase. It could be discussed
in more details in future research and development.

(4) The improvement of the experimental verification method

In Section 5 it was shown, our experiment divided into two scenarios, one is following scenario, the other is cut-in sce-
nario, Scenario options of this real vehicle experiment has some limitation. Further research is needed for a driving simulator
experiment, which can simulate the effects of the warning algorithm in different kinds of scenario, and we can use real vehi-
cle experiment to test and verify.
7. Conclusion

In this study, we have summarized the previous article (Wang et al., 2014), based on which a modified general model and,
further, specific model of driving safety field were proposed. This modified model of the driving safety field is described
briefly, which can be applied to cases that are more general in nature and, meanwhile, can be tailored to suit a modeler’s
particular situation. The specific model reflected a concrete scenario of driving, and the graphs given by those equations,
to a certain extent, could provide a visual verification of the model. Based on the specific model, a vehicle collision warning
algorithm was developed.

The proposed driving safety warning algorithm is able to incorporate multi-vehicle driving scenarios. Compared with
existing vehicle-collision-warning algorithms, this algorithm includes a greater number of traffic factors and is not limited
to simplified scenarios such as car following and lane changing. Moreover, field experiments were conducted to verify the
proposed algorithm. According to the analysis of the experimental results, in both scenarios, the algorithm is able to repre-
sent the risk of the collision efficiently and warn the driver in real time. In particular, compared with TTCi, the algorithm
shows better efficiency in multi-vehicle scenarios, which, to a large extent, indicates that the proposed algorithm can be
applied to multi-vehicle driving scenarios.

However, our framework contained several factors of driver, vehicle and road, which make it difficult to be applied.
Although that we try to reflect the truth by incorporating as much details as possible, we have to strike a balance between
model fidelity and usability. Therefore, rather than including everything, we may have to capture some major factors in a
simplified way during research. Even though, the model has posed some challenges on model calibration and validation. For-
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tunately, with limited field data collection, especially with the help of connected vehicle technology and complemented by
human factors studies as well as published results in similar areas, the task should be accomplishable. Nevertheless, it is fair
to state that, in modeling, truth comes with costs.

Future work will focus on two major aspects: one for further study of methods to determine the parameters of the model,
and the other for applications. Moreover the applications will focus on the intelligent control of the vehicle to avoid traffic
risk and make safety assessments for the accident-prone road sections based on the driving safety field model.
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