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a b s t r a c t 

We discuss the problem of finding an energy-efficient driving strategy for a train journey on 

an undulating track with steep grades subject to a maximum prescribed journey time. We re- 

view the state-of-the-art and establish the key principles of optimal train control for a general 

model with continuous control. The model with discrete control is not considered. We as- 

sume only that the tractive and braking control forces are bounded by non-increasing speed- 

dependent magnitude constraints and that the rate of energy dissipation from frictional resis- 

tance is given by a non-negative strictly convex function of speed. Partial cost recovery from 

regenerative braking is allowed. The cost of the strategy is the mechanical energy required to 

drive the train. Minimising the mechanical energy is an effective way of reducing the fuel or 

electrical energy used by the traction system. The paper is presented in two parts. In Part 1 we 

discuss formulation of the model, determine the characteristic optimal control modes, study 

allowable control transitions, establish the existence of optimal switching points and consider 

optimal strategies with speed limits. We find algebraic formulae for the adjoint variables in 

terms of speed on track with piecewise-constant gradient and draw phase plots of the asso- 

ciated optimal evolutionary lines for the state and adjoint variables. In Part 2 we will estab- 

lish important integral forms of the necessary conditions for optimal switching, find general 

bounds on the positions of the optimal switching points, justify the local energy minimiza- 

tion principle and show how these ideas are used to calculate optimal switching points. We 

will prove that an optimal strategy always exists and use a perturbation analysis to show the 

strategy is unique. Finally we will discuss computational techniques in realistic examples with 

steep gradients and describe typical optimal strategies for a complete journey. 

© 2015 Elsevier Ltd. All rights reserved. 

 

 

 

 

1. Introduction 

The modern theory of optimal train control has been developed during the years 1992–2014 by the Scheduling and Con-

trol Group (SCG) at the University of South Australia in a collection of papers—listed in chronological order—by Cheng and

Howlett (1992) , Howlett and Cheng (1993) , Howlett et al. (1994) , Howlett (1996 , 20 0 0) , Howlett and Jiaxing (1997) , Howlett

and Leizarowitz (2001) , Howlett et al. (2009) and Albrecht et al. (2013b) , and more or less concurrently in elegant papers by
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Fig. 1. Optimal speed profile v = v (x) where x denotes position (top graph) with (i) initial phase of Maximum Power; (ii) extended HoldP phase with V = 

25 . 00 showing inserted phases of Maximum Power, Coast and HoldR with W = 26 . 93 ; (iii) semi-final Coast phase; and (iv) final Maximum Brake phase. The 

corresponding modified adjoint profile η = η(x) (bottom graph) shows the critical values η = 0 and η = ρ − 1 where ρ = 0 . 8 is the proportion of mechanical 

energy recovered during regenerative braking. The vertical dotted lines indicate points where the control changes. The position x is measured in metres (m), the 

speed v is measured in metres per second (m s −1 ) and the modified adjoint variable η is dimensionless. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Khmelnitsky (20 0 0) and by Liu and Golovitcher (20 03) . The book on energy-efficient train control by Howlett and Pudney (1995)

is also frequently cited. Additional references of lesser significance can be found in many of these works. Some SCG papers con-

sider the case of discrete control and others assume continuous control. In this discourse we confine our attention to continuous

control. Our main aims are to provide a timely review of the current state-of-the-art and to propose several important extensions

to the existing theory. There is apparently no current review that attempts to collect together the most general form of the theory

in a systematic way. For instance one must go to the closely-related theory for control of solar-powered racing cars in a paper by

Howlett and Pudney (1998) to find the key ideas underpinning a fundamental existence result for optimal driving strategies. 

The classic single train control problem is to minimise the energy required to drive a train from one station to the next within

a given time. We assume continuous control. If no energy is recovered during braking then the optimal strategy is essentially

a Maximum Power–HoldP–Coast–Maximum Brake strategy except that the singular HoldP (Hold using Power) phase with con-

stant speed v = V and positive control must be interrupted by phases of regular control to negotiate steep grades. One must

insert phases of Maximum Power to traverse steep uphill sections and Coast with zero control to traverse steep downhill sec-

tions. Hence the optimal strategy becomes an optimal switching strategy. By reformulating the necessary conditions for optimal

switching, Howlett et al. (2009) showed in a less general model that the optimal switching points for each steep section can be

found by minimising an intrinsic local energy functional. If energy is recovered during braking then an optimal strategy may

include additional singular HoldR (Hold using Regenerative braking) phases with the same constant speed v = W > V and nega-

tive control on steep downhill sections. The analysis of optimal strategies involves examining the close relationship between the

speed profile of the train and the profile of a modified adjoint variable—both expressed as functions of position. A representative

optimal speed profile and corresponding modified adjoint profile are shown in Fig. 1 . 

The main contributions to calculation of optimal strategies for continuous control are due to Albrecht et al. (2013b ), Howlett

(20 0 0) , Howlett et al. (20 09) , Khmelnitsky (20 0 0) and Liu and Golovitcher (2003) . There are also important contributions to

the fundamental theory. Howlett and Pudney (1998) used standard techniques of functional analysis to establish the existence

of optimal driving strategies for solar-powered racing cars and have remarked elsewhere ( Howlett, 20 0 0 ) that a similar argu-

ment applies to trains subject to certain basic feasibility conditions. Albrecht et al. (2013b ) and Khmelnitsky (20 0 0) have used

independent arguments to each propose conditions that ensure the optimal strategy is unique. 

A key aim of this two-part paper is to show that all important results remain valid for a theoretically tractable model in which

more general functional forms are allowed for both tractive and braking control and for resistance to motion. Despite a significant

extension of the theory there are instances where the new results are more comprehensive. One such instance relates to the use
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of regenerative braking. In Part 1 we pay particular attention to formulation of the model, analysis of the strategies of optimal

type, location of optimal switching points and construction of phase plots ( Vu, 2006 ) for evolutionary lines. In Part 2 ( Albrecht

et al., 2014 ) we prove existence of an optimal strategy, extend previous arguments to establish a local energy minimization

principle for determination of optimal switching points ( Albrecht et al., 2011 ; Howlett et al., 2009 ), and prove uniqueness of

the optimal strategy with less restrictive assumptions ( Albrecht et al., 2013b ). To conclude we consider computation of optimal

controls in two examples involving complex gradient profiles and discuss a typical speed profile for a complete optimal strategy.

1.1. Practical implementation of optimal driving strategies 

The commercial Energymiser ® Driver Advice System was invented by SCG researchers and developed in cooperation with

Sydney-based company TTG Transportation Technology (TTG). The system minimises the mechanical energy required to drive

the train and is used by railways around the world. A major part of the implementation is a precise route map of the track to

ensure an accurate gradient profile. Energymiser ® measures the location and speed of the train using GPS technology, calculates

the optimal driving strategy to the next stop, and provides advice to the driver in real time. The in-cab display may simply be

the current recommended control and subsequent control with an estimated time in seconds to the next control change, or it

may be a more comprehensive display that also shows the corresponding speed profile. By repeatedly recalculating the optimal

strategy, the system overcomes inaccuracies in the model parameters and state observations, and the effects of weather and train

loading that cause the train to deviate from the predicted path. The advice is filtered to remove short phases that would result

in the advice changing too frequently for a driver. The SCG and TTG are currently working with major train manufacturers to

embed Energymiser ® into automatic train operation systems which will enable the train to follow the ideal profile more closely.

Energymiser ® has improved time-keeping and has reduced fuel consumption by up to 20% in audited in-service operation. 

1.2. A general model for optimal train control with position as the independent variable 

Howlett and Pudney (1995) showed that motion of a train with distributed mass can be reduced to motion of a point-mass

train. Thus we restrict our attention to point-mass trains. We understand that this leaves open the question of energy dissipation

caused by in-train forces and any consequent impact on the effectiveness of particular driving strategies—but that is a separate

research issue. See, for instance, Zhou et al. (2013) and Zhuan and Xia (2006) . In general terms the problem is to drive a train

from x = 0 to x = X within some prescribed time T in such a way that energy consumption is minimised. It has been argued or

assumed by all major contributors ( Howlett, 20 0 0; Khmelnitsky, 20 0 0; Liu and Golovitcher, 20 03 ) that in order to calculate the

precise optimal strategy on non-level track it is convenient to formulate the model with position x ∈ [0, X ] as the independent

variable and with time t = t(x) ∈ [0 , T ] and speed v = v (x) ∈ [0 , ∞ ) as the dependent state variables. 

The equations of motion are 

t ′ = 

1 

v 
(1) 

v ′ = 

u − r(v ) + g(x)

v 
(2) 

where (t, v ) = (t(x), v (x)) for x ∈ [0, X ] and where u = u(x) ∈ ( − ∞ , ∞ ) is the known measurable control—the force per unit

mass or acceleration. We have written t ′ = d t/d x and v ′ = d v /d x . We assume v (0 ) = v (X) = 0 , v = v (x) > 0 for all x ∈ (0, X ) and

that u = u(x) is bounded. In particular we assume there are two functions U −(v ) and U + (v ) with the following properties. We

have U −[ v (x)] ≤ u(x) ≤ U + [ v (x)] for each x ∈ (0, X ). The bounds U − = U −(v ) ∈ ( − ∞ , 0 ) and U + = U + (v ) ∈ (0 , ∞ ) for v ∈ (0, ∞ )

are monotone functions with U −(v ) ↑ 0 and U + (v ) ↓ 0 as v ↑∞ . We suppose too, for each ε > 0, there exists some constant U 

′ 
ε > 0

such that | U −(v ) − U −(w)| ≤ U 

′ 
ε | v − w | and | U + (v ) − U + (w)| ≤ U 

′ 
ε | v − w | for all v , w ≥ ε. The functions U − and U + define bounds

for the maximum braking and driving forces per unit mass in a form that includes—as special cases—the specified bounds for a

wide range of railway traction systems. 

Remark 1. Some explanations are in order for the properties of the bounds. In Section 1.3 we use elementary physics to argue

that if friction is neglected then d v /d t = p/ v where p is the tractive power per unit mass at the wheels. Therefore—in the absence

of force limits at low speed—the maximum tractive acceleration is U + (v ) = P/ v which means that U + (v ) ∈ (0 , ∞ ) and U + (v ) ↓ 0

as v ↑∞ . In practice such an idealised formula is likely to be only approximately true. By simply assuming that U + (v ) ↓ 0 as v ↑∞ ,

we obtain a model that is more likely to remain valid in practice. If U + (v ) = P/ v then U 

′ + (v ) = −P/ v 2 and so | U + (v ) − U + (w)| ≤
(P/ε2 )| v − w | provided v , w ≥ ε. Thus our assumption of a Lipschitz property for U + (v ) is simply a natural generalisation of an

existing idealised property. Similar remarks apply to the maximum braking bound U −(v ). 

The function r ( v ) is a general resistance per unit mass with no specific formula assumed. We define auxiliary functions ϕ(v ) =
v r(v ) and ψ(v ) = v 2 r ′ (v ) and assume only that ϕ( v ) is strictly convex with ϕ( v ) ≥ 0 for v ≥ 0 and ϕ( v )/ v → ∞ as v → ∞ . It follows

that both r ( v ) and ψ( v ) are non-negative and strictly increasing for v ≥ 0. These properties capture the functional characteristics

of the traditional quadratic formula—the so-called Davis formula ( Davis et al., 1926 )—that has been used in practice by the rail

industry for many years. 
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Remark 2. The Davis formula for resistance takes the form r(v ) = r 0 + r 1 v + r 2 v 2 where r 0 , r 1 and r 2 are non-negative physical

constants that may be determined approximately in practice ( Vu, 2006 ) by measuring the difference between the applied tractive

force and the net tractive force. The formula is based on elementary physical considerations but nevertheless may not be precisely

realised in practice. If the Davis formula is used then ϕ(v ) = r 0 v + r 1 v 2 + r 2 v 3 is a strictly convex function and ψ(v ) = v 2 r ′ (v ) =
r 1 v 2 + 2 r 2 v 3 is a strictly increasing function. Hence our assumptions are a natural generalisation of an idealised physical property.

The convexity of ϕ( v ) ensures that speedhold where possible is the most energy-efficient strategy. The monotonicity of ψ( v )

implies that the optimal driving speed is uniquely defined for each optimal journey. Thus the properties of ϕ( v ) and ψ( v ) capture

the essential elements of the resistance function. 

The function g ( x ) is nominally the component of gravitational acceleration due to track gradient but in practice may also

include additional position-dependent resistive forces due to track curvature. We will not consider details of such calculations.

Suffice to say that resistance due to curvature is often modelled effectively by calculating an equivalent gradient acceleration. 

We describe the track as steep uphill at speed v = V if U + (V ) − r(V ) + g(x) < 0 so that the speed decreases even when the

control is set to u = U + (v ). The track is said to be steep downhill at speed v = V if −r(V ) + g(x) > 0 so that the speed increases

even when the control is set to u = 0 . See Howlett (20 0 0) , Howlett et al. (20 09) , Khmelnitsky (20 0 0) and Liu and Golovitcher

(2003) for further discussion. Unless otherwise stated we assume that g ( x ) is smooth for x ∈ [0, X ]. Let G − = min x ∈ [0 ,X] g(x) and

G + = max x ∈ [0 ,X] g(x). We will assume that for some ε > 0 we have U + (v ) − r(v ) + G − > 0 for 0 ≤ v < ε so that the train can

maintain speed v ≥ ε at any point and also—for theoretical convenience—that U −(v ) − r(v ) + G + < 0 for 0 ≤ v ≤ V max so that the

train can slow down at any point. The latter assumption may be violated in some practical situations but these are effectively

handled by rail operators on an ad hoc basis using auxiliary braking systems and by imposing local operating rules. The cost of a

control strategy is the net mechanical energy per unit mass required to move the train, given by 

J = 

∫ X 

0 

[
(u + | u | )

2 

+ 

ρ(u − | u | )
2 

]
dx (3)

where ρ ∈ [0, 1) is the proportion of mechanical energy recovered during braking. 

Remark 3. The optimi sation minimises the mechanical work done by the traction system. This is not the same as minimising

fuel usage or energy supply because efficiency varies with speed and tractive effort. Most traction systems have peak efficiency

at high load during phases of maximum power. On some trains with multiple traction systems it is possible to run different

traction motors at different levels. For example, tests on long-haul freight trains in Australia showed that it was more efficient

during extended HoldP phases to turn off one of the three locomotives and run the other two at maximum power rather than

running all three locomotives at two-thirds power. In practice minimising mechanical work done results in significant reductions

in actual fuel or energy use. 

Remark 4. Electric and diesel–electric trains can use the electric motors for traction or braking but energy generated by braking

is not always recovered. In diesel–electric trains it is usually dissipated as heat in large resistor banks. In this case the regeneration

efficiency is ρ = 0 . With electric trains, the braking energy can be fed back into the track power supply if other loads can use or

store the energy. Thus regeneration efficiency depends on the availability of other loads. The level of efficiency does not make

a significant difference to the optimal strategy or to the mechanical energy required to drive the train and so the main benefit

is the collective value of the recovered energy. Recent work on integrated scheduling shows that adjusting dwell-times on busy

networks may enable significant energy savings ( Gong et al., 2014; Li and Lo, 2014a, 2014b ). 

Speed limits may be imposed in the form v ≤ v m 

where v m 

= v m 

(x) ∈ [0 , V max ] is a known bounded measurable function.

The problem formulation with x as the independent variable has a particular theoretical advantage in that it partially separates

the state variables and thereby enables us to solve (2) for v = v (x) without knowledge of t = t(x) which is subsequently deter-

mined directly from v = v (x) using (1) . The time constraint takes the form t ( X ) ≤ T . It is also possible to consider a seemingly

more natural formulation of the problem with time as the independent variable. Although this formulation is equivalent to our

formulation it is generally less convenient for mathematical analysis. We refer the reader to an earlier paper for further details

( Howlett, 20 0 0 ). 

1.3. Previous models 

The SCG have used both time ( Howlett, 20 0 0 ) and position ( Albrecht et al., 2013b; Howlett, 1996; Howlett and Jiaxing, 1997;

Howlett et al., 2009; Howlett and Leizarowitz, 2001; Howlett et al., 1994 ) as the independent variable. Although these models

were developed specifically to describe the observed traction characteristics of a standard diesel–electric locomotive they are

nevertheless based on fundamental physical principles and are generally applicable to all traction systems. The original idea was

that a diesel–electric locomotive should deliver an approximately constant level of power per unit mass p s that was directly

proportional to the rate of fuel supply for each fixed throttle setting s . See ( Howlett, 1996 ) for more details. In mathematical

terms this meant that if friction and track gradient were neglected then there was a constant level p s of tractive power per unit

mass defined by the formula 

d[ v 2 / 2] 

dt 
= p s ⇐⇒ 

dv 
dt 

= 

p s 

v 
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for each value s of the throttle setting. In contrast, the braking mechanism was assumed to be a directly-applied negative accel-

eration. Hence the basic equation of motion became 

dv 
dt 

= 

p 

v 
− q − r(v ) + g(x) ⇐⇒ 

dv 
dx 

= 

p/ v − q − r(v ) + g(x)

v 
where p ∈ [0, P ] was the power per unit mass under traction and q ∈ [0, Q ] was the braking force per unit mass. 

The previous SCG models with U + (v ) = P/ v and U −(v ) = −Q for v > 0 were special cases of the general model described in

Section 1.2 . In practice the tractive power delivered by electric and diesel–electric traction systems is limited at low speeds by

the current supplied to the motor and by adhesion. Thus a more accurate model for maximum tractive acceleration would take

the form U + (v ) = P/ max { v , v 0 } for some v 0 > 0. The formula for maximum braking acceleration is more complex but a similar

expression in the form U −(v ) = −Q/ max { v , v 0 } could be used as a reasonable approximation. The precise formula for maximum

tractive acceleration at very small speeds is not especially important to overall costs because the formula applies to only a tiny

portion of the journey. For similar reasons the precise formula for maximum braking acceleration—whatever the speed—makes

little difference to the overall strategy and to the net energy consumption. 

The previous SCG train control models did not allow regenerative braking although both regenerative braking and the capture

and storage of solar energy were included in an essentially similar model for optimal control of solar-powered racing cars. See

Howlett and Pudney (1998) . The early SCG models were primarily concerned with discrete control ( Cheng et al., 1999; Howlett,

1996; 20 0 0; Howlett and Leizarowitz, 2001; Howlett et al., 1994; Howlett and Pudney, 1995 ) but later models mainly use con-

tinuous control ( Albrecht et al., 2013b; Howlett, 20 0 0; Howlett et al., 2009; Howlett and Pudney, 1995; 1998 ). Collectively the

SCG papers document a sound basis for modern train control theory. Numerical algorithms that calculate and continually update

the optimal strategy during the course of a journey were first developed by Howlett and Pudney under an Australian Research

Council (ARC) Linkage Grant during 1998–20 0 0 for TTG Transportation Technology . These algorithms have since been further

developed in the Energymiser ® Driver Advice System which has been used extensively to reduce energy consumption on both

freight and passenger trains in Australasia and Europe. 

Two other frequently cited papers—Khmelnitsky (20 0 0) and Liu and Golovitcher (2003) —have proposed models that closely

resemble the models used in the SCG papers ( Albrecht et al., 2013b; Howlett, 20 0 0; Howlett et al., 2009; Howlett and Pudney,

1995; 1998 ) and the model considered here. Nevertheless there are many useful relationships that have not previously been

explored that will be elaborated here and others that will be extended. 

Khmelnitsky (20 0 0) formulated the train control problem with kinetic energy and time as the dependent state variables and

position as the independent variable. Although it is unusual to use kinetic energy rather than speed as the key state variable

there are sound mathematical and engineering reasons to justify this. In particular the basic formula 

dK 

dx 
= 

d[ v 2 / 2] 

dx 
= 

(
1 

v 

)
d[ v 2 / 2] 

dt 
= 

dv 
dt 

for the tractive force per unit mass on the train when friction and gradient are neglected has no singularity at v = 0 . Thus the

Khmelnitsky formulation avoids the mathematical difficulty of the (removable) singularity at v = 0 that arises from the formula

d v /d x = (1 / v )d v /d t when speed v is used as the state variable. We note too that this formulation sits well with the overall

objective to minimise energy consumption. Khmelnitsky assumes the more restrictive Davis formula 

r(K) = r 0 + r 1 
√ 

2 K + 2 r 2 K ⇐⇒ r(v ) = r 0 + r 1 v + r 2 v 2 

for the resistance function but the model is otherwise equivalent to the more general model described in this paper. He obtained

a complete description of the optimal strategy and presented a numerical algorithm that can be used to find the associated speed

profile. He also provided an indirect argument that the optimal strategy is uniquely defined. We will not review this argument

but prefer to consider the direct argument for uniqueness proposed recently in Albrecht et al. (2013b ). 

The model used by Liu and Golovitcher (2003) is essentially the same as the more general model proposed in this paper

except that they do not explicitly consider cost recovery through regenerative braking. Although the initial formulation is given

in a time-dependent form it is immediately converted into a position-dependent problem. The mathematical optimi sation is

solved by minimising a Lagrangian functional 

L = J + κT = 

∫ X 

0 

[ 
u + (x)U + (v ) + 

κ

v 

] 
dx 

subject to the constraints v (0 ) = v (X) = 0 , v ( x ) > 0 for 0 < x < X and 

v ′ = 

u + U + (v ) + u −U −(v ) − r(v ) + g(x)

v 
where the power and brake controls are bounded by 0 ≤ u + (x) ≤ 1 and 0 ≤ u −(x) ≤ 1 for all x ∈ [0, X ] and where κ > 0 is a

Lagrange multiplier for the overall journey time constraint ∫ X 

0 

(1 / v )dx ≤ T . 

An earlier paper by Howlett and Leizarowitz (2001) used a similar formulation to find a general solution with chattering

control when only a finite number of throttle settings is allowed. The results presented by Liu and Golovitcher (2003) describing
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the optimal strategy essentially confirm the results obtained by Howlett (20 0 0) and Khmelnitsky (20 0 0) but with one notable

additional contribution. In practice, track gradients—or equivalently track gradient accelerations—are tabulated by rail companies

as piecewise-constant functions. For such gradients, on each segment of constant slope, Liu and Golovitcher obtained an algebraic

expression for the key adjoint variable as a function of speed and thereby greatly simplified the process of calculating optimal

switching points. Similar formulae for a modified adjoint variable were discovered independently by Howlett et al. and used in

numerical algorithms for the Energymiser ® system. This work was later published by Vu (2006) and Howlett et al. (2009) . Liu and

Golovitcher also developed a numerical algorithm for calculation of optimal strategies. 

Remark 5. In this paper we consider optimal driving strategies for a single train with a given journey time and no interference

from other trains. In practice it may be necessary to use suboptimal strategies for individual trains on a busy network in order

to avoid disruptions to the schedules of other co-located trains and to maintain safe separation between trains travelling in the

same direction on the same line. There is a substantial existing literature on optimal scheduling ( Cordeau et al., 1998; Ghoseiria

et al., 2004; Gong et al., 2014; Higgins et al., 1996; Kraay et al., 1991; Li and Lo, 2014a; 2014b; Zhou and Zhong, 2005 ) and

on rudimentary methods to integrate scheduling and energy-efficient driving but there are still unsolved problems relating to

optimal driving strategies for fleets of trains ( Albrecht et al., 2013a ). 

2. Existence of an optimal strategy 

It is important from a theoretical viewpoint to establish the existence of an optimal strategy. In other words it is necessary

to show that the optimal control problem—to drive a train from one station to the next within a given time in such a way that

energy consumption is minimised—is well-posed and has a solution. There are certain key points to consider. One must allow

sufficient time for the journey to be completed. This leads to the concept of a minimum-time strategy. Intuitively one might

reasonably expect this strategy to consist of only two phases—an initial phase of Maximum Power and a final phase of Maximum

Brake. This is indeed the case. 

In general—if the minimum-time journey is feasible—we may expect a large number of different feasible strategies. Ultimately

it is necessary to show that we can always choose a strategy from the set of feasible strategies so that energy consumption is

minimised. There are various technical problems that must be addressed before this can be done. Firstly we must construct a set

F of feasible control strategies—a set where each nominated control u = u(x) ∈ F generates uniquely-defined solutions v = v (x)
to (2) and t = t(x) to (1) that satisfy all relevant state constraints. Secondly we must find a special sequence { S n } ∈ F of feasible

control strategies for which the energy consumption progressively decreases and in the limit approaches the least possible value.

For any particular non-optimal strategy S n ∈ F with J (S n ) = inf S∈F J (S) + εn where εn > 0 it follows from the definition of an infi-

mum that there exists an improved strategy S n +1 ∈ F such that J (S n +1 ) < inf S∈F J (S) + εn / 2 and so the required special sequence

exists by induction. Thirdly—and most importantly—we must show that the feasible set is sequentially compact. See Yosida (1978 ,

The Eberlein-Šmulian theorem, pp. 141–145) for more information. That is, we must be able to extract a subsequence of control

strategies from our special sequence that converges to a well-defined optimal strategy in the set F . It is convenient to introduce

these ideas here but postpone our discussion of the underlying mathematics. Details of the full mathematical argument will be

presented in Part 2 of this paper ( Albrecht et al., 2014 ). A similar proof that an optimal strategy exists for a solar-powered racing

car can be found in Howlett and Pudney (1998) . 

2.1. The minimum-time strategy 

We define two important speed profiles. The speed profile v = v P (x) for x ≥ 0 is for the Maximum Power phase that starts at

(x, v ) = (0 , 0 ). The speed profile v = v B (x) for x ≤ X is for the Maximum Brake phase that finishes at (x, v ) = (X, 0 ). In mathemat-

ical parlance( Birkhoff and Rota (1989) ), we define v = v P (x) as the unique solution for x ≥ 0 to the equation 

v ′ = 

U + (v ) − r(v ) + g(x)

v 

with v P (0 ) = 0 and define v = v B (x) as the unique solution for x ≤ X to the equation 

v ′ = 

[ U −(v ) − r(v ) + g(x)] 

v 

with v B (X) = 0 . The minimum-time speed profile v = v (x) = min [ v P (x), v B (x)] for each x ∈ [0, X ] with T min 

= 

∫ X 
0 dx/ v (x) is gen-

erated by a Maximum Power–Maximum Brake strategy with control u (x) = u (x, v (x)) where 

u (x, v ) = 

{
U + (v ) for x ∈ (0 , c)

U −(v ) for x ∈ (c, X )

and c ∈ (0, X ) is the unique point defined by v P (c) = v B (c). A typical speed profile for the minimum-time strategy is depicted as the

upper profile in Fig. 2 . The minimum-time strategy is also a maximum-speed strategy. For every strategy with v (0 ) = v (X) = 0

we must have v (x) ≤ v (x) for all x ∈ [0, X ]. 
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Fig. 2. Speed profiles v = v (x) for a typical minimum-time strategy (upper profile) and v = v V (x) with V = 25 for a corresponding feasible approximate- 

speedhold strategy (lower profile). The position x is measured in metres (m) and the speed v is measured in metres per second (m s −1 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Feasible strategies 

A feasible control strategy is one in which the journey is completed within the prescribed time T . To pose a meaningful

optimal control problem we need to know that an optimal strategy exists. A fundamental requirement is that the feasible control

set be non-empty. Thus it is important to establish the existence of at least one feasible strategy. If T min ≤ T then the minimum-

time strategy described in the previous subsection is a feasible strategy. If T min < T then we can reduce energy consumption

by reducing speed and increasing the journey time. A natural way to do this is to follow a constant maximum speed wherever

possible—the first intuitive step towards constructing an optimal strategy. We proceed as follows. 

Choose V with 0 < V < V max = max x ∈ [0 ,X] v (x) where v = v (x) is the speed profile for the minimum-time strategy. Define a

control function 

u V (x, v ) = 

{
U + (v ) if v < V 

r(V ) − g(x) if v = V 

and a corresponding speed profile v = v V (x) for x ∈ [0, X ] satisfying the differential equation 

vv ′ = u V (x, v ) − r(v ) + g(x)

with v V (0 ) = V . This is an approximate-speedhold strategy on [0, X ] starting at speed V . The idea is that if the speed falls below

v = V then we apply Maximum Power. However, because v V (0 ) = V � = 0 , this strategy is not feasible. Provided the nominal hold

speed V is sufficiently high we can construct a corresponding feasible approximate-speedhold strategy with speed profile 

v V (x) = min [ v (x), v V (x)] 

and control function 

u V (x, v ) = 

{
u (x) if v V (x) = v (x)
u V (x, v ) if v V (x) = v V (x)

where v = v (x) is the speed profile for the minimum-time strategy. The time taken for this strategy will be T V = 

∫ X 
0 dx/ v V (x). The

strategy will be feasible if T min < T V ≤ T . In general, if T min < T , there will be an infinite collection of feasible strategies. A typical

profile for an approximate-speedhold strategy is shown as the lower profile in Fig. 2 . 

2.3. Speedhold is the most cost-efficient form of control 

The approximate-speedhold strategy proposed in the previous subsection is not optimal but it is nevertheless true that speed-

hold is an energy-efficient driving mode. Suppose we consider a speedhold phase with driving control u(x, V ) = r(V ) − g(x) > 0

at constant speed v (x) = V for all x ∈ [ p, q ]. The time taken is given by 

�T V = 

∫ q 

p 

dx 

V 

= 

q − p 

V 

and the cost is 

�J V = 

∫ q 

p 

[ r(V ) − g(x)] dx = r(V )(q − p) − G(q) + G(p). 

For any alternative strategy with control u ( x ) > 0 and v (p) = v (q) = V we can integrate the identity v (x)v ′ (x) = u(x) − r[ v (x)] +
g(x) to give 

0 = 

∫ q 

p 

u(x)dx −
∫ q 

p 

r[ v (x)] dx + G(q) − G(p) ⇐⇒ �J v = 

∫ q 

p 

r[ v (x)] dx − G(q) + G(p)
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where �J v is the cost of the alternative strategy. Since ϕ(v ) = v r(v ) is strictly convex we have ϕ(v ) > L V (v ) = ϕ(V ) + ϕ 

′ (V )(v −
 ) for all v � = V and hence r(v ) − r(V ) > V r ′ (V )(1 − V/ v ) for v � = V . It follows that 

�J v − �J V = 

∫ q 

p 

{ r[ v (x)] − r(V )} dx > V r ′ (V )

∫ q 

p 

[1 − V/ v (x)] dx (4)

provided v ( x ) � = V for some x ∈ ( p, q ). If the alternative strategy with v = v (x) takes the same time to traverse [ p, q ] as the

speedhold strategy then 

∫ q 
p dx/ v (x) = (q − p)/V and the inequality (4) becomes �J v − �J V > 0 . Thus a speedhold phase is more

cost efficient than any alternative strategy of positive control. 

3. The Hamiltonian analysis 

This is the main section of the paper and it is appropriate to summarise the content and provide a rationale for the way

in which the material is organised. We begin by introducing the Hamiltonian function and the associated adjoint variables in

Section 3.1 . The Pontryagin principle is applied in Section 3.2 to show that only certain special control modes can be used in an

optimal strategy and that the choice of control is determined by the values of the speed and the corresponding values of the

adjoint variables. In order to understand how an optimal strategy evolves it is necessary to follow the joint evolution of these

variables. The general principles for this evolution are discussed in Section 3.3 . The evolution is a complex process and it is

convenient to begin by considering the special case of a track with constant gradient. We also look at several different methods

of analysis. 

In Sections 3.4 and 3.5 we consider evolution of the state and adjoint variables on track with constant gradient. In this case

the adjoint variables can be expressed as algebraic functions of the speed. The relevant formulae are derived in Section 3.5 and

are then used in Section 3.6 to find a general form for the strategy of optimal type on level track. These formulae also allow

us to construct phase diagrams for the speed and the adjoint variables that show a complete range of possible evolutionary

lines for a strategy of optimal type. The phase diagrams are described in Section 3.6 for level track and in Section 3.7 for steep

uphill and steep downhill track. In practice rail operators tabulate track gradients as piecewise-constant functions of position.

Since the values of the speed and the corresponding values of the adjoint variables determine the level of control it is important

for effective on-board calculations that the algebraic formulae from Section 3.5 are extended to track with piecewise-constant

gradient. This is done in Section 3.8 . 

In Sections 3.9, 3.10 and 3.11 we consider the full range of possible control transitions at the end of each regular phase of

optimal control. In Section 3.12 we introduce the problem of finding optimal switching points when a singular control phase is

interrupted by a regular control phase to negotiate a steep section of track or alternatively when a change in gradient means it

is necessary to change the level of singular control. In Section 3.13 we show that active speed limits are essentially an imposed

form of singular control. 

It is timely to reiterate that the main purpose of this two-part paper is to show that many results that were previously known

to apply in special circumstances remain true with a more general model. In particular our analysis in this section allows us

to identify the critical factors that support many of these familiar results. For instance the magnitude bounds on the tractive

and braking forces must decrease as the speed increases in order to preserve the characteristic properties of the evolutionary

lines in the phase plane; the auxiliary function ϕ( v ) must be strictly convex to ensure that a constant- speed strategy is the most

energy-efficient; and the auxiliary function ψ( v ) must be strictly increasing to establish the existence of a unique optimal driving

speed for each optimal journey. Thus we show that the optimal driving speed is the same for every HoldP phase and that the

optimal regenerative braking speed is the same for every HoldR phase in an optimal strategy. In the course of exploring these

key ideas we elaborate various alternative techniques that can be used to describe, determine and analyse an optimal strategy.

We discuss evolution of optimal strategies and pay particular attention to control transitions. This section also paves the way for

a more general discussion in Part 2 of the paper ( Albrecht et al., 2014 ) about the local energy functional introduced in Howlett

et al. (2009) and the perturbation analysis proposed in Albrecht et al. (2013b ). 

3.1. The Hamiltonian function 

To find necessary conditions on an optimal strategy we use a Hamiltonian analysis and apply the Pontryagin principle

( Girsanov et al., 1972; Hartl et al., 1995 ). We use the model defined by (1), (2) and (3) with position as the independent vari-

able. An equivalent analysis is possible with time as the independent variable but the details are different ( Howlett, 20 0 0 ). In the

first instance we assume there are no imposed speed limits. Define the Hamiltonian function 

H = ( − 1 )

[
(u + | u | )

2 

+ 

ρ(u − | u | )
2 

]
+ 

μ1 

v 
+ 

μ2 [ u − r(v ) + g(x)] 

v 
(5)

and the associated Lagrangian function 

L = H + π1 (U + (v ) − u) + π2 (u − U −(v )) (6)

where π1 ≥ 0 and π2 ≥ 0 are Lagrange multipliers for the control constraints. The adjoint variables (μ1 , μ2 ) = (μ1 (x), μ2 (x))
are absolutely continuous and satisfy the differential equations 

μ ′ 
1 = (−1 )

∂L 

∂t 
= 0 (7)
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μ ′ 
2 = (−1 )

∂L 

∂v 
= 

μ1 

v 2 
+ 

μ2 [ u − r(v ) + g(x)] 

v 2 
+ 

μ2 r 
′ (v )

v 
− π1 U 

′ 
+ (v ) + π2 U 

′ 
−(v ). (8) 

3.2. Necessary conditions on an optimal strategy 

For an optimal strategy the Pontryagin principle shows it is necessary to find a control that maximises the Hamiltonian at

each point subject to the given constraints. Thus we set 

∂L 

∂u 

= (−1 )

[
(1 + sgn (u))

2 

+ 

ρ(1 − sgn (u))

2 

]
+ 

μ2 

v 
− π1 + π2 = 0 (9) 

which gives −1 + μ2 / v − π1 + π2 = 0 when u > 0 and −ρ + μ2 / v − π1 + π2 = 0 when u < 0. When u = 0 the partial derivative

in (9) is undefined. It is also necessary to satisfy the Karush–Kuhn–Tucker conditions π1 (U + (v ) − u) = 0 and π2 (u − U −(v )) = 0 .

A strategy that maximises the Hamiltonian at each point will be called a strategy of optimal type . Before beginning a detailed

analysis we note from (7) that μ1 = b for some constant b . There are five possible modes. 

Mode 1: μ2 > v . We must have u = U + (v ) > 0 , π1 = μ2 / v − 1 > 0 and π2 = 0 . This is a regular control phase of Maximum

Power. 

Mode 2: μ2 = v . We must have u > 0, π1 = 0 and π2 = 0 . If the condition is maintained over a nontrivial interval x ∈ ( p,

q ) then μ ′ 
2 

= v ′ ⇒ ψ(v ) + b = 0 . Since ψ( v ) is strictly increasing in v this equation has only one solution v = V = V b > 0

where b = −ψ(V ) < 0 . We call V the optimal driving speed . This is a singular control phase denoted by HoldP with hold

speed v (x) = V and positive power 0 < u(x) = r(V ) − g(x) < U + (V ) for x ∈ ( p, q ). 

Mode 3: v > μ2 > ρv . We must have u = 0 , π1 = 0 and π2 = 0 . This is a regular control phase of Coast. 

Mode 4: μ2 = ρv . We must have u < 0, π1 = 0 and π2 = 0 . If the condition is maintained over a nontrivial interval x ∈ ( p, q )

then μ ′ 
2 

= ρv ′ ⇒ ρψ(v ) + b = 0 . Since ψ( v ) is strictly increasing in v this equation has only one solution v = W = W ρ, b >

0 where b = −ρψ(W ) < 0 . We call W the optimal regenerative braking speed . This is a singular control phase denoted by

HoldR with hold speed v (x) = W and negative power U −(W ) < u(x) = r(W ) − g(x) < 0 for x ∈ ( p, q ). Note that 0 ≤ ρ < 1

and so ρψ(W ) = ψ(V ) ⇔ W = ψ 

−1 [ ψ(v )/ρ] means that 0 < V < W . If we allow ρ = 1 then we obtain W = V . 

Mode 5: ρv > μ2 . We must have u = U −(v ) < 0 , π1 = 0 and π2 = ρ − μ2 / v > 0 . This is a regular control phase of Maximum

Brake. 

For each mode of optimal control the Lagrange multipliers are given by 

π1 = 

| μ2 / v − 1 | + (μ2 / v − 1 )

2 

= 

| η| + η

2 

= 

{
η if η > 0 

0 if η ≤ 0 

(10) 

where we have defined a modified adjoint variable η = μ2 / v − 1 and 

π2 = 

| μ2 / v − ρ| − (μ2 / v − ρ)

2 

= 

| ζ | − ζ

2 

= 

{
0 if ζ ≥ 0 

−ζ if ζ < 0 

(11) 

where we have defined an alternative modified adjoint variable ζ = μ2 / v − ρ = η + 1 − ρ . 

3.3. Evolution of a strategy of optimal type 

For each strategy of optimal type μ1 (x) = μ1 = −ψ(V ) = −ρψ(W ) is a constant that defines a unique optimal driving speed

v = V with u(x) = r(V ) − g(x) > 0 and a unique optimal regenerative braking speed v = W = ψ 

−1 [ ψ(V )/ρ] > V with u(x) =
r(W ) − g(x) < 0 . The optimal driving speed v = V can only be maintained on non-steep track where g(x) ≤ r(V ) ≤ U + (V ) + g(x).

The optimal regenerative braking speed v = W can only be maintained on steep downhill track where U −(W ) + g(x) ≤ r(W ) ≤
g(x). 

Evolution of the singular control phases HoldP and HoldR is straightforward. In each case both the state variable v = v (x) and

adjoint variable μ2 = μ2 (x) are constant. Hence it is possible to exit a singular control phase in a strategy of optimal type at any

point and still remain optimal. However we shall see later that there is only one exit point that will find a feasible strategy. The

collective length of all singular phases in a strategy of optimal type is determined by the overall distance constraints. 

Evolution of the regular control phases in a strategy of optimal type is more complex and is determined in the following

way. Let x = p be a point on a strategy of optimal type. Select a permissible control u = U + (v ) (if v ( p ) < μ2 ( p )), u = 0 (if 0 <

μ2 ( p ) < v ( p )) or u = U −(v ) (if μ2 ( p ) < 0) and solve (2) to find v = v (x) on some proposed interval [ p, q ] subject to a given initial

speed v = v (p). Once v = v (x) is known solve (8) on [ p, q ] to find μ2 = μ2 (x) subject to the given initial value μ2 = μ2 (p). If

the values of ( v ( x ), μ2 ( x )) on ( p, q ) are consistent with optimality for the selected control u = u(v ) then the combined profile

(x, v , μ2 ) = (x, v (x), μ2 (x)) for x ∈ ( p, q ) is an allowable phase in a strategy of optimal type. The decision to exit a regular control

phase is completely determined by the evolution of ( v ( x ), μ2 ( x )). 

In general (2) must be solved by numerical integration for each phase of regular optimal control. Rather than solving (8)

for μ2 = μ2 (x) to study possible control transitions it is convenient to use one or other of the modified adjoint variables,

η = μ / v − 1 or ζ = μ / v − ρ = η + 1 − ρ, introduced earlier in this section. We may use (2), (8), (10) and (11) to show that
2 2 
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for each strategy of optimal type, the modified adjoint variables satisfy linear differential equations written in standard form 

1 as

η ′ − ψ(v ) − v 2 u 

′ (v )
v 3 

η = 

ψ(v ) − ψ(V )

v 3 
(12)

for η = η(x) in the region μ2 > ρv ⇔ η > ρ − 1 ⇔ ζ > 0 with u(v ) = U + (v ) for η > 0 and u(v ) = 0 for ρ − 1 < η < 0 and 

ζ ′ − ψ(v ) − v 2 u 

′ (v )
v 3 

ζ = ρ
ψ(v ) − ψ(W )

v 3 
(13)

for ζ = ζ (x) in the region μ2 < v ⇔ ζ < 1 − ρ ⇔ η < 0 with u(v ) = 0 for 0 < ζ < 1 − ρ and u(v ) = U −(v ) for ζ < 0 where, in

(12) and (13) , v = v (x) is the known solution to (2) with the appropriate level of control. Note that both (12) and (13) are valid in

the region ρ − 1 < η < 0 ⇔ 0 < ζ < 1 − ρ and in this region it is simply a matter of preference as to which equation and which

variable is used. If we wish to find an analytic expression for the solution to (12) on an interval [ p, q ] then we can define an

integrating factor 

I p, u (x) = exp 

[
−

∫ x 

p 

ψ(v ) − v 2 u 

′ (v )
v 3 

dξ

]
(14)

for all x ∈ [ p, q ] where the known speed profile has been written as v = v (ξ) for convenience in the integrand. If we multiply

both sides of (12) by the integrating factor and integrate over [ p, x ] ⊂ [ p, q ] we obtain 

I p, u (x)η(x) − η(p) = 

∫ x 

p 

ψ(v ) − ψ(V )

v 3 
I p, u (ξ)dξ (15)

for all x ∈ [ p, q ] provided either η( x ) > 0 with u(v ) = U + (v ) for all x ∈ ( p, q ) or ρ − 1 < η(x) < 0 with u(v ) = 0 for all x ∈ ( p, q ). A

similar argument using (13) shows that 

I p, u (x)ζ (x) − ζ (p) = ρ

∫ x 

p 

ψ(v ) − ψ(W )

v 3 
I p, u (ξ)dξ (16)

for all x ∈ [ p, q ] provided either 0 < ζ (x) < 1 − ρ with u(v ) = 0 for all x ∈ ( p, q ) or ζ ( x ) < 0 with u(v ) = U −(v ) for all x ∈ ( p, q ).

Once again, in both (15) and (16) , we have written v = v (ξ) for the known speed profile. 

We can find linear differential equations 2 for η = η(x) in the region η < ρ − 1 and for ζ = ζ (x) in the region ζ > 1 − ρ but in

each case the form of the equation is less convenient. Thus it is simpler to use the relationship η(x) = ζ (x) + ρ − 1 to determine

η( x ) when η(x) < ρ − 1 ⇔ ζ (x) < 0 and to use the relationship ζ (x) = η(x) + 1 − ρ to find ζ ( x ) when ζ (x) > 1 − ρ ⇔ η(x) > 0 .

The broader problem is to construct a strategy of optimal type consisting entirely of permissible optimal control phases in

such a way that the combined profiles (x, v , η) = (x, v (x), η(x)) or (x, v , ζ ) = (x, v (x), ζ (x)) are continuous at all linking points. In

general this is a complicated process but we will begin by considering an important special case where the gradient acceleration

is constant on the selected track segment and evolution of both the state and modified adjoint variables is more easily described.

3.4. Evolution of the state variables on track with constant gradient 

Suppose a segment of track ( p, q ) has constant gradient acceleration g(x) = γ for all x ∈ ( p, q ). We will show that for each

permissible phase of regular control in a strategy of optimal type there is an analytic solution to the equations of motion. 

1. Maximum Power —with η > 0 and control u(v ) = U + (v ). Since U + (v ) ↓ 0 is strictly decreasing and r ( v ) ↑∞ is strictly in-

creasing as v ↑∞ there is a unique limiting speed V + = V + , γ under Maximum Power defined by solving the equation

U + (v ) − r(v ) + γ = 0 . We may separate the variables and integrate (2) to obtain the analytic solution. For v (p) < V + we have

x(v ) − p = 

∫ v 

v (p)

wdw 

U + (w) − r(w) + γ
, t(v ) − t(p) = 

∫ v 

v (p)

dw 

U + (w) − r(w) + γ
(17)

for all v ∈ (v (p), V + ) with x, t ↑∞ as v ↑ V + . For v (p) > V + we have 

x(v ) − p = 

∫ v (p)

v 

−wdw 

U + (w) − r(w) + γ
, t(v ) − t(p) = 

∫ v (p)

v 

−dw 

U + (w) − r(w) + γ
(18)

for all v ∈ (V + , v (p)) with x, t ↑∞ as v ↓ V + . In each case we have a strictly monotonic solution x = f + (v ) for position as a

function of speed with a well-defined inverse function v = f −1 
+ (x). For v (p) < V + we have v ↑ V + as x ↑∞ and for v (p) > V +

we have v ↓ V + as x ↑∞ . Thus, if the phase is maintained indefinitely, the train approaches a limiting Maximum Power speed

v = V + for the given gradient. 
1 We use the expression ψ( v )/ v 3 in (12) and thereafter because it turns out to be more convenient than the seemingly simpler r ′ ( v )/ v . In particular the fact 

that ψ( v ) is strictly increasing in v means the ubiquitous terms [ ψ(v ) − ψ(V )] / v 3 and [ ψ(v ) − ψ(W )] / v 3 are respectively negative when v < V or v < W and 

positive when v > V or v > W . 
2 For η < ρ − 1 we have η ′ − { [ ψ(v ) − v 2 U ′ −(v )] / v 3 } η = [ ψ(v ) − ψ(V )] / v 3 − (1 − ρ)U ′ −(v )/ v and for ζ > 1 − ρ we have ζ ′ − { [ ψ(v ) − v 2 U ′ + (v )] / v 3 } ζ = 

ρ[ ψ(v ) − ψ(W )] / v 3 + (1 − ρ)U ′ + (v )/ v . 
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2. Coast —with ρ − 1 < η < 0 ⇔ 0 < ζ < 1 − ρ and control u(v ) = 0 . Suppose that γ > r(0 ) ⇔ −r(0 ) + γ > 0 . Since r ( v ) ↑∞ is

strictly increasing as v ↑∞ there exists a unique limiting speed V 0 = V 0 , γ under Coast defined by solving the equation −r(v ) +
γ = 0 . We may separate the variables and integrate (2) to obtain the analytic solution. For v ( p ) < V 0 we have 

x(v ) − p = 

∫ v 

v (p)

wdw 

−r(w) + γ
, t(v ) − t(p) = 

∫ v 

v (p)

dw 

−r(w) + γ
(19) 

for all v ∈ ( v ( p ), V 0 ) with x, t ↑∞ as v ↑ V 0 . For v ( p ) > V 0 we have 

x(v ) − p = 

∫ v (p)

v 

−wdw 

−r(w) + γ
, t(v ) − t(p) = 

∫ v (p)

v 

−dw 

−r(w) + γ
(20) 

for all v ∈ ( V 0 , v ( p )) with x, t ↑∞ as v ↓ V 0 . In each case we have a strictly monotonic solution x = f 0 (v ) for position as a function

of speed with a well-defined inverse function v = f −1 
0 

(x). For v ( p ) < V 0 we have v ↑ V 0 as x ↑∞ and for v ( p ) > V 0 we have v ↓ V 0

as x ↑∞ . Thus, if the phase is maintained indefinitely, the speed approaches the limiting Coast speed v = V 0 for the given

gradient. If γ < r (0) then for all v ( p ) > 0 we have 

x(v ) − p = 

∫ v (p)

v 

−wdw 

−r(w) + γ
< 

∫ v (p)

0 

−wdw 

−r(w) + γ
< ∞ (21) 

and 

t(v ) − t(p) = 

∫ v (p)

v 

−dw 

−r(w) + γ
< 

∫ v (p)

0 

−dw 

−r(w) + γ
< ∞ (22) 

for all v ∈ (0, v ( p )). Hence we have a monotonic decreasing solution x = f 0 (v ) for position as a function of speed with a well-

defined inverse function v = f −1 
0 

(x) but in this case there is some finite point q > p with v (q) = 0 . In this case Coast will stop

the train after a finite time. 

3. Maximum Brake —with ζ < 0 and control u(v ) = U −(v ). We assume that γ < −U −(v ) + r(v ) ⇔ U −(v ) − r(v ) + γ < 0 for all

v > 0. We may separate the variables and integrate (2) to obtain the analytic solution. For each v ( p ) > 0 we have 

x(v ) − p = 

∫ v (p)

v 

−wdw 

U −(w) − r(w) + γ
< 

∫ v (p)

0 

−wdw 

U −(w) − r(w) + γ
< ∞ (23) 

and 

t(v ) − t(p) = 

∫ v (p)

v 

−dw 

U −(w) − r(w) + γ
< 

∫ v (p)

0 

−dw 

U −(w) − r(w) + γ
< ∞ (24) 

for all v ∈ (0, v ( p )). Hence we have a monotonic decreasing solution x = f −(v ) for position as a function of speed with a well-

defined inverse function v = f −1 
− (x) and some finite point q > p with v (q) = 0 . Thus Maximum Brake will stop the train after

a finite time. 

3.5. Evolution of the adjoint variables on track with constant gradient 

An important practical observation first published by Liu and Golovitcher (2003) and later developed by Vu (2006) and

Howlett et al. (2009) is that on track with constant gradient, during phases of regular control in a strategy of optimal type,

the adjoint variables can be determined as algebraic functions of speed alone. These formulae are particularly important as they

can be extended by continuity to provide algebraic formulae for the adjoint variables on track with piecewise-constant gradient.

Track gradients, or equivalently track gradient accelerations, are recorded by railways as piecewise-constant functions. Hence

the algebraic formulae can be—and have been—used effectively for fast on-board calculations to determine switching points in

strategies of optimal type. We will derive analogous expressions for our more general model. Before we begin it is convenient to

define a key function E Z : (0, ∞ ) → [ ϕ 

′ ( Z ), ∞ ) by the formula 

E Z (v ) = 

ψ(Z)

v 
+ r(v ). (25) 

Note that 

E ′ Z (v ) = −ψ(Z)

v 2 
+ r ′ (v ) = 

ψ (v ) − ψ (Z)

v 2 

which is negative when v < Z and positive when v > Z . Hence E Z : (0, ∞ ) → [ ϕ 

′ ( Z ), ∞ ) is strictly quasiconvex 3 and has a unique

minimum turning point at v = Z with E Z (Z) = ϕ 

′ (Z). A typical graph y = E Z (v ) with Z = 25 and r(v ) = 1 . 0 × 10 −2 + 1 . 5 × 10 −5 v 2
is shown in Fig. 3 . The speed v is measured in metres per second (m s −1 ) and the resistance r ( v ) and key function E Z ( v ) are

measured in metres per second squared (m s −2 ). 
3 The function f : (0 , ∞ ) → R is said to be strictly quasiconvex if f (αx + (1 − α)y) < max { f (x), f (y)} for all x, y ∈ (0, ∞ ) and all α ∈ (0, 1). 
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Let V and W denote the respective optimal driving and optimal regenerative braking speeds. Once again we consider a per-

missible phase of regular control in a strategy of optimal type on an interval [ p, q ] where the gradient acceleration is constant.

That is, g(x) = γ for all x ∈ ( p, q ). We will show that in each case there are algebraic formulae for the modified adjoint variables

as functions of speed only. 

1. Maximum Power —with η > 0 and control u(v ) = U + (v ). From (2) we have 

d 

dx 
[ vv ′ ] = [ U 

′ 
+ (v ) − r ′ (v )] v ′ = ( − 1 )

ψ(v ) − v 2 U 

′ 
+ (v )

v 3 
[ vv ′ ] . (26)

It follows from (12) and (26) that 

d 

dx 
{ η[ vv ′ ] } = 

{
η ′ − ψ(v ) − v 2 U 

′ 
+ (v )

v 3 
η

}
vv ′ = 

{
ψ(v ) − ψ(V )

v 2 

}
v ′ = E ′ V (v )

dv 
dx 

and hence η[ vv ′ ] = E V (v ) + E where E is a constant of integration. For v � = V + , γ we deduce that 

η(v ) = 

E V (v ) + E 

U + (v ) − r(v ) + γ
. (27)

2. Coast —with ρ − 1 < η < 0 ⇔ 0 < ζ < 1 − ρ and control u(v ) = 0 . For phases starting or finishing at η = 0 ⇔ ζ = 1 − ρ it is

convenient to find a formula for η = η(v ). From (2) we have 

d 

dx 
[ vv ′ ] = −r ′ (v )v ′ = (−1 )

ψ(v )
v 3 

[ vv ′ ] . (28)

It follows from (12) and (28) that 

d 

dx 
{ η[ vv ′ ] } = 

{
η ′ − ψ(v )

v 3 
η

}
vv ′ = 

{
ψ(v ) − ψ(V )

v 2 

}
v ′ = E ′ V (v )

dv 
dx 

and hence η[ vv ′ ] = E V (v ) + E where E is a constant of integration. For v � = V 0, γ we have 

η(v ) = 

E V (v ) + E 

−r(v ) + γ
. (29)

For phases starting or finishing at ζ = 0 ⇔ η = ρ − 1 it is convenient to find a formula for ζ = ζ (v ). It follows from (13) and

(28) that 

d 

dx 
{ ζ [ vv ′ ] } = 

{
ζ ′ − ψ(v )

v 3 
ζ

}
vv ′ = ρ

{
ψ(v ) − ψ(W )

v 2 

}
v ′ = ρE ′ W 

(v )
dv 
dx 
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Fig. 4. Optimal speed profile on level track for ρ > 0 with braking speed U ρ , V ∈ ( U 0, V , V ). The position x is measured in metres (m) and the speed v is measured 

in metres per second (m s −1 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and hence ζ [ vv ′ ] = ρE W 

(v ) + F where F is a constant of integration. For v � = V 0, γ it follows that 

ζ (v ) = 

ρE W 

(v ) + F 

−r(v ) + γ
. (30) 

3. Maximum Brake with ζ < 0 and control u(v ) = U −(v ). A similar argument shows there is some constant F with 

ζ (v ) = 

ρE W 

(v ) + F 

U −(v ) − r(v ) + γ
. (31) 

For an optimal phase on a segment ( p, q ) with constant gradient acceleration g(x) = γ it is important to reiterate that al-

though the speed v = v (x) depends on x , the adjoint variable η = η(v ) = ηγ (v ) depends only on v . This means that for each

optimal driving speed and each constant gradient acceleration we can construct universal phase plots ( v, η( v )) for the optimal

trajectories. 4 We will refer to individual trajectories as evolutionary lines . The phase plots are independent of x but we can calcu-

late the distance travelled and time taken between any two points ( v 1 , η1 ) and ( v 2 , η2 ) on the same evolutionary line using the

formulae in Section 3.4 . 

We will use phase plots of the evolutionary lines to explain various feasible control transitions. In practice—where rail op-

erators tabulate track gradient accelerations on ( x p , x q ) as piecewise-constant functions—an optimal phase plot will consist of

a finite sequence of linked evolutionary line segments A j−1 A j from (v j−1 , η j−1 ) to ( v j , ηj ) with constant gradient accelerations

g(x) = γ j on each segment (x j−1 , x j ) for j = p + 1 , . . . , q . In general, with non-constant gradient, the evolutionary lines for ( x,

v ( x ), η( x )) also depend on the position x but at any particular point x = p we can study local behaviour by looking at evolutionary

lines for the constant gradient acceleration γ = g(p). It may also be convenient, on some occasions, to simply plot the projected

evolutionary lines ( v ( x ), η( x )) in the phase plane. 

3.6. The strategy of optimal type on level track 

We have argued that every strategy of optimal type is determined by the evolution of the state and adjoint variables along an

optimal evolutionary line ( x, v ( x ), η( x )). On track with piecewise-constant gradient we showed that local evolution is independent

of position. That is, for constant gradient g(x) = γ , we have η = η(v ) = ηγ (v ) and the evolutionary lines take the local form ( v,

η( v )). We will use this information to show that on level track the optimal strategy is a Maximum Power–HoldP–Coast–Maximum

Brake strategy. A typical optimal speed profile for level track is shown in Fig. 4 . 

The optimal strategy on level track consists of a linked sequence of evolutionary lines on the phase plot for level track. A

typical phase plot is shown in Fig. 5 . To construct this plot we used U + (v ) = P/ max { v 0 , v } , U −(v ) = Q/ max { v 0 , v } with P = 1 ,

Q = −1 and v 0 = 5 , r(v ) = r 0 + r 2 v 2 with r 0 = 1 . 0 × 10 −2 and r 2 = 1 . 5 × 10 −5 and ρ = 0 . 5 . The nominated optimal driving speed

is V = 25 and the corresponding speed at which braking begins is U ρ , V ≈ 14.90. The limiting speed under Maximum Power is

obtained by solving the equation P/ max { v 0 , v } − r(v ) + γ = 0 with γ = 0 to give v = V + , γ = V + , 0 ≈ 35 . 11 . 

To construct an optimal strategy on level track consider the possible evolutionary lines for ( v, η). Since v = 0 at x = 0 the

initial phase must be a phase of Maximum Power with η > 0 and control u = U + (v ). Hence the initial phase on the evolutionary

line is defined by the formula 

η(v ) = 

E V (v ) + E 

U + (v ) − r(v )
4 Since ζ = η + 1 − ρ it follows that equivalent phase plots for ( v, ζ ( v )) are simply a translation of the phase plots for ( v, η( v )). In general we will restrict our 

attention to plots for ( v, η( v )). 
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Fig. 5. Phase plots for evolutionary lines on level track. The lines in the region η ≥ 0 are Maximum Power curves, the lines in the region −0 . 5 ≤ η ≤ 0 are Coast 

curves and the lines in the region η < −0 . 5 are Maximum Brake curves. The modified adjoint variable η is dimensionless and the speed v is measured in metres 
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where V > 0 is the nominated optimal driving speed and E is an unknown constant. Since U + (v ) − r(v ) > 0 when v is small it

follows from (2) that v = v (x) increases as x increases. If Maximum Power is maintained ad infinitum then v (x) ↑ V + , 0 as x ↑∞ .

However, in a strategy of optimal type this is not feasible and so this segment of the evolutionary line must terminate at some

point B with x = b < X . The necessary conditions for optimality show that (v (b), η(b)) = (V, 0 ) at the termination point B and so

E = −E V (V ) = −ϕ 

′ (V ). Therefore 

η(v ) = 

E V (v ) − E V (V )

U + (v ) − r(v )

which is zero at v = V but is otherwise positive for 0 < v < V + , 0 . Thus η = η(v ) has a minimum turning point with (v , η) = (V, 0 )
at B . The Maximum Power phase is represented by the evolutionary line AB in Fig. 5 but we note that the initial point A with

coordinates (v , η) = (0 , η(0 )) on the phase plot may be the point (0, ∞ ). The distance travelled along AB is given by 

�x AB = 

∫ V 

0 

v dv 
U + (v ) − r(v )

⇐⇒ b = 

∫ V 

0 

v dv 
U + (v ) − r(v )

. 

We may now switch to HoldP with control u = r(V ). If so then the entire singular HoldP phase is represented by the point B in

Fig. 5 . The phase may be maintained as long as we please 5 but at some stage we must switch to Coast with ρ − 1 < η < 0 ⇔
0 < ζ < 1 − ρ and control u(v ) = 0 . During Coast the speed decreases and the modified adjoint variable η = η(v ) is given by the

formula 

η(v ) = 

E V (v ) − E V (V )

−r(v )

which is zero if v = V and is otherwise negative. Hence η = η(v ) has a maximum turning point (v , η) = (V, 0 ) at B . The Coast

phase is represented by the evolutionary line BC in Fig. 5 and will terminate when η = ρ − 1 . Therefore the speed at this point is

given by solving 

ρ − 1 = 

E V (v ) − E V (V )

−r(v )
⇐⇒ ρ ϕ(v ) = L V (v ) (32)

where L V (v ) = ϕ 

′ (V )(v − V ) + ϕ(V ). The graph y = L V (v ) is the straight line tangent to the strictly convex curve y = ϕ(v ) at the

point v = V . The tangent line intersects the v -axis at 

U 0 ,V = V − ϕ(V )

ϕ 

′ (V )
= 

ψ(V )

ϕ 

′ (V )
> 0 . (33)
5 It is possible to have a HoldP phase of zero length which essentially means a direct switch from Maximum Power to Coast. We shall see shortly that the 

length of the HoldP phase must be adjusted so that the total distance travelled is correct. The length of the regular phases cannot be adjusted. 
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Fig. 6. The curves y = ϕ(v ), y = L V (v ) and y = ρϕ(v ) showing the solution to the brake speed equation on level track with 0 < ρ < 1 and U 0, V < U ρ , V < V . 

The speed v is measured in metres per second (m s −1 ) and the functions y = ϕ(v ), y = L V (v ) and y = ρϕ(v ) are measured in metres squared per second cubed 

(m 

2 s −3 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The graph y = ρ ϕ(v ) > 0 is strictly convex and lies below the graph y = ϕ(v ). Hence there is a unique solution v = U ρ,V with

U 0, V ≤ U ρ , V < V to (32) . The speed U = U ρ,V is the speed at which braking begins 6 and it is uniquely defined by the optimal

driving speed V and the efficiency ρ . If ρ = 0 then U = U 0 ,V . If ρ = 1 then U = V . A geometric interpretation of the solution to

(32) is shown in Fig. 6 . 

The distance travelled during the Coast phase is given by 

�x BC = 

∫ V 

U 

v dv 
r(v )

⇐⇒ c − b = 

∫ V 

U 

v dv 
r(v )

. 

Although the algebra is somewhat tedious we can show that for the Coast phase we have 

η(v ) = 

E V (v ) − E V (V )

−r(v )
⇐⇒ ζ (v ) = ρ

E W 

(v ) − E W 

(U ρ,V )

−r(v )
. 

In purely algebraic terms the transition from Coast to Maximum Brake is managed more easily using ζ ( v ) rather than η( v )

because the switch occurs at η = ρ − 1 ⇔ ζ = 0 . In any event we switch to a Maximum Brake phase with u = U −(v ) at point C in

Fig. 5 where v = U ρ,V and η = ρ − 1 ⇔ ζ = 0 . The speed now decreases to v = 0 and the journey is complete. This final phase is

represented by the evolutionary line CD in Fig. 5 . During the Maximum Brake phase we have η(v ) = ζ (v ) + ρ − 1 where 

ζ (v ) = ρ
E W 

(v ) − E W 

(U ρ,V )

U −(v ) − r(v )

in the region 0 < v < U ρ , V . The distance travelled during the Maximum Brake phase is given by 

�x CD = 

∫ U ρ,V 

0 

−v dv 
U −(v ) − r(v )

⇐⇒ d − c = 

∫ U ρ,V 

0 

−v dv 
U −(v ) − r(v )

. 

The total distance travelled is X and so the distance travelled during the HoldP phase must be �x B = X − (�x AB + �x BC + �x CD ).

The time taken for the journey is given by 

t(X ) = 

∫ V 

0 

dv 
U + (v ) − r(v )

+ 

�x B 
V 

+ 

∫ V 

U ρ,V 

−dv 
−r(v )

+ 

∫ U ρ,V 

0 

−dv 
U −(v ) − r(v )

. 

If the time taken is too long—the time constraint t ( X ) ≤ T is not satisfied—we must increase the nominal value of V . If the time

taken is too short, we can decrease the cost by decreasing the nominal value of V and increasing the time taken. The correct

optimal journey can be found by iterating on the choice of V . See Cheng and Howlett (1992) and Howlett and Cheng (1993) for

more details. 

If X < �x AB + �x BC + �x CD then we choose an evolutionary line underneath the curve ABCD which does not reach the desired

optimal driving speed and switches directly from Maximum Power to Coast at some nominal switching speed V 

′ < V . Calculation

of the distance travelled and time taken is similar but the HoldP phase is omitted. For the nominated value of V an iteration on

V 

′ will allow us to find the correct distance. We can then calculate the time taken. If this is not correct we select another value

of V and repeat the procedure. Since the speed at which braking begins U ρ , V depends on V it follows that the distance and time
6 It is not possible to switch to HoldR at v = U because U < V < W . 
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Fig. 7. Phase plots for evolutionary lines on track with constant gradient acceleration γ = −0 . 03 that is steep uphill at speed V > V + , γ . The lines in the region 

η ≥ 0 are Maximum Power curves, the lines in the region −0 . 5 ≤ η ≤ 0 are Coast curves and the lines in the region η < −0 . 5 are Maximum Brake curves. The 

modified adjoint variable η is dimensionless and the speed v is measured in metres per second (m s −1 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

calculations both depend on V and V 

′ . During the Coast phase we have v ≤ V 

′ and η(v ) = ( − 1 )[ E V (v ) − E V (V 
′ )] /r(v ). Therefore

the speed v = U < V ′ at which braking begins is obtained by solving 

η(U) = ρ − 1 ⇐⇒ U = V 

′ 
[

1 − ϕ (V 

′ ) − ρ ϕ (U)

ψ(V ) + ϕ(V 

′ )

]
. 

Since U < V 

′ it follows that ρϕ( U ) < ϕ( V 

′ ) and hence that U ↑ V 

′ as V ↑∞ . Thus the minimum-time journey is obtained by taking

the limit as V ↑∞ . When T = T min the feasible set contains only one strategy and the Pontryagin principle does not apply directly.

This allows the adjoint variable η( v ) to have a jump discontinuity at v = V ′ . 

3.7. Phase plots for strategies of optimal type on steep track with constant gradient 

For a track with constant gradient acceleration g(x) = γ and a given optimal driving speed we can use the algebraic formulae

for the modified adjoint variables η = η(v ) to draw a phase plot in the ( v, η) plane that shows all possible evolutionary lines for

regular control phases in a strategy of optimal type. Figs. 7 and 8 respectively show typical phase plots for evolutionary lines

on track with γ = −0 . 03 that is steep uphill at speed V < V + , γ and on track with γ = 0 . 03 that is steep downhill at speed V >

V 0, γ . We have used the same train model and the same designated optimal driving speed V = 25 for all three phase plots of the

evolutionary lines in Figs. 5, 7 and 8 . 

For the phase plot depicted in Fig. 7 we solve the equation P/ max { v 0 , v } − r(v ) + γ = 0 with γ = −0 . 03 to find the limiting

speed v = V + , γ = V + , −0 . 03 ≈ 21 . 35 under Maximum Power. Since V + , γ < V we know that this track is steep uphill at speed V = 25

and indeed that any speed v ≥ V + ,γ cannot be maintained under Maximum Power. Fig. 7 shows phase curves under Maximum

Power in the form 

η(v ) = 

E V (v ) + E 

P/ max { v , v 0 } − r(v ) + γ

where E � = −E V (V + , γ ) with various initial points ( v (0), η(0)) in the region η ≥ 0. For E > −E V (V + , γ ) the curves all have limit point

(V + , γ , ∞ ) ≈ (21 . 35 , ∞ ) which cannot be reached in finite time. The point L in Fig. 7 with coordinates given by v = V + , γ and η =
E ′ 

V 
(V + , γ )/ [ U 

′ + (V + , γ ) − r ′ (V + , γ )] is a limiting point that lies on the evolutionary line with η(v ) = [ E V (v ) − E V (V + , γ )] / [ U + (v ) −
r(v ) + γ ] . This point also cannot be reached in finite time. For E < −E V (V + , γ ) the curves reach the line η = 0 with v < V + , γ in

finite time and transform into Coast curves. Fig. 7 also shows Coast curves in the region −0 . 5 = ρ − 1 ≤ η ≤ 0 in the form 

η(v ) = 

E V (v ) + E 

−r(v ) + γ

and Maximum Brake curves in the region η ≤ ρ − 1 = −0 . 5 . Note that if E > −E V (V ) and v (0) > V then the Coast curves reach

the line η = 0 with v > V and transform into Power curves. 

For the phase plot depicted in Fig. 8 there are two important limiting speeds. We solve the equation P/ max { v 0 , v } − r(v ) + γ =
0 with γ = 0 . 03 to find the limiting speed v = V + , γ = V + , 0 . 03 ≈ 51 . 31 under Maximum Power and solve the equation −r(v ) + γ =
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Fig. 8. Phase plots for evolutionary lines on track with constant gradient acceleration γ = 0 . 03 that is steep downhill at speed V < V 0, γ . The lines in the region 

η ≥ 0 are Maximum Power curves, the lines in the region −0 . 5 ≤ η ≤ 0 are Coast curves and the lines in the region η < −0 . 5 are Maximum Brake curves. The 

modified adjoint variable η is dimensionless and the speed v is measured in metres per second (m s −1 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 with γ = 0 . 03 to find the limiting speed v = V 0 , γ = V 0 , 0 . 03 ≈ 36 . 51 during Coast. Since V < V 0, γ the track is steep downhill

at speed V and the speed will increase during Coast if v < V 0, γ . Fig. 8 shows Power curves with various initial points ( v (0),

η(0)) in the region η ≥ 0. If v (0 ) = 0 and E ≥ −E V (V ) then the evolutionary lines remain as Power curves forever. If v (0 ) = 0

and −E V (V ) > E ≥ −ρE W 

(W ) + γ (ρ − 1 ) = −0 . 5 E W 

(W ) − 0 . 5 γ then the evolutionary lines reach the line η = 0 with v < V and

transform into Coast curves in the region −0 . 5 < η < 0 before returning to the line η = 0 with V < v < V 0, γ and transforming

back into Maximum Power curves. Fig. 8 also shows Maximum Brake curves in the region η < −0 . 5 . 

There are many things we can learn about optimal driving strategies from the phase plots of the evolutionary lines in Figs. 5,

7 and 8 but there are also complications. Firstly there is a different phase plot for every different optimal driving speed and every

different gradient—although it must be said that the plots change continuously with continuous changes in the optimal driving

speed and gradient. Secondly it is true that for most tracks, the gradient continually changes as we move along the track. On

track with piecewise-constant gradient we must move the point (v , η) = (v (x), η(x)) for x ∈ (x j−1 , x j ) along a segment of the

evolutionary line using a plot for the current gradient g(x) = γ j until we reach the point x = x j where the gradient changes. At

this stage it is necessary to move the point (v , η) = (v (x), η(x)) for x ∈ (x j , x j+1 ) along a new segment of the evolutionary line

using a plot for the new gradient g(x) = γ j+1 . 

3.8. Evolution of the adjoint variables on track with piecewise-constant gradient 

Now suppose x p < x p+1 < · · · < x q with g(x) = γ j if x ∈ (x j−1 , x j ) for each j = p + 1 , . . . , q . We say that the gradient is

piecewise-constant 7 on ( x p , x q ). For a regular control phase with either η( v ) > 0 and u(v ) = U + (v ) or with ρ − 1 < η(v ) < 0

and u(v ) = 0 we have 

η(v ) = 

E V (v ) + E j 

u(v ) − r(v ) + γ j 

(34) 

where v = v (x) for each x ∈ (x j−1 , x j ). If we write v j = v (x j ), η j = η(v j ) then we can use the continuity of η = η(v ) at x = x j 
to deduce from the left-hand limit that [ u(v j ) − r(v j ) + γ j ] η j = E V (v j ) + E j and from the right-hand limit that [ u(v j ) − r(v j ) +
γ j+1 ] η j = E V (v j ) + E j+1 . Thus it follows that 

E j+1 − E j = (γ j+1 − γ j )η j 

for each j = p + 1 , . . . , q − 1 . If v p = v q = V and η(V ) = 0 then E p = E q = −E V (V ). For a regular control phase on ( x p , x q ) with

either 0 < ζ (v ) < 1 − ρ and u(v ) = 0 or with ζ ( v ) < 0 and u(v ) = U −(v ) we have 

ζ (v ) = 

ρE W 

(v ) + F j 

u(v ) − r(v ) + γ j 

(35) 
7 Although it could be argued that in practice track gradients must be continuous it is nevertheless true that rail track data is tabulated in this form. 
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where v = v (x) for each x ∈ (x j−1 , x j ). If we write ζ = ζ (v j ) and use the continuity of ζ = ζ (v ) at x = x j then a similar argument

shows that 

F j+1 − F j = (γ j+1 − γ j )ζ j 

for each j = p + 1 , . . . , q − 1 . If v p = v q = W and ζ (W ) = 0 then F p = F q = −ρE W 

(W ). 

3.9. Ending an optimal phase of Maximum Power 

Let V be the optimal driving speed. For each optimal phase of Maximum Power we have η > 0 and u(v ) = U + (v ). Both v = v (x)
and η = η(x) are everywhere continuous. If a phase of Maximum Power terminates at x = q then η(q) = 0 . We make the following

specific observations. 

1. Since u ′ (v ) = U 

′ + (v ) < 0 and η > 0 for x < q it follows from (12) that η ′ > ψ( v ) η/ v 3 > 0 when v = v (x) > V . Hence Maximum

Power can never terminate at a point x = q with v ( q ) > V . 

2. Maximum Power can terminate at x = q with η(q) = 0 and v (q) = V by changing to HoldP at the optimal driving speed v = V .

In this case (12) shows that η ′ (q) = 0 at the termination point. 

3. Maximum Power can terminate at x = q with η(q) = 0 and v ( q ) ≤ V by changing to a Coast phase with η( x ) < 0 and v ( x ) <

V when x > q . If v ( q ) < V at the transition point with η(q) = 0 then (12) shows that η ′ (q) = [ ψ(v ) − ψ(V )] / v 3 < 0 . Since

v = v (x) is continuous we cannot change to HoldP with v (x) = V for x > q if v ( q ) < V . Hence we must change to Coast. 

When u(v ) = U + (v ) we write I p, u (x) = I p, + (x) for the integrating factor defined in (14) . With these substitutions (15) gives

an analytic formula for η = η(x) during a phase of Maximum Power. Although it is convenient to formulate the solution as if

we were solving (12) in the forward direction it is better to compute a numerical solution in the backward direction. To explain

this observation we note that the strict convexity of ϕ( v ) implies ϕ 

′ (v ) > ϕ(v )/ v = r(v ) is increasing and so r ′ ( v ) > 0. Note also

that u ′ (v ) = U 

′ + (v ) < 0 . Therefore the exponent in (14) is negative and I p, + (x) becomes very small when x � p . Thus η( x ) is not

accurately defined in numerical terms by (15) when x � p . 

3.10. Ending an optimal phase of Coast 

Let V and W denote the optimal driving and optimal regenerative braking speeds respectively. For each optimal phase of Coast

we have ρ − 1 < η < 0 ⇔ 0 < ζ < 1 − ρ and u(v ) = 0 . If the phase terminates at x = q then either η(q) = 0 ⇔ ζ (q) = 1 − ρ or

else η(q) = ρ − 1 ⇔ ζ (q) = 0 . We make the following specific observations about ending Coast with η = 0 . 

1. Since u ′ (v ) = 0 and ρ − 1 < η < 0 for x < q it follows from (12) that η ′ < ψ( v ) η/ v 3 < 0 for v < V . Hence η decreases and so

Coast cannot terminate at x = q with η(q) = 0 when v ( q ) < V . 

2. If v > V when x < q then Coast can terminate at x = q with η(q) = 0 and v (q) = V by changing to HoldP at the optimal driving

speed v = V for x > q . In this case (12) shows that η ′ (q) = 0 at the termination point. 

3. Coast can terminate at x = q with η(q) = 0 and v ( q ) ≥ V by changing to a phase of Maximum Power with η > 0 and v > V when

x > q . If v ( q ) > V at the termination point with η(q) = 0 then (12) shows that η ′ (q) = [ ψ(v ) − ψ(V )] / v 3 > 0 . Since v = v (x)
is continuous we cannot change to HoldP with v = V for x > q if v ( q ) > V . Hence we must change to Maximum Power. 

We make the following specific observations about ending Coast with ζ = 0 . 

1. Since u ′ (v ) = 0 and 0 < ζ < 1 − ρ for x < q we deduce from (13) that ζ ′ > ψ( v ) ζ / v 3 > 0 when v > W and so ζ increases.

Hence this phase cannot terminate at x = q with ζ (q) = 0 when v ( q ) > W . 

2. The phase can terminate at x = q with ζ (q) = 0 and v (q) = W by changing to HoldR at the optimal regenerative braking speed

v = W for x > q . In this case (13) shows that ζ ′ (q) = 0 at the termination point. 

3. Coast can terminate at x = q with ζ (q) = 0 and v ( q ) ≤ W by changing to Maximum Brake. If v ( q ) < W then (13) shows that

ζ ′ ( q ) < 0 at the termination point. Since v = v (x) is continuous we cannot change to HoldR with v (x) = W for x > q if v ( q ) <

W . Hence we must change to Maximum Brake. 

When u(v ) = 0 we write I p, u (x) = I p, 0 (x) for the integrating factor defined in (14) . With these substitutions (15) and (16) give

analytic formulae for η = η(x) and ζ = ζ (x) respectively during a phase of Coast. The exponent in (14) is negative and so, once

again, it is better to compute numerical solutions in the backward direction. 

3.11. Ending an optimal phase of Maximum Brake 

Let W be the optimal regenerative braking speed. For each optimal phase of Maximum Brake we have ζ < 0 and u(v ) = U −(v ).

We assume that the speed always decreases when u(v ) = U −(v ). We make the following observations. 

1. Suppose there is some point x = p where v (p) = W − ε for some ε > 0 and ζ ( p ) < 0. As long as Maximum Brake continues

we must have v < W − ε. Let us choose δ so that 0 < δ < | ζ ( p )| and so that we also have 

δ sup 

v ∈ [ ε,W −ε] 

| ψ(v ) − v 2 U 

′ 
−(v )| < ρ[ ψ(W ) − ψ(W − ε)] . 
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Fig. 9. Optimal speed profile on a steep uphill segment (left) and corresponding phase plot (right). The position x is measured in metres (m), the speed v is 

measured in metres per second (m s −1 ) and the modified adjoint variable η is dimensionless. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now (13) shows that ζ ′ ≤ 0 whenever | ζ | ≤ δ ⇔ −δ ≤ ζ < 0 . It follows that ζ ≤ −δ for all x > p . Thus Maximum Brake must

continue until v = ε. Since ε > 0 can be taken as small as we please it follows that a phase of Maximum Brake with v < W will

be the final phase and will terminate at v = 0 . 

2. A phase of Maximum Brake may terminate with v ≥ W by switching to Coast or HoldR. If v > W at the termination point the

switch must be to Coast. 

3.12. Optimal switching points for phases of speedhold 

We showed earlier that speedhold with positive control—where possible—is the most cost-efficient strategy whether or not

the track is level. We have also seen that only two modes of singular speedhold control are permissible in a strategy of optimal

type—a HoldP mode at the optimal driving speed v = V using positive control u = r(V ) − g(x) > 0 and a HoldR mode at the

optimal regenerative braking speed v = W = ψ 

−1 [ ψ(V )/ρ] > V using negative control u = r(W ) − g(x) < 0 . 

The HoldP mode is only possible if the track is not steep 

8 at speed v = V . For segments of track that are steep at speed v = V 

it is necessary to interrupt a HoldP phase by changing to a regular phase of Maximum Power with u = U + (v ) > 0 to traverse a

steep uphill segment or to a regular phase of Coast with u = 0 to negotiate a steep downhill segment. On extended segments that

are steep downhill at speed v = V it is possible that the speed will rise during a regular Coast phase to the optimal regenerative

braking speed v = W . If so it will be necessary to seek a strategy that transfers from Coast to HoldR at speed v = W . 

The HoldR mode can only be used on track that is steep downhill 9 at speed v = W . For segments of track that are not steep at

speed v = W it is necessary to interrupt a HoldR phase by changing to a regular Coast phase with u = 0 . On extended segments

that are not steep at speed v = W it is possible that the speed will decrease to the optimal driving speed v = V . If so it will be

necessary to seek a strategy which transfers from Coast to HoldP at speed v = V . 

Our main task is to find optimal switching points in two important situations—firstly when singular control phases are in-

terrupted by regular phases of Maximum Power or Coast and secondly for transfers between singular control phases using a

regular Coast phase. Our discussion in Part 1 of this paper will be largely intuitive and will focus on finding suitable intervals in

which to search for the optimal switching points. The discussion is by no means complete—there are other more sophisticated

methods that can be used to determine optimal switching points. We refer specifically to an important integral condition for

optimality and to a closely -related intrinsic local energy minimization principle. Both the integral condition and the local energy

minimization principle will be discussed in Part 2 of this paper ( Albrecht et al., 2014 ). 

3.12.1. Interruptions to HoldP for a steep uphill segment 

Consider an extended phase of HoldP at the optimal driving speed v = V on non-steep track with u = r(V ) − g(x) > 0 . Assume

we encounter a steep uphill segment of track ( b, c ). The track is steep uphill at speed v = V on ( b, c ) if the net power is negative

for all x ∈ ( b, c ) with u = U + (V ). In algebraic terms this means U + (V ) − r(V ) + g(x) < 0 . In physical terms it means we have

insufficient power to maintain speeds v ≥ V at any point x ∈ ( b, c ) using positive control. Hence HoldP is not possible on ( b, c ). 

To traverse ( b, c ) we temporarily switch control from HoldP to Maximum Power with u = U + (v ) on some interval ( a, d ) ⊃[ b, c ].

During this phase the speed will rise above the optimal driving speed before entering the steep segment, fall below the optimal

driving speed while traversing the steep segment, and then rise again after leaving the steep segment to return to the optimal

driving speed. Thus we will have v (a) = V, v ( b ) > V, v ( c ) < V and v (d) = V . Fig. 9 shows a stylised optimal speed profile and

projected phase plot for the corresponding closed evolutionary line ( v ( x ), η( x )) when HoldP is interrupted by Maximum Power

to traverse a steep uphill segment. 

A significant problem is to find the optimal switching points. There are many feasible intervals ( a, d ) ⊃[ b, c ] which satisfy

the speed requirements. We can switch to Maximum Power at any point a < b and as long as v ( c ) < V we simply switch back

to HoldP at the point d > c where v (d) = V . However such a strategy is not necessarily optimal. The necessary conditions for

optimal switching are defined by the evolution of both v = v (x) and η = η(x). We must choose ( a, d ) so that v (a) = v (d) = V 
8 The track is neither steep downhill nor steep uphill at speed v = V if we have −r(V ) + g(x) ≤ 0 ≤ U + (V ) − r(V ) + g(x). 
9 The track is steep downhill at speed v = W if U −(W ) − r(W ) + g(x) < 0 < −r(W ) + g(x). Note that we have assumed that the left-hand inequality is true 

everywhere. 
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Fig. 10. Speed profiles v = v (x) (top) and corresponding adjoint profiles η = η(x) (bottom) for proposed phases of Maximum Power to traverse a steep uphill 

segment showing various starting points—a little too early (top curves), optimal (intermediate curves) and a little too late (bottom curves). The position x is 

measured in metres (m), the speed v is measured in metres per second (m s −1 ) and the modified adjoint variable η is dimensionless. 
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and η(a) = η(d) = 0 with η( x ) > 0 for all x ∈ ( a, d ). We can see from (12) that we must also have η ′ (a) = η ′ (d) = 0 . Thus the

necessary conditions for optimal switching at x = a and x = d are also necessary for a minimum turning point of η = η(x). 

Fig. 10 shows three feasible speed profiles and the corresponding adjoint profiles for a phase of Maximum Power to traverse

a steep uphill segment. Maximum Power starts a little too early on the top profile (v + (x), η+ (x)) and a little too late on the

bottom profile (v −(x), η−(x)). The intermediate profile ( v ( x ), η( x )) is optimal because it terminates with (v (d ), η(d )) = (V, 0 )
as required. For the top profile η+ (d + ) > 0 when the speed returns to v + (d + ) = V and for the bottom profile η−(d −) < 0 when

the speed returns to v −(d −) = V . Note how the speed profiles converge as x increases while the adjoint profiles diverge. This is a

graphic demonstration that the state equations are stable in the forward direction whereas the adjoint equations are stable in the

backward direction. We will extend our considerations by looking at earlier and later starting points. Our aim here is to extend

the search region for the desired optimal strategy by finding reasonable upper and lower bounds on the optimal switching points.

Consider a Maximum Power phase with speed profile v − = v −(x) that starts at the point a − = b and finishes at some point

d − > c with v = v −(x) < V for all x ∈ (a −, d −) and v −(a −) = v −(d −) = V . We will show that this starting point is too late. Since

η−(a −) = 0 we can use (15) to deduce that 

I a −, + (d −)η−(d −) = 

∫ d −

a −

ψ[ v −(ξ)] − ψ(V )

v −(ξ)3 
I a −, + (ξ)dξ (36)

where we have written I a −, + (ξ) to denote the integrating factor I p , u ( ξ ) from (14) in the case where p = a − and u(ξ) = U + (v −(ξ)).

Since v −(ξ) < V for all ξ ∈ (a −, d −) it follows from (36) that η−(d −) < 0 . Hence this strategy is not optimal. 

Now suppose there is a Maximum Power phase with speed profile v = v + (x) that starts at some point a + < b and finishes at

the point d + = c with v = v + (x) > V for all x ∈ (a + , d + ) and v + (a + ) = v + (d + ) = V . We will show that this starting point is too

early. 10 Since η+ (a + ) = 0 we can use (15) to deduce that 

I a + , + (d + )η+ (d + ) = 

∫ d + 

a + 

ψ[ v + (ξ)] − ψ(V )

v + (ξ)3 
I a + , + (ξ)dξ (37)

where we have used the notation I a + , + (ξ) to denote the integrating factor I p , u ( ξ ) from (14) in the case where p = a + and u(ξ) =
 + (v + (ξ)). Since v + (ξ) > V for all ξ ∈ (a + , d + ) it follows from (37) that η+ (d + ) > 0 . Hence this strategy is not optimal. 

Because the final value of η depends continuously on the starting position and because η−(d −) < 0 < η+ (d + ) it follows that

we can find a Maximum Power phase with speed profile v = v (x) on an interval ( a, d ) ⊃[ b, c ] with a ∈ (a + , a −) and d ∈ (d + , d −)
such that (v (a), η(a)) = (v (d ), η(d )) = (V, 0 ). This is the optimal phase. Stylised upper and lower bounding speeds are shown in

Fig. 11 . 
10 Although this strategy is an apparently suitable choice for an upper bound on the optimal speed profile it may not be possible to find a strategy with v + (c) = V 

if the hill is too long or too steep. An alternative upper bound will be introduced in Part 2 of this paper ( Albrecht et al., 2014 ). 
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Fig. 11. Stylised bounding speed profiles v = v −(x) on the interval [ a −, d −] where a − = b and v = v + (x) on the interval [ a + , d + ] where d + = c for a Maximum 

Power phase over a steep uphill segment ( b, c ). The stylised optimal speed profile v = v (x) is also shown on the interval [ a, d ]. The position x is measured in 

metres (m) and the speed v is measured in metres per second (m s −1 ). 

0.000-0.002-0.004-0.006-0.008

Fig. 12. Optimal speed profile on a steep downhill segment (left) and corresponding phase plot (right). The position x is measured in metres (m), the speed v is 

measured in metres per second (m s −1 ) and the modified adjoint variable η is dimensionless. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.12.2. Interruptions to HoldP for a steep downhill segment 

Consider an extended phase of HoldP on non-steep track. Assume we encounter a steep downhill segment of track ( b, c ). The

track is steep downhill at speed v = V on ( b, c ) if the net power is positive for all x ∈ ( b, c ) with u = 0 . In algebraic terms this means

that −r(V ) + g(x) > 0 . In physical terms it means that it is not possible to maintain any speed v ≤ V at point x with non-negative

control. Hence HoldP is not possible on ( b, c ). 

To traverse ( b, c ) we temporarily switch control from HoldP to Coast with u = 0 on some interval ( a, d ) ⊃[ b, c ]. During this

phase the speed will fall below the optimal driving speed before entering the steep segment ( b, c ), rise above the optimal driving

speed while traversing ( b, c ), and fall again after leaving ( b, c ) to return to the optimal driving speed. Thus v (a) = V, v ( b ) < V,

v ( c ) > V and v (d) = V . There are many feasible intervals ( a, d ) ⊃[ b, c ] which will satisfy the speed requirements. We can switch to

Coast at any point a < b and as long as v ( c ) > V we then switch back to HoldP at the point d > c where v (d) = V . However such

a strategy is not necessarily optimal. Fig. 12 shows a stylised optimal speed profile and corresponding phase plot ( v ( x ), η( x )) for

the closed evolutionary line when HoldP is interrupted by Coast to traverse a steep downhill segment. 

We need to find the optimal switching points. The necessary conditions for optimal switching are defined by η(a) = η(d) = 0

with ρ − 1 < η(x) < 0 for all x ∈ ( a, d ). We can see from (12) that η ′ (a) = η ′ (d) = 0 . These conditions are also necessary for a

minimum of η = η(x) at x = a and x = d. We will assume that η(x) > ρ − 1 ⇔ ζ > 0 for all x ∈ ( b, c ) during the inserted Coast

phase. If there is some x ∈ ( b, c ) where η(x) = ρ − 1 ⇔ ζ = 0 then we will need to consider an alternative strategy. 

On track with piecewise-constant gradient the evolutionary lines can be used to find optimal switching points, albeit from a

less general point of view. Previously, for a steep uphill segment, we proposed a nominal starting point and followed the speed

profile v = v (x) for the inserted Maximum Power phase until the speed returned to the optimal hold speed v = V . Then we found

a corresponding profile for the modified adjoint variable η = η(x) and checked to see if it started and finished at the critical

value η = 0 . If not we chose another starting point and repeated the above procedure until we found a starting point such that

v = v (x) and η = η(x) did start and finish at the desired values. A similar procedure could be used here to find the optimal Coast

phase. However this time, for a steep downhill segment on track with piecewise-constant gradient, we will simply follow the

evolutionary line ( v ( x ), η( v ( x ))) for a proposed Coast phase until either we return to the critical point (v , η) = (V, 0 ) as required

for optimality or until we can see that this will not happen. 
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Fig. 13. Phase plots for three possible evolutionary lines where HoldP is interrupted by Coast to traverse a steep downhill segment. The closed curve ABCD is 

optimal. The open curves AB −C −D − and AB + C + D + start Coast too early and too late respectively. Note that the starting point A on the phase plot represents three 

different physical points—one with coordinates (x, v , η) = (a −, V, 0 ), one with coordinates (x, v , η) = (a, V, 0 ) and one with coordinates (x, v , η) = (a + , V, 0 )

where a − < a < a + . Note that the curves AB −C −D − and AB + C + D + are shown as dashed lines beyond their nominal termination points to show that they can never 

return to the desired termination point A . The modified adjoint variable η is dimensionless and the speed v is measured in metres per second (m s −1 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the sake of simplicity, suppose the track is level except for a steep downhill segment ( b, c ) with constant gradient

acceleration g(x) = γ > 0 . Fig. 13 shows three possible evolutionary lines for Coast phases starting with phase coordinates

(v , η(v )) = (V, 0 ) at the critical point A . Although these lines start with the same phase coordinates we emphasise that the

switching points on the track are different. The first evolutionary line is for a phase that starts too early at x = a − with

(v , η) = (V, 0 ); the switching point x = a − is too far from the steep segment. The second evolutionary line is for a phase that

starts too late at x = a + with (v , η) = (V, 0 ); the switching point x = a + is too close to the steep segment. The third is optimal

and starts at x = a ∈ (a −, a + ) with (v , η) = (V, 0 ); the only line that returns to the critical point A with coordinates (v , η) = (V, 0 ).

The phase coordinates are denoted by (v −, η−) for the line that starts too early at x = a −, by (v + , η+ ) for the line that starts too

late at x = a + and by ( v, η) for the optimal line 11 starting at x = a ∈ (a −, a + ). We remind readers that track positions—the x

coordinates that generate the phase points—are not shown on the phase plot. 

The optimal Coast phase with coordinates ( v, η) begins at some switching point x = a < b with (v (a), η(v (a))) = (V, 0 ). The

evolutionary coordinates ( v, η) follow a segment AB along an evolutionary line for Coast on level track starting at the critical point

A with x = a and finishing at a point B at the start of the steep downhill segment. On this segment both v = v (x) and η = η(v (x))
will decrease. The point B at x = b has coordinates (v , η) = (v (b), η(v (b))) calculated by solving 

b = a + 

∫ V 

v 

wdw 

r(w)

for v = v (b) < V and then using the formula 

η(v (b)) = 

E V (v (b)) − E V (V )

−r(v (b))
. 

From the point B the coordinates ( v, η) follow a segment BC along an evolutionary line for Coast on steep downhill track with

constant gradient g(x) = γ > 0 to a point C at the end of the steep downhill segment. On this segment v = v (x) increases while

η = η(v ) initially decreases but then increases. The point C at x = c has coordinates (v , η) = (v (c), η(c)) calculated by solving 

c = b + 

∫ v 

v (b)

wdw 

−r(w) + γ

for v = v (c) > V and then using the formula 

η(v (c)) = 

E V (v (c)) − E V (V ) + γ η(v (b))

−r(v (c)) + γ
. 

Note that the segment ( b, c ) is steep downhill at speed v = V . Since v ( b ) < V it follows that −r(w) + γ > 0 for all w ∈ [ v ( b ), v ( c )] ⊂(0,

V 0, γ ) where V 0, γ > V is the limiting speed on this line. Finally, from the point C , the coordinates ( v, η) follow a segment CD along
11 We use the notation v − = v −(x) and v + = v + (x) because it turns out that v −(x) ≤ v (x) ≤ v + (x) for all x where v = v (x) is the optimal profile. 



504 A. Albrecht et al. / Transportation Research Part B 94 (2016) 482–508 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the evolutionary line for Coast on level track that terminates at the point D with x = d and coordinates (v , η) = (v (d ), η(d )) =
(V, 0 ). This is a segment of the same evolutionary line on which the optimal Coast phase began. In the phase plane the critical

point D coincides with the critical point A . 

The Coast phase with coordinates denoted by (v −, η−) starts at some switching point x = a − < a with (v −(a −), η−(v −(a −))) =
(V, 0 ) and follows a segment AB − on the same evolutionary line as the optimal trajectory to a point B − with x = b at the start

of the steep segment. On this segment both v − = v −(x) and η− = η−(v −) decrease. Because we started Coast further away from

x = b we will have v −(x) < v (x) for each x ∈ [ a, b ] and in particular we will have v −(b) < v (b) at the point B −. The adjoint variable

will fall to a value η−(v −(b)) < η(v (b)). The coordinates (v −(b), η−(v −(b))) are calculated in the manner described above for the

corresponding point on the optimal line. From this point the coordinates (v −, η−) follow a segment B −C − along an evolutionary

line for Coast on the steep downhill track to a point C − with x = c at the end of the steep segment. On this segment v − = v −(x)
increases while η− = η−(v −) initially decreases but then increases. The point C − has coordinates (v −(c), η−(v −(c))) calculated

in a similar way to the way we calculated the coordinates for C . Once again, the limiting speed on this evolutionary line is V 0, γ >

V . Note that v −(c) < v (c) and η−(v −(c)) < η(v (c)) < 0 . From the point C −, the coordinates (v −, η−) follow a segment C −D − along

an evolutionary line for a Coast curve on level track that we nominally terminate at some point D − with x = d − and coordinates

(v , η) = (v −(d −), η−(d −)) = (V, η−(d −)) where η−(d −) < 0 . 

Remark 6. In Fig. 13 the Coast curve B −C − on the steep downhill track for x ∈ [ b, c ] lies everywhere to the left of the optimal

curve BC and finishes with (v , η) = (v −(c), η−(c)) where v −(c) < v (c) and η−(c) < 0 . Since η−(c) < 0 we transfer to a Coast curve

C −D − which lies everywhere to the left of the optimal curve CD . This curve eventually reaches some point D − with x = d − and

coordinates (v , η) = (v −(d −), η−(d −)) where v −(d −) = V and η−(d −) < 0 . Since η−(d −) < 0 the evolutionary line will continue

beyond x = d − on the same Coast curve with both v and η continuing to decrease. Hence we cannot return to the point ( V , 0) and

so we terminate the curve at D −. Since v −(c) < v (c) it follows that 

d − = c + 

∫ v −(c)

V 

dw 

r(w)
< c + 

∫ v (c)

V 

wdw 

r(w)
= d. 

In Fig. 13 the continuation of the Coast curve C −D − beyond the nominal termination point D − is shown as a dashed line. 

The Coast phase with coordinates denoted by (v + , η+ ) starts at a switching point x = a + ∈ (a, b) with (v + (a), η+ (v + (a))) =
(V, 0 ). The evolutionary coordinates (v + , η+ ) follow a segment AB + along the same evolutionary line as the optimal trajectory 

to a point B + with x = b at the start of the steep segment. On this segment both v + = v + (x) and η+ = η+ (v + ) will decrease.

Because we started Coast closer to x = b we will have v + (x) > v (x) for each x ∈ [ a + , b] and in particular v + (b) > v (b) at the

point B + . The adjoint variable will fall to a value η+ (v + (b)) > η(v (b)). The coordinates (v + (b), η+ (v + (b))) are calculated in the

manner described above for the corresponding points on the optimal curve. From this point the coordinates (v + , η+ ) follow

a segment B + C + along an evolutionary line for Coast on the steep downhill track to a point C + with x = c at the end of the

steep segment. On this segment v + = v + (x) increases while η+ = η+ (v + ) initially decreases but then increases. The point C + has

coordinates (v + (c), η+ (v + (c))) calculated in the same way as we calculated the corresponding coordinate points on the optimal

curve. As before the limiting speed on this evolutionary line is V 0, γ > V . Note that v + (c) > v (c) and η+ (v + (c)) > η(v (c)). If we

are sufficiently close to the optimal curve we will still have η+ (v + (c)) < 0 . Thus, (v + , η+ ) now follows a segment C + D + along an

evolutionary line on level track that we nominally terminate at some point D + with x = d + and coordinates (v (d + ), η+ (d + )) =
(v + (d + ), 0 ) where v + (d + ) > V . 

Remark 7. In Fig. 13 the Coast curve B + C + on the steep downhill track for x ∈ [ b, c ] lies everywhere to the right of the optimal

curve BC and finishes with (v , η) = (v + (c), η+ (c)) where v + (c) > v (c) and (provided the curve is sufficiently close to the optimal

curve BC ) with η+ (c) < 0 . Since η+ (c) < 0 we transfer to a Coast curve C + D + which lies everywhere to the right of the optimal

curve CD . This curve eventually reaches some point with x = d + and coordinates (v , η) = (v + (d + ), η+ (d + )) where v + (d + ) =
V + h > V and η+ (d + ) = 0 . At this point the Coast curve on level track transforms into a Maximum Power curve on level track

and so both v and η will increase. Hence this curve can never return to the point ( V , 0) and so we terminate the curve at D + . The

position on the track is defined by 

d + = c + 

∫ v + (c)

V + h 

dw 

r(w)
. 

While the position x = d + is not entirely clear in relation to the point x = d where the optimal curve finishes it seems intuitively

reasonable from Fig. 13 that if the curve C + D + is well to the right of CD with η+ (d + ) ≈ 0 then we will have V + h ≈ v + (c) and 

d + = c + 

∫ v + (c)

V + h 

dw 

r(w)
= c + δ ≈ c. 

If the curve C + D + is close to CD then we will have v + (c) ≈ v (c) and V + h ≈ V so 

d + = c + 

∫ v + (c)

V + h 

dw 

r(w)
≈ c + 

∫ v (c)

V 

dw 

r(w)
= d. 

In Fig. 13 the continuation of the Coast curve C + D + as a Maximum Power curve for x > d + beyond the nominal termination point

D + is shown as a dashed line. 
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Once we have found Coast phases that start too early and too late we can converge to the optimal Coast phase using an

elementary midpoint iteration on the starting point. 

3.12.3. Interruptions to HoldR for a non-steep segment 

Let us assume that during an extended phase of HoldR at the optimal regenerative braking speed v = W with u = r(W ) −
g(x) < 0 we encounter a segment of track ( b, c ) that is not steep downhill at speed v = W . 

To traverse the non-steep segment ( b, c ) it is necessary to switch control from HoldR to Coast with u = 0 on some interval

( a, d ) ⊃[ b, c ]. During this phase the speed will rise above the optimal regenerative braking speed before reaching the non-steep

segment ( b, c ), fall below the optimal regenerative braking speed on ( b, c ), and then rise again after leaving ( b, c ) to return to the

optimal regenerative braking speed. Thus v (a) = W, v ( b ) > W, v ( c ) < W and v (d) = W . There are many Coast phases on intervals

( a, d ) ⊃[ b, c ] which satisfy the speed requirements. We can switch to Coast at any point a < b and as long as v ( c ) < W we simply

switch back to HoldR at the point d > c where v (d) = W . 

Once again we need to find the optimal switching points. The necessary conditions for optimal switching are v (a) = v (d) = W 

and ζ (a) = ζ (d) = 0 with 0 < ζ < 1 − ρ for all x ∈ ( a, d ). We can see from (13) that ζ ′ (a) = ζ ′ (d) = 0 . Thus the necessary

conditions for optimal switching are also necessary for a minimum of ζ = ζ (x). It can be seen that a Coast phase with initial

switching point a − = b will have v −(a −) = v −(d −) = W for some d − > c and v −(x) < W for all x ∈ (a −, d −). Hence we can use

(16) and an argument similar to that used earlier to show that ζ−(d −) < 0 . It follows that this phase starts too late. If we can

find a Coast phase with final switching point d + = c we will have v + (a + ) = v + (d + ) = W for some a + < b and v + (x) > W for all

x ∈ (a + , d + ). Therefore we can use (16) and an argument similar to that used earlier to show that ζ+ (d + ) > 0 . Thus we deduce

that this phase starts too early. 12 Hence there is an optimal Coast phase with an initial switching point a ∈ (a + , a −) and a final

switching point d ∈ (d + , d −). 

3.12.4. Changing from HoldP to HoldR 

Consider a train following a strategy of optimal type in a HoldP phase at the optimal driving speed v = V on non-steep track

that enters a segment ( b, c ) which is not only steep downhill at speed v = V but also contains an extended segment which is steep

downhill at the optimal regenerative braking speed v = W > V . We wish to find an optimal Coast phase that allows a transition

from HoldP at speed v = V to HoldR at speed v = W . 

Suppose there is a Coast phase (v + (x), η+ (x)) with initial switching point at p + = b and with (v + (b), η+ (b)) = (V, 0 ). We

will show that this phase starts too late and finishes too early. The track is steep downhill at speed v = V for x > p + = b and so

v + (x) > V for x > p + . Because the train enters an extended segment of track which is steep downhill at speed v = W we assume

it eventually reaches a point x = q + ∈ (b, c) where v (q + ) = W . By using the integrating factor I p + , 0 (x) from (14) to solve (12) with

u(v ) = 0 we obtain 

I p + , 0 (x)η+ (x) = 

∫ x 

p + 

ψ[ (v + (ξ)] − ψ(V )

v + (ξ)3 
I p + , 0 (ξ)dξ (38)

for all x ∈ [ p + , q + ] . Since v + (x) > V for all x ∈ (p + , q + ) ⊂ (b, c) and because I p + , 0 (x) > 0 it follows that η+ (q + ) > 0 > ρ − 1 . 

To complete the argument we must assume there is a Coast phase starting too early 13 at some switching point p − < b with

(v −(p −), η−(p −)) = (V, 0 ) and finishing at some point q − ∈ (b, c) with v −(q −) = W and η−(q −) < ρ − 1 . The earlier start means

that the speed decreases initially so that v −(b) < V = v + (b). Therefore the speed profile v = v −(x) is always below the speed

profile v = v + (x) and hence it finishes later at some point q − > q + with v −(q −) = W . It follows that there is a Coast phase

starting at some initial optimal switching point p ∈ (p −, p + ) with (v (p), η(p)) = (V, 0 ) and finishing at a final switching point

q ∈ (q + , q −) with (v (q), η(q)) = (W, ρ − 1 ). This phase allows a strategy of optimal type to transfer from HoldP at the optimal

driving speed to HoldR at the optimal regenerative braking speed. See Fig. 1 for an optimal strategy that includes an optimal

transfer HoldP–Coast–HoldR. 

3.12.5. Changing from HoldR to HoldP 

Consider a train following a strategy of optimal type in a HoldR phase at the optimal regenerative braking speed v = W with

u = r(W ) − g(x) < 0 on steep downhill track and suppose the train approaches a segment ( b, c ) which is not steep downhill at

the optimal regenerative braking speed v = W and which also contains an extended segment that is not steep downhill at the

lower optimal driving speed v = V . 

Suppose there is a Coast phase (v −(x), ζ−(x)) that starts at the switching point p − = b with (v −(b), ζ−(b)) = (W, 0 ). We

will show that this phase starts too late and finishes too early. The track is not steep downhill at speed v = W for x > b and so

v − = v −(x) must initially decrease with v −(x) < W for all x ∈ ( b, c ). Because the train moves onto an extended segment of track

which is no longer steep downhill at speed v = V we assume it eventually reaches a point q − ∈ (b, c) with v −(q −) = V . Since

ζ−(p −) = 0 we can use (16) to deduce that 

I p −, 0 (x)ζ−(x) = ρ

∫ x 

p −

ψ[ (v −(ξ)] − ψ(W )

v −(ξ)3 
I p −, 0 (ξ)dξ (39)
12 Although this strategy provides a convenient upper bound to the optimal speed profile it may not be possible to find a Coast strategy with v + (c) = W if the 

non-steep section is too long. An alternative upper bound will be introduced in Part 2 of this paper ( Albrecht et al., 2014 ). 
13 The existence of a Coast strategy that starts too early is far from obvious. A more comprehensive argument will be proposed in Part 2 of this paper ( Albrecht 

et al., 2014 ). 
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for all x ∈ (p −, q −) where we have used the notation I p −, 0 (ξ) to denote the integrating factor I p , u ( ξ ) from (14) in the case where

p = p − and u = 0 . Since v −(x) < W for all x ∈ (p −, q −) ⊂ (b, c) and since I p −, 0 (x) > 0 it follows that ζ−(q −) < 0 < 1 − ρ . 

We must also assume there is a Coast phase starting at some switching point p + < b with (v + (p + ), ζ+ (p + )) = (W, 0 ) and

v + (b) > W which finishes at a point q + ∈ (b, c) with v + (q + ) = V and ζ+ (q + ) > 1 − ρ . The earlier start means that the speed

increases initially so that v + (b) > W = v −(b). Therefore the speed profile v = v + (x) is always above the speed profile v = v −(x)
and hence it finishes later at some point x = q + > q − with v + (q + ) = V . This speed profile provides a convenient upper bound 

14 

for the optimal speed profile. It follows that there is a Coast phase starting at some initial switching point p ∈ (p + , p −) with

(v (p), ζ (p)) = (W, 0 ) and finishing at a final switching point q ∈ (q −, q + ) with (v (q), ζ (q)) = (V, 1 − ρ). This phase allows a

strategy of optimal type to transfer from HoldR at the optimal regenerative braking speed to HoldP at the optimal driving speed.

See Fig. 1 for an optimal strategy that includes an optimal transfer HoldR–Coast–HoldP. 

3.13. Speed limits 

If we impose a maximum-speed constraint v ( x ) ≤ v m 

( x ) where v m 

( x ) is a known function 

15 then it follows from Girsanov et al.

(1972) , Hartl et al. (1995) and Khmelnitsky (20 0 0) that the Hamiltonian H remains the same as in (5) but the Lagrangian takes

the modified form 

L = H + π1 (U + (v ) − u) + π2 (u − U −(v )) + σ(v m 

− v ) (40)

where π1 ≥ 0, π2 ≥ 0 and σ ≥ 0 are Lagrange multipliers and the adjoint variables (μ1 , μ2 ) = (μ1 (x), μ2 (x)) now satisfy the

differential equations 

μ ′ 
1 = (−1 )

∂L 

∂t 
= 0 (41) 

μ ′ 
2 = (−1 )

∂L 

∂v 
= 

μ1 

v 2 
+ 

μ2 (u − r(v ) + g(x))

v 2 
+ 

μ2 r 
′ (v )

v 
− π1 U 

′ 
+ (v ) + π2 U 

′ 
−(v ) + σ (42) 

except possibly for finite jumps at entry and exit points for intervals where the speed constraint is active. In order to maximise

the Hamiltonian subject to the necessary control constraints and the imposed speed limit we see that the necessary condition 

∂L 

∂u 

= (−1 )

[
(1 + sgn (u))

2 

+ 

ρ(1 − sgn (u))

2 

]
+ 

μ2 

v 
− π1 + π2 = 0 (43) 

remains unchanged from (9) . Thus we have −1 + μ2 / v − π1 + π2 = 0 when u > 0 and −ρ + μ2 / v − π1 + π2 = 0 when u < 0.

Hence we obtain the same five basic optimality conditions. 

3.13.1. Control phases for an optimal strategy with speed limits 

Despite the speed limit constraint the analysis remains the same for optimal phases of regular control. Thus we have phases of

Maximum Power with μ2 > v ⇔ η > 0 and u = U + (v ) > 0 ; Coast with v > μ2 > ρv ⇔ 0 > η > ρ − 1 ⇔ 1 − ρ > ζ > 0 and u = 0 ;

and Maximum Brake with ρv > μ2 ⇔ 0 > ζ and u = U −(v ) < 0 . For each of these phases we must have v < v m 

and σ = 0 except

possibly at the endpoints. 

For optimal phases of singular control there are significant additional considerations. On intervals where v < v m 

the Karush–

Kuhn–Tucker conditions give σ(v m 

− v ) = 0 ⇒ σ = 0 and so the optimal strategy remains essentially the same. Thus for η = 0 we

have an optimal phase of HoldP with v = V, μ1 = −ψ(V ) and 0 < u = r(V ) − g(x) < U + (V ) and for η = ρ − 1 ⇔ ζ = 0 we have

an optimal phase of HoldR with v = W, μ1 = −ψ(V ) = −ρψ(W ) and U −(v ) < u = r(W ) − g(x) < 0 . On intervals of Constrained

Speed where v = v m 

the control u = u m 

is defined by u m 

(x) = v m 

(x)v ′ m 

(x) + r[ v m 

(x)] − g(x). We must have U −(v ) < u m 

< U + (v )
and so π1 = π2 = 0 . 

If u m 

> 0 and v = v m 

then ∂ L /∂ u = 0 ⇒ μ2 / v m 

= 1 ⇔ η = 0 . Now (42) shows 

σ = 

ψ(V )

v 2 m 

− r ′ (v m 

) ⇐⇒ σ = −E ′ V (v m 

). 

Since σ ≥ 0 and E V ( v ) is strictly quasiconvex with a unique minimum at v = V it is necessary that v m 

≤ V so that E ′ 
V 
(v m 

) < 0 . 

If u m 

< 0 then ∂ L /∂ u = 0 ⇔ μ2 / v m 

= ρ ⇔ ζ = 0 . In this case (42) shows 

σ = ρ

[
ψ(W )

v 2 m 

− r ′ (v m 

)

]
⇐⇒ σ = −ρE ′ W 

(v m 

). 

Since σ ≥ 0 and E W 

( v ) is strictly quasiconvex in v with a unique minimum at v = W it is necessary that v m 

≤ W so that E ′ 
W 

(v m 

) < 0 .

These results extend the corresponding results obtained by Khmelnitsky (20 0 0) . An important point to remember is that a

Constrained Speed phase is simply another form of singular control—just as HoldP and HoldR are singular controls—where the
14 A more comprehensive argument about the existence of a suitable upper bound will be given in Part 2 of this paper ( Albrecht et al., 2014 ). 
15 We will assume that the function v m = v m (x) is continuous and piecewise smooth on all relevant intervals. Thus, in particular, u m = u m (x) = v m (x)v ′ m (x) + 

r[ v m (x)] − g(x) is a piecewise-continuous function of x . We assume v m (x) ≤ v (x) and U −(v m ) ≤ u m ≤ U + (v m ) for v m = v m (x) when x ∈ [0, X ]. 
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level of control is determined by the desired speed profile. We may choose to leave a Constrained Speed phase whenever we

wish. Our decision is determined by the need to find a feasible strategy while continuing to follow a strategy of optimal type. 

Remark 8. Suppose we have v ( x ) ≤ v m 

( x ) where v m 

( x ) is an imposed speed limit. For each strategy of optimal type there is a

uniquely-defined optimal driving speed v = V that must be used on every HoldP phase. In cases where V > v m 

( x ) for all x ∈
[0, X ] there will be no HoldP phases but changes to V may still cause changes to the optimal strategy. As V increases the journey

time decreases. If there are no HoldP phases for the given value of V then a further increase in V simply means there will be less

coasting. If V > v m 

( x ) on some restricted interval x ∈ ( p, q ) then the train may follow the speed limit with v (x) = v m 

(x) for x ∈ [ p,

q ] but can never exceed it. If the journey time is decreased then V will increase and all corresponding increases in actual speed

will be at points where v ( x ) < v m 

( x ). 

3.13.2. Phase transitions for an optimal strategy with speed limits 

Since many of the functions in this section are piecewise continuous and since we will need to consider possible jump dis-

continuities at points where the control changes it is convenient to use the notation f (a − 0 ) = lim h ↓ 0 f (a − h) for the left-hand

limit and f (a + 0 ) = lim h ↓ 0 f (a + h) for the right-hand limit. Suppose an optimal phase of Maximum Power with u = U + (v )
changes to a phase of Constrained Speed with v = v m 

< V and u = u m 

= v m 

v ′ m 

+ r(v m 

) − g(x) > 0 at some point x = a where

v m 

( a ) < V . For x < a we have u(x) = U + (v (x)) ⇒ u(a − 0 ) = U + (v m 

(a)) and since we also have μ2 ( x ) > v ( x ) it follows that

μ2 (a − 0 ) ≥ v m 

(a) ⇔ η(a − 0 ) ≥ 0 . For x > a we have u = u m 

> 0 and so u(a + 0 ) = u m 

(a). We also know that μ2 = v m 

⇔ η = 0

for x > a and so μ2 (a + 0 ) = v m 

(a) ⇔ η(a + 0 ) = 0 . Therefore at x = a there is a possible jump discontinuity in the Hamiltonian

given by 

H(a + 0 ) − H(a − 0 ) = (−1 )u(a + 0 ) − ψ(V )

v m 

(a)
+ 

μ2 (a + 0 )[ u m 

(a) − r(v m 

(a)) + g(a)] 

v m 

(a)

−
{
(−1 )u(a − 0 ) − ψ(V )

v m 

(a)
+ 

μ2 (a − 0 )[ U + (v m 

(a)) − r(v m 

(a)) + g(a)] 

v m 

(a)

}

= (−1 )[ v m 

(a)v ′ m 

(a) + r(v m 

(a)) − g(a)] + v m 

(a)v ′ m 

(a)

−
{
(−1 )U + (v m 

(a)) + 

μ2 (a − 0 )[ U + (v m 

(a)) − r(v m 

(a)) + g(a)] 

v m 

(a)

}

= (−1 )

[
μ2 (a − 0 )

v m 

(a)
− 1 

]
[ U + (v m 

(a)) − r(v m 

(a)) + g(a)] 

= [ η(a + 0 ) − η(a − 0 )][ U + (v m 

(a)) − r(v m 

(a)) + g(a)] . 

Now suppose an optimal phase of Coast with u = 0 changes to a phase of Constrained Speed with v = v m 

at some point x = a

where v m 

( a ) < W . A similar argument gives 

H(a + 0 ) − H(a − 0 ) = [ ζ (a + 0 ) − ζ (a − 0 )][ −r(v m 

(a)) + g(a)] . 

Other transitions to and from a Constrained Speed phase are analysed in a similar way. 

4. Conclusions and future work 

In this two-part paper our intention has been to review the key principles of optimal train control and extend the known

results to a more general model. In so doing we were able to highlight the essential properties of the model. 

In Part 1 we formulated a general model that captures most of the known characteristic behaviour and then derived necessary

conditions for optimal control. We showed that each strategy of optimal type consists of a (possibly long) sequence of distinct

phases constructed using five basic optimal control modes and that the precise structure of the strategy is determined by the

joint evolution of the state and adjoint variables. We solved the state and adjoint equations and used the solutions and the

corresponding evolutionary lines to find optimal switching points for the controls. In Part 2 we will prove that an optimal strategy

always exists and develop alternative forms of the necessary conditions for optimal switching. In particular we will derive a local

energy minimization principle and use it to show that the optimal strategy is uniquely defined. 

We believe that there is value in a coherent summary of the work on optimal train control and that the timing is appropriate.

Much of the modern theory has been developed over the past three decades and the results obtained by Howlett et al., Khmelnit-

sky, and Liu and Golovitcher concerning optimal driving strategies for a single train are now widely recognised as fundamental.

To obtain the full benefits from our comprehensive review and extended discussion it is vital that the rail research community

communicate these ideas and the principles of energy-efficient driving practice to train operators and track providers. The prac-

tical need for energy conservation and efficient operation has never been more urgent. The most pressing research challenges

for the future in this area are to develop optimal control policies for trains travelling in the same direction on the same line in

such a way that safe separation is maintained between trains. On busy rail networks, solution of the train separation problem

relates to and depends on integrated scheduling and control policies to ensure that train movements are both energy -efficient

and effectively coordinated. 
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