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Carsharing, as an alternative to private vehicle ownership, has spread worldwide in recent
years due to its potential of reducing congestion, improving auto utilization rate and lim-
iting the environmental impact of emissions release. To determine the most efficient allo-
cation of resources within a carsharing program, it is critical to understand what factors
affect the users’ behavior when selecting vehicles. This study attempts to investigate the
importance of users’ attributes and fleet characteristics on choice set formation behavior
in selecting vehicles using a Spatial Hazard Based Model (SHBM). In the SHBM model, ‘‘dis-
tance to a vehicle” is considered as the prospective decision criteria that carsharing users
follow when evaluating the set of alternative vehicles. This variable is analogous to the
duration in a conventional hazard-based model. In addition, user socio-demographic attri-
butes, vehicle characteristics, land use type of the trip origin, etc., collected from the
Australian carsharing company GoGet are utilized to parameterize the shape/scale/location
parameter of the hazard function. A number of forms of parametric SHBMs are tested to
determine the best fit to the data. The accelerated failure time model with a Log-logistic
distribution was found to provide the best fit. The estimation results of the coefficients
of the parameters can provide a starting point for carsharing organizations to optimize
their pod locations and types of cars available at different pods to maximize usage.

Crown Copyright � 2016 Published by Elsevier Ltd. All rights reserved.
1. Introduction

In recent times, transportation planning has focused on the concept of sustainability. The goal of a majority of transport
planning practices is ensuring a livable community for the current generation whilst considering the impact on future gen-
erations. A number of transportation authorities have recognized that private car ownership has significant costs associated
to individuals and transport authorities in relation to purchase and maintenance costs as well as the provision of infrastruc-
ture (Duncan, 2011). In addition, increased private vehicle use has resulted in traffic congestion. Some of the repercussions
due to traffic congestion include excessive delay, increased fuel consumption, greater road infrastructure costs and higher
levels of emissions reducing air quality, which has resulted in significant economic and social costs (Wijayaratna, 2013;
Banister, 2005; Catalano et al., 2008). In order to mitigate congestion, planners have advocated the development and use
of public transit, carpooling, walking and cycling. Carsharing schemes, a form of short-term car rental, have become a
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complement to the previously mentioned sustainable transport approaches. Since its inception in the 1980s, carsharing
schemes have become a crucial element of sustainable transport systems within the modern urban cityscape.

Studies have shown that carsharing scheme has the advantage to reduce the number of vehicles required to meet the total
travel demand (Barth and Todd, 1999). Further, it has the potential to reduce congestion, provide more equitable access to
private transport and limit the environmental impact of emissions release (Duncan, 2011). These advantages have resulted in
an increasing development of carsharing programs as a mode of transport in planning for a sustainable transportation sys-
tem. Thus, it is critical to understand what factors affect the demand for carsharing to further their usage. Demand is depen-
dent on trip attributes such as: trip purpose, duration of the trip, time of day and week and also the vehicle selected out of
the available choices. Jorge and Correia (2013) presented a comprehensive literature review regarding demand modelling
approaches for carsharing programs. The paper highlighted that demand estimation is difficult due to the interdependency
of vehicle availability and the number of trips. Furthermore, there has been limited research into understanding and char-
acterizing the supply within modelling frameworks. In order to evaluate carsharing programs effectively, the demand for and
the supply provided must be accurately determined. With respect to the supply of vehicles, carsharing programs can be cat-
egorized into free-floating and station-based systems based on facility configuration. Free-floating systems allow users to
pick up and drop off a car freely in a defined zone without any fixed positioning. Station-based systems provide users with
multiple predefined ‘‘pick up and drop off” vehicle pods (Firnkorn and Müller, 2011), which can be further classified into
round-trip and one-way trip carsharing systems based on trip configuration. Station-based systems are less flexible for
the consumer but more widely adopted by carshare operators. This study focuses on station-based carsharing systems
and aims to advance the existing literature by investigating users’ vehicle selection behavior which is constrained by the
supply of vehicles within station-based carsharing facilities.

Users’ vehicle selection is a significant factor in determining the most efficient allocation of resources within a carsharing
program. Vehicle selection is the decision process undertaken by an individual to select a specific vehicle given a choice of
vehicles within a carshare fleet. By understanding vehicle selection, programs can optimize the vehicle utilization within the
fleet. Thus, this study attempts to answer two questions: ‘‘How far is an acceptable walking distance when users make deci-
sion on using carshare vehicles?” and ‘‘What factors influence users’ selection of vehicles?” Since the choice set of carshare
vehicles is very large, users will follow two steps to make the decision. First users screen the alternative and come up with a
small and manageable choice set and second they make their selection from options considered in the choice set. The paper
attempts to present a method for the first step while the second step in which advanced discrete choice models will be used
in undergo as the next step of this paper. Users’ cognitive capacity for screening and filtering alternatives from a choice set
based on a critical or influential factors is an essential component of first step of vehicle selection behavior (Rashidi and
Mohammadian, 2012). Accessibility to carsharing facilities dictates the utilization of carsharing facilities. Thus, the main fac-
tor affecting the choice set of vehicles is considered to be the ‘‘distance to the carsharing vehicle within a specific carsharing
facility”. A Spatial Hazard Based Model (SHBM) has been formulated using data provided by GoGet, an Australian carsharing
company. The SHBM is applied instead of a discrete choice model since it is more consistent with users’ vehicle selection
process than discrete choice models. The modelling was achieved by considering ‘‘distance to the carsharing vehicle” as a
random variable analogous to the duration in conventional HBMs. A number of parametric forms of HBM were tested to
determine the best fit to the data set. The two major contributions of this study are: (1) introducing an analytical modelling
structure for modelling demand for carsharing with a focus on vehicle selection and (2) application of a choice set formation
technique that has been previously applied to a housing search problem (Rashidi and Mohammadian, 2012).

The remainder of the paper has been structured in the following manner. Section 2 provides a detailed literature review
discussing the recent studies within carsharing demand modelling and the application of HBMs within the field. The collec-
tion and preparation of the data sets used to formulate the model are discussed in Section 3. The modelling framework and
analysis methodology of the spatial hazard based model is then explained within Section 4. This is followed by Section 5
which presents the results and analysis of the modelling. Finally, the implications of the results and future research sur-
rounding this topic are highlighted within Section 6.
2. Literature review

The history and development of carsharing programs provide a source of motivation for this investigation. In terms of
transport planning, carsharing program is a travel demand optimization strategy. Carsharing offers the user the choice to
forego ownership of a vehicle as he or she will still have access to a private vehicle when it is absolutely necessary for specific
trip purposes, as a result this has the potential to reduce the number of vehicles travelling within the overall network. Martin
et al. (2010) studied the impact of carsharing on household vehicle holdings in North America and presented that the average
number of vehicles per household dropped from 0.47 to 0.24 for households which utilize carsharing. Furthermore, the anal-
ysis suggests that carsharing has removed 90,000–130,000 vehicles from the road at an aggregate level. The latest three-year
study on one-way carsharing services of five major cities in North America also demonstrated the mileage reduced by car-
sharing has exceeded the mileage created by it, resulting in a decrease in annual vehicle mileage by 10–29 million miles per
city investigated (Martin and Shaheen, 2016). A vast amount of literature has highlighted the advantages of carsharing pro-
grams (Shaheen et al., 1998; Stillwater et al., 2009; Duncan, 2011; Jorge and Correia, 2013; Shaheen and Cohen, 2013). For
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further information about carsharing, Shaheen and Cohen (2013) provided the latest overview of the state of practice of car-
sharing and its impact on transportation systems. The main advantages can be summarized as follows:

� Reduction in travel costs to a user: Carsharing provides an option to reduce the fixed costs associated with car ownership,
such as, insurance, registration and service costs (Katzev, 2003). Thus at an individual user level it can encourage saving
and more efficiently allocate income.

� Improved accessibility to private vehicle usage: Socially sustainable transport systems can be achieved as lower income
earners can now potentially access private vehicles whereas without carsharing schemes it would not be financially fea-
sible (Wachs and Taylor, 1998).

� Alleviation in traffic congestion: As mentioned before, carsharing reduces the need for private vehicle ownership which in
turn reduces the number of vehicles traversing the network and consequently decreases the vehicle kilometers travelled
(Martin et al., 2010; Shaheen and Cohen, 2013). Currently, this advantage can be enhanced with the advent of autono-
mous vehicles. As studied by Fagnant and Kockelman (2014), each shared autonomous vehicle can replace around eleven
conventional vehicles owing to its potential to overcome carsharing barriers regarding to users’ travel to access available
vehicles.

� Reduction in release of emissions limiting the environmental impact of private vehicle usage.
� Improved parking conditions as a reduction in car ownership will reduce the demand for off and on street parking of pri-
vate vehicles.

Literature suggests the need for carsharing as a mode of transport within the urban environment (Stillwater et al., 2009;
Ciari et al., 2013; Jorge and Correia, 2013; Shaheen and Cohen, 2013). However the efficient and effective implementation of
the programs is essential for the future success of carsharing and as a result a number of studies (Catalano et al., 2008; de
Almeida Correia and Antunes, 2012; Morency et al., 2012; Ciari et al., 2013; Schmöller et al., 2015; Jorge et al., 2015) have
been conducted to understand what factors determine the demand and supply for carsharing. This study adds to the growing
body of literature by providing a greater understanding of a users’ vehicle selection attributes within a carsharing scheme.

User behavior modelling is one of the branches of carsharing that has recently attracted some attention. Most studies
have adopted regression models, stated-preference surveys and data mining techniques to study the characteristics of users
of carsharing programs (Catalano et al., 2008; Stillwater et al., 2009; Morency et al., 2011; Schmöller et al., 2015; Jorge et al.,
2015). Catalano et al. (2008) conducted a stated preference survey within the city of Palermo in Italy. Using the data from
500 respondents the study develops a random utility model and tests future carsharing policy scenarios highlighting volatil-
ity in carsharing usage across the scenarios tested. Stillwater et al. (2009), on the other hand, conducted a GIS-based mul-
tivariate regression analysis to understand the impact of the built environment and demographic factors of users’ on
carsharing demand. Sixteen months of usage data from a carsharing operator in the U.S. were used to conduct the analysis
which suggested that single vehicle households, the availability of light rail facilities and the age of the carshare pod had a
positive relationship with demand for carsharing. Morency et al. (2011) advanced this stream of research by establishing the
typology of carsharing users using the carsharing transaction data provided by Communauto, a carsharing company in Mon-
treal, Quebec. The authors used data mining techniques to categorize members based on their temporal units that repre-
sented their behavior. The results indicate a greater proportion of low frequency users (on average 0.4 uses of the
program per week) and as a result lower distances travelled (14.3 km per week) which is consistent with the aims of the
short-term rental principle of carsharing.

More recently, De Lorimier and El-Geneidy (2013) developed a multilevel regression model to determine the factors that
affect vehicle usage and used a logistics regression analysis to analyze the carsharing vehicle availability. The data used in
this research also came from Communauto, a carsharing company in Canada. The results showed that the size of a carsharing
station was a key factor to vehicle usage. Morency et al. (2012) continued investigating the data of Communauto and pro-
posed a two-stage approach to estimate the frequency of usage by an active member. The first stage involved the develop-
ment of a binary probit model to understand the probability that a member will be active and the second stage was a random
utility based model which estimated the probability that a customer will use carsharing more than once per month given
they are an active member. The results indicated that recent usage had a positive relationship with the likelihood of future
use. However, it is heavily dependent on demographic factors such as age and language spoken at home.

Schaefers (2013) explored carsharing usage motives using a qualitative means-end chain analysis. They collected data
through a series of laddering interviews attended by members of a carsharing company in U.S. The interviews followed
the hierarchical structure of means-end chain method. The authors created a hierarchical value map (HVM) to describe
the relationships between carsharing attributes and users’ core values. They concluded that there are four motivational pat-
terns in carsharing context, namely value-seeking, convenience, lifestyle, and environmental consciousness. The results of
this study could be used in making targeted carsharing development strategies.

In the context of vehicle selection and supply, Schmöller et al. (2015) completed an empirical study on the spatial and
temporal utilization of ‘free-floating carsharing’ within Munich and Berlin (Germany). As mentioned earlier, free-floating
carsharing programs do not require vehicle pods/stations and allows for one-way trips. Though this differs from traditional,
station-based carsharing and the focus of this paper, the analysis of the booking data revealed asymmetries in the spatiotem-
poral distribution of vehicle supply and demand and suggested the demand for the service can be influenced by both
short-term and long-term factors. Regarding to the supply-demand asymmetry problem raised in such one-way carsharing
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programs, Weikl and Bogenberger (2015) proposed a relocation model to optimally relocate vehicles to balance vehicle sup-
ply distribution. Cepolina and Farina (2012) also developed a fleet optimization algorithm to optimize the fleet dimension
and its distribution among stations in one-way carsharing systems. Correia et al. (2014) considered the flexibility of user’s
choice on carshare stations: users might not always select the closest carshare station, instead they might use the second or
even the third closest station if there was no vehicle available in the closest station. Their findings reflected the impact of the
information of station vehicle stocks on user’s station choice, and implied the complexity of users’ vehicle selection process.
Furthermore, Schmöller et al. (2015) provided insight into data analysis techniques used to study the spatial relationship
with vehicle booking of a carsharing program, which closely aligns with the work carried out within this study. Although
the aforementioned studies provide a thorough understanding of some of the significant factors that affect carsharing user
behavior, to the authors’ best of knowledge, the process of vehicle selection by a user, in the context of station-based car-
sharing, has yet to be fully investigated.

Recently, some studies have utilized hazard based modelling techniques to explore users’ behavior within carsharing pro-
grams (Habib et al., 2012; Morency et al., 2012). Habib et al. (2012) further utilized the data provided by Communauto to
present a discrete time hazard model to estimate membership continuation of users. Similarly, Costain et al. (2012) also
applied hazard model to investigate membership duration of carsharing users. The study initially carried out descriptive
analysis to investigate key attributes that influence the overall patterns of users’ behavior. Subsequently, the authors devel-
oped several econometric models, including a binary logit model, a hazard model, a negative binomial model, a multivariate
regression model, and a multinomial logit model. These models were used to analyze a number of factors including users’
attitude towards environment and safety, frequency of usage and vehicle type choice. Among these models, the hazard
model was employed to model membership duration. The results revealed that higher monthly rate and less perceived sav-
ing would shorten membership duration. The methodology underpinning these studies provided guidance in developing a
model which focuses on vehicle selection, as this is a discrete decision made based on a set of given alternatives.

The behavior of vehicle selection is a discrete choice for an individual when utilizing carsharing. A user needs to select a
single vehicle out of a choice set and how we define the choice set is an important consideration and a key focus of the study.
Literature has shown that choice set formation has an impact on the parameter estimation of behavioral choice models (Ben-
Akiva and Lerman, 1985; Timmermans and Golledge, 1990; Rashidi and Mohammadian, 2012). Rashidi and Mohammadian
(2012) presented a detailed review of approaches to choice set formation which has historically been classified into two
approaches: random selection out of the universal choice set and consideration of the entire universal choice set, both con-
taining weaknesses in developing accurate behavioral models. In addition, the most critical element within choice set for-
mation is developing an appropriate filtering/screening method (Rashidi and Mohammadian, 2012; Manski, 1977). The
decision process can be completed in two phases: initially the hazard model determines a filtered choice set identifying
the probabilistically relevant alternatives and then a secondary choice model determines the alternative with the greatest
utility from this filtered choice set (Rashidi and Mohammadian, 2012). The study presented within this paper attempts to
achieve the first step of this process through the use of a Spatial Hazard Based Model (SHBM), a relatively new technique
that has had a few applications within literature (Rashidi and Mohammadian, 2012; Rogerson et al., 1993; Pellegrini and
Grant, 1999). The model considers ‘‘distance to the carsharing vehicle” as a random variable analogous to the duration of
a HBM to construct the choice set of the vehicle selection decision.
3. Data collection and preparation

GoGet, an Australian carsharing company founded in 2003 operating throughout Sydney, Melbourne, Brisbane and Ade-
laide graciously provided the data set used to undertake this research. Anonymous carsharing trip data of the Sydney region
obtained between January 1st, 2012 and June 9th, 2012 was utilized for the development of the SHBM. At the time of data
collection, GoGet operated round-trip station-based carsharing services, and there were 55 GoGet vehicle pods (carsharing
facilities) located in Sydney containing a total of 208 vehicles. The recorded data considers 23,642 trips completed by 3081
users across the six-month period of data collection. The data set includes a wide range of anonymous user-related, vehicle-
related, and trip-related variables, which are described in Table 1. These variables are selected specific to the aims of the
research: understanding the vehicle selection within carsharing programs.

User-level variables (variable ID 1–9 shown in Table 1) were extracted directly from the anonymous user information
provided by GoGet. Information regarding the users’ age, car ownership and usage and journey to work were obtained. Eight
out of the nine user level variables were binary in nature. The variable user_landuse_binary identifies if the land use of the
origin is residential or not. This classification is based on the land use zoning map obtained from the NSW Department of
Premier and Cabinet, Office of Environment and Heritage (NSW GOVERNMENT ENVIRONMENT AND HERITAGE, 2014).
Among all the users, 67.87% are originating from residential areas, 25.12% from commercial or industrial areas, and 7.01%
from public services or recreational area. The variable user_live_dedicated_parking is extracted from the survey responses
conducted by GoGet. The variable captures whether a member believes that they have a dedicated parking spot near them.

The variable plan_binary divides users into frequent user group and infrequent user group. At the time of data collection,
GoGet provided five membership plans to users with different monthly rates and trip rates: GoFrequent, GoOccasional, GoS-
tarter, GoBusiness, and GoStudent. The variable plan_binary equal to 1 indicating the user is on GoFrequent plan. It has the



Table 1
Summary of the variables used in the models.

ID Variable Mean Std.
dev.

Percentage of
binary variable = 1

Definition

User 1 User_age (year) 39.60 10.86 – Age of user
2 User_car_ownership – – 20.90 Binary variable: =1, user owns a car; =0, otherwise
3 User_how_often_use_

the_car
– – 34.79 Binary variable: =1, user uses the car at least once a week; =0, user

rarely uses the car, i.e. less than once a week.
4 User_main_way_to_

work
– – 58.33 Binary variable: =1, user uses public transit to work; =0, otherwise

5 User_landuse_binary – – 67.87 Binary variable: =1, user’s origin landuse type is residential; =0,
otherwise

6 User_live_near_
dedicated_parking

– – 70.11 Binary variable: =1, user lives near dedicated parking pod; =0,
otherwise

7 Dl_country – – 79.10 Binary variable:=1, user’s driving license country is Australia;=0,
otherwise

8 Plan_binary – – 26.74 Binary variable: =1, user owns a frequent usage membership plan;
=0, otherwise

9 Booking_method – – 11.46 Binary variable: =1, user uses mobile phone to book a car; =0,
otherwise

Vehicle 10 Car_manufacture – – 11.55 Binary variable: =1, the manufacturer of the car is Alfa Romeo, =0,
otherwise

11 Car_body_type – – 18.86 Binary variable: =1, the car is MPV or Electric vehicle; =0, the car is
hatchback

12 Car_age (year) 3.30 0.74 – Age of GoGet car
13 Pet_friendly – . 7.82 Binary variable: =1, the car is pet friendly; =0, otherwise

Trip 14 Trip_travel_time
(hours)

0.21 0.55 – Total travel time of each trip

15 Usage 3.07 10.04 – Number of times user has used a vehicle
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lowest trip rate and the highest monthly service subscription rate. It is more suitable for users using carsharing service
frequently.

Vehicle-related variables include the manufacturer, body type, age, and pet option of the vehicles. Four manufacturers,
Toyota, Hyundai, Alfa Romeo and Suzuki, supply the fleet of 208 GoGet vehicles being studied. The trip rate, i.e. the rate
GoGet charges users per hour and per kilometer, of these cars are different. Out of all the manufacturers, the carsharing rate
charged for using Alfa Romeo vehicles is the highest as this is deemed to be a luxury vehicle. The other manufacturers have
equal rate and the hourly rate is AU$2 (AU$1 = US$0.75 [29/08/2016]) lower than the rate of Alfa Romeo. As a result,
a car_manufacturer variable is generated as a binary variable that if the manufacturer is Alfa Romeo it equals 1, and 0,
otherwise. The variable pet_friendly identifies whether the vehicle is pet friendly. Trip-level attributes consist of trip travel
time and the number of times that each user selects each car, denoted by usage.

Table 2 presents the correlation between the 15 variables. Though a majority of the coefficients are less than 0.15, there
are several correlations that should be noted. Variable user_how_often_use_the_car (3) and plan_binary (8) have a weakly pos-
itive correlation of 0.22 indicating that frequent carshare users tend to also be private vehicle users. The variable car_
body_type (11) are negatively correlated with car_manufacturer (10), car_age (12) and pet_friendly (13). This shows that
vehicles with special body types are mostly older vehicles and not pet-friendly compared to hatchbacks.
Table 2
Correlation between Variables.

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1.00
2 0.11 1.00
3 0.06 0.10 1.00
4 �0.02 �0.06 �0.07 1.00
5 �0.15 0.07 0.08 0.04 1.00
6 �0.05 0.06 �0.05 0.07 �0.03 1.00
7 0.15 0.13 0.04 �0.01 0.01 �0.06 1.00
8 0.11 �0.04 0.22 0.00 �0.12 �0.07 0.02 1.00
9 �0.11 �0.04 0.05 0.00 0.01 0.03 0.00 0.14 1.00
10 0.01 0.01 0.01 0.00 0.00 �0.01 0.01 0.00 0.00 1.00
11 �0.01 0.01 �0.01 �0.02 �0.02 0.00 0.00 0.00 0.00 �0.22 1.00
12 0.00 0.03 0.02 0.00 0.01 0.01 0.02 0.00 �0.01 �0.11 �0.21 1.00
13 �0.01 0.00 �0.01 0.00 �0.01 �0.01 0.01 0.02 0.01 �0.16 �0.20 �0.09 1.00
14 0.02 0.01 �0.02 �0.01 �0.02 0.01 �0.03 �0.01 �0.01 0.00 �0.01 �0.01 0.00 1.00
15 0.01 �0.03 0.05 0.04 0.03 �0.03 0.02 0.01 0.02 �0.09 �0.14 �0.06 �0.11 �0.03 1.00
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GoGet provided the Euclidean distance between a user’s residence and carshare vehicle pod. Furthermore, it is also
important to note, a maximum travel distance catchment of two kilometers that an individual would travel to a vehicle
pod was assumed within this study. This assumption was made to complete an initial screening of the data to determine
feasible travel distances between the origin and the vehicle pod as walking is the dominant access/egress mode to GoGet
vehicles. Thus, the application of Euclidean distance offered a reasonable estimate for distances less than 2 km. Fig. 1 pre-
sents a distribution of the observed GoGet usage data considering the two-kilometer origin to vehicle pod radius. The figure
shows a high proportion of users located within one kilometer of the vehicle pod (62% of the total data set) with the usage
decreasing as the distance increases. In addition, the total catchment considers 80% of the data set. Accordingly, the use of
the two-kilometer catchment was deemed as a valid initial screening criterion to obtain realistic modelling.

In addition, the GoGet booking system only provides users information regarding available vehicles when booking. Thus,
within the modelling framework, it is assumed that the user can only select vehicles that are available at the time of utiliza-
tion narrowing the choice set.
4. Model formulation and methodology

The parametric hazard based models used in this study are introduced in this section. To begin with the various types of
parametric models are introduced and this is followed by a presentation of the constraints related to the problem, and finally
the criteria of selecting among a set of parametric models.

In the area of survival analysis, there are two categories of parametric models, namely the accelerated failure time model
(AFT model) and the proportional hazards model (PH model) (Rashidi and Mohammadian, 2015). The AFT model considers a
linear relationship between the log of survival time and the covariates considered, while a proportional hazard model
assumes that absolute differences in covariates imply proportionate differences in the hazard rate at a specific time. There
are different probability distributions, such as exponential distribution, Weibull distribution and log-logistic distribution,
employed to formulate parametric hazard models (i.e. both AFT and PH). Among these distributions, the Weibull function
has been most frequently used in the studies of duration modelling (Yamamoto and Kitamura, 2000; Rashidi and
Mohammadian, 2012; Hasan et al., 2013; Haque andWashington, 2015) since Cox (1959) first proposed theWeibull baseline
hazard model. It presents a flexible functional form that can capture monotonically increasing or decreasing hazard function.
However, it should be noted that the hazard function might not be monotonic in some cases, which requires testing of non-
monotonic distributions for the parametric hazard models.

We examine AFT models and, we test both monotonic functions (i.e. Weibull and exponential distributions) and non-
monotonic functions (i.e. log-logistic and lognormal distributions) to determine the best fit parametric hazard model.

As discussed in the literature review, in all of the formulations presented in this section, the terms duration and distance
are interchangeable without losing generality of survival analysis. In the hazard formulation, the length of a duration spell
for a subject is represented by a continuous random variable T with a cumulative density function (CDF), FðtÞ, and probability
density function (PDF), f ðtÞ. The probability of failing sometime before time t, FðtÞ can be written as:
PrðT 6 tÞ ¼ FðtÞ ð1Þ
where t denotes the elapsed time since entry to the state at time zero.
Fig. 1. Distribution of GoGet usage data considering a 2 km radius.
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Then, the survival function can be written as:
PrðT > tÞ ¼ 1� FðtÞ ¼ SðtÞ ð2Þ

As the slope of CDF is the PDF, it can be expressed as follows:
f ðtÞ ¼ lim
Dt!0

Prðt 6 T 6 t þ DtÞ
Dt

¼ @FðtÞ
@t

¼ � @SðtÞ
@t

ð3Þ
where Dt is a very small time interval.
The hazard rate is defined as the probability of failure in the interval ðt; t þ DtÞ given that it has survived until time t. Let

hðtÞ denote the hazard rate, thus:
hðtÞ ¼ f ðtÞ
1� FðtÞ ¼

f ðtÞ
SðtÞ ¼

@f�ln½SðtÞ�g
@t

ð4Þ
Using Eq. (4), the survival function can be defined as:
SðtÞ ¼ exp �
Z t

0
hðuÞdu

� �
ð5Þ
As mentioned before, the AFT models are used, and they are formulated as:
lnðtjÞ ¼ xjbx þ zj ð6Þ

where for individual j, xj represents explanatory variables, bx denotes the vector of coefficients, and zj is the error with den-
sity f ð�Þ, which determines the regression model. By letting f ð�Þ be the extreme-value density, the Weibull and exponential
parametric hazard models are obtained. By ensuring f ð�Þ follows a logistic distribution, the log-logistic hazard model is for-
mulated. Similarly, by setting f ð�Þ to a normal distribution, we obtain a lognormal regression model.

For the AFT model, expð�xjbxÞ is defined as the acceleration parameter. If expð�xjbxÞ equals to one, time passes at its nor-
mal rate indicating that failure will occur at the expected duration. If expð�xjbxÞ is larger than 1, time is accelerated, that is,
the failure is expected to occur sooner. If expð�xjbxÞ is smaller than 1, then time is decelerated, which means the failure
might occur later.

Using Eqs. (5) and (6), and the density functions, we rewrite the survival functions of these four distributions as follows:
Exponential survival function : SðtÞ ¼ exp½�expð�xjbxÞtj� ð7Þ

Weibull survival function : SðtÞ ¼ exp½�expð�pxjbxÞtpj � ð8Þ

Log-logistic survival function : SðtÞ ¼ ð1þ ½expð�xjbxÞtj�1=cÞ
�1 ð9Þ

Lognormal survival function : SðtÞ ¼ 1� /
lnðtjÞ � xjbx

r

� �
ð10Þ
where p is the scale parameter of the Weibull distribution, c is the shape parameter of the log-logistic distribution, r is the
scale parameter of the lognormal distribution, xj represents the vector of covariates, and bx is the vector of coefficients.

In the context of this particular study the hazard based models are used to understand the formation of the vehicle choice
set (Rashidi et al., 2012). Thus, t represents the distance between the user’s origin and the available carshare vehicle. How-
ever, the critical acceptable walking distance for each type of vehicle is not known, only that it falls within some interval of
distance between the selected vehicle and all the unselected vehicles of that type.

Fig. 2 helps explain the concept. As shown in Fig. 2, there are 7 types of GoGet vehicles available for users to select. Vehi-
cles from different types have different attributes, while vehicles from the same type are exactly the same vehicles only with
different distances from the origin of the user. As the carsharing network usually covers large urban areas, the vehicles from
the same type are distributed sparsely with relatively long distances between each other. Since users will only consider the
closest vehicle of each type of vehicle, there is only 1 vehicle from each type included in this data set. In this example, we
assume that Vehicle 1 is selected by the user, but it does not mean that the distance to Vehicle 1 is the acceptable walking
distance of Type 1 vehicles. Instead, the critical acceptable walking distance of the vehicle that is selected is somewhere far-
ther than the distance of Vehicle 1, but closer than the second closest vehicle of that type (Vehicle 1’). Therefore, the prob-
ability of Type 1 vehicles being selected can be represented by the difference between the survival function of the selected
car and the second closest car. For the type of vehicle that is selected in this trip, the probability being selected can be written
as:
PrSðt 6 t� < t0Þ ¼ SðtÞ � Sðt0Þ ð11Þ

where t0 denotes the distance of the second closest vehicle.



Fig. 2. Schematic explaining choice set formation of carsharing users.
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As for the rest of the types of vehicles that are not selected, the acceptable walking distance is somewhere between the
origin of the user and the distance of the vehicle. So for these types of vehicles, the probability being selected can be written
as:
PrNSð0 6 t� < tÞ ¼ 1� SðtÞ ¼ FðtÞ ð12Þ

Eqs. (11) and (12) take into account the inclusion of the acceptable walking distance, and is used to formulate the max-

imum likelihood estimation model.
We develop four different hazard models in this research, therefore, it is necessary to compare the goodness of fit across

these four models. The Bayesian Information Criterion (BIC) is employed to select the best-fit hazard model. It is the criterion
for model selection among a finite set of parametric models. The model with lower BIC value is considered to have a better
fit. The formulation of BIC is:
BIC ¼ �2� lnðlikelihoodÞ þ lnðNÞ � k ð13Þ

where k denotes the number of the parameters estimated, and N is the number of observations.

5. Results and analysis

The four hazard based models were estimated using the statistical analysis software package SAS 9.4. Table 3 shows the
results of parameter estimation. The signs of the coefficients, except dl_country and car_manufacturer_binary, are consistent
in all models.

In this case, the coefficient for car_manufacturer_binary is statistically significant for the monotonic distributions (Expo-
nential and Weibull), marginally significant for the Log-logistic distribution and insignificant for Lognormal distribution. The
coefficient for dl_country is statistically significant for the monotonic distributions (Exponential and Weibull) and statisti-
cally insignificant in the non-monotonic distributions (Log-logistic and Lognormal). This may suggest that the monotonic
distributions might be anchoring their flexibility on these two variables and creating biases. Therefore, the non-
monotonic distributions are more favorable functional forms.

As discussed in the Model Formulation and Methodology section, the BIC metric is employed to select the best-fit hazard
model. With Eq. (13), we obtain Table 4 showing the results of BIC of all four models. The BIC value for the model with the
Log-logistic distribution is 61380.67, which is the smallest among all the models. It can be concluded that the Log-logistic
distribution provides the best hazard model among the four distributions considered for this study and as such this model
is used for further analysis.

The hazard model with Log-logistic function is further examined. The estimated CDF is employed to simulate the distance
between a GoGet user and his or her selected vehicle. Fig. 3 shows the simulated results for the cumulative survival prob-
ability with Log-logistic distribution. The general pattern is monotonically decreasing, which is consistent with observations.



Table 3
Parameter estimation results for four models.

Parameter Exponential Weibull Log-logistic Lognormal

Estimate t Value Estimate t Value Estimate t Value Estimate t Value

User User_age 0.478331 7.278972 0.479827 7.290833 0.525723 9.315292 0.560786 9.661856
User_car_ownership_binary �4.401545 �2.322136 �4.466535 �2.360376 �10.5214 �6.326725 �7.38349 �4.35386
User_how_often_use_car_binary 0.403781 0.26871 0.273092 0.181628 2.233314 1.593125 0.953487 0.674687
User_main_way_to_work_binary 3.706292 2.575694 3.624778 2.517515 5.957318 4.435694 5.851677 4.311006
User_landuse_binary 6.301275 4.080201 6.365917 4.125418 7.694193 5.397969 6.966072 4.876655
User_live_near_dedicated_parking 9.767516 6.272694 9.911045 6.374452 11.9866 8.333365 11.37041 7.880726
Dl_country �2.733833 �1.529486 �2.716028 �1.520406 0.495685 0.28573 1.885583 1.067935
Plan_binary �4.750974 �3.049809 �4.948086 �3.178989 �6.926405 �4.78561 �6.380722 �4.382184
Booking_method_binary 7.110488 3.336593 7.008435 3.289569 4.290644 2.135171 5.771724 2.919326

Vehicle Car_manufacturer_binary 13.03322 5.850823 11.68059 5.168007 �3.954376 �1.457152 0.634384 0.256958
Car_body_type_binary �18.556 �6.539107 �21.13242 �7.563846 �65.90859 �20.13298 �48.54587 �16.3952
Car_age �5.111518 �4.937334 �5.42193 �5.286265 �6.401082 �7.049798 �5.816886 �6.375166
Pet_friendly �63.86401 �17.49671 �66.31779 �17.973218 �89.33228 �19.186386 �80.91573 �20.335366

Trip Trip_travel_time 13.72318 7.150655 13.73324 7.030809 4.970142 1.464533 5.147012 2.523356
Usage 1.224163 20.79797 1.310191 20.733937 1.052602 21.33739 1.251509 26.68257

_cons �1.771756 �35.98064 �1.715665 �35.772448 �2.118267 �48.110867 �2.216295 �49.637059
Weibull_p – – 0.956884 126.36897 – – – –
Loglogistic_gamma – – – – 0.50636 138.5621 – –
Lognormal_sigma – – – – – – 0.937571 137.24704
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Table 4
Calculation results of BIC of four models.

Exponential Weibull Log-logistic Lognormal

Log likelihood value �31367.11 �31344.32 �30596.28 �30695.03
Number of observations 63,933 63,933 63,933 63,933
Number of parameters 16 17 17 17
BIC 62911.27 62876.76 61380.67 61578.18
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Fig. 3. Cumulative survival probability pattern for Log-logistic model.
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Table 3 presents the parameter estimation results of Log-logistic distribution. As shown in the table, the c parameter of
Log-logistic distribution is smaller than 1, meaning that the shape of Log-logistic hazard model is not monotonic. The hazard
rate will first increase to a certain value and then decrease as the distance between the user and the vehicle increases.

Fig. 4 plots the pattern of the hazard value against the vehicle distance, which confirms the non-monotonic interpretation
of the c parameter for the Log-logistic distribution. In Fig. 4, the hazard value first increases as the distance increases. When
the distance is approximately 0.2 km, the hazard value starts to fall. This can be explained that when the walking distance is
within 0.2 km, users are not affected by the distance to the vehicle. Another reason might be that only 20% of the vehicles are
within the 0.2 km radius, so users do not have enough choices regarding the vehicles within 0.2 km. When the distance is
larger than 0.2 km, the impact of the distance on users’ vehicle selection behavior becomes more significant. Users prefer
to select vehicles that are nearer to their origin locations, which satisfies the initial assumption and common sense of car-
sharing vehicle selection.

Before discussing the results of the parameter estimation, it should be noted that in the AFT models, the effect of covari-
ates is facilitated by incorporating a negative sign for the parameters within the formulation. In other words, if the coefficient
(bxÞ of the covariate is estimated to have a negative value, the expected time to failure decreases and the probability of failure
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Fig. 4. Hazard pattern for Log-logistic model.
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increases. In the context of the vehicle selection of this paper, this means that an individual with a larger value of the covari-
ate tends to choose vehicles with shorter distances between the origin and vehicle pod. Conversely, if bx of a covariate is
positive, an increase in the value of the covariate increases the expected time to failure. This means that an individual with
a higher value of this type of covariate tends to accept a greater distance between the origin and vehicle pod.

The parameter estimates for the Log-logistic distribution shows that most of the parameters listed are statistically signif-
icant at a 5% confidence level except the binary variable dl_country. Among the parameters, the coefficients of all the vehicle
related parameters are negative. The binary car manufacturer variable has a negative coefficient which indicates that people
who selected a non-luxury (as defined in Section 3) carsharing vehicle (i.e. not an Alfa Romeo) have the tendency to com-
mute longer to the vehicle pod. This finding can be explained by the fact that the rate of these luxury vehicles is higher than
other normal vehicles. Since carsharing is reported to be more popular among individuals with lower incomes who might
value lower transportation costs more than the extra aesthetic and comfort based utility of the vehicles (Costain et al.,
2012). Thus, users are more willing to select vehicles with lower hourly rates at the expense of walking longer distances.
Furthermore, the car body type variable also has a negative coefficient estimate suggesting that users’ selecting hatchback
vehicles are more likely to travel longer distances to the vehicle pods, while users choosing multi-purpose vehicles (MPVs) or
electric vehicles have higher probability to travel shorter distances to find a vehicle. This can be explained by the general
household characteristics of carshare users. Celsor and Millard-Ball (2007) indicated that the more common users of carshar-
ing facilities are people who are from single occupant households. In general, this category of user will not have the require-
ment to use a large vehicle or an MPV as there normally isn’t the need to transport more than a few people. In addition, the
short-term nature of carsharing use means that the trip purpose for a lot of journeys are short term and do not require the
use of large vehicles which are more common for holiday and long term car rental (Cervero et al., 2007). So even if the hatch-
back is relatively far away from the origin, the user will be inclined to hire it over a MPV or a larger vehicle. With respect to
the electric vehicles, since electric vehicles are not as common as conventional petroleum vehicles, users might prefer pet-
roleum vehicles regardless of the distance to the vehicle pod due to familiarity. It is interesting to note that the age of the car
also has a negative coefficient, meaning that as the age of the car increases users’ willingness to travel farther to the vehicle
must reduce significantly. This is an intuitive result as the common perception of users is that newer vehicles are more reli-
able and as such there is value in walking a greater distance to obtain a better vehicle.

It is clear that car ownership also has a negative coefficient, suggesting that users who own a car are more willing to select
vehicles that are closer to them. In other words, people not owning a car but intending to use a carsharing service have
higher probability to travel a greater distance to the vehicle pod. People who own a car have the choice to not use a carshare
vehicle if the distance to the vehicle pod is too great. But for those people who do not own a car, they might not have any
alternative except using carshare vehicles if they absolutely need to make use of a private vehicle. This result is consistent
with the result of the binary user_main_way_to_work variable. The coefficient of this variable is positive meaning that users
who use public transport to travel to work originate farther from the vehicle pod. This category of user may not own a private
vehicle, but more importantly do not have access to a vehicle during work hours and as a result if they need to complete a
trip requiring a private vehicle during that time they may be forced to travel a greater distance to the vehicle pod. In addition,
the plan_binary variable has a negative coefficient suggesting that more frequent users of carsharing services tend to select
vehicles within shorter distances from their origin. This may be attributed to the scenario where people who live near or
have easy access to carshare vehicles are more likely to be involved with a frequent use carshare plan, due to the conve-
nience of the vehicle pod locality relative to their residence.

The variable pet_friendly was found to have a negative coefficient, suggesting that pet friendliness is not an extra benefit
for most carshare users. This is intuitive in that pet owners who are regularly travelling with their pet generally own pet
friendly car. The negative correlation between pet and car_body_type also helps explain the result: pet-friendly vehicles
are more likely to be hatchbacks, and the majority vehicles provided by GoGet are hatchbacks.

Observing the positive coefficients, the covariateusagehas apositive sign indicating that users prefer towalk further for cars
that they have selected and usedmultiple times. This is also a logical outcome in that users value the reliability and familiarity
of the vehiclemore than thedistance to the vehicle. Consideringa similar rationalization, users that have greater carsharing trip
lengths tend to select vehicles located further away from their origin. Again, this could be attributed to the fact that when the
user is planning a longer trip, they aremore likely to choose a car that ismore suitable to the purpose of the trip and familiar to
the user regardless of the distance to the car. Increased usage of cars (user_how_often_use_the_car_binary) by a user suggests an
increase in the distance between the origin and the vehicle podwhen selecting a carsharing vehicle. This is a contrasting result
to what was observed with the car ownership variable even though this variable indication is attributed to the ownership of a
private vehicle. There are a few explanations for this result: initially owners of private vehicles are less likely to use carshare
facilities, as a result there is no utility for people to be originatedwithin the vicinity of the carshare service, howeverwhen they
doneed to use the service theywill need to travel further to gain access to the facility. Furthermore,withinAustralia, carsharing
vehicles have priority parking spaces throughout built up CBD areas where parking is a premium and accordingly users’ may
find it more convenient to use the carshare facility ahead of using their own private vehicle.

The users’ age also has a positive coefficient suggesting the older a user, the farther his or her origin is to the vehicle pod.
Elderly users may not own a private vehicle and also may have more leisure time, as a result distance to the vehicle pod is
either inevitable or does not impact their utility as much as younger users. Variables linked to characteristics of the users’
origin prior to using the carshare facility present positive coefficients (user_landuse_binay and user_live_near_dedicated_park
ing). This suggests that people originating from residential zones, living in a suburban environment, tend to travel further to
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gain access to a carshare vehicle as these trips may involve a greater level of planning relative to those happening situated in
commercial and industrial zones. It can also be explained, that users from commercial and industrial zones, who live in an
urban environment, have a greater mode choice (access to taxis and public transport) reducing their tendency to walk large
distances to use carsharing facilities. Further, residing near a dedicated GoGet parking area increases the incentive to access
carsharing services and results in users’ willingness to travel greater distances to make use of the facilities.

Interestingly, the variable booking_method_binary was found to have a positive coefficient and is statistically significant.
The variable takes a value of one if the booking was done using a mobile application and zero if other methods were used.
The statistically significant positive coefficient suggests that people are willing to travel further to access the carshare car
when using the mobile application, which reflects their flexibility to access the vehicle based on real time information about
other transportation options.
6. Conclusion and future directions

This study presented a behavioral model to gain a greater understanding of users’ selecting vehicles within a carsharing
program. The study attempted to answer two questions: ‘‘How far is an acceptable walking distance when users make deci-
sion on using carshare vehicles?” and ‘‘What factors influence users’ selection of vehicles and are there any patterns or trends
associated within these factors?” An answer to these two questions enable the researcher to model the choice set formation
behavior as a probabilistic process which is a function of distance and the identified covariates.

As the vehicle selection process is complicated, a choice set formation methodology using a spatial HBM was developed
using a rich data set from the Australian carsharing companyGoGet. The SHBMconsidered ‘‘distance to the carsharing vehicle”
as a non-negative random variable analogous to the duration of conventional HBMs. The results from the modelling contain a
number of negatively and positively correlated covariateswhich can provide trends andpatterns that could potentially be used
to guide policy of carsharing programs. Positive coefficient estimates implied that as the value of the independent variable
increases users tend to travel a further distance to select a carshare vehicle. Negative coefficient estimate, on the other hand,
indicated the oppositewhere an increase in the variablemeans that users favor to travel a shorter distance to select the vehicle.

The user age, frequency of usage of cars, users’ main way to work, booking method and users’ land use type had positive
coefficients. These results indicate that elderly users, users taking public transport to work, users with frequent usage of cars,
users used mobile phones to book a trip, and users from residential areas tend to originate farther to the vehicle pod. The
number of times a user selects a specific GoGet vehicle and trip travel time also had positive coefficients. This demonstrates
that user’s value familiarity with the vehicle and age of the vehicle over the walking distance to the vehicle from the origin.

On the other hand, users’ car ownership and plan type variables had negative coefficient estimates. This demonstrates that
thevehicles locatedwithina shorterdistance to theoriginhaveahigherprobability of being selectedby theuserswhoownacar
and the users who join a frequent use carshare plan. The car manufacturer, car body type, car age and whether the car is pet
friendly also had negative coefficient estimates. This may suggest that the luxury vehicles, vehicles with specific body type,
old cars, and vehicles that allow for carryingpets alongdonot have enough incentive tousers compared to thosenewer vehicles
and vehicles with lower hourly rates and smaller size. These ‘‘normal vehicles” are more likely to be selected even if they are
further away from theusers. Basedon these trends, carshare organizations can optimize their vehicle pod locations to center on
catchments containing these user classes to maximize usage of the system as well as enhance the overall popularity of the
scheme.

The increase in use of carshare systems has created questions for transportation agencies to provide and manage existing
parking locations for carshare systems to increase their use, and influence car ownership. The model presented in this paper
will help carshare operators understand how users formulate the vehicle selection choice set, and predict the probability of a
vehicle being selected together with the advanced discrete choice model being formulated in the next step. The two models
can further be integrated with an optimization model aiming to optimally select the locations and types of vehicles in the
carsharing programs given a set of candidate vehicles. The SHBM together with the secondary discrete choice model can pro-
vide the probability of a vehicle selected given the location and the characteristics of the vehicle. The objective of the opti-
mization model can be maximizing the carshare ridership by maximizing the sum of the probability of vehicles being
selected by users given a budget constraint. The integrated model can determine the optimal locations of carshare vehicles
and the types of vehicles that can enhance the overall popularity of the carsharing scheme.

Further extensions of the current study include investigating the importance of key variables other than the ‘‘distance to
the carshare vehicle” that impacts the vehicle selection process within a carshare scheme, such as trip purpose and trip des-
tination. In addition, the impact of the types of vehicles (hatchback/MPV/electric vehicle) and the manufacturers of the vehi-
cles could also be further refined as individual covariates to see if an impact is observed. Moreover, the application of the
SHBM model can be extended to hilly areas with different pedestrian walking conditions compared to Sydney by converting
the distance used in this model to walking time.
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