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Developing microscopic traffic simulation models requires the knowledge of probability
distributions of microscopic traffic variables. Although previous studies have proposed
extensive mathematical distributions for describing traffic variables (e.g., speed, headway,
vehicle length, etc.), these studies usually consider microscopic traffic observations to be
independent variables and distributions for these variables are investigated separately.
As a result, some traditional approaches consider microscopic traffic variables as indepen-
dent inputs to the traffic simulation process and these methods may ignore the possible
dependence among different traffic variables.
The objectives of this paper are to investigate the dependence structure among micro-

scopic traffic variables and to examine the applicability of the copula approach to the joint
modeling of these variables. Copulas are functions that relate multivariate distribution
functions of random variables to their one-dimensional marginal distribution functions.
The concept of copulas has been well recognized in the statistics field and recently has
been introduced in transportation studies. The proposed copula approach is applied to
the 24-h traffic data collected on IH-35 in Austin, Texas. The preliminary data analysis indi-
cates that there exists dependence among microscopic traffic variables. Moreover, the
modeling and simulation results suggest that copula models can adequately accommodate
and accurately reproduce the dependence structure revealed by the traffic observations.
Overall, the findings in this paper provide a framework for generating multiple microscopic
traffic variables simultaneously by considering their dependence.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Developing microscopic traffic simulation models requires the knowledge of probability distributions of microscopic traf-
fic variables (i.e., speed, time and distance headway, vehicle type, etc.). It is important to find appropriate mathematical dis-
tributions to describe the measured microscopic traffic variables, because the input parameters for some car-following
models and microscopic simulation models are generated based on some form of mathematical models. For example, COR-
SIM provides three types of vehicle generation distributions: uniform distribution, normal distribution, and Erlang distribu-
tion. In VISSIM and SimTraffic, vehicles are usually generated on the basis of an exponential distribution (Tian et al., 2002).
Schultz and Rilett (2004) used lognormal and normal distributions to generate input parameters for car-following sensitivity
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factors (i.e., headway) in Pitt car-following model. Traditionally, distributions for microscopic traffic variables are investi-
gated separately and independent of each other. For speed distributions, normal (Leong, 1968; Mclean, 1979), log-normal
(Haight and Mosher, 1962; Gerlough and Huber, 1976), gamma (Haight, 1963), normal mixture models (Ko and Guensler,
2005; Park et al., 2010) and skew-t mixture models (Zou and Zhang, 2011) have been considered. For headway distributions,
exponential (Cowan, 1975), normal, gamma, lognormal, log–logistic (Yin et al., 2009), Cowan M3model (Luttinen, 1999), M4
model (Hoogendoorn and Bovy, 1998), the generalized queuing model and the semi-Poisson model (Wasielewski, 1979)
have been used. Compared with speed and headway, few researchers examined the distribution of vehicle lengths. Previ-
ously, Wang and Nihan (2004) and Zhang et al. (2008) used normal distributions to fit vehicle length data for short and long
vehicles.

Despite a large number of previous works have examined the distributions of microscopic traffic variables, few studies
have considered the possible dependence among microscopic traffic variables. For speed and headway, Luttinen (1992)
found out that speed limit and road category have a considerable effect on the statistical properties of vehicle headways.
Taieb-Maimon and Shinar (2001) conducted a field study to evaluate drivers’ actual headways in car-following situation
and their results showed that drivers adjusted the distance headways in relation to speed. Brackstone et al. (2009) revealed
that there is a limited dependence of following headway on speed and the most successful relationship fit of headway and
speed is an inverse relationship. Yin et al. (2009) studied the dependence of headway distributions on the traffic condition
(speed pattern) and concluded that different headway models should be used for distinct traffic conditions (speed patterns).
Zou et al. (2014) analyzed 24-h freeway speed and headway data and found that there was a weak correlation between speed
and headway. In addition, vehicle type is known as an important factor in the car following situation. Previous studies (Ye
and Zhang, 2009; Sarvi, 2013) showed that passenger cars usually travel further behind long vehicles than when following
short vehicles and long vehicles also take longer time headways when following other vehicles due to their less agile oper-
ating characteristics. Ravishankar and Mathew (2011) also modified the Gipp’s car-following model to incorporate vehicle-
type dependent parameters. Wang et al. (2015) considered vehicle type and developed a game theoretic approach for pre-
dictive lane-changing and car-following control.

Some traditional microscopic simulation models consider vehicle speeds, arrival times and vehicle types as independent
inputs to the simulation process. As a result, the same headway distribution may be assumed for different speed levels or
vehicle types and this assumption may neglect the possible variability of headway distribution across speed or vehicle type.
To overcome this potential problem, it is necessary to construct multivariate distributions to accommodate the dependence
among microscopic traffic variables. One common way to jointly model several variables is the classical families of multi-
variate distribution (i.e., multivariate normal, lognormal and gamma distributions). However, the main limitation of this
approach is that the individual behavior of the variables must then be characterized by the same parametric family of uni-
variate distributions (Genest and Favre, 2007). Copula models, which can avoid this restriction, have been introduced in
transportation studies (see, e.g., Bhat and Eluru (2009), Bhat and Sener (2009), Spissu et al. (2009), Eluru et al. (2010),
Zou et al. (2014), Kim and Mahmassani (2014)). The objectives of this study are to (1) investigate the dependence structure
between microscopic traffic variables (i.e., speed, headway and vehicle length); (2) examine the applicability of the copula
approach to the joint modeling of these variables.

The remainder of the paper is organized as follows. In Section 2, we introduce the concept of copula and describe various
types of copulas. In Section 3, we provide parameter estimation method for copula models and discuss different methods for
generating samples from copulas. Section 4 presents the datasets used in this study and discusses the application of copulas
in modeling microscopic traffic variables. Section 5 provides findings and conclusions.
2. Overview of the copula approach

2.1. Concept of copulas

The concept of copula was first proposed by Sklar (1959) and the interests in copulas and their application in the statistics
field have grown over the last decades (see Genest and MacKay (1986), Genest and Rivest (1993), Nelsen (2006)). Recently,
the copula method has received much attention from the finance, hydrological modeling, econometrics and transportation
fields (see, Embrechts et al. (2002), Cherubini et al. (2004), Zhang and Singh (2006), Bhat and Eluru (2009)).

What are copulas? Copulas are functions that join or ‘‘couple” multivariate distribution functions to their one-
dimensional marginal distribution functions (Nelsen, 2006). For continuous random variables X and Y, the Sklar’s theorem
(1959) stated that let Hðx; yÞ be a joint cumulative distribution function (cdf) with continuous marginal distributions FðxÞ
and GðyÞ, then there exists a bivariate copula C:
Hðx; yÞ ¼ CðFðxÞ;GðyÞÞ ð1Þ
where C : ½0;1�2 ! ½0;1� = copula.
A valid model for ðX;YÞ can be obtained from Eq. (1) if FðxÞ and GðyÞ are selected from parametric families of distributions.

Moreover, a rich set of copula types C are available for generating the joint cdf Hðx; yÞ. These copula types include the Gaus-
sian copula, the Farlie–Gumbel–Morgenstern copula, and various Archimedean copulas. One advantage of the copula
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approach is that the selection of a model for representing X and Y can proceed independently from the choice of the marginal
distributions (Genest and Favre, 2007).

For continuous distribution functions FðxÞ and GðyÞ, the generalized inverse functions are defined by
F�ðtÞ ¼ inffxjFðxÞ P tg and G�ðtÞ ¼ inffyjGðxÞ P tg, respectively. Let U ¼ FðXÞ and V ¼ GðYÞ, then based on the probability
integral transform, U and V are uniformly distributed random variables with support ½0;1�. We can obtain
FðxÞ ¼ PrðX < xÞ ¼ PrðF�1ðUÞ < xÞ ¼ PrðU < FðxÞÞ and GðyÞ ¼ PrðY < yÞ ¼ PrðG�1ðVÞ < yÞ ¼ PrðV < GðyÞÞ.

Let Hðx; yÞ be a distribution function with continuous marginal distributions FðxÞ and GðyÞ, then for any u;v 2 ½0;1�, the
copula function can be defined as (Nelsen, 2006):
Cðu; vÞ ¼ HðF�ðuÞ;G�ðvÞÞ ð2Þ
2.2. Measuring dependence

There are different ways to measure dependence. Some measures are scale-invariant (i.e., these measures remain
unchanged under strictly increasing transformations of the random variables). Two widely known scale-invariant measures
of association are Kendall’s tau and Spearman’s rho. Besides the Kendall’s tau and Spearman’s rho, one traditional correlation
coefficient needs to be mentioned is the Pearson’s product-moment correlation coefficient, which measures the linear
dependence between random variables. Compared with the rank-based correlation, the linear correlation has the deficiency
that it is not invariant under nonlinear strictly increasing transformations (Embrechts et al., 2002). Embrechts et al. (2002)
also pointed out that for multivariate distributions which possess a simple closed-form copula, the moment-based correla-
tions (i.e. Pearson’s correlation coefficient) may be difficult to calculate and the determination of rank-based correlation (i.e.,
Kendall’s tau and Spearman’s rho) may be easier. Therefore, considering the advantages of rank-based correlation, the Ken-
dall’s tau and Spearman’s rho are used to characterize the dependence structure for different types of copulas described in
the following section.

2.3. Family of bivariate copulas

2.3.1. Bivariate Gaussian copulas
The Gaussian copula can be obtained using the inversion method. The 2-dimensional Gaussian copula with linear corre-

lation matrix R is given by:
CRðu;vÞ ¼ URðU�1ðuÞ;U�1ðvÞÞ ¼
Z U�1ðuÞ

�1

Z U�1ðvÞ

�1

1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p exp � s2 � 2hst þ t2

2ð1� h2Þ

 !
dsdt ð3Þ
where R ¼ 1 h
h 1

� �
is the correlation matrix, with parameter h 2 ð�1;1Þ, UR is a standard bivariate normal distribution and

U is a standard normal distribution. If h ¼ 0, the Gaussian copula becomes to the independent copula. Dependence parameter

h and Kendall’s tau have the relationship, that is, s ¼ ð2=pÞ sin�1ðhÞ. The 2-dimensional Gaussian copula density function is
given by:
cRðu;vÞ ¼ 1ffiffiffiffiffiffiffijRjp exp �1
2
xT R�1 � I2
� �

x
� �

ð4Þ
where xT ¼ U�1ðuÞ;U�1ðvÞ
� �

; I2 is the 2� 2 identity matrix.

2.3.2. The Farlie–Gumbel–Morgenstern copula
The joint cdf of a bivariate distribution constructed by the FGM copula can be described as follows:
Chðu;vÞ ¼ uv½1þ hð1� uÞð1� vÞ� ð5Þ

where h is a parameter of the copula function and for absolutely continuous marginal distributions, we need jhj 6 1
(Schucany et al., 1978).

And the density of the FGM copula is provided by:
chðu;vÞ ¼ ½1þ hð2u� 1Þð2v � 1Þ� ð6Þ

The FGM copula has the limitation that only if the correlation of two variables is weak, the FGM can provide an effective

way for constructing a bivariate distribution. The correlation structure of FGM copula has been investigated for various con-
tinuous marginal distributions such as uniform, normal, exponential, gamma and Laplace distributions. For the rank-based
dependence measures, Schucany et al. (1978) showed that, regardless of the forms of marginal distributions, h and
concordance-based correlation (Kendall’s tau sX;Y and Spearman’s rho qX;Y ) satisfy the following equations:
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sX;Y ¼ 2
9
h ð7Þ

qX;Y ¼ h
3

ð8Þ
Since h is in ½�1;1�, the FGM copula can allow weak positive and negative dependence and sX;Y and qX;Y are bounded on

½� 2
9 ;

2
9� and ½� 1

3 ;
1
3�, respectively.

2.3.3. Bivariate Archimedean copulas
Archimedean copulas are important class of copulas and these copulas are widely applied for a few reasons: (1) Archime-

dean copulas have a simple and explicit form expression; (2) they are characterized by a single parameter function u that
meets certain requirements; (3) a variety of families of copulas which belong to this class. Archimedean copulas were intro-
duced by Genest and MacKay (1986). One parameter Archimedean copulas are briefly introduced in the following paragraph,
further details can be found in Nelsen (2006).

As defined in Nelsen (2006), let u be a continuous, strictly decreasing function from ½0;1� to ½0;1� such thatuð1Þ ¼ 0. The

pseudo-inverse of u is the function u½�1� : ½0;1� ! ½0;1� such that u½�1�ðtÞ ¼ u�1ðtÞ 0 6 t 6 uð0Þ
0 uð0Þ 6 t 6 1

�
. If we assume

uð0Þ ¼ 1, then u½�1� ¼ u�1, and we have uðu½�1�ðtÞÞ ¼ t. Using functions u and u�1, the definition of one parameter Archi-
medean copulas is given as:
Chðu;vÞ ¼ u�1ðuðuÞ þuðvÞÞ ð9Þ

The function u is called a generator of the copula. When uð0Þ ¼ 1, u is said to be a strict generator and Chðu;vÞ in Eq. (9)

is a strict Archimedean copula. In the following paragraphs, several well-known one-parameter families of Archimedean
copulas, along with their generators are described.

2.3.3.1. Ali–Mikhail–Haq copula. The Ali–Mikhail–Haq copula, proposed by Ali et al. (1978), can allow for weak positive and
negative dependence. The generator function is uðtÞ ¼ ln 1�hð1�tÞ

t , with h 2 ½�1;1Þ, and the corresponding Ali–Mikhail–Haq
copula function is as follows:
Chðu;vÞ ¼ uv
1� hð1� uÞð1� vÞ ð10Þ
Kendall’s tau is related to h by s ¼ 3h�2
3h � 2ð1�hÞ2

3h2
lnð1� hÞ, so that �0:182 < s < 0:333. The density function of Ali–Mikhail–

Haq copula is given by (Hofert et al., 2012):
chðu;vÞ ¼ ð1� hÞ3
h2

hA
h ðu; vÞ
u2v2 Li�2 hA

h ðu;vÞ
n o

ð11Þ
where hA
h ðu;vÞ ¼ h u

1�hð1�uÞ
v

1�hð1�vÞ and LisðzÞ ¼
P1

k¼1z
k=ks.

2.3.3.2. The Clayton copula. If the generator function is selected as uðtÞ ¼ 1
h ðt�h � 1Þ, with h 2 ð0;1Þ, the Archimedean copula

is called the Clayton copula. It is given by:
Chðu;vÞ ¼ ðu�h þ v�h � 1Þ�1=h ð12Þ

The Clayton copula was first proposed by Clayton (1978) and allows only positive dependence. Kendall’s tau is related to h

by s ¼ h
hþ2, so that 0 < s < 1. If h tends to 0, the Clayton copula becomes independent copula. The density function of Clayton

copula is given by (Hofert et al., 2012):
chðu;vÞ ¼ ð1þ hÞu�ðhþ1Þv�ðhþ1Þðu�h þ v�h � 1Þ�1=h�2 ð13Þ
2.3.3.3. The Frank copula. If we choose uðtÞ ¼ � ln e�ht�1
e�h�1 , with h 2 ð�1;1Þ n f0g, the Archimedean copula is called the Frank

copula. It is given by:
Chðu;vÞ ¼ �1
h
ln 1þ ðe�hu � 1Þðe�hv � 1Þ

e�h � 1

� �
ð14Þ
with s ¼ 1� 4
h ½1� D1ðhÞ�, where D1ðhÞ is the first order Debye function DkðhÞ which is defined as DkðhÞ ¼ k

hk

R h
0

tk
et�1 dt.

The Frank copula was proposed by Frank (1979). It can allow for both positive and negative dependence. The range of s is
ð�1;1Þ and if h tends to 0, the Frank copula becomes independent copula. The density function of Frank copula is given by
(Hofert et al., 2012):
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chðu;vÞ ¼ h
1� e�h

� �
Li�1 hF

hðu; vÞ
n o expð�hðuþ vÞÞ

hF
hðu;vÞ

ð15Þ
where hF
hðu;vÞ ¼ ð1� e�hÞ�1ð1� expð�huÞÞð1� expð�hvÞÞ.

2.3.3.4. The Gumbel copula. The Gumbel copula, also known as the Gumbel–Hougaard copula, was first introduced by Gumbel

(1960). The generator function for this copula is uðtÞ ¼ ð� ln tÞh, and the corresponding copula function is
Chðu;vÞ ¼ exp �½ð� lnuÞh þ ð� lnvÞh�1=h
� �

ð16Þ
The Gumbel copula only accommodates positive dependence and Kendall’s tau is related to h by s ¼ 1� h�1, so that
0 < s < 1. If h ¼ 1, the Gumbel copula becomes independent copula. The density function of Gumbel copula is given by
(Hofert et al., 2012):
chðu;vÞ ¼ h2 exp �thðu; vÞa
� 	 ð� lnuÞh�1ð� lnvÞh�1

thðu;vÞ2uv
PG
2;aðthðu;vÞaÞ ð17Þ
where a ¼ 1=h; PG
2;aðxÞ ¼

P2
k¼1eG2kðaÞxk, and eG2kðaÞ ¼ 2

k!

Pk
j¼1

k
j

� �
aj
2

� �
ð�1Þ2�j.

2.3.3.5. The Joe copula. The Joe copula, discussed by Joe (1993, 1997), has a generator function uðtÞ ¼ � ln½1� ð1� tÞh�. The
Joe copula is defined as:
Chðu;vÞ ¼ 1� ð1� uÞh þ ð1� vÞh � ð1� uÞhð1� vÞh
h i1=h

ð18Þ
with s ¼ 1þ 4
hDJðhÞ, where DJðhÞ ¼

R 1
t¼0

½lnð1�thÞ�ð1�thÞ
th�1 dt.

Like the Clayton and Gumbel copulas, the Joe copula cannot account for negative dependence. The range of s is ð0;1Þ. If h
tends to 0, the Joe copula becomes independent copula. The density function of Joe copula is given by (Hofert et al., 2012):
chðu;vÞ ¼ h
ð1� uÞh�1ð1� vÞh�1

1� hJ
hðu; vÞ

n o1�a PJ
2;a

hJ
hðu; vÞ

1� hJ
hðu;vÞ

( )
ð19Þ
where a ¼ 1=h;hJ
hðu;vÞ ¼ 1� ð1� uÞhÞ

n o
1� ð1� vÞhÞ
n o

; PJ
2;aðxÞ ¼

P1
k¼0e

J
2kðaÞxk; eJ2kðaÞ ¼ Sð2; kþ 1Þ Cðkþ1�aÞ

Cð1�aÞ and Sðj; kÞ is the

Stirling numbers of the second kind.

2.4. Multivariate Gaussian copulas

The copula of the n-variate normal distribution with n� n correlation matrix P is
CPðuÞ ¼ UPðU�1ðu1Þ;U�1ðu2Þ; :::;U�1ðunÞÞ ð20Þ

where UP represents the joint distribution function of the n-variate standard normal distribution function with correlation
matrix P, and U�1 is the inverse of the distribution function of the univariate standard normal distribution. For the multivari-

ate Gaussian copula, correlation matrix P and Kendall’s tau have the relationship, that is sXi ;Xj
¼ 2

p sin�1ðqijÞ (Embrechts et al.,
2003; Demarta and McNeil, 2005).

In the trivariate case the copula expression can be written as
CPðu1;u2;u3Þ ¼
Z U�1ðu1Þ

�1

Z U�1ðu2Þ

�1

Z U�1ðu3Þ

�1

1

ð2pÞ3=2jPj1=2
exp �1

2
wTP�1w

� �
dw ð21Þ
where P ¼
1 q12 q13
q12 1 q23
q13 q23 1

2
4

3
5 is the symmetrical correlation matrix with �1 6 qij 6 1 (i; j ¼ 1;2;3); w ¼ ðw1;w2;w3ÞT repre-

sents the corresponding integral variables.
Besides the multivariate Gaussian copula, multivariate Archimedean copulas are also widely used for modeling multivari-

ate distribution of multiple random variables. The multivariate Archimedean copulas include the symmetric Archimedean
copula and the asymmetric Archimedean copula (which is also called nested Archimedean copula). Note that the symmetric
Archimedean copula is a special case of the asymmetric Archimedean copula. The symmetric Archimedean copula suffers
from a very limited dependence structure since all k-margins are identical; they are distribution functions of n exchangeable
Uð0;1Þ random variables (Embrechts et al., 2003). As a consequence of this exchangeability property, all mutual dependences
among variables are modeled by only one Archimedean 2-copula (Grimaldi and Serinaldi (2006). On the other hand, the
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asymmetric Archimedean copula allows for nonexchangeability and a part of all possible mutual dependences can be mod-
eled in a different way. For more details about multivariate Archimedean copulas, interested readers can see Grimaldi and
Serinaldi (2006). Compared with the multivariate Gaussian copulas which are able to model all range of dependence, the
multivariate Archimedean copula families (n P 3) can model only positive dependence. Thus, considering the possible
inverse relationship between speed and headway, only multivariate Gaussian copulas are considered.

3. Estimation of h and random variate generation

Given a parametric family (Ch) of copulas and a random sample ðX1;Y1Þ; . . . ; ðXn; YnÞ from continuous random variables
ðX;YÞ, the first step is to select appropriate marginal distributions for each variable. Then the data can be transformed onto
the copula scale using the probability integral transform. The next step is to estimate h. Genest and Favre (2007) reviewed
various nonparametric methods for estimating h and they recommend using ranked-based estimators since the ranks of the
observations are the best summary of the joint behavior of the random pairs. Two straightforward estimators are based on
Kendall’s Tau and Spearman’s Rho. These two rank-based estimators are explained in the following example.

If the dependence structure of a random pair ðX;YÞ can be appropriately modeled by the FGM copula described in Eq. (5).
Thus, as discussed above, there exist relations between the parameter h and Kendall’s Tau and Spearman’s Rho, which are
sX;Y ¼ 2
9
h ð22Þ

qX;Y ¼ h
3

ð23Þ
Since sX;Y and qX;Y can be computed from the sample pairs, a simple and intuitive approach to estimating h would be
h
_

¼ 9
2
sX;Y ð24Þ

h
_

¼ 3qX;Y ð25Þ

sX;Y and qX;Y are rank-based, and this estimation strategy may be seen as a nonparametric adaptation of the method of
moments (Genest and Favre, 2007).

Another method for estimating h is called the method of maximum pseudolikelihood, which requires that Ch be abso-
lutely continuous with density ch. Compared with Kendall’s Tau and Spearman’s Rho, the maximum pseudolikelihood esti-
mator has the advantage that it does not require the dependence parameter h to be real. However, this method also involves
a lot of numerical work and requires the existence of a density ch. Thus, for simplicity, the Kendall’s Tau based estimator is
adopted in this research. For detailed procedure of using the maximum pseudolikelihood estimator, see Genest et al. (1995).
Note that Joe (1997, Chap. 10) also introduced a parametric two-step procedure referred to the inference frommargins (IFM)
method for estimating h. Kim et al. (2007) pointed out that the IFM estimator depends on the choice of margins, and may run
the risk of being unduly affected if selection of the margins turn out to be inappropriate.

One of the primary applications of copulas is in simulation and Monte Carlo studies (Nelsen, 2006). Based on Sklar’s the-
orem, the copula can be used as a tool for generating observations ðx; yÞ of a pair of random variables ðX;YÞ from copula func-
tion Ch with marginal distributions FðxÞ and GðyÞ. Specifically, we need to generate uniform random variates ðu;vÞ from the
desired copula Ch, and then use the inverse distribution function method to transform the data, ðx; yÞ ¼ ðF�1ðuÞ;G�1ðvÞÞ.
Three algorithms described in the previous studies for copula simulation are conditional distribution method, sampling algo-
rithm for Gaussian copulas and sampling algorithm for Archimedean copulas (for the complete description of the three algo-
rithms, see (Nelsen, 2006)).

4. Application

4.1. Dependence among microscopic traffic variables

The dataset used in this study was collected at a location on IH-35 in Austin, Texas. IH-35 has four lanes in the south-
bound direction and the free flow speed is 60 mile/h (or 96.56 km/h) for all types of vehicles. Due to the heavy traffic demand
and a large volume of heavy vehicles, the data collection site is typically congested during the morning and afternoon peak
hours. The data were collected using a Peek ADR 6000 detector, which includes two inductive loops embedded in the pave-
ment. The detector generates accurate outputs of arrival time, presence time, speed, length, and classification for each indi-
vidual vehicle (Ye et al., 2006). This dataset was extensively analyzed in the previous studies (Ye and Zhang, 2009; Park et al.,
2010; Zou and Zhang, 2011). The data have 27,920 vehicles with recorded speed values, arrival times and vehicle lengths in a
24-h period (from 00:00 to 24:00, December 11, 2004), including 24,011 (86%) passenger vehicles and 3909 (14%) heavy
vehicles. For this dataset, the headway value between two consecutive vehicles is the elapsed time between the arrivals
of a pair of vehicles. The arrival times were recorded in second (s); the observed speeds were recorded in m/s; and the vehicle



Fig. 1. (a) Speed scatter plot by time of day; (b) headway scatter plot by time of day; (c) vehicle length scatter plot by time of day.
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lengths were recorded in meter (m). Fig. 1(a–c) display the scatter plots of speed, headway and vehicle length by time of day.
Because of large samples in the dataset, semi-transparent points are used to alleviate some of the over-plotting in Fig. 1.
Fig. 1(c) indicates that the observed vehicles seem to consist of two sub-populations: one at about 5 m, representing passen-
ger vehicles, and the other at about 22 m, representing trucks and buses.

We first examine their dependence structure among three traffic variables. Since the 24-h traffic data collected on IH-35
consist of distinct traffic flow conditions, it is possible that the dependence structure between traffic variables may vary
depending on the traffic condition. Thus, we first evaluate the hourly dependence among speed, headway and vehicle length
for the 24-h period. For each hour, Kendall’s tau s, and Spearman’s rho qS are used to measure the dependence. The com-
puted values of Kendall’s tau s, and Spearman’s rho qS for each of the 24-h are given in Table 1. As shown in Table 1 below,
the dependence structure among three traffic variables exhibits different characteristics. First, for speed and headway, the
dependence structure is stable under the same traffic condition, but change significantly between different traffic conditions.
Generally speaking, for the off-peak period, when the flow rate is below 1000 vehicles/h (i.e., 00:00–06:00 and 23:00–24:00),
Kendall’s tau values indicate that speed and headway have negligible effect on each other; when the flow rate is above
1000 vehicles/h (i.e., 06:00–07:00, 09:00–15:00 and 20:00–23:00), s ranges between 0.08 and 0.15 and speed and headway
have a very weak positive correlation. On the other hand, for the peak period, when the flow rate is below 1000 vehicles/h
(i.e., 16:00–19:00), speed and headway have a weak negative dependence. Note that compared to the afternoon peak period
(most speed values are below 40 kph from 16:00 to 19:00), the morning peak period (a large portion of speed values are
above 50 kph 7:00–8:00) has a different correlation relationship. Second, Kendall’s tau and Spearman’s rho values indicate
that there exists a very limited relationship between speed and vehicle length. Third, headway and vehicle length have the
strongest dependence during the afternoon peak period (i.e., 16:00–19:00). For the copula modeling approach, parameter h is
related to Kendall’s tau and it is assumed to be fixed. Thus, this modeling approach cannot capture the varying characteristics
of dependence structure between speed and headway. However, under the same traffic condition, the dependence structure
among speed, headway and vehicle length is quite stable. In the following section, the traffic data observed under the con-
gested traffic condition (from 16:00 to 19:00) are considered to demonstrate the usefulness of copula methods for construct-
ing bivariate models. This is because the relationship between speed and headway and the influence of vehicle length on
headway is more obvious in the car following situation. Fig. 2(a–d) show the scatter plots of speed, headway and vehicle
length for the time period from 16:00 to 19:00. Note that there were 2360 vehicles observed between 16:00 and 19:00.

We further examine the dependence among speed, headway and vehicle length using the chi-plot which was proposed by
Fisher and Switzer (2001). The chi-plot depends on the data through the values of their ranks and it is defined as follows:
Table 1
Hourly

Time

0–1
1–2
2–3
3–4
4–5
5–6
6–7
7–8
8–9
9–10
10–1
11–1
12–1
13–1
14–1
15–1
16–1
17–1
18–1
19–2
20–2
21–2
22–2
23–2
Hi ¼ 1
n� 1

# j – i : Xj 6 Xi;Yj 6 Yi
� 	 ð26Þ

Fi ¼ 1
n� 1

# j– i : Xj 6 Xi
� 	 ð27Þ
dependence among speed, headway and vehicle length for the 24-h period.

period Count (vehicles) Speed and headway Speed and vehicle
length

Headway and vehicle
length

s qS s qS s qS

457 �0.02 �0.03 �0.02 �0.03 �0.02 �0.02
354 �0.01 �0.02 �0.08 �0.11 �0.02 �0.03
301 �0.01 �0.01 �0.12 �0.18 �0.03 �0.04
277 �0.05 �0.08 �0.06 �0.08 �0.03 �0.05
346 �0.02 �0.02 �0.01 �0.01 �0.04 �0.06
709 0.05 0.07 �0.11 -0.16 0.03 0.04

1594 0.15 0.21 �0.02 �0.03 0.08 0.11
2039 0.04 0.05 0.02 0.03 0.10 0.13
1851 0.05 0.07 0.02 0.02 0.09 0.12
1701 0.11 0.15 �0.04 �0.05 0.03 0.04

1 1653 0.13 0.17 �0.06 �0.10 0.06 0.08
2 1707 0.10 0.13 �0.03 �0.05 0.09 0.12
3 1748 0.11 0.15 �0.06 �0.08 0.08 0.11
4 1739 0.11 0.15 �0.02 �0.03 0.04 0.05
5 1722 0.12 0.16 �0.01 �0.01 0.11 0.14
6 1295 �0.35 �0.46 0.00 0.00 0.07 0.09
7 755 �0.34 �0.45 0.01 0.01 0.14 0.19
8 676 �0.33 �0.45 �0.01 �0.01 0.14 0.19
9 929 �0.36 �0.49 0.02 0.04 0.13 0.17
0 1446 �0.11 �0.13 0.01 0.01 0.12 0.16
1 1241 0.11 0.15 �0.03 �0.04 0.04 0.06
2 1267 0.08 0.11 �0.01 �0.01 0.05 0.07
3 1185 0.09 0.12 �0.01 �0.02 0.05 0.07
4 927 0.03 0.04 �0.03 �0.05 0.01 0.02
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Fig. 2. Scatter plot of (a) speed and headway; (b) speed and vehicle length; (c) headway and vehicle length; (d) speed, headway and vehicle length for time
period from 16:00 to 19:00.
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and
Gi ¼ 1
n� 1

# j – i : Yj 6 Yi
� 	 ð28Þ
The above quantities depend exclusively on the ranks of the observations. A chi-plot is a scatter plot of the pairs ðki;viÞ,
where
vi ¼
Hi � FiGiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fið1� FiÞGið1� GiÞ
p

and
ki ¼ 4sign ðFi � 1=2ÞðGi � 1=2Þf gmax ðFi � 1=2Þ2; ðGi � 1=2Þ2
n o

:

To avoid outliers, Fisher and Switzer (2001) recommend that jkij 6 4ð 1
n�1 � 1

2Þ
2. Fig. 3(a–c) show the chi-plots for the traffic

data observed from 16:00 to 19:00. Dashed blue lines are the 95% confidence band and values of vi measure the degree of
departures from the hypothesis that speed and headway are independent. As shown in Fig. 3(a), almost all points lie below
the 95% probability region and this confirms the presence of negative association between speed and headway. For speed
and vehicle length, Fig. 3(b) shows that many data points are within the dashed blue lines and the remaining points are
either above or below the 95% probability region. Since the area inside the confidence interval means independent, the find-
ing from Fig. 3(b) is consistent with the results reported in Table 1 that the evidence in support of the dependence between
speed and vehicle length is generally lacking. Fig. 3(c) demonstrates that most points are lying above the 95% probability
region and while some of the points fall inside the confidence band. This pattern corroborates the presence of positive asso-
ciation between headway and vehicle length.
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4.2. Marginal distribution

In selecting the marginal distributions, we model speed using normal, log-normal, skew-normal and skew-t distributions.
Normal and lognormal distributions are widely used to describe observed speed. A recent study (Zou and Zhang, 2011)
examined the fitting performance of skew-normal and skew-t distributions and their findings suggest that compared to nor-
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mal distribution, skew-normal or skew-t distribution can be a better alternative for describing the speed data. For headway
data, three commonly used single distribution models are investigated: gamma, lognormal and log–logistic distributions.
Considering the excess skewness, kurtosis and bimodality present in vehicle length distribution, three mixture models
are selected, which are 2-component normal mixture distribution, 2-component skew-normal mixture distribution and 2-
component skew-t mixture distribution. The parameters were estimated by the maximum likelihood method. The best fitted
distributions for speed, headway and vehicle length were selected using log-likelihood, the Akaike information criterion
(AIC) and root mean square error (RMSE) values. Table 2 reports the log-likelihood, AIC and RMSE values of different speed,
headway and vehicle length models. Larger log-likelihood and smaller AIC and RMSE values indicate a better overall fit. For
the speed data, the skew-t model is better than other models in term of goodness of fit index and normal model provide the
least fitting result. In the meantime, the headway data were examined using gamma, lognormal and log–logistic models. The
performance of headway models is not consistent. Based on the results, the log–logistic model has the highest log-likelihood
and lowest AIC and RMSE values and the gamma model provides the least satisfactory fitting performance. As discussed
above, the bimodality of the vehicle length distribution indicates the presence of 2 different clusters. Thus, 2-component
mixture distributions were used. The fitting results illustrate that the 2-component skew-t distribution can provide a more
accurate description of the bimodal vehicle length distribution than the other two mixture models. Thus, the skew-t, log–
logistic and 2-component skew-t distributions are selected as the marginal distributions for describing speed, headway
and vehicle length, respectively.
4.3. Optimal copula model selection

In this section, we modeled the dependence between speed and headway, and headway and vehicle length using different
families of copulas. Note that speed and vehicle length are assumed to be independent due to lack of evidence to support the
association between each other. The possible explanation is that cars and trucks have the same speed limit on IH-35. The
Table 2
Log-likelihood, AIC and RMSE values of different fitted probability distributions for each traffic variable.

Traffic variable Fitted marginal distributions Log-likelihood AIC RMSE

Speed Normal �8751.15 17506.30 14.75
Log-normal �8521.78 17047.56 11.30
Skew-normal �8495.50 16997.00 9.69
Skew-t �8476.43 16960.86 8.01

Headway Log-normal �5250.48 10504.95 23.06
Gamma �5488.46 10980.93 48.51
Log–logistic �5193.94 10391.89 16.74

Vehicle length 2-component normal �3492.39 6996.78 28.08
2-component skew-normal �3262.86 6541.72 29.10
2-component skew-t �3035.33 6090.67 28.30

Table 3
The estimation of Kendall’s tau s and parameter h of different copulas.

s Gaussian FGM Gumbel Clayton Ali–Mikhail–Haq Frank Joe

Speed and headway �0.37 �0.55 NAa 1.59b 1.19b NAa �3.80 2.08b

Headway and length 0.13 0.21 0.59 1.15 0.30 0.51 1.21 1.27

a NA means that the parameter h for that copula is not applicable. This is because for the FGM copula, it can model the correlated random variables with
�2=9 6 s 6 2=9; for the Ali–Mikhail–Haq copula, it can model the correlated random variables with �0:182 < s < 0:333.

b For Gumbel, Claytion and Joe copulas, since they can only model positive correlated random variables (i.e., Kendall’s tau s > 0), we used a new variable
speednew = �speed. The speednew and headway show a positive correlation, Kendall’s tau = 0.37.

Table 4
The log-likelihood, AIC and RMSE values of different copulas.

Goodness-of-fit statistics Gaussian FGM Gumbel Clayton Ali–Mikhail–
Hq

Frank Joe

Speed and headway LLa �13305.72 NA �13407.06 �13470.51 NA �13315.74 �13613.04
AIC 26625.44 NA 26828.12 26955.02 NA 26645.48 27240.08
RMSE 1.08 NA 1.24 1.44 NA 1.12 1.92

Headway and length LL �8179.75 �8180.72 �8182.55 �8206.01 �8188.79 �8179.55 �8198.61
AIC 16385.50 16387.44 16391.11 16438.03 16403.59 16385.09 16423.21
RMSE 4.20 4.27 4.23 4.46 4.32 4.26 4.45

a LL denotes log-likelihood.
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traffic data observed in the congested traffic condition (16:00–19:00) were used. Different copulas were used and the most
appropriate copulas were identified. The calculated Kendall’s tau and estimated values of parameter h of each copula are pro-
vided in Table 3. Note that Kendall’s tau for speed and headway is �0.37. Thus, some copulas cannot be used given that the
degrees of dependence they span were insufficient to account for the association observed between speed and headway. For
original speed and headway data, only Gaussian and Frank copulas are applicable. For the Clayton, Gumbel and Joe copulas,
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Fig. 4. Transformed samples for (a) the Frank copula with parameter h ¼ �3:80; (b) the Gaussian copula with parameter h ¼ �0:55; (c) the Gumbel copula
with parameter h ¼ 1:59; (d) the Clayton copula with parameter h ¼ 1:19; (e) the Joe copula with parameter h ¼ 2:08; (f) the independent copula.
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we convert the observed speed to a new variable by taking the negative speed values, Speednew = �observed speed. Speednew

and headway show a positive correlation (Kendall’s tau = 0.37). Then, the Clayton, Gumbel and Joe copulas are used to fit the
new speed and headway data. For FGM and AMH copulas, the calculated Kendall’s tau value exceeds the range of copula
parameter. Thus, five copulas (Gaussian, Frank, Clayton, Gumbel and Joe) are used to construct bivariate distribution of speed
and headway. The best copula model is selected based on log-likelihood, AIC and RMSE values. For speed and headway data,
the Gaussian copula can give larger log-likelihood and smaller AIC and RMSE values than other considered copulas. For head-
way and vehicle length data, all copulas are viable and the goodness-of-fit statistics for each copula model are provided in
Table 4. Overall, the Gaussian copula is found as the best fitted copula for headway and vehicle length data.

One natural way to check the adequacy of copula models is to compare the scatter plot of observations with an artificial
dataset of the same size generated from fitted copulas. Using the random variate generation algorithm previously intro-
duced, 2360 pairs ðUi;ViÞ were simulated from the Gaussian, Frank, Clayton, Gumbel and Joe copulas with specified h values.
Then, the 2360 pairs ðUi;ViÞ from each copula model were transformed back into the original units using the marginal dis-
tribution identified in the marginal distribution section for speed and headway. Fig. 4 displays the simulated speed and
headway samples. Assuming h ¼ 0 for the FGM copula, the independent speed and headway samples were also generated
for the purpose of comparison. The actual observations are provided in Fig. 2(a). As shown in Fig. 4, the simulated samples
from copula models can accurately reproduce the dependence structure revealed by the speed and headway observations.
Moreover, the inappropriateness of the independent model is apparent, as it is hard to observe the inverse relationship
Table 5
Parameters and fitting evaluation of trivariate Gaussian copula.

Parameter LL AIC RMSE

qspeed&headway qspeed&vehiclelength qheadway&vehiclelength

�0.55 0.01 0.21 �16306.47 33148.44 0.20

Fig. 6. Transformed samples for (a) the trivariate Gaussian copula; (b) the independent copula.
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between speed and headway from Fig. 4(f). The same procedure was repeated for the headway and vehicle length data using
various copulas with specified h values. Fig. 5 exhibits the simulated headway and vehicle length samples. Due to the very
weak dependence between headway and vehicle length, it is hard to tell from Fig. 5 whether the actual observations can be
more accurately reproduced by considering the dependence structure.

The parameters of trivariate Gaussian copula are estimated and provided in Table 5. The log-likelihood, AIC and RMSE
values are employed to measure the fitting performance. Using the random variate generation algorithm for the Gaussian
copulas, 2360 vectors ðU1;U2;U3Þ were simulated with the specified correlation matrix P. Then, the 2360 vectors
ðU1;U2;U3Þ were transformed back into the original units using the marginal distribution selected for speed, headway
and vehicle length. Fig. 6 displays the simulated samples. Assuming P ¼ I3, where I3 is the 3-dimentional identity matrix,
the independent speed, headway and vehicle length samples were also generated for the purpose of comparison. The actual
observations are provided in Fig. 2(d). Since there is an inverse relationship between speed and headway for both passenger
cars and trucks, the simulated samples from the trivariate Gaussian copula can accurately reproduce this dependence struc-
ture. However, it is difficult to observe the inverse relationship between speed and headway from Fig. 6(b).

5. Summary

This study documented the application of copula models for constructing the distribution of traffic variables (speed, head-
way and vehicle length) using recorded data collected on IH-35. Before constructing multivariate distributions, we first eval-
uated the hourly dependence among speed, headway and vehicle length for the 24-h period. For each hour, Kendall’s tau s,
and Spearman’s rho qS are used to measure the dependence. Based on the analysis results, the important conclusions can be
summarized as follows:

(1) The relationship between speed and headway and the influence of vehicle length on headway are most obvious for the
time period from 16:00 to 19:00, which is the busiest time of the day on IH-35.

(2) There exists a weak positive dependence between headway and vehicle length under both congested and uncongested
traffic conditions. And vehicle length does influence following headway as trucks and buses usually keep larger follow-
ing time headways than cars at the same speed level.

After evaluating the dependence among speed, headway and vehicle length, copula models were used to construct bivari-
ate and trivariate distributions and goodness-of-fit statistics showed that the proposed copula models can adequately
describe the multivariate distributions of microscopic traffic variables. Moreover, the simulated samples from some families
of copulas can accurately reproduce the actual relationship between traffic variables. Since speed and headway usually have
a negative correlation under the congested traffic condition, the degrees of dependence some copulas span are insufficient to
account for the association. In this study, Gaussian, Frank, Clayton, Gumbel and Joe copulas are applicable to the speed and
headway data. Overall, the findings in this paper provide a framework for generating multiple microscopic traffic variables
simultaneously by considering their dependence. For future works, first, for the considered copula models, it is interesting to
use the hour (or traffic condition) as the explanatory variable to describe copula parameter. And the goodness of fit results
from copula models with fixed copula parameter and variable copula parameter should be compared. Second, the proposed
copula modeling approaches can be used to analyze the microscopic traffic data collected from multiple freeway locations.
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