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a b s t r a c t 

Motivated by the advancement in connected and autonomous vehicle technologies, this 

paper develops a novel car-following control scheme for a platoon of connected and au- 

tonomous vehicles on a straight highway. The platoon is modeled as an interconnected 

multi-agent dynamical system subject to physical and safety constraints, and it uses the 

global information structure such that each vehicle shares information with all the other 

vehicles. A constrained optimization based control scheme is proposed to ensure an entire 

platoon’s transient traffic smoothness and asymptotic dynamic performance. By exploiting 

the solution properties of the underlying optimization problem and using primal-dual for- 

mulation, this paper develops dual based distributed algorithms to compute optimal solu- 

tions with proven convergence. Furthermore, the asymptotic stability of the unconstrained 

linear closed-loop system is established. These stability analysis results provide a principle 

to select penalty weights in the underlying optimization problem to achieve the desired 

closed-loop performance for both the transient and the asymptotic dynamics. Extensive 

numerical simulations are conducted to validate the efficiency of the proposed algorithms. 

© 2016 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

For traditional human-driven vehicles, drivers determine car-following behaviors, i.e., acceleration or deceleration, speed, 

and spacing between adjacent vehicles, according to drivers’ own sensitivity and reaction time to their leading vehicles’

movement variations ( May, 1989 ). Experimental and theoretical results have shown that improper car-following behaviors,

e.g., overreacting or timid car-following, are one of the key factors to trigger traffic congestion, oscillations (stop-and-go

or slow-and-fast traffic), and accidents ( Laval and Leclercq, 2010 ). However, due to high randomness and inhomogeneity of

human drivers’ behaviors, few technologies can be implemented to control car-following behaviors of human-driven vehicles

and to improve traffic performance. As a result, the current traffic flows often demonstrate low efficiency and have severe

environmental impact in many urban areas. 

The recent advancement of connected and autonomous vehicle technologies provides tremendous opportunities for de- 

veloping coordinated car-following control of multiple vehicles that promote driving safety and efficiency and mitigate
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negative environmental impact. In particular, connected vehicle technologies, including vehicle-to-vehicle (V2V), vehicle-

to-infrastructure (V2I), and vehicle-to-other-digital-facilities (V2X), enable individual vehicles to access online traffic infor-

mation, accurately view nearby traffic conditions, and further communicate with other vehicles to establish coordinated or

cooperative driving. In addition, autonomous vehicle technologies allow modern computation and control techniques to be

implemented for advanced vehicle control to achieve neighborhood mobility and safety of individual vehicles as well as

desired system performance. Hence, the goal of the present paper is to develop car-following control schemes for a platoon

of vehicles by leveraging connected and autonomous technologies to enhance mobility and safety of both individual vehi-

cles and platoon performance, e.g., reduced traffic oscillations and smoother traffic flows, which will potentially improve

environmental sustainability significantly. 

In the field of transportation engineering, the research of this paper is closely related to the cooperative adaptive cruise

control (CACC) technologies. These technologies allow a vehicle to automatically adjust its speed to maintain a safety dis-

tance from its preceding vehicle, based on information gathered from stationary or mobile devices, but without platoon

performance guarantee. The CACC technologies have been extensively studied in transportation engineering using micro-

scopic traffic flow theory and safety policies under different information structures ( Li et al., 2015 ), e.g., the immediate pre-

ceding structure ( van Arem et al., 2006; Desjardins and Chaib-draa, 2011; Rajamani and Shladover, 2001; Shladover et al.,

2001 ), the multiple preceding structure ( van Arem et al., 2007; Swaroop and Hedrick, 1999; Schakel et al., 2010 ), and the

preceding-and-following structure ( Nakayama et al., 2002; Wang et al., 2014; Zheng et al., 2016a ). These papers show im-

proved neighborhood driving safety, traffic flow stability and efficiency. The platoon performance of the CACC technologies,

e.g., traffic oscillations, also receives considerable interest in the literature. However, such the performance is mainly evalu-

ated by simulations as extra benefits rather than being treated as a direct control objective in CACC algorithm design. Thus

this line of research lacks a theoretical foundation and formal justification of effectiveness under general traffic conditions. 

Car-following control for connected and autonomous vehicles has also garnered substantial attention in control engineer-

ing. From the control systems point of view, a platoon of connected and autonomous vehicles is an interconnected system,

and car-following can be treated as a cooperative control problem. Various interconnecting stability issues, e.g., string sta-

bility ( Swaroop, 1997; Swaroop and Hedrick, 1996 ), have been studied using frequency-domain methods, linear feedback

theory, and Lyapunov theory, and applied to a vehicle platoon ( Cook, 2007; Monteil et al., 2014; Naus et al., 2010a,b; Oncu

et al., 2014 ). Linear robust control theory is exploited for performance analysis under different data exchange structures

( Hao and Barooah, 2013; Jovanovi ́c and Bamieh, 2005; Lin et al., 2012; Middleton and Braslavsky, 2010 ). Communication

delays and other disturbances are also considered ( Jin and Orosz, 2014; Qin et al., 2014; Seiler et al., 2004 ). Most research

along this line focuses on asymptotic dynamics and stability; transient traffic dynamics, e.g., traffic oscillations, are not fully

addressed. 

An ideal car-following control scheme is expected to regulate individual vehicles’ car-following behaviors and achieve

desired platoon performance. Despite the extensive studies in transportation and control engineering, there remain several

unsolved challenges to establish such car-following control. We discuss three major challenges that motivate the research

of this paper as follows. (i) Multiple objective are often introduced by desired platoon performance. A vehicle platoon is

a complex engineering system, and control design is expected to meet multiple, possibly conflicting, objectives in terms

of transient and asymptotic dynamics, including mobility, safety, and traffic dynamic stability. But the transient dynamics

issues receive much less attention in the control literature. Furthermore, the conventional CACC technologies mainly focus

on individual vehicle’s mobility and safety requirements, which may be conflicting to platoon performance. (ii) Achieving

desired platoon performance needs to take traffic constraints into account, since connected and autonomous vehicles are

subject to various inequality constraints due to physical limitations, safety concerns, and driving comfort consideration. This

yields state and control coupled constraints that turn a platoon into a constrained dynamical system and give rise to many

difficulties in control design. While certain constraints have been addressed in Cook (2007) ; Dunbar and Murray (2006) ;

Keviczky et al. (2006) ; Richards and How (2004) , these results often impose restrictive assumptions that are unrealistic to

a platoon. (iii) To implement such platoon control, distributed computation is needed. A platoon consists of a large number

of vehicles with varying topology. Due to a high computation load and the absence of roadside computing facilities, central-

ized computation is either inefficient or infeasible. This calls for distributed computation, which takes full advantage of an

individual vehicle’s computing capability and is more flexible. However, the development of distributed algorithms is rather

nontrivial, especially for a system with coupled constraints. Although distributed control schemes are recently proposed in

Dunbar and Caveney (2012) ; Dunbar and Murray (2006) ; Franco et al. (2008) , these schemes focus on stability only, and do

not handle state and control coupled constraints. 

Inspired by the above-mentioned challenges, this paper develops a novel car-following control scheme based on con-

strained optimization and distributed computation by exploiting transportation, control and optimization techniques. This

control scheme takes vehicle constraints, transient dynamics, and asymptotic dynamics into account, and can be imple-

mented by state-of-art distributed algorithms. We summarize the major contributions of the paper as follows. Throughout

the rest of the paper, all vehicles are referred to as connected and autonomous vehicles. 

(1) We consider a platoon of connected and autonomous vehicles on a straight roadway, and model the platoon as a

multi-agent interconnected dynamic system subject to acceleration, speed, and safety distance constraints. The pla-

toon uses the global information structure such that each vehicle has communication and shares traffic information

with all the other vehicles. To handle multiple objectives arising from transient and asymptotic dynamics under the
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constraints, we introduce a constrained optimization problem whose solution determines car-following control. This 

optimization problem explicitly incorporates transient traffic performance into its objective function. Important prop- 

erties of the optimization problem are studied; these properties build a rigorous foundation for distribute algorithm

development. 

(2) The underlying optimization problem is a convex quadratically constrained quadratic program, where the safety dis-

tance constraint yields a state and control coupled nonlinear constraint that poses many difficulties in developing

distributed algorithms. To overcome these difficulties, we employ recent distributed algorithms for multiuser opti- 

mization in Koshal et al. (2009 , 2011) . Using the properties of the underlying optimization problem, the convergence

of distributed algorithms is established. Extensive simulations illustrate effectiveness of the proposed algorithms. 

(3) The performance of the proposed car-following control scheme is studied using systems and control theory. In par-

ticular, we focus on the constraint free scenario where the closed-loop system becomes a linear system. It is shown

via stability analysis techniques that the linear closed-loop system is asymptotically stable. Moreover, the stability

analysis results give a clue to choose penalty weights in the underlying optimization problem to achieve the desired

closed-loop performance, for both the transient and the asymptotic dynamics. 

Overall, this paper presents an advancement in addressing an important transportation problem by well integrated and

rigorous optimization, control and traffic flow techniques. It will contribute to connected and autonomous vehicle technolo-

gies in both intellectual merit and practical applications. 

The rest of the paper is organized as follows. The dynamic model of a platoon and its state and control constraints

are introduced in Section 2 . To determine car-following control, a constrained optimization problem is proposed and its

important properties are studied in Section 3 . By using these properties, dual based distributed algorithms are developed in

Section 4 . Section 5 studies the performance of the proposed control scheme, especially the linear dynamics of the closed-

loop system, and determines penalty weights for desired performance. Numerical results are presented in Section 6 with

concluding remarks given in Section 7 . 

2. Vehicle dynamics, constraints, and control objectives 

Consider a platoon of multiple vehicles on a straight roadway, where the (uncontrolled) leading vehicle is labeled by the

index 0 and its n following automated vehicles are labeled by the indices i = 1 , . . . , n respectively. Let x i , v i , u i denote the

longitudinal position, speed, and acceleration of the i th vehicle respectively, where u i , i = 1 , . . . , n are control inputs. Let τ
> 0 be the sampling time, and the control u i is constant on each time interval [ kτ, (k + 1) τ ) for k ∈ Z + := { 0 , 1 , 2 , . . . } . The

discrete-time longitudinal dynamics is described by the following double-integrator model: 

x i (k + 1) = x i (k ) + τv i (k ) + 

τ 2 

2 

u i (k ) , v i (k + 1) = v i (k ) + τu i (k ) , i = 1 , . . . , n. (1)

Here x i (k ) , v i (k ) , u i (k ) represent x i (kτ ) , v i (kτ ) , u i (kτ ) respectively for notational simplicity. The double-integrator model

(1) is widely used for system-level car following control design ( Cook, 2007; Hao and Barooah, 2013; Lin et al., 2012 );

see Zheng et al. (2016a , b) for more complex models which include the torque dynamics and inertia effects. 

The vehicles in a platoon are subject to several important state and control constraints summarized as follows. Let i =
1 , . . . , n . 

(1) Control constraints: a min ≤ u i ≤ a max , where a min < 0 and a max > 0 are pre-specified acceleration/deceleration

bounds for each vehicle; 

(2) Speed constraints: v min ≤ v i ≤ v max , where 0 ≤ v min < v max are pre-specified bounds on longitudinal speed for each

vehicle; 

(3) Safety distance constraints: x i −1 − x i ≥ L + r · v i − (v i −v min ) 
2 

2 a min 
. This inequality follows from kinematic analysis, where r ≥

τ is the constant reaction time due to dynamic and other delay, and L > 0 is a constant depending on vehicle length.

Moreover, we assume that the leading vehicle satisfies a min ≤ u 0 ( k ) ≤ a max and v min ≤ v 0 (k ) ≤ v max for each k ∈ Z + .
These inequality constraints are crucial to car-following control development. 

The objectives of a car-following control scheme are two folds: (i) transient dynamics: maintain a desired safe spacing

between two consecutive vehicles in a platoon, and reduce traffic flow oscillations in terms of spacing and speed changes;

and (ii) asymptotic dynamics: the relative distance of two consecutive vehicles should be asymptotically stable and converge

to a desired (constant) spacing. Besides it is expected that a control scheme is computed in a decentralized and distributed

manner. To reach these goals, a constrained optimization approach is introduced in the next section. 

3. Constrained optimization based car-following control 

We propose a constrained optimization problem whose optimal solution at each time k ∈ Z + determines the car-following

control. This optimization problem takes transient dynamics of the platoon into account, and its important properties are

studied in this section. 

Suppose x 0 (k ) , v 0 (k ) , u 0 (k ) of the leading vehicle are known at each k . Let � > L be the desired constant distance

between two adjacent vehicles, where � is chosen from an interval whose lower and upper bounds are determined by
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a speed limit, the reaction time r , and traffic density. Define the vectors z(k ) := (x 0 − x 1 − �, . . . , x n −1 − x n − �) T (k ) ∈ R 

n ,

z ′ (k ) := (v 0 − v 1 , . . . , v n −1 − v n ) T (k ) ∈ R 

n , and the control u (k ) := (u 1 , . . . , u n ) 
T (k ) ∈ R 

n . It follows from (1) that at each time

k ∈ Z + , the dynamics of the i th vehicle are given by [
z i (k + 1) 
z ′ 

i 
(k + 1) 

]
= 

[
1 τ
0 1 

][
z i (k ) 
z ′ 

i 
(k ) 

]
+ 

[
τ 2 

2 

τ

]
w i (k ) , ∀ i = 1 , . . . , n, 

where w i (k ) := u i −1 (k ) − u i (k ) for each i = 1 , . . . , n . Letting w (k ) := (w 1 (k ) , . . . , w n (k )) T ∈ R 

n , we obtain the linear control

system: [
z(k + 1) 
z ′ (k + 1) 

]
= 

[
I n τ I n 
0 I n 

][
z(k ) 
z ′ (k ) 

]
+ 

[
τ 2 

2 
I n 

τ I n 

]
w (k ) . (2)

Let 1 := (1 , . . . , 1) T ∈ R 

n be the vector of ones. It is easy to verify that 

u (k ) = −Sw (k ) + u 0 (k ) · 1 , where S := 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 . . . 0 

1 1 0 . . . 0 

. . . 
. . . 

. . . 
. . . 

. . . 
1 1 . . . 1 0 

1 1 . . . 1 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

∈ R 

n ×n . (3)

Note that S is invertible so that S T S is positive definite. Hence S T S = P T �P for an orthogonal matrix P and a diagonal matrix

� = diag (s 1 , . . . , s n ) with s 1 ≥ s 2 ≥ ��� ≥ s n > 0, where the orthogonal matrix P characterizes the control interaction of the

interconnected vehicle dynamics. 

Let α := (α1 , . . . , αn ) and β := (β1 , . . . , βn ) , where αi > 0 and β i > 0 are penalty weights for each i = 1 , . . . , n, and two

diagonal matrices D α := diag (α1 , . . . , αn ) and D β := diag (β1 , . . . , βn ) . Further, let Q z := P T D αP and Q z ′ := P T D βP be sym-

metric and positive definite matrices, and ‖ · ‖ 2 be the Euclidean norm. Define the objective function of quadratic form

J(u (k )) := 

1 

2 

z T (k + 1) Q z z(k + 1) + 

1 

2 

(z ′ (k + 1)) T Q z ′ z 
′ (k + 1) + 

τ 2 

2 

‖ 

u (k ) ‖ 

2 
2 . (4)

Here the three terms in J intend to minimize traffic flow oscillations using mild control at time k + 1 , under suitable penalty

weights α and β . Particularly, the first term pertains to the penalty on the relative spacing variation, the second term

pertains to the penalty on the relative speed variation, and the last term characterizes the magnitude of control. The weight

matrices Q z and Q z ′ are chosen in the above form such that the penalty weights αi ’s and β i ’s directly affect the closed-loop

dynamics (cf. Section 5 ). This choice not only facilitates close-loop dynamics analysis but also takes the control interactions

of the interconnected vehicle dynamics into account, which leads to better closed-loop performance. Specific choices of α
and β to achieve the desired transient and asymptotic dynamics will be discussed in Section 5 . At each k ∈ Z + , the control

u ( k ) is determined by the following constrained optimization problem for the given (x i (k ) , v i (k )) n 
i =0 

and u 0 ( k ): 

minimize J(u (k )) (5)

subject to: for each i = 1 , . . . , n, 

a min ≤ u i (k ) ≤ a max , (6)

v min ≤ v i (k + 1) ≤ v max , (7)

x i −1 (k + 1) − x i (k + 1) ≥ L + r · v i (k + 1) − (v i (k + 1) − v min ) 
2 

2 a min 

, (8)

where r ≥ τ , and v i (k + 1) , x i (k + 1) are given in term of u ( k ) in (1) , that is, x i (k + 1) = x i (k ) + τv i (k ) + 

τ2 

2 u i (k ) , v i (k + 1) =
v i (k ) + τu i (k ) , ∀ i = 1 , . . . , n. In what follows, we call u i admissible if it satisfies the constraint (6) , i.e., a min ≤ u i ≤ a max . 

To characterize the constraint set, define the following real-valued functions at each time k , : 

g 1 (u 1 (k )) := L + r · v 1 (k + 1) − (v 1 (k + 1) − v min ) 
2 

2 a min 

−
[
x 0 (k + 1) − x 1 (k + 1) 

]
, (9)

and for each i = 2 , . . . , n, 

g i (u i −1 (k ) , u i (k )) := L + r · v i (k + 1) − (v i (k + 1) − v min ) 
2 

2 a min 

−
[
x i −1 (k + 1) − x i (k + 1) 

]
, (10)

where x i (k + 1) and v i (k + 1) are expressed in terms of u ( k ) as shown in (1) . By slightly abusing notation, we write the

above functions as g ( u ( k )) or g ( u ) for each i = 1 , . . . , n . It is easy to verify that each g is a convex quadratic function. In
i i i 
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fact, g i (u ) = 

1 
2 u 

T E i u + h T 
i 

u + ϕ i , ∀ i = 1 , . . . , n, where h i is a vector, ϕ i is a scalar, and E i is a positive semidefinite diagonal

matrix, i.e., 

E i = diag 

(
0 , . . . , 0 , ︸ ︷︷ ︸ 

(i − 1) copies 

− τ 2 

a min 

, 0 , . . . , 0 

)
∈ R 

n ×n . (11) 

Therefore, given (x i (k ) , v i (k )) n 
i =1 

and u 0 ( k ), the constraint set for the control u ( k ) is 

P((x i (k ) , v i (k )) n i =0 , u 0 (k )) := 

{ 
u ∈ R 

n | a min ≤ u i ≤ a max , v min ≤ v i (k ) + τu i ≤ v max , 

g i (u ) ≤ 0 , ∀ i = 1 , . . . , n 

} 
⊂ R 

n . (12) 

Consequently, for each k ∈ Z + , the optimization problem (5) can be written as 

minimize J(u (k )) subject to u (k ) ∈ P((x i (k ) , v i (k )) n i =0 , u 0 (k )) . (13)

Remark 3.1. The constrained optimization problem in (5) can be viewed as a one-horizon model predictive control (MPC)

problem subject to inequality constraints. The general MPC framework has been introduced for car following of a vehicle

platoon ( Dunbar and Caveney, 2012; Dunbar and Murray, 2006; Franco et al., 2008; Keviczky et al., 2006; Li et al., 2011;

Wang et al., 2014; Zheng et al., 2016a ). This study uses one-horizon model for two reasons. First, the general p -horizon

MPC framework requires accurate prediction of the leading vehicle’s movement in future time, which may be difficult to

obtain in practice since the leading vehicle is subject to various unknown disturbances in a real-world traffic environment.

Second, the general p -horizon MPC problem need extensive computation and is numerically more involved when p is large;

its distributed computation is more sophisticated and need further investigation for real-time implementation. Nevertheless,

extending the current formulation to the general MPC via distributed computation will be a future research topic. 

3.1. Sequential feasibility and properties of the constraint set 

It is noted from (13) that the constraint set of the underlying optimization problem (13) depends on the position and

speed of the vehicles from its past time. A fundamental question for the optimization problem (13) is whether it is feasible

at each time. We show below that the optimization problem (13) is sequentially feasible , namely, if P((x i (k ) , v i (k )) n 
i =0 

, u 0 (k ))

is nonempty at the initial time k = 0 and (u 0 (k ) , v 0 (k )) satisfy (6) –(7) for all k ∈ Z + , then the optimization problem (13) is

feasible at each k along a system trajectory. For this purpose, we introduce the following functions for given (x s , v s ) n s =0 
where s denotes the vehicle index: 

p i ((x s , v s ) n s =0 ) := x i −1 − x i −
[

L + r · v i −
(v i − v min ) 

2 

2 a min 

]
, ∀ i = 1 , . . . , n, (14)

where each p i characterizes dependence of the safety distance between two adjacent vehicles on their current position and

speed. To simplify notation, we also write p i ((x s , v s ) n s =0 
) as p i in the subsequent development. 

Lemma 3.1. Suppose (x s , v s ) n s =0 
and u 0 are given such that a min ≤ u 0 ≤ a max , v min ≤ v 0 + τu 0 ≤ v max , v min ≤ v i ≤ v max and

p i ((x s , v s ) n s =0 
) ≥ 0 , ∀ i = 1 , . . . , n . Then the constraint set P((x s , v s ) n s =0 

, u 0 ) is nonempty and convex. 

Proof. For notational simplicity, we write P((x s , v s ) n s =0 
, u 0 ) as P in the following proof. For each given v i satisfying v min ≤

v i ≤ v max , define the continuous function q i : R → R as 

q i (w ) := v i + 

τw 

2 

+ r · w − w 

a min 

[
v i − v min 

]
− τw 

2 

2 a min 

, ∀ i = 1 , . . . , n. (15)

We claim that if v min < v i ≤ v max , then there exists ̂ u i with a min < ̂

 u i < a max such that v min < v i + τ̂ u i < v max , and q i ( ̂  u i ) <

v min . To show this claim, consider two cases as follows: 

(1) v i + τa min ≥ v min . In this case, since τa min < 0, we have v min ≤ v i + τa min < v i ≤ v max , and q i (a min ) = r · a min + v min <

v min . Let ̂ u i := a min + ε for a sufficiently small ε > 0. By the continuity of q i , we obtain a min < ̂

 u i < a max , v min <

v i + τ̂ u i < v max , and q i ( ̂  u i ) < v min . 

(2) v i + τa min < v min and v i > v min . Let u ′ 
i 

:= 

v min −v i 
τ < 0 , which yields v i + τu ′ 

i 
= v min . It follows from v i + τa min < v min

that 0 < 

u ′ 
i 

a min 
< 1 . Hence a min < u ′ 

i 
< a max . By virtue of v i = v min − τu ′ 

i 
, u ′ 

i 
< 0 , r ≥ τ , and v i ≥ v min , we have 

q i (u 

′ 
i ) = v min + 

[
r − τ

]
u 

′ 
i −

u 

′ 
i 

a min 

[
v i − v min 

]
+ 

(
τu 

′ 
i 

2 

− τ (u 

′ 
i 
) 2 

2 a min 

)
≤ v min + 

τu 

′ 
i 

2 

(
1 − u 

′ 
i 

a min 

)
< v min . 

̂ 

′ ̂ ̂ ̂ 
Letting u i := u 
i 
+ ε for a sufficiently small ε > 0, we have a min < u i < a max , v min < v i + τu i < v max , and q i ( u i ) < v min . 
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This completes the proof of the claim. Furthermore, if v i = v min , then by letting ̂ u i := 0 , we have q i ( ̂  u i ) = v min and v i +
τ̂ u i = v min . 

Consider the ̂ u i ’s obtained above. Clearly, each 

̂ u i is admissible, i.e., ̂ u i ∈ [ a min , a max ] , and 

˜ v i := v i + τ̂ u i satisfies v min ≤
 v i ≤ v max . Define ̃  x i := x i + τv i + 

τ2 

2 
̂ u i for each i = 1 , . . . , n . By the assumptions on (x s , v s ) n s =0 

and u 0 and the definition of p i ,

we verify the safety distant constraint for each i = 1 , . . . , n as follows: 

˜ x i −1 − ˜ x i −
[

L + r ·˜ v i −
( ̃  v i − v min ) 

2 

2 a min 

]
(16)

= x i −1 − x i −
[

L + r · v i −
(v i − v min ) 

2 

2 a min 

]
+ 

{
τ
[
v i −1 − v i 

]
+ 

τ 2 

2 

[̂ u i −1 −̂ u i 

]
−τ · r ·̂ u i + τ

̂ u i 

a min 

[
v i − v min 

]
+ τ 2 

̂ u 

2 
i 

2 a min 

}
= p i + τ

{[
v i −1 − v i 

]
+ 

τ

2 

[̂ u i −1 −̂ u i 

]
− r ·̂ u i + 

̂ u i 

a min 

[
v i − v min 

]
+ τ

̂ u 

2 
i 

2 a min 

}
≥ τ

{
v i −1 + 

τ

2 ̂

 u i −1 −
[ 
v i + 

τ

2 ̂

 u i + r ·̂ u i −
̂ u i 

a min 

[
v i − v min 

]
− τ

̂ u 

2 
i 

2 a min 

] }
= τ

{
v i −1 + ̃

 v i −1 

2 

− q i ( ̂  u i ) 

}
≥ τ

{ 
v min − q i ( ̂  u i ) 

} 
≥ 0 , 

where the second-to-last inequality follows from 

˜ v i ≥ v min , ∀ i = 0 , 1 , . . . , n and v i −1 + 

τ
2 ̂

 u i −1 = 

v i −1 + v i −1 + τ̂ u i −1 
2 = 

v i −1 + ̃ v i −1 
2 ≥

v min for the given u 0 and the chosen ̂

 u 1 , . . . , ̂  u n . This implies that g 1 ( ̂  u 1 ) ≤ 0 and g i ( ̂  u i −1 , ̂  u i ) ≤ 0 , ∀ i = 2 , . . . , n . Consequently,̂ u := ( ̂  u 1 , . . . , ̂  u n ) 
T ∈ P , and P is nonempty. Finally, since g i ( u ) defined in (9) and (10) are convex quadratic functions and the

other constraints are polyhedral, we deduce that P is convex. �

Another basic question is under what conditions, the constraint set P((x s , v s ) n s =0 
, u 0 ) has nonempty interior. This interior

property is crucial to the Slater’s constraint qualification which is essential to the development of distributed algorithms for

solving the optimization problem (13) . To address this question, we first establish Lemma 3.2 below, which states that the

i th vehicle has a unique feasible u i (which can be shown to be zero) if and only if all its preceding vehicles satisfy the tight

safety distance bound (i.e., p j = 0 for all j = 1 , . . . , i ) and move at the minimum speed (i.e., v j = v min for all j = 0 , 1 , . . . , i ).

Its proof is given in Appendix (cf. Section A.1 ). 

Lemma 3.2. Suppose (x s , v s ) n s =0 
and u 0 are given such that a min ≤ u 0 ≤ a max , v min ≤ v 0 + τu 0 ≤ v max , v min ≤ v i ≤ v max and

p i ((x s , v s ) n s =0 
) ≥ 0 , ∀ i = 1 , . . . , n . Then the following hold: 

(1) Fix i ∈ { 1 , . . . , n } , the following two statements are equivalent: 

(i) p 1 = · · · = p i = 0 , v 0 = v 1 = · · · = v i = v min , and u 0 = u 1 = · · · = u i = 0 for any u = (u 1 , . . . , u n ) ∈ P((x s , v s ) n s =0 
, u 0 ) ; 

(ii) there exists a constant ψ ∈ [ a min , a max ] such that u i = ψ for any u = (u 1 , . . . , u n ) ∈ P((x s , v s ) n s =0 
, u 0 ) , and such the

constant ψ = 0 ; 

(2) If u 0 = 0 and 
 ∈ { 1 , . . . , n } is the largest index such that p 1 = · · · = p 
 = 0 and v 0 = v 1 = · · · = v 
 = v min , then u 1 = · · · =
u 
 = 0 for any u = (u 1 , . . . , u n ) ∈ P((x s , v s ) n s =0 

, u 0 ) , and there exist ̂ u 
 +1 , . . . , ̂  u n and a constant ε > 0 such that for any

u j ∈ ( ̂  u j − ε, ̂  u j + ε) with j = 
 + 1 , . . . , n, (0 , . . . , 0 , u 
 +1 , . . . , u n ) ∈ P((x s , v s ) n s =0 
, u 0 ) . 

With the help of Lemma 3.2 , the next proposition shows that any constraint set P((x s , v s ) n s =0 
, u 0 ) takes exactly one of

the three forms: it is either of nonempty interior, or singleton, or a Cartesian product of two convex sets, one of which is

singleton and the other has nonempty interior. 

Proposition 3.1. Suppose (x s , v s ) n s =0 
and u 0 are given such that a min ≤ u 0 ≤ a max , v min ≤ v 0 + τu 0 ≤ v max , v min ≤ v i ≤ v max

and p i ((x s , v s ) n s =0 
) ≥ 0 , ∀ i = 1 , . . . , n . Then exactly one of the following holds for the constraint set P((x s , v s ) n s =0 

, u 0 ) ⊂ R 

n : 

(1) P((x s , v s ) n s =0 
, u 0 ) has nonempty interior; 

(2) There exist 1 ≤ 
 ≤ n − 1 and a convex set P 

′ ⊂ R 

n −
 with nonempty interior such that P((x s , v s ) n s =0 
, u 0 ) =

{ (u 1 , . . . , u 
 , u 
 +1 , . . . , u n ) | u 1 = · · · = u 
 = 0 , (u 
 +1 , . . . , u n ) ∈ P 

′ } ; 
(3) P((x s , v s ) n s =0 

, u 0 ) contains the zero vector only. 

In particular, if v 0 > v min , then P((x s , v s ) n s =0 
, u 0 ) has nonempty interior. 

Proof. This result follows from Lemma 3.2 . Specifically, (i) if u 0 > 0 or the index 
 specified in statement (2) of

Lemma 3.2 does not exist, then P((x s , v s ) n s =0 
, u 0 ) has nonempty interior; (ii) if u 0 = 0 and the index 
 specified in state-

ment (2) of Lemma 3.2 satisfies 1 ≤ 
 ≤ n − 1 , then P((x s , v s ) n s =0 
, u 0 ) is of the stated form in condition (2); (iii) if u 0 = 0
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and 
 = n, then P((x s , v s ) n s =0 
, u 0 ) = { 0 } . Finally, if v 0 > v min , then the index 
 specified in statement (2) of Lemma 3.2 does

not exist such that P((x s , v s ) n s =0 
, u 0 ) has nonempty interior. �

We give a physical interpretation of the three cases in the above proposition. Case (1) corresponds to the situation where

the leading vehicle is accelerating or not all of its following vehicles satisfy the tight safety distance bounds and move at

the minimum speed. In this case, any u ′ perturbed from a feasible u remains feasible as long as a perturbation is small

enough. Case (3) corresponds to the situation where the leading vehicle has zero acceleration, all vehicles move at the

minimum speed, and each following vehicle satisfies the tight safety distance bound. In this case, the only feasible u is

the zero acceleration. The remaining case is Case (2), where the leading vehicle has zero acceleration, the first 
 following

vehicles satisfy the tight safety distance bounds and move at the minimum speed, but the rest (n − 
 ) vehicles do not. Thus

for the latter vehicles, any u ′ perturbed from a feasible u remains feasible under small perturbations. 

3.2. Existence and uniqueness of optimal solution 

For notational simplicity, we denote P((x s , v s ) n s =0 
, u 0 ) by P in the subsequent development unless we want to emphasize

its dependence on (x s , v s ) n s =0 
and u 0 . 

Proposition 3.2. Suppose (x s , v s ) n s =0 
and u 0 are given such that a min ≤ u 0 ≤ a max , v min ≤ v 0 + τu 0 ≤ v max , v min ≤ v i ≤ v max 

and p i ((x s , v s ) n s =0 
) ≥ 0 , ∀ i = 1 , . . . , n . Then the convex optimization problem: min J ( u ) subject to u ∈ P((x s , v s ) n s =0 

, u 0 ) attains a

unique optimal solution. 

Proof. It follows from (2) and (4) that the objective function J is quadratic, i.e., J(u ) := 

1 
2 u 

T Hu + c T u + γ , where the sym-

metric matrix H := S −T [ τ
4 

4 Q z + τ 2 Q z ′ ] S −1 + τ 2 I, and c ∈ R 

n and γ ∈ R depend on τ , u 0 and (x s , v s ) n s =0 
. Clearly, H is positive

definite such that J is strongly (and thus strictly) convex. Hence the underlying optimization problem can be written as: 

minimize J(u ) := 

1 
2 

u 

T Hu + c T u + γ , 

subject to a min ≤ u i ≤ a max , v min ≤ v i + τu i ≤ v max , g i (u ) ≤ 0 , ∀ i = 1 , . . . , n. 
(17) 

By Lemma 3.1 , the constraint set P is nonempty and convex. Besides P is closed as it is defined by continuous functions. In

view of the constraint conditions a min ≤ u i ≤ a max , ∀ i = 1 , . . . , n, P is bounded and thus compact. By the continuity of J ( · ),

the optimization problem (17) has an optimal solution. Since J is strictly convex and P is a convex set, that optimal solution

is unique. �

The next result follows directly from Proposition 3.2 and induction on k ; its proof is omitted. 

Theorem 3.1. Suppose (x s (0) , v s (0)) n 
s =0 

and u 0 ( k ) are such that a min ≤ u 0 (k ) ≤ a max , ∀ k ∈ Z + , v min ≤ v 0 (0) + τu 0 (0) ≤
v max , v min ≤ v i (0) ≤ v max and p i ((x s (0) , v s (0)) n 

s =0 
) ≥ 0 , ∀ i = 1 , . . . , n . Then for each k ∈ Z + , the constraint set

P((x s (k ) , v s (k )) n 
s =0 

, u 0 (k )) is nonempty, and the optimization problem (13) has a unique optimal solution u ∗ ( k ) . 

Remark 3.2. At each time k ∈ Z + , the optimal u ∗ ( k ) is a function of (x s (k ) , v s (k )) n 
s =0 

and u 0 ( k ). Due to the structure of the

objective function and state and control coupled constraints (e.g., the safety distance constraints), each component of u ∗ ( k )

depends not only on the position and speed of its corresponding vehicle but also on those of the other vehicles. Hence,

the proposed control scheme requires that each vehicle communicates to all the other vehicles, and the global information

structure is used. Such the global information structure is suitable for a well-connected platoon. There has been a surging

interest in car-following control under different communication topologies and local information structures ( Desjardins and

Chaib-draa, 2011; Li et al., 2015; Lin et al., 2012; Schakel et al., 2010; Wang et al., 2014; Zheng et al., 2016a; 2016b ). We will

consider local information structures in future research. 

The optimization problem (17) is a convex quadratically constrained quadratic program, and can be solved via semi-

definite program. But its algorithm requires centralized computation, which is not suitable for a large platoon. We develop

distributed algorithms in the next section. 

4. Distributed algorithms for constrained optimization problem 

We study distributed algorithms for solving the constrained convex optimization problem (17) (or (13) at each k ). By

Proposition 3.1 , we only need to consider the nontrivial constraint set P in Cases (1) and (2) shown in Proposition 3.1 .

To treat these two cases in a unified framework, we note that Case (2) can be reduced to Case (1). In fact, define u ′ :=
(u 
 +1 , . . . , u n ) 

T ∈ R 

n −
 and the new objective function J ′ (u ′ ) := J(0 , . . . , 0 , u 
 +1 , . . . , u n ) , which is positive definite. Then the

problem (17) reduces to a convex quadratically constrained quadratic program on R 

n −
 : 

minimize J ′ (u 

′ ) subject to u 

′ ∈ P 

′ , (18) 

where the constraint set P 

′ given below is nonempty, convex, and compact with nonempty interior: 

P 

′ := { u 

′ ∈ R 

n −
 | a ≤ u ≤ a max , v ≤ v + τu ≤ v max , g (u 

′ ) ≤ 0 , ∀ i = 
 + 1 , . . . , n } . 
min i min i i i 
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Clearly, the reduced optimization problem (18) has the same form as the problem (17) in Case (1). Particularly it has a

unique optimal solution and satisfies the Slater’s constraint qualification. Due to this reason, we consider Case (1) throughout

this section; its results can be easily extended to Case (2) via the reduction described above. 

4.1. Primal-dual formulation and optimality conditions 

The optimization problem (17) can be formulated as the multiuser optimization problem ( Koshal et al., 2011 ): 

minimize J(u ) := 

1 
2 

u 

T Hu + c T u + γ , 

subject to 

{
u i ∈ X i , ∀ i = 1 , . . . , n, 

g i (u ) ≤ 0 , ∀ i = 1 , . . . , n, 

(19)

where each X i := { z ∈ R | a min ≤ z ≤ a max , v min ≤ v i + τ z ≤ v max } . Clearly, each X i is a convex compact interval on R given

by X i = { z ∈ R | max (a min , (v min − v i ) /τ ) ≤ z ≤ min (a max , (v max − v i ) /τ ) } . Furthermore, each g i is a convex quadratic func-

tion, and the gradient ∇J ( u ) is a linear function, and thus Lipschitz continuous, on R 

n . 

Let the function g : R 

n → R 

n be g(u ) := (g 1 (u ) , . . . , g n (u )) T . The Lagrangian function corresponding to (19) is given by 

L (u, λ) := J(u ) + λT g(u ) , 

where λ ∈ R 

n + is the multiplier. Letting X := X 1 × · · · × X n ⊂ R 

n , the primal problem for (19) is P : inf u ∈X sup λ∈ R n + L (u, λ) ,

and the associated dual problem is D : sup λ∈ R n + inf u ∈X L (u, λ) . 

It follows from the Slater’s constraint qualification and the existence of a unique optimal solution u ∗ to (19) that

the strong duality holds such that the dual problem has a (possibly non-unique) optimal solution λ∗ . This shows that

(u ∗, λ∗) ∈ X × R 

n + is a saddle point of the Lagrangian L (u, λ) on X × R 

n + , i.e., for any u ∈ X and λ ∈ R 

n + , L (u ∗, λ) ≤
L (u ∗, λ∗) ≤ L (u, λ∗) . Let u ′ be an interior point of P such that g i ( u 

′ ) < 0 for each i . By the saddle point relation described

above, we have 

L (u 

′ , λ∗) ≥ L (u ∗, λ∗) ≥ L (u ∗, 0) = J(u ∗) ≥ min 

u ∈ R n 
J(u ) = − c T H 

−1 c 

2 

+ γ := μ, 

where the last equality follows from the fact that J ( · ) achieves its global minimum on R 

n at u = −H 

−1 c. Therefore, for any

λ∗ := (λ∗, 1 , . . . , λ∗,n ) T ∈ R 

n + , in view of L (u ′ , λ∗) = J(u ′ ) + 

∑ n 
i =1 λ∗,i · g i (u ′ ) ≥ μ, we have J(u ′ ) − μ ≥ ∑ n 

i =1 λ∗,i · (−g i (u ′ )) ≥
λ∗,i · (−g i (u ′ )) for each i = 1 , . . . , n . Hence, the following (convex) box constraint set contains all dual optimal solutions λ∗ : 

D 

′ := 

{
λ ∈ R 

n 
+ | 0 ≤ λi ≤

J(u 

′ ) − μ

−g i (u 

′ ) , ∀ i = 1 , . . . , n 

}
. 

This implies that the condition λ ∈ R 

n + in the primal and dual problems can be replaced by λ ∈ D 

′ . Thus a necessary and

sufficient optimality condition is that ( u ∗ , λ∗ ) satisfies the following Euclidean projection based nonsmooth equations for

any positive constants ξ and θ ( Koshal et al., 2011 ): 

u ∗ = �X 
(
u ∗ − ξ∇ u i L (u ∗, λ∗) 

)
, λ∗ = �D ′ 

(
λ∗ + θ∇ λL (u ∗, λ∗) 

)
, (20)

where �S ( · ) is the Euclidean projection operator onto a closed convex set S , ∇ λL (u, λ) = g(u ) , and 

∇ u i L (u, λ) = 

∂ J(u ) 

∂u i 

+ 

(
∂g 1 (u ) 

∂u i 

, . . . , 
∂g n (u ) 

∂u i 

)T 

λ = 

(
Hu + c + E i u + h i + h i +1 

)
i 
, ∀ i = 1 , . . . , n. 

Let I i denote the closed bounded interval [0, ηi ], where 

ηi := 

J(u 

′ ) − μ

−g i (u 

′ ) ≥ 0 . (21)

Since X = X 1 × · · · × X n and D 

′ = I 1 × · · · × I n are box constraints, (20) is equivalent to 

u ∗,i = �X i 
(
u ∗,i − ξ∇ u i L (u ∗, λ∗) 

)
, λ∗,i = �I i 

(
λ∗,i + θg i (u ∗) 

)
, ∀ i = 1 , . . . , n, (22)

where u ∗ := (u ∗, 1 , . . . , u ∗,n ) T and λ∗ := (λ∗, 1 , . . . , λ∗,n ) T . Note that each X i or I i is an interval of the form [ a i , b i ] for real

numbers a i ≤ b i , and for any z ∈ R , 

�[ a i ,b i ] 
(z) = 

{ 

b i , if z ≥ b i 
z, if z ∈ [ a i , b i ] 
a i , if z ≤ a i 

Since the Euclidean projections in (22) are decoupled, they can be computed in a decentralized manner and attain closed

form solutions. This leads to distributed algorithms discussed below. 
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4.2. Dual based distributed algorithms 

We consider dual and primal-dual based distributed algorithms in Koshal et al. (2009 , 2011) to solve Eq. (20) . Numerical

experiments show that the original algorithms in Koshal et al. (2009 , 2011) and their convergence analysis often lead to

small step-lengths and slow convergence; see Section 6.2 for more explanation. To handle this problem, we modify these

two algorithms or their convergence analysis to obtain larger step-lengths and faster numerical convergence. For instance,

we use a different convergence argument for the dual based algorithm, and use the extra-gradient method for the primal-

dual algorithm. It is also found via numerical tests that while the two (modified) distributed algorithms achieve the same

numerical accuracy and convergence, the computation time of the dual based distributed algorithm is nearly half of that of

the primal-dual algorithm. Hence, we focus on the dual based algorithm only as follows. For completeness, the primal-dual

algorithm is given in Appendix (cf. Section A.2 ). 

Let ε be a small positive number. The dual based regularized distributed algorithm consists of two sub-steps in each

step: (i) for any given λm and u m , solve the equation u m +1 = �X 
(
u m +1 − ξ∇ u L (u m +1 , λm ) 

)
using the following iteration

with the step-length ξ > 0: u m , 0 := u m , and for each s ∈ Z + , 

u 

m,s +1 
i 

= �X i 
(
u 

m,s 
i 

− ξ∇ u i L (u 

m,s , λm ) 
)
, ∀ i = 1 , . . . , n, 

and (ii) once u m +1 is attained, compute λm +1 as 

λm +1 
i 

= �I i (λ
m 

i + θ [ g i (u 

m +1 ) − ελm 

i ]) , ∀ i = 1 , . . . , n, 

where θ > 0 is the step-length for this sub-step. The pseudo code is given in Algorithm 1 . 

Algorithm 1 Dual based regularized distributed algorithm. 

Choose a small ε > 0 , and compute the positive constants μmin (H) , M g ; 

Let θ := 2 μmin (H) / (M 

2 
g + 2 εμmin (H)) ; 

Initialize m = 0 , and choose an initial vector (u 0 , λ0 ) ∈ X × D 

′ ; 
repeat 

Compute L u (λm ) in (23), and let ξ ∈ (0 , 2 /L u (λm )) ; 

Set u m, 0 := u m , and s := 0 ; 

repeat 

Perform distributed computation: u m,s +1 
i 

← �X i 
(
u m,s 

i 
− ξ∇ u i L (u m,s , λm ) 

)
, ∀ i = 1 , . . . , n ;

s ← s + 1 ; 

until ‖ u m,s − u m,s −1 ‖ 2 is sufficiently small 

Set u m +1 ← u m,s ; 

Perform distributed computation: λm +1 
i 

← �I i 
(
λm 

i 
+ θ [ g i (u m +1 ) − ελm 

i 
] 
)
, ∀ i = 1 , . . . , n ;

if λm +1 = λm then 

(u ∗,ε , λ∗,ε ) ← (u m , λm ) and Stop; 

end if 

m ← m + 1 ; 

until ‖ λm − λm −1 ‖ 2 is sufficiently small 

return (u m , λm ) 

Next, for a symmetric matrix M , let μmin ( M ) and μmax ( M ) be its smallest and largest real eigenvalues respectively. To

determine suitable step-lengths ξ and θ for a given ε > 0, we have: 

(1) For a fixed λ ∈ D 

′ , ∇ u L (u, λ) = ∇J(u ) + 

∑ n 
i =1 λi ∇g i (u ) = 

(
H + 

∑ n 
i =1 λi E i 

)
u + c + 

∑ n 
i =1 λi h i is strongly convex on X and

is Lipschitz continuous on X with the Lipschitz constant 

L u (λ) := μmax 

( 

H + 

n ∑ 

i =1 

λi E i 

) 

. (23) 

It follows from (Polyak, 1987, Theorem 1 of Section 7.2) that if the positive step-length ξ < 2/ L u ( λ), then the sequence

( u m , s ) generated by the above algorithm converges to u m +1 with the convergence rate given by max (| 1 − ξμmin (H +∑ n 
i =1 λi E i ) | , | 1 − ξL u (λ) | ) . 

(2) Let u ∗ ( λ) denote the solution to the equation u = �X 
(
u − ξ∇ u L (u, λ) 

)
for a given λ. It follows from (Koshal et al.,

2011, Lemma 4.1) that −g(u ∗(λ)) is co-coercive in λ with the co-coercive constant μmin ( H )/( M g ) 
2 , where M g is given

in (32) . Hence, if the step-length 

θ = 

2 μmin (H) 

M 

2 
g + 2 εμmin (H) 

, 

then by (Koshal et al., 2011, Proposition 4.2) , the sequence ( λm ) converges to the unique dual optimal solution λ∗ , ε 
m +1 m 
with the convergence rate 1 − θε, namely, ‖ λ − λ∗,ε ‖ 2 ≤ (1 − θε) ‖ λ − λ∗,ε ‖ 2 , ∀ m ∈ Z + . 
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5. Stability analysis for unconstrained closed-loop dynamics 

This section studies the performance of the proposed control scheme and discusses how to choose penalty weights αi ’s

and β i ’s to achieve the desired transient and asymptotic dynamics. Note that the proposed control scheme is generally

nonlinear in state, particularly when the constraints are active. In this section, we focus on the case where the control is

free of all the constraints, which leads to a linear closed-loop system as shown below, since this case is the most common

and the most important scenario for a platoon. The results developed for this case will pave the way for future study of

nonlinear dynamics under active constraints ( Hu et al., 2010; Shen and Hu, 2012 ). 

5.1. Linear closed-loop dynamics and stability analysis 

We first establish a closed form solution of the optimal u ∗ ( k ) from the optimization problem (5) , assuming that all

constraints are inactive. For this purpose, we see from (2) that 

z(k + 1) = z(k ) + τ z ′ (k ) + 

τ 2 

2 

w (k ) , z ′ (k + 1) = z ′ (k ) + τw (k ) , (24)

where w i (k ) := u i −1 − u i (k ) for each i = 1 , . . . , n . Furthermore, u (k ) = −Sw (k ) + u 0 (k ) · 1 , where the matrix S is defined in

(3) . Recall that the penalty weights α := (α1 , . . . , αn ) and β := (β1 , . . . , βn ) with αi > 0 and β i > 0 for each i , and the

diagonal matrices D α := diag (α1 , . . . , αn ) and D β := diag (β1 , . . . , βn ) ; see Section 3 for details. At each time k , the objective

function in (4) is 

J(w (k )) = 

1 

2 

[ 
z T (k + 1) Q z z(k + 1) + (z ′ (k + 1)) T Q z ′ z 

′ (k + 1) 
] 

+ 

τ 2 

2 

‖ 

−Sw (k ) + u 0 (k ) 1 ‖ 

2 
2 , 

where Q z = P T D αP and Q z ′ = P T D βP . In view of (24) and ‖ − Sw (k ) + u 0 (k ) 1 ‖ 2 
2 

= 

[
− Sw (k ) + u 0 (k ) 1 

]T [− Sw (k ) + u 0 (k ) 1 
]
, a

straightforward computation shows that 

∂ J 

∂w (k ) 
= 

τ 2 

2 

Q z 

[ 
z(k ) + τ z ′ (k ) + 

τ 2 

2 

w (k ) 
] 

+ τQ z ′ 
[ 

z ′ (k ) + τw (k ) 
] 

+ τ 2 
(

S T Sw (k ) − u 0 (k ) S T 1 

)
= 

(
τ 4 Q z 

4 

+ τ 2 Q z ′ 
)

w (k ) + 

τ 2 Q z 

2 

z(k ) + 

(
τ 3 Q z 

2 

+ τQ z ′ 
)

z ′ (k ) + τ 2 
(

S T Sw (k ) − u 0 (k ) S T 1 

)
. 

When the system is free of constraints, the optimal solution w ∗(k ) , which corresponds to the optimal u ∗ ( k ) as shown in (3) ,

is given by 

∂ J 

∂w (k ) 

∣∣∣
w (k )= w ∗(k ) 

= 0 ⇔ 

(
τ 2 Q z 

4 

+ Q z ′ + S T S 

)
w ∗(k ) + 

Q z 

2 

z(k ) + 

(
τQ z 

2 

+ 

Q z ′ 

τ

)
z ′ (k ) − u 0 (k ) S T 1 = 0 . 

Since S T S is positive definite, so is τ2 Q z 
4 + Q z ′ + S T S. Therefore, the optimal w ∗(k ) is 

w ∗(k ) = −
[ 
τ 2 Q z 

4 

+ Q z ′ + S T S 

] −1 

·
{ 

Q z 

2 

z(k ) + 

(
τQ z 

2 

+ 

Q z ′ 

τ

)
z ′ (k ) − u 0 (k ) S T 1 

} 
. 

Define the matrix 

W := 

[
τ 2 Q z 

4 

+ Q z ′ + S T S 

]−1 

. (25)

Substituting w ∗(k ) into the control system (2) , we obtain the following linear dynamics for the closed-loop system on R 

2 n : [
z(k + 1) 
z ′ (k + 1) 

]
= 

⎡ ⎣ 

I n − τ 2 

4 
W Q z τ I n − W 

(
τ 3 

4 
Q z + 

τ
2 

Q z ′ 
)

− τ
2 

W Q z I n − W 

(
τ 2 

2 
Q z + Q z ′ 

) ⎤ ⎦ 

︸ ︷︷ ︸ 
A (α,β,τ ) 

[
z(k ) 
z ′ (k ) 

]
+ 

[
τ 2 

2 
I n 

τ I n 

]
W S T 1 · u 0 (k ) , (26)

where A (α, β, τ ) ∈ R 

2 n ×2 n with α = (α1 , . . . , αn ) and β = (β1 , . . . , βn ) . 

Consider the matrix S in (3) . Since the eigenvalues of S T S play an important role in stability and performance analysis, we

discuss their properties below. Recall that S T S is positive definite, and S T S = P T �P for an orthogonal matrix P and a diagonal

matrix � = diag (s 1 , . . . , s n ) with s 1 ≥ s 2 ≥ ��� ≥ s n > 0. Moreover, S −1 is lower triangular and (S T S) −1 is tridiagonal given

by 
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S −1 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 

−1 1 

. . . 
. . . 

−1 1 

−1 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (S T S) −1 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 −1 

−1 2 −1 

. . . 
. . . 

. . . 

−1 2 −1 

−1 2 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (27) 

Lemma 5.1. Let n ≥ 2 . The largest eigenvalue μmax ( S 
T S ) satisfies (n +1)(2 n +1) 

6 ≤ μmax (S T S) ≤ n (n +1) 
2 , and the smallest eigenvalue

μmin ( S 
T S ) satisfies 1 

4 ≤ μmin (S T S) ≤ 1 
2 . 

Proof. It is known that 0 < μmax ( S 
T S ) ≤ ‖ S T S ‖ ∞ 

, where ‖ S T S ‖ ∞ 

is the ∞ -norm of S T S . It is easy to verify that ‖ S T S ‖ ∞ 

is

the sum of the elements of the first row of S T S given by (n, n − 1 , . . . , 1) . Hence μmax (S T S) ≤ ‖ S T S‖ ∞ 

= 

n (n +1) 
2 . Furthermore,

1 T S T S1 ≤ μmax (S T S) · ‖ 1 ‖ 2 2 , where 1 := (1 , . . . , 1) T ∈ R 

n . Note that 1 T S T S1 = 

∑ n 
k =1 k 

2 = 

n (n +1)(2 n +1) 
6 and ‖ 1 ‖ 2 2 = n . This leads

to the desired bounds for μmax ( S 
T S ). 

To show the bounds for μmin ( S 
T S ), let y = (y 1 , . . . , y n ) 

T ∈ R 

n with y i = (−1) i for each i = 1 , . . . , n − 1 , and y n = 1 if

n is even and y n = 0 if n is odd. It can be shown that y T S T Sy = 

n 
2 if n is even, and y T S T Sy = 

n −1 
2 if n is odd. Since

y T S T Sy ≥ μmin (S T S) ‖ y ‖ 2 
2 
, we have μmin (S T S) ≤ 1 

2 . Finally, in light of the structure of (S T S) −1 given in (27) , we deduce that

μmax ((S T S) −1 ) = ‖ (S T S) −1 ‖ 2 ≤
√ ‖ (S T S) −1 ‖ 1 · ‖ (S T S) −1 ‖ ∞ 

= ‖ (S T S) −1 ‖ ∞ 

≤ 4 . Therefore, μmin (S T S) = 

1 
μmax ((S T S) −1 ) 

≥ 1 / 4 . �

The next proposition establishes asymptotic stability of the linear closed-loop dynamics. Along with Lemma 5.1 , it lays a

ground for performance analysis of the linear closed-loop system. 

Proposition 5.1. Given any positive numbers τ and αi , β i for each i = 1 , . . . , n, the matrix A ( α, β , τ ) is Schur stable, i.e., each

eigenvalue μ ∈ C of A ( α, β , τ ) satisfies | μ| < 1 . Moreover, for any eigenvalue μi of A ( α, β , τ ), there is a positive eigenvalue s i
of S T S such that the following hold: 

(1) if μi is non-real, then | μi | 2 = 

s i 
d i 

, where d i := 

αi τ
2 

4 + βi + s i ; 

(2) if μi is real, then 1 − ( 
αi τ

2 

2 + βi ) 
1 
d i 

< μi < 1 − αi τ
2 

4 d i 
. 

Proof. Fix positive numbers τ and αi , βi , ∀ i = 1 , . . . , n, and write A ( α, β , τ ) as A for notational simplicity. We will con-

vert the matrix A via a similarity transformation to a block diagonal matrix in (28) whose eigenvalues can be easily esti-

mated. Since S T S = P T �P, Q z = P T D αP and Q z ′ = P T D βP, the matrix W in (25) becomes W = P T diag (d 1 , . . . , d n ) 
−1 P, where

d i := 

αi τ
2 

4 + βi + s i > 0 for each i = 1 , . . . , n . Letting the diagonal matrix D := diag (d 1 , . . . , d n ) , we obtain 

̂ A := 

[
P 0 

0 P 

]
· A ·

[
P T 0 

0 P T 

]
= 

⎡ ⎣ 

I n − D 

−1 τ 2 D α
4 

τ
(

I n − D 

−1 
(

τ 2 D α
4 

+ 

D β
2 

))
−D 

−1 τD α
2 

I n − D 

−1 

(
τ 2 D α

2 
+ D β

) ⎤ ⎦ . 

Note that ̂ A and A have exactly same eigenvalues. Let ˜ z := (z 1 , z 
′ 
1 
, z 2 , z 

′ 
2 
, . . . , z n , z 

′ 
n ) 

T ∈ R 

2 n for any (z, z ′ ) T =
(z 1 , . . . , z n , z 

′ 
1 
, . . . , z ′ n ) T ∈ R 

2 n . Since the coordination transformation 

˜ z = E(z, z ′ ) T is defined by an (invertible) permutation

matrix E ∈ R 

2 n ×2 n (satisfying E −1 = E T ), we see that 

̂ A ·
[

z 
z ′ 

]
= E −1 

⎡ ⎢ ⎢ ⎣ 

˜ A 1 ˜ A 2 

. . . ˜ A n 

⎤ ⎥ ⎥ ⎦ 

︸ ︷︷ ︸ ˜ A 

·̃  z , (28) 

where ˜ A := E ̂  A E T ∈ R 

2 n ×2 n is a block diagonal matrix with each block ˜ A i given by 

˜ A i := 

[
a 11 a 12 

a 21 a 22 

]
= 

⎡ ⎣ 

1 − αi τ
2 

4 d i 
τ
(

1 −
(

αi τ
2 

4 
+ 

βi 

2 

)
1 
d i 

)
−αi τ

2 d i 
1 −

(
αi τ

2 

2 
+ βi 

)
1 
d i 

⎤ ⎦ ∈ R 

2 ×2 . (29) 

This shows that the set of all the eigenvalues of ̂ A is the union of the eigenvalues of ˜ A i for all i . 

In what follows, we show that each 

˜ A i is Schur stable. Toward this end, consider two cases: 

(1) ˜ A i has a pair of complex eigenvalues (μi , μ̄i ) . A straightforward computation yields 

det ( ̃  A i ) = 

[ 
1 − αi τ

2 

4 d i 

] 
·
[ 

1 −
αi τ

2 

2 
+ βi 

d i 

] 
+ 

[ 
τ
(

1 −
αi τ

2 

4 
+ 

βi 

2 

d i 

)] 
· αi τ

2 d i 
= 1 −

αi τ
2 

4 
+ βi 

d i 
= 

s i 
d i 

, 

where we use the fact that d i := 

αi τ
2 

4 + βi + s i . This implies that 0 < det ( ̃  A i ) < 1 . Since det ( ̃  A i ) = μi · μ̄i = | μi | 2 , we

have | μ | = | ̄μ | < 1 . 
i i 
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(2) ˜ A i has two real eigenvalues. Let μ ∈ R be such an eigenvalue, and v = (v 1 , v 2 ) T ∈ R 

2 be its associated eigenvector.

Recalling that a jk denotes ( j , k )-component of ˜ A i , we thus have 

˜ A i v = μ · v �⇒ 

{
a 11 v 1 + a 12 v 2 = μ v 1 
a 21 v 1 + a 22 v 2 = μ v 2 

, 

where 0 < a 11 < 1, a 21 < 0 and a 12 > 0 in view of 
αi τ

2 

4 + 

βi 
2 < 

αi τ
2 

4 + βi < d i . This implies that both v 1 and v 2 are

nonzero. Besides, by using 0 < 

αi τ
2 

2 + βi < 2 d i , we have −1 < a 22 < 1 . It follows from the second equation that v 1 =
μ−a 22 

a 21 
v 2 . Substituting it into the first equation, we have a 12 v 2 = (μ − a 11 ) 

μ−a 22 
a 21 

v 2 and thus a 12 = (μ − a 11 ) 
μ−a 22 

a 21 
> 0 .

Since a 12 > 0 and a 21 < 0, we deduce that (μ − a 11 )(μ − a 22 ) < 0 such that min ( a 11 , a 22 ) < μ < max ( a 11 , a 22 ). In

particular, since a 11 ≥ a 22 , we have a 22 < μ < a 11 . Therefore, | μ| < max (| a 11 |, | a 22 |) < 1. 

Consequently, A is Schur stable, and the desired bounds for an eigenvalue of A follow directly from the above

argument. �

Remark 5.1. Since the eigenvalues of A ( α, β , τ ) or ˜ A i are crucial to both asymptotic stability and traffic transient dynamics,

we discuss more of their properties using Proposition 5.1 . 

(1) As 0 < det ( ̃  A i ) = 

s i 
d i 

< 1 for each i , every eigenvalue of ˜ A i is nonzero. Further, if ˜ A i has real eigenvalues μi , 1 , μi , 2 , then

μi , 1 and μi , 2 must have the same sign. Moreover, in view of the trace of ˜ A i given by trace ( ̃  A i ) = (βi + 2 s i − τ2 

4 αi ) /d i ,

we conclude that if βi + 2 s i ≥ τ2 

4 αi , then 

˜ A i has either a pair of non-real eigenvalues or a pair of positive eigenvalues.

(2) Since det ( ̃  A i ) is the product of two (possibly non-real) eigenvalues whose absolute values are less than one, we

obtain the lower bound of an eigenvalue μ of ˜ A i : | μ| > det ( ̃  A i ) = 

s i 
d i 

≥ s n 
αi τ

2 

4 
+ βi + s n 

≥ 1 
αi τ

2 +4 βi +1 
, where we use s i ≥

s n = μmin (S T S) ≥ 1 / 4 . Furthermore, let μ be a positive eigenvalue of ˜ A i . Then it follows from Proposition 5.1 that
s i 
d i 

< μ < 1 − αi τ
2 

4 d i 
. 

(3) It follows from Lemma 5.1 that s 1 := μmax ( S 
T S ) satisfies n 2 

3 ≤ s 1 ≤ n 2 

2 for any sufficiently large n . Hence if α1 and β1

are independent of n or are of order less than n 2 , then as n → ∞ , some eigenvalue of ˜ A 1 tends to 1, which leads to

slow dynamic response. 

5.2. Choice of penalty weights αi ’s and β i ’s 

The penalty weights αi ’s and β i ’s in the objective function J in (4) can be chosen in different ways to achieve desired

closed-loop performance. We describe two approaches as follows. 

1. Choice of αi ’s and β i ’s based on desired eigenvalues of the linear closed-loop system. Suppose the eigenvalues of

the linear closed-loop system (26) are given a priori based on desired performance, e.g., smooth transient dynamics and

asymptotic dynamics. Let μi , 1 , μi , 2 denote such a pair of (possibly complex) eigenvalues within the unit circle, i.e., 0 <

| μi , 1 | < 1 and 0 < | μi , 2 | < 1. By the argument below (29) , we have 

μi, 1 · μi, 2 = det ( ̃  A i ) = 

s i 
d i 

, μi, 1 + μi, 2 = trace ( ̃  A i ) = 1 − αi τ
2 

4 d i 
+ 1 −

(
αi τ

2 

2 

+ βi 

)
1 

d i 
= 

s i 
d i 

+ 1 − αi τ
2 

2 d i 
, 

where d i = 

αi τ
2 

4 + βi + s i . It follows from the first equation that d i = s i / det ( ̃  A i ) . Substituting it into the second equation, we

obtain 

trace ( ̃  A i ) = det ( ̃  A i ) + 1 −
(

τ 2 det ( ̃  A i ) 

2 s i 

)
αi �⇒ αi = 

2 s i ·
[

det ( ̃  A i ) + 1 − trace ( ̃  A i ) 
]

τ 2 det ( ̃  A i ) 
. 

Once αi is attained, by using d i = s i / det ( ̃  A i ) and the definition of d i , we further have 

βi = d i −
(
αi τ

2 

4 

+ s i 

)
= 

s i 

det ( ̃  A i ) 
−
(
αi τ

2 

4 

+ s i 

)
. 

The above results apply to each 

˜ A i with i = 1 , . . . , n . Since s 1 is of order n 2 (cf. Lemma 5.1 ), α1 and β1 will be of order n 2 . 

2. Empirical choice of αi ’s and β i ’s. We will avoid negative eigenvalues of ˜ A i , since such eigenvalues yield high-frequency

oscillations. Hence, by (1) of Remark 5.1 , we may choose βi + 2 s i ≥ τ2 

4 αi or simply βi ≥ τ2 

4 αi . Moreover, in view of (2)-(3)

of Remark 5.1 and Proposition 5.1 , we expect αi and β i to be of order n 2 , especially when the platoon size n is large. Such

a choice leads to smaller eigenvalues and faster transient responses, but it requires large control inputs, which often yield

control or speed saturation and other nonlinear effects that may worsen the closed-loop dynamics. Therefore, it is necessary

to attain a tradeoff between fast dynamic response and mild control input by choosing moderate coefficients of the term n 2

in αi and β i . Motivated by these discussions, we consider the penalty weights of the following form: 

αi = κi (τ ) · n 

2 − � i (n ) , βi = κ ′ · n 

2 − � 

′ (n ) , ∀ i = 1 , . . . , n, (30)
i i 
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where κ i ( τ ) ∈ (0, 1) and κ ′ 
i 

∈ (0 , 1) are small positive coefficients of n 2 , and ϱi and � 

′ 
i 
(n ) are (positive) linear functions in

n . In order to minimize traffic oscillations, we often put more penalty on z ′ (k + 1) in the objective function J . Hence κ ′ 
i 

is

typically larger than κ i ( τ ) for each i . 

6. Numerical experiments 

6.1. Numerical experiment design and choice of control parameters 

Numerical experiments are conducted to validate the applicability and efficiency of the proposed approaches in three

aspects: (1) test numerical performance of the distributed algorithms; (2) test platoon performance under the proposed car-

following control scheme, e.g., the capability of maintaining stable car-following distance and mitigating traffic oscillations;

and (3) compare the performance of the proposed car-following scheme with a conventional CACC scheme in Schakel et al.

(2010) . 

To reach these objectives, we consider a platoon of ten vehicles which consists of a leading vehicle labeled by 0 and

nine following vehicles, i.e., n = 9 . All vehicles in this platoon are considered as connected and autonomous vehicles. The

leading vehicle is uncontrolled, but it may send real-time movement information, i.e., position, speed, and acceleration,

to its following vehicles; the nine following vehicles are under control by the proposed car-following control scheme. We

use the following physical parameters for the vehicles and constraints through experiments unless otherwise stated: the

desired spacing � = 50 m; the vehicle length L = 5 m; the acceleration and deceleration limits a max = 1 . 35 m/s 2 and a min =
−8 m/s 2 ; the speed limits v max = 27 . 78 m/s and v min = 0 m/s; the sample time τ = 1 s and the reaction time r = τ = 1 s.

The initial state of the platoon is z i (0) = � = 50 m and v i (0) = 25 m/s for all i = 1 , . . . , 9 , and the time length is 200 s.

Given n = 9 , τ = 1 s, and other parameters, we apply (30) to find the penalty weights that determine the proposed control

scheme. In particular, we choose the following penalty weights with n = 9 : 

αi = 0 . 1 n 

2 − 0 . 6(n + 1 − i ) , βi = 0 . 3 n 

2 − 1 . 2(n + 1 − i ) , i = 1 , . . . , n. 

Based on the linear dynamic analysis in Section 5.1 , all the eigenvalues of A ( α, β , τ ) are positive or non-real within the unit

circle: the smallest eigenvalue is 0.0120, the largest eigenvalue is 0.8901, and among the eighteen eigenvalues of A ( α, β , τ ),

ten eigenvalues have their absolute values between 0.8496 and 0.8901, and the other eight (real) eigenvalues are between

0.0120 and 0.2369. 

Three scenarios are considered to evaluate the proposed car-following control scheme. 

• Scenario 1 : The leading vehicle performs instantaneous deceleration/acceleration and then keeps a constant speed for a

while. The goal of this scenario is to test if the platoon can maintain stable spacing and speed when the leading vehicle

is subject to acceleration or deceleration disturbances. The movement profile of the leading vehicle in this scenario is

set as follows: the leading vehicle decelerates from t = 51 s to t = 54 s with the deceleration −2 m/s 2 , and maintains a

constant speed till t = 100 s. After that, it restores to its original speed 25 m/s with the acceleration 1 m/s 2 . 
• Scenario 2 : The leading vehicle performs periodical acceleration/deceleration. The goal of this scenario is to test whether

the proposed control scheme can reduce periodical spacing and speed fluctuation. The movement profile of the leading

vehicle in this scenario is set as follows: the leading vehicle periodically changes its acceleration and deceleration from

t = 51 s to t = 100 s with the period T = 4 s and acceleration/deceleration ± 1 m/s 2 . Then it maintains its original

constant speed 25 m/s after t = 100 s. 
• Scenario 3 : The motion of the leading vehicle is determined by real world trajectory data from an oscillating traffic flow.

Specifically, we use NGSIM data on eastbound I-80 in San Francisco Bay area at Emeryville, California from 5:00 pm to

5:15 pm on April 13, 2005. The goal of this scenario is to test the performance of the proposed control scheme in a

real traffic environment. Since the acceleration/deceleration of the leading vehicle is collected every 0.5 s in real-time,

the sample time is set as τ = 0 . 5 s. Further, the speed limit of a real road segment is v max = 33 . 33 m/s. The experiment

setup of this scenario is chosen as follows: the desired spacing � = 55 m, and z i (0) = 55 m, v i (0) = 18 . 33 m/s for each

i = 1 , . . . , n, the time length is 45 s, and we use real trajectory data in an oscillating traffic flow for the leading vehicle’s

motion. Other parameters remain the same as before. 

6.2. Computational performance of distributed algorithm 

We apply the dual based regularized distributed algorithm (or DBR algorithm), i.e., Algorithm 1 in Section 4.2 . We choose

ε = 0 . 1 and the step-length θ = 0 . 0074 , and ξ is chosen from the interval [0.0254, 0.140] (depending on λm ). Note that

under the selected penalty weights, the matrix H in the objective function J has a high condition number which is approx-

imately 100. Thus the step-lengths of the original dual and primal-dual algorithms given in Koshal et al. (2011) are almost

100 times smaller than the current choices, and they yield very slow convergence. This motivates us to apply the modified

algorithms and different convergence analysis argument. 

The distributed algorithm is implemented on MATLAB 7.1 and run on a computer with the following processor: Intel( R )

Core( TM ) i 7 − 3770 CPU @ 3.40 GHz and RAM: 8.0 GB . We test the DBR algorithm in terms of numerical accuracy, convergence

and efficiency. Figs. 1 and 2 show the numerical performance of the DBR algorithm for Scenario 1. The mean and variance
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(a) t = 40s (Stable state)
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(b) t = 51s (The leading vehicle decelerates)
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(c) t = 108s (Most iterations)
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(d) t = 102s (The leading vehicle accelerates)

Fig. 1. Illustration of the convergence of the DBR algorithm in Scenario 1. 
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Fig. 2. Computation performance of the DBR algorithm in Scenario 1. 

Table 1 

The mean and variance of computation time and iterations for the 

DBR algorithm. 

Scenarios Computation time (s) The number of iterations 

Mean Variance Mean Variance 

1 0 .0115 0 .0 0 0388 297 .91 0 .9595 

2 0 .0114 0 .0 0 0361 297 .93 0 .4540 

3 0 .0047 0 .0 0 0390 109 .34 1 .1334 

 

 

 

 

of computation time and iteration numbers of each step in Scenarios 1, 2 and 3 are presented in Table 1 . It is shown in

Fig. 1 that the objective function strictly decreases along numerical iterations in all the scenarios and converges to the

result obtained from a centralized algorithm. Thus the DBR algorithm converges consistently in all scenarios. Moreover, it

takes 0.011-0.013 s to reach convergence in each scenario with 291–300 iterations (cf. Fig. 2 ). Hence we conclude that the

numerical performance of the DBR algorithm is satisfactory, and the DBR algorithm is suitable for real-time computation. 
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Fig. 3. Time history of spacing changes (top), vehicle speed (middle), and control input (bottom) in Scenario 1. 

 

 

 

 

6.3. Performance of car-following control scheme 

In this subsection, we discuss and evaluate the performance of the proposed car-following control scheme in the three

scenarios. In each scenario, we focus on three performance criteria: the spacing between two adjacent vehicles denoted by

S i,i +1 (k ) := z i (k ) + �, the vehicle speed v i (k ) , and the control input (or acceleration/deceleration) u i ( k ), for each i . 

• Scenario 1 . In this scenario, the leading vehicle performs instantaneous acceleration and deceleration. Fig. 3 displays the

spacing changes in the platoon and shows that the spacing converges to the desired constant � under either accelera-



S. Gong et al. / Transportation Research Part B 94 (2016) 314–334 329 

0 20 40 60 80 100 120 140 160 180 200

Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
cc

el
er

at
io

n/
D

ec
el

er
at

io
n 

(m
/s

2 )

τ=0.5s, α i=0.1*n
2-0.6*(n+1-i) β i=0.3*n

2-1.2*(n+1-i)

i=0
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9

0 20 40 60 80 100 120 140 160 180 200

Time (s)

49.85

49.9

49.95

50

50.05

50.1

50.15

sp
ac

in
g 

(m
)

τ=1s, α i=0.1*n
2-0.6*(n+1-i) β i=0.3*n

2-1.2*(n+1-i)

S01
S12
S23
S34
S45
S56
S67
S78
S89

0 20 40 60 80 100 120 140 160 180 200

Time (s)

24

24.2

24.4

24.6

24.8

25

25.2

25.4

25.6

25.8

26

S
pe

ed
 (m

/s
)

τ=1s, α i=0.1*n
2-0.6*(n+1-i) β i=0.3*n

2-1.2*(n+1-i)

n=0
n=1
n=2
n=3
n=4
n=5
n=6
n=7
n=8
n=9

Fig. 4. Time history of spacing changes (top), vehicle speed (middle), and control input (bottom) in Scenario 2. 

 

 

 

 

 

tion or deceleration disturbances. The plot also shows that it takes 38 s and 42 s to reach a steady state respectively.

Moreover, the magnitude of spacing variations is decaying as the vehicle indices i increase. This indicates that the pla-

toon becomes more stable when approaching its tail. For instance, the maximum spacing deviation between the first

two vehicles (i.e., z 1 = S 0 , 1 − �) is 2.457 m, but the maximum spacing deviation between the last two vehicles (i.e.,

z 9 = S 8 , 9 − �) is 0.118 m. Similar observations are made for the vehicle speed and the control input in Fig. 3 respectively.
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(b) Time history of spacing changes.
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(c) Time history of vehicle speed.
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(d) Time history of vehicle speed.

0 5 10 15 20 25 30 35 40 45

Time (s)

-4

-3

-2

-1

0

1

2

A
cc

el
er

at
io

n/
D

ec
el

er
at

io
n 

(m
/s

2 )

τ=0.5s, α i=0.1*n2-0.6*(n+1-i) β i=0.3*n2-1.2*(n+1-i)

i=0
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9

(e) Time history of control input.

0 5 10 15 20 25 30 35 40 45

Time (s)

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2
A

cc
el

er
at

io
n/

D
ec

el
er

at
io

n 
(m

/s
2 )

CACC algorithm in Schakel (2010)

i=0
i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9

(f) Time history of control input

0 1 2 3 4 5 6

Frequency (mHz)

0

0.5

1

1.5

2

A
m

pl
itu

de
 (

m
/s

)

Speed fluctuation amplitude (m/s)

i=0
i=1
i=9

(g) DFT spectrum of detrended speed for i = 0, 1 and 9. (h) DFT spectrum of detrended speed for i = 0, 1 and 9.

Fig. 5. Comparison of the proposed car-following control scheme (left column) and the conventional CACC scheme (right column) in Scenario 3. 

 

 

 

 

 

 

 

 

 

 

• Scenario 2 . The leading vehicle performs periodic acceleration and deceleration in this scenario. Fig. 4 displays the spac-

ing changes in the platoon. Similar to Scenario 1, the spacing fluctuation becomes smaller as it approaches the platoon

tail. For example, the fluctuation amplitude of z 1 is 0.2972 m, that of z 2 decreases to 0.2046 m, and that of z 9 is 0.0134 m.

The similar pattern for speed fluctuation can be seen in Fig. 4 . Specifically, the speed fluctuation amplitude of the leading

vehicle i = 0 is 2 m/s. For its following vehicle, the speed fluctuation amplitude decreases to 1.532 m/s. For the last vehi-

cle i = 9 , that amplitude reduces to 0.3914 m/s. The corresponding control input is shown in Fig. 4 . Hence the proposed

control scheme effectively dampens the growth of spacing and speed fluctuation in the platoon. 
• Scenario 3 . In this scenario, the leading vehicle moves in a real world traffic flow with significant traffic oscillations.

Similar to the last two scenarios, it is shown in Fig. 5 (a) that the spacing oscillations are considerably reduced as it is

approaching the platoon tail. Even though the leading vehicle is subject to larger and more dramatic acceleration and

deceleration than in Scenarios 1 and 2, the spacing S 8, 9 remains almost constant. It is also shown in Fig. 5 (c) that the
vehicle speed varies smoothly near the platoon tail; the corresponding control input is displayed in Fig. 5 (e). 
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The effect of traffic oscillation of the closed loop system can be evaluated via discrete Fourier transform spectrum (DFT

spectrum), which is obtained by the discrete Fourier transform (DFT) for the detrended vehicle speed. The magnitude of

DFT spectrum at each frequency shows the magnitude of speed oscillation at that frequency; see Fig. 5 (g). The plot shows

that the magnitude of speed fluctuation becomes smaller when approaching the platoon tail. For instance, the peak vale for

the leading vehicle i = 0 is 1.81 m/s, compared with 1.50 m/s for the first following vehicle i = 1 and 1.11 m/s for the last

following vehicle i = 9 . Therefore, the proposed control scheme mitigates traffic oscillations substantially. 

Our numerical results demonstrate that the proposed control scheme effectively reduces disturbance propagation of rel-

ative spacing and speed errors from the leading vehicle to its followers along the platoon. This hints that the proposed

control scheme achieves the “string stability” of the platoon ( Middleton and Braslavsky, 2010; Seiler et al., 2004; Swaroop,

1997; Swaroop and Hedrick, 1996 ). Extensions to other information structures will be treated in future. 

6.4. Comparison with conventional CACC 

In this subsection, we compare the performance of the proposed car-following control scheme and the conventional CACC

scheme ( Schakel et al., 2010 ) in Scenario 3. The plots in the left column of Fig. 5 show the results from the proposed car-

following control scheme, and the plots in the right column show those from the conventional CACC scheme. In particular,

Fig. 5 (a) and (b) reveal spacing changes under the two schemes. It is observed that while both the schemes render the

vehicles back to the desired spacing eventually, the transient dynamics are dramatically different. For example, the spacing

S 8, 9 in Fig. 5 (a) is stable and almost constant under the proposed control scheme, whereas the spacing S 8, 9 in Fig. 5 (b)

demonstrates much larger fluctuation under the CACC scheme. The similar observations can be made by comparing the

vehicle speed responses (cf. Fig. 5 (c) vs. Fig. 5 (d)) and control output responses (cf. Fig. 5 (e) vs. Fig. 5 (f)). The effects of

traffic oscillations are also compared in Fig. 5 (g) and (h). It is noted that the magnitude of speed fluctuation under the CACC

scheme is increasing significantly when approaching the platoon tail as shown in Fig. 5 (h). For example, the peak values of

the leading vehicle i = 0 , the first following vehicle i = 1 , and the last following vehicle i = 9 are 1.81 m/s, 1.97 m/s, and

3.50 m/s, respectively. On the other hand, as shown before, these peak values decrease under the proposed control scheme.

It is noticed from our simulation studies that the CACC scheme may smooth traffic oscillation in the platoon at certain

frequencies but it does not work well at many others. For example, Fig. 5 (h) shows that speed fluctuation is amplified

along the platoon at the frequencies in [ a 1 , a 2 ], [ a 3 , a 4 ] and [ a 5 , a 6 ] (i.e. the speed fluctuation at the tail, vehicle i = 9 of the

platoon is larger than the leading vehicle i = 0 and its immediate following vehicle i = 1 ), even though it is dampened at the

other frequencies. In contrast, the proposed control scheme dampens speed fluctuation at almost all frequencies. Hence we

conclude that the proposed car-following control scheme outperforms the conventional CACC scheme in terms of achieving

stable and smoother traffic flows and reducing traffic oscillations. 

7. Conclusion 

This paper develops a novel platoon car-following control scheme based on constrained optimization and distributed

computation by exploiting transportation, control and optimization techniques. Specifically, we consider a platoon of con-

nected and autonomous vehicles, and model it as an interconnected dynamic system subject to acceleration, speed, and

safety distance constraints, under the global information structure. A constrained optimization problem is introduced to han-

dle multiple objectives arising from the transient and asymptotic dynamics. Solution properties of this optimization problem

are studied and used to develop dual or primal-dual based distributed algorithms. The performance of the proposed control

scheme is studied, particularly for the unconstrained linear closed-loop system which is shown to be asymptotically sta-

ble. These stability results provide a rule to choose penalty weights in the underlying optimization problem to achieve the

desired transient and asymptotic dynamics. Extensive numerical simulations are conducted to illustrate the effectiveness of

the proposed distributed algorithms and control scheme in three scenarios. They show that the proposed control scheme

effectively reduces the propagation of traffic fluctuation/oscillation along a platoon, which outperforms the conventional

cooperative cruise control. 

This research is our first attempt toward car-following control of connected and autonomous vehicles. It opens the door

to several interesting future research topics summarized below. 

(1) Local information structures using communication between neighboring vehicles are suitable for a large sized vehicle

platoon. There has been a tremendous interest in car-following control under local information structures and differ-

ent communication topologies ( Desjardins and Chaib-draa, 2011; Li et al., 2015; Lin et al., 2012; Schakel et al., 2010;

Wang et al., 2014; Zheng et al., 2016a,b ). We will study the impact of local information structures and communication

topologies on control performance and distributed computation; the string stability of a platoon will be considered. 

(2) The proposed constrained optimization based car-following control is a special case of the general MPC problem

( Dunbar and Caveney, 2012; Dunbar and Murray, 2006; Franco et al., 2008; Keviczky et al., 2006; Li et al., 2011;

Wang et al., 2014; Zheng et al., 2016a ). A future research topic is to extend the current formulation to the general

MPC framework by incorporating distributed computation. We also plan to consider general vehicle dynamic models

in this extension. Nonlinear closed-loop dynamics under active constraints will be investigated ( Hu et al., 2010; Shen

and Hu, 2012 ). 
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(3) Lastly, we will consider a platoon mixed with human-driven vehicles and connected and autonomous vehicles. Such

an extension will make the proposed approach suitable for the near future real world traffic conditions, but it also

raises many challenges in dynamics modeling and algorithm design. 
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Appendix A 

A1. Appendix: Proof of Lemma 3.2 

Proof. Let P denote P((x s , v s ) n s =0 
, u 0 ) for the given (x s , v s ) n s =0 

and u 0 in the following proof. 

(1) The proofs for the two directions are shown as follows. 

( i ) ⇒ ( ii ). This is trivial. 

( ii ) ⇒ ( i ). Note that the following fact follows directly from the argument for Lemma 3.1 : 

H : For any 
 = 1 , . . . , n − 1 , if there exist u i , i = 1 , . . . , 
 such that for each i = 1 , . . . , 
, u i ∈ [ a min , a max ], ̃  v i := v i + τu i ∈
[ v min , v max ] , and 

˜ x i −1 −˜ x i − [ L + r ·˜ v i − ( ̃ v i −v min ) 
2 

2 a min 
] ≥ 0 , where ˜ x i := x i + τv i + 

τ2 

2 u i , then there exist u 
 +1 , . . . , u n such

that (u 1 , . . . , u n ) ∈ P . 

Under the assumptions stated in ( ii ), we first show that v i = v i −1 = v min , p i = 0 , and u i = u i −1 = 0 . For any feasible

u = (u 1 , . . . , u n ) ∈ P, recall that ̃  v i (u i ) := v i + τu i ≥ v min and ̃

 x i (u i ) := x i + τv i + 

τ2 

2 u i . By (16) and the definitions of p i
in (14) and q i in (15) , we have 

˜ x i −1 (u i −1 ) −˜ x i (u i ) −
[

L + r ̃  v i (u i ) −
( ̃  v i (u i ) − v min ) 

2 

2 a min 

]
= p i + τ

{ 
v i −1 + 

τu i −1 

2 

− q i (u i ) 
} 

≥ p i + τ
[
v min − q i (u i ) 

]
. 

Note that if v min < v i ≤ v max , then by the claim shown in the proof of Lemma 3.1 , there exists ̂ u i with a min <̂ u i < a max such that v min < ̃

 v i ( ̂  u i ) < v max , and q i ( ̂  u i ) < v min . The latter implies that ˜ x i −1 (u i −1 ) −˜ x i (u i ) − [ L + r ̃  v i (u i ) −
( ̃ v i (u i ) −v min ) 

2 

2 a min 
] > 0 . This shows via Fact H that for any feasible u = (u 1 , . . . , u n ) ∈ P and any small ε > 0, there exist

u ′ 
i +1 

, . . . , u ′ n (depending on ε) such that (u 1 , . . . , u i −1 , ̂  u i + ε, u ′ 
i +1 

, . . . , u ′ n ) ∈ P . This contradicts the assumption that

u i is singleton stated in ( ii ). Hence we must have v i = v min . Besides, we further claim p i = 0 . Suppose not, i.e.,

p i > 0. Since q i (0) = v i = v min , we see that if ̂ u i is any sufficiently small positive number, then a min < ̂

 u i < a max ,

v min < ̃

 v i ( ̂  u i ) < v max , and p i + τ [ v min − q i ( ̂  u i )] > 0 by the continuity of q i . By the similar argument as before, we ob-

tain multiple feasible u i ’s, contradicting ( ii ). This shows that p i = 0 . Thus by (16) , v i = v min , and q i defined in (15) , we

have, for any feasible u = (u 1 , . . . , u i ) ∈ P, 

˜ x i −1 (u i −1 ) −˜ x i (u i ) −
[

L + r ̃  v i (u i ) −
( ̃  v i (u i ) − v min ) 

2 

2 a min 

]
= τ

[ 
v i −1 + 

τu i −1 

2 

− q i (u i ) 
] 
. 

If v i −1 > v min , it follows from ̃

 v i −1 (u i −1 ) ≥ v min that v i −1 + 

τu i −1 
2 = 

v i −1 + ̃ v i −1 (u i −1 ) 

2 > v min . Hence by q i (0) = v min and the

continuity of q i ( · ), we have v i −1 + 

τu i −1 
2 − q i (u i ) > 0 for any sufficiently small positive u i . Similarly, if u i −1 > 0 , in view

of v i −1 ≥ v min , we have v i −1 + 

τu i −1 
2 − q i (u i ) > 0 for any sufficiently small positive u i . This shows that in both cases,

any sufficiently small positive u i is feasible, a contradiction to ( ii ). Hence we must have v i −1 = v min and u i −1 ≤ 0 . In

light of (15) , 

˜ x i −1 (u i −1 ) −˜ x i (u i ) −
[

L + r ̃  v i (u i ) −
( ̃  v i (u i ) − v min ) 

2 

2 a min 

]
= τ

[ 
v min + 

τu i −1 

2 

− q i (u i ) 
] 

= 

τ 2 u i −1 

2 

− τ
(
τ

2 

+ r 

)
u i + 

τ 2 u 

2 
i 

2 a min 

≥ 0 . (31) 

Since ̃  v i (u i ) = v min + τu i ≥ v min , we have u i ≥ 0. Further, noting that u i −1 ≤ 0 , r + 

τ
2 > 0 and a min < 0, we must have

u i = 0 and u i −1 = 0 . 

For the given i , it has been shown above that u i −1 = 0 for any u = (u 1 , . . . , u n ) ∈ P . Hence we deduce via the same

argument as before that p i −1 = 0 , v i −1 = v i −2 = v min , and u i −2 = 0 for any u ∈ P . Continuing this process and by in-

duction, we have p 1 = · · · = p i = 0 , v 0 = v 1 = · · · = v i = v min , and u 0 = u 1 = · · · = u i = 0 for any u = (u 1 , . . . , u n ) ∈ P .

This yields ( i ). 
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(2) Let u 0 = 0 and 
 ∈ { 1 , . . . , n } be the largest index such that p 1 = · · · = p 
 = 0 and v 0 = v 1 = · · · = v 
 = v min . It follows

from the proof of statement (1), particularly the argument around (31) , that u 1 = 0 for any u = (u 1 , . . . , u n ) ∈ P . By

induction, we further have u 2 = · · · = u 
 = 0 for any u = (u 1 , . . . , u n ) ∈ P . 

Consider i = 
 + 1 , for which either p i > 0 or v i > v min . Fix u := (0 , . . . , 0 , u 
 +1 , u 
 +2 , . . . u n ) ∈ P . In light of

statement (1), there exists u ′ 

 +1 � = u 
 +1 such that (0 , . . . , 0 , u ′ 


 +1 , u 
 +2 , . . . u n ) ∈ P . Since P is a convex set,

(0 , . . . , 0 , ̃  u 
 +1 , u 
 +2 , . . . u n ) ∈ P for any ˜ u 
 +1 ∈ I 
 +1 , where I 
 +1 is the line segment in R joining u 
 +1 and u ′ 

 +1 

. 

When i = 
 + 2 , we have either (i) [ v i > v min ] or (ii) [ v i = v min and p i > 0]. For case (i), it follows from the proof

for Lemma 3.1 that there is a compact interval I 
 +2 such that any ˜ u 
 +2 ∈ I 
 +2 satisfies: a min < ̃

 u 
 +2 < a max , v min <˜ v 
 +2 (u 
 +2 ) := v 
 +2 + τ˜ u 
 +2 < v max , and q 
 +2 ( ̃  u 
 +2 ) < v min , which, by (16) , implies that −g( ̃  u 
 +1 , ̃  u 
 +2 ) = ̃

 x 
 +1 ( ̃  u 
 +1 ) −˜ x 
 +2 ( ̃  u 
 +2 ) − [ L + r ̃  v 
 +2 ( ̃  u 
 +2 ) − ( ̃ v 
 +2 ( ̃  u 
 +2 ) −v min ) 
2 

2 a min 
] > 0 for any ˜ u 
 +1 ∈ I 
 +1 . For case (ii), the proof for Lemma 3.1 and

(16) also show that there is an interval I 
 +2 := [0 , ̃  ε ] for a sufficiently small ˜ ε > 0 such that each 

˜ u 
 +2 ∈ I 
 +2 satisfies

the above inequalities for any ˜ u 
 +1 ∈ I 
 +1 . 

Repeating the above argument for i = 
 + 3 , . . . , n, we obtain compact intervals I j with j = 
 + 1 , . . . , n such that for

any ̃  u j ∈ I j , (0 , . . . , 0 , ̃  u 
 +1 , . . . ̃  u n ) ∈ P . Let ̂  u j be the middle point of each I j , and ε > 0 be sufficiently small. It is easy

to verify that statement (2) holds. �

A2. Appendix: primal-dual and extra-gradient based distributed algorithm 

Motivated by the primal-dual based distributed algorithm in Koshal et al. (2009 , 2011) and the extra-gradient method for

pseudo monotone variational inequalities (Facchinei and Pang, 2003, Section 12.1.2) , we consider the following algorithm: 

u 

m + 1 2 

i 
= �X i 

(
u 

m 

i − ξ ∇ u i L (u 

m , λm ) 
)
, λ

m + 1 2 

i 
= �I i 

(
λm 

i + ξ g i (u 

m ) 
)
, ∀ i = 1 , . . . , n, 

u 

m +1 
i 

= �X i 
(
u 

m 

i − ξ ∇ u i L (u 

m + 1 2 , λm + 1 2 ) 
)
, λm +1 

i 
= �I i 

(
λ

m + 1 2 

i 
+ ξ g i (u 

m + 1 2 ) 
)
, ∀ i = 1 , . . . , n, 

where ξ > 0 is the step-length. 

To find a suitable ξ for numerical convergence, we introduce the following function: 

F (u, λ) := 

[ ∇ u L (u, λ) 
−∇ λL (u, λ) 

]
= 

[∇J(u ) + 

∑ n 
i =1 λi ∇g i (u ) 

−g(u ) 

]
. 

Recall that each g i is a convex quadratic function given by g i (u ) := 

1 
2 u 

T E i u + h T 
i 

u + ϕ i , where E i is given in (11) . Let ω :=
max u ∈X ‖ u ‖ 2 . Define the following positive constants: 

M g := 

√ 

n ∑ 

i =1 

(
ω‖ E i ‖ 2 + ‖ h i ‖ 2 

)2 
, L := 

√ (
μmax (H + 

n ∑ 

i =1 

ηi E i ) + M g 

)2 

+ (M g ) 2 , (32)

where ηi ≥ 0 is defined in (21) . 

Lemma A.1. The function F is monotone on X × R 

n + and is Lipschitz continuous on X × D 

′ with the Lipschitz constant L . 

Proof. The monotonicity follows from the similar argument for (Koshal et al., 2011, Lemma 3.4) . In fact, by this argument,

it can be shown that for any (u, λ) , (u ′ , λ′ ) ∈ X × R 

n + , 
(
F (u, λ) − F (u ′ , λ′ ) 

)T 
(u − u ′ , λ − λ′ ) ≥ μmin (H) · ‖ u − u ′ ‖ 2 

2 
≥ 0 . To es-

tablish the Lipschitz constant L , we deduce from 

∇ (u,λ) F (u, λ) = 

[
H + 

∑ n 
i =1 λi E i (E 1 u + h 1 ) , · · · · · · , (E n u + h n ) 

−( E 1 u + h 1 ) , · · · · · · , −(E n u + h n ) 0 

]
that ∇ ( u , λ) F ( u , λ) is a positive semidefinite (but not symmetric) matrix. By the similar argument for (Koshal et al., 2011,

Lemma 3.4) , we have ‖∇ (u,λ) F (u, λ) ‖ 2 ≤ L for any (u, λ) ∈ X × D 

′ . In light of the mean-value inequality, L is the desired

Lipschitz constant. �

Since the function F is monotone on X × D 

′ , it is pseudo monotone on X × D 

′ . By (Facchinei and Pang, 2003, Theo-

rem 12.1.11) and (Facchinei and Pang, 2003, Theorem 12.6.4) , we obtain the following numerical convergence result. 

Proposition A.1. Let the step-length ξ be 0 < ξ < 1 / L . Then the sequence (( u m , λm )) generated by the primal-dual algorithm

converges to an optimal solution ( u ∗ , λ∗ ) at least R-linearly. 
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