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a b s t r a c t 

The Container Loading Problem (CLP) literature has traditionally guaranteed cargo static 

stability by imposing the full support constraint for the base of the box. Used as a proxy 

for real-world static stability, this constraint excessively restricts the container space uti- 

lization and has conditioned the algorithms developed for this problem. In this paper we 

propose a container loading algorithm with static stability constraints based on the static 

mechanical equilibrium conditions applied to rigid bodies, which derive from Newton’s 

laws of motion. The algorithm is a multi-population biased random-key genetic algorithm, 

with a new placement procedure that uses the maximal-spaces representation to manage 

empty spaces, and a layer building strategy to fill the maximal-spaces . The new static stabil- 

ity criterion is embedded in the placement procedure and in the evaluation function of the 

algorithm. The new algorithm is extensively tested on well-known literature benchmark 

instances using three variants: no stability constraint, the classical full base support con- 

straint and with the new static stability constraint—a comparison is then made with the 

state-of-the-art algorithms for the CLP. The computational experiments show that by using 

the new stability criterion it is always possible to achieve a higher percentage of space 

utilization than with the classical full base support constraint, for all classes of problems, 

while still guaranteeing static stability. Moreover, for highly heterogeneous cargo the new 

algorithm with full base support constraint outperforms the other literature approaches, 

improving the best solutions known for these classes of problems. 

© 2016 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

1. Introduction 

The Container Loading Problem (CLP) is a real-world driven, combinatorial optimization problem that addresses the op-

timization of the spatial arrangement of cargo inside containers or transportation vehicles, maximizing the usage of space. 

As an assignment problem, it can have two basic objectives: the maximization of the value of the cargo loaded, when

the number of containers is not sufficient to accommodate all the cargo, or the minimization of the value of containers,

when there are sufficient containers to accommodate all the cargo. 

The problem belongs to the wider combinatorial optimization class of Cutting and Packing problems. According to

the typology defined by Wäscher et al. (2007) for Cutting and Packing problems, these can be classified according to
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dimensionality, assortment of large items, assortment of small items, kind of assignment and shape of small items. In this

paper we will consider two types of problem with an output maximization objective. These problems can be classified either

as three-dimensional, rectangular single large object placement problems (3D-SLOPP) or as three-dimensional, rectangular 

single knapsack problems (3D-SKP), depending on the cargo heterogeneity. 

The CLP is highly relevant to the field of transport management. The effect of globalization led to a world where products

and services are exchanged in increasing numbers and distances by and to an increasing number of origins and destinations,

and where containerization is the standard method of transporting goods and cargo worldwide. This scenario places a num-

ber of challenges to achieve an efficient transport system, required for maintaining prosperity and economic development.

New problems that arose such as the ones related with the urban freight transportation ( Sánchez-Díaz et al., 2015 ) or the

designs of intermodal networks ( Meng and Wang, 2011 ) can directly benefit from a reduction of the congestion of cargo

transport units that an efficient container space usage can provide. 

The arrangements for loading cargo into containers should comply with various requirements: cargo should not become

damaged during transportation, transportation space should be used efficiently and workers’ safety should not be breached

during loading and unloading of cargo. 

However, if the approach to the problem does not consider real-world constraints, such as cargo stability, container

weight-limit or cargo orientation constraints, the solution will be of limited applicability to real-world scenarios. Cargo

stability is considered in the literature as one of the most important CLP constraints. Its impact is not confined to the cargo

as it can also influence the safety of both workers involved in loading operations and other persons or vehicles during

transportation. 

In the CLP literature, cargo stability is sometimes addressed separating static and dynamic stability. Cargo static stability

has been guaranteed by imposing the full support constraint on the base of the boxes. Although guaranteeing static stability,

it excessively restricts the container space usage and does not necessarily meet real-world needs when e.g., overhanging

cargo is allowed. The rather oversimplified way static stability has been treated by the majority of the authors it is also

present in existing approaches to dynamic stability, where stability is measured by the mean number of boxes supporting

the items excluding those placed directly on the floor and the percentage of boxes with insufficient lateral support ( Ramos

et al., 2015 ). 

The CLP addressed in this work can be stated as follows: A given set of small items of parallelepiped shape of type

k (k = 1 , . . . , K) (known as boxes), B = b 1 , b 2 , . . . , b K , where each box type, in quantity n k , is characterized by its depth, width

and height ( d k , w k , h k ) are to be loaded into a large object of parallelepiped shape (known as a container), C , characterized

by its depth, width and height, ( D, W, H ), with the objective of achieving a maximum utilization of the volume of the

container, while meeting the following geometric loading constraints: 

• Each face of a box must be parallel to one of the faces of the container; 
• There must be no overlap between the boxes; 
• All boxes must lie entirely within the container; 
• Each box must be placed according to one of its possible orientations—each box type can have up to six possible orien-

tations. 

The mechanical properties of the container and the boxes also necessitate the following additional practical constraints: 

• boxes can only be loaded through the container entrance; 
• static stability—each box must be able to maintain its loading position undisturbed during cargo loading; 
• all boxes are rigid; 
• the centre of gravity of each box is assumed to be its geometric centre. 

The dimensions ( D, W, H ) of container C lie parallel to the x, y and z axes, respectively, of the first octant of a Cartesian

coordinates system, with the back-bottom-left corner lying at the origin of the coordinates system. The placement of a box

b i in the container is given by its minimum and maximum coordinates, ( x 1 i , y 1 i , z 1 i ) and ( x 2 i , y 2 i , z 2 i ), respectively. 

The aim of this work is to present an algorithm for the CLP that addresses cargo stability under a realistic framework.

The proposed algorithm combines a multi-population biased random-key genetic algorithm with a constructive heuristic 

that enforces a static stability constraint based on the static mechanical equilibrium conditions applied to rigid bodies,

which derive from Newton’s laws of motion. The constructive heuristic uses a maximal-spaces representation to manage

empty spaces, and a layer approach for filling the maximal-spaces . 

The remainder of the paper is organized as follows. Section 2 presents an overview of the literature covering the CLP and

static stability within the CLP. In Section 3 the Container Loading Algorithm with Static Stability is presented. Section 4 re-

ports the results from the computational experiments. Finally, Section 5 draws some conclusions from the findings. 

2. Literature review 

Many approaches have been proposed for solving the 3D-SLOPP and the 3D-SKP. The number of exact methods pro-

posed is very limited and these can only solve problems of limited size. Exact methods were developed by Padberg (20 0 0) ,

Fekete et al. (2007) , Junqueira et al. (2012b ) and Junqueira et al. (2012a ). Alternatively, other methods have been proposed

to find near-optimal packing solutions. Fanslau and Bortfeldt (2010) classified these methods as conventional heuristics,
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Fig. 1. George and Robinson (1980) empty space subdivision. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

metaheuristics and tree-search methods. Conventional heuristics include construction heuristics and improvement heuris-

tics. Construction heuristics derive a single feasible solution that is directly employed or used as a starting point for local

search heuristics. They do not attempt to improve the obtained solution. Improvement heuristics try to iteratively improve

the solution of already known solutions. Examples include methods developed by George and Robinson (1980) , Bischoff

et al. (1995) , Lim et al. (2003) and Liu et al. (2011) . Metaheuristics can be seen as general-purpose methods that aim to

effectively and efficiently explore a search space using intensification (exploitation) and diversification (exploration) strate-

gies. According to the philosophy followed, metaheuristics can be seen as extended variants of improvement heuristics that

aim to escape from a local optimal solution and continue with the exploration of the search space with the expectation of

finding a better solution, or as a population-based approach where the search space is explored in each iteration by a popu-

lation. Examples of such approaches can be found in the Genetic Algorithms of Bortfeldt and Gehring (2001) and Gonçalves

and Resende (2012) , in the use of Tabu Search by Bortfeldt et al. (2003) and Liu et al. (2011) and the greedy randomized

adaptative search procedures (GRASP) of Moura and Oliveira (2005) and Parreño et al. (2008) . Tree-search methods include

tree-search and graph-search methods. These are methods that can be used when the set of all feasible solutions of the

optimization problem can be represented by a tree or a graph. Examples include the works of Fanslau and Bortfeldt (2010) ,

Zhu and Lim (2012) and Araya and Riff (2014) . 

A common feature of these methods is that they search over a representation or codification of the solution (usually box

sequences) and therefore require a constructive box loading heuristic to generate a feasible solution. Usually, the heuristic

iteratively selects a location inside the container and a box (or set of boxes) to place at that location, until no more locations

or boxes are available. Both of these decisions are related to the way the empty space of the container is managed (and

therefore the way in which all potential placement locations are evaluated) and the way box arrangements are generated. 

Spatial representation . Different approaches can be found in the literature to managing empty spaces. Ngoi et al. (1994) use

a single three-dimensional matrix representation of objects and empty spaces as a combination of variable orthorhombic

cells. Each three-dimensional matrix is composed of a chain of two-dimensional matrices that represent the details of hori-

zontal layers of constant thickness. Bischoff (2006) proposed an adaptation of the Ngoi et al. (1994) representation that does

not involve the creation of the horizontal layer matrices. Instead, a single two dimensional matrix that represents a view

from the top of the container is required. Another approach was proposed by George and Robinson (1980) . Their method-

ology is based on the assumption that after the placement of a box in a packing space, the remaining unused space opens

up three new spaces. The three spaces, illustrated in Fig. 1 , are created in the following order: spare depthwise space, spare

widthwise space and spare heightwise space. Each space is therefore represented by its depth, height and width and the

coordinates of its rear-left-bottom vertex. 

The approach proposed by George and Robinson (1980) only considered one variant to partitioning the empty space.

Other authors, such as Bortfeldt et al. (2003) and Fanslau and Bortfeldt (2010) , later extended the George and Robinson

(1980) approach and considered other variants of the empty space subdivision, as illustrated in Fig. 2 . In these approaches,

empty spaces are represented as a set of disjoint spaces. 

For the two and three-dimensional cutting stock problem, Lai and Chan (1997) proposed a representation of empty spaces

as a set of non-disjoint empty spaces. These empty spaces have the largest parallelepiped shape that can be considered

and are managed using the “Interval Generation” procedure. However, this procedure was not applied, by the authors, to

the three-dimensional CLP. Later Parreño et al. (2008) used this representation in the CLP and designated the non-disjoint

empty spaces as maximal-spaces . The maximal-spaces representation is illustrated in Fig. 3 . A maximal-space s representation
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Fig. 2. Variants of the empty space subdivision. 

Fig. 3. Maximal-spaces representation. 

 

 

 

 

 

 

 

 

 

 

 

 

is given by its minimum and maximum coordinates, ( x 1 s , y 1 s , z 1 s ) and ( x 2 s , y 2 s , z 2 s ), respectively, and an Insertion Vertex V ,

(that is, the vertex of the maximal-space where the boxes will be packed). 

Box arrangement strategy . Either single box or multiple box strategies can be followed at each placement; each iteration

of the former places only one box inside the container, each iteration of the latter places a set of boxes together. In a

multiple box strategy the arrangements can be formed from sets of identical or non-identical boxes. Multiple boxes can also

be arranged by dimensionality, (that is, one, two and three dimensions). In the one dimensional arrangement, boxes are

grouped along a single axis, and therefore generate a column. In a two dimensional arrangement, boxes are grouped in a

plane, (that is, along two axes, generating layers). In the three dimensional arrangement, boxes are grouped along the three

axes, generating blocks. 

The constructive heuristic results from the combination of the selected spatial representation and box arrangement strat-

egy and a set of rules that select location and box arrangement at each iteration. 

The best performing CLP algorithm for the 3D-SLOPP and 3D-SKP that uses a two dimensional arrangement strategy

is the multi-population biased random-key genetic algorithm developed by Gonçalves and Resende (2012) , while the best

performing three dimensional arrangement strategy is the Beam Search Approach developed by Araya and Riff (2014) . 

2.1. Static stability 

A recent literature review of container loading constraints by Bortfeldt and Wäscher (2013) highlights the particular

relevance placed on stability constraints. Considered to be one of the most important CLP constraints, stability has been ad-

dressed by a large number of authors usually following a rather simplified approach that often considers the term “stability”
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Table 1 

Comparison of the best existing algorithms using Full Support and Unsup- 

ported variants. 

Full Support (FS) Unsupported (U) Diference (U-FS) 

Problem BSG BRKGA BSG BRKGA BSG BRKGA 

BR 1–7 94 .74 94 .53 96 .11 95 .74 1 .36 1 .20 

BR 8–15 91 .22 90 .23 94 .78 93 .49 3 .56 3 .26 

BR 1–15 92 .87 92 .24 95 .40 94 .54 2 .53 2 .30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as if it was self-explanatory. Concepts, such as loading stability and transportation stability, are sometimes not addressed

separately, but there are some approaches to stability found in the literature that make a clear distinction between static

(vertical) and dynamic (horizontal) stability, (that is, the stability of cargo during loading operations and the stability of

cargo during transportation). However, the majority of approaches only focus on static stability ( Bortfeldt and Wäscher,

2013 ). 

The approaches to static stability found in the CLP literature can be classified according to the type of stability constraint

to be enforced: full base support, partial base support or static mechanical equilibrium. Of these, full base support and static

mechanical equilibrium both guarantee static stability, while partial support does not. 

• Full base support requires the entire base of a box be in contact with the base of the container or with the top surface

of other boxes. As a result, no overhanging boxes are allowed. Examples can be found in Bischoff and Ratcliff (1995) ,

Bortfeldt and Gehring (2001) , Gonçalves and Resende (2012) and Zhu and Lim (2012) . 
• Partial base support requires that either the entire base of a box be in contact with the base of the container, or a

pre-specified percentage of the area of a box base be in contact with the top surface of other boxes, thereby allowing

overhanging. As an example, Carpenter and Dowsland (1985) requires the contact area to fall in the range of 95% to 75%,

while Christensen and Rousœ (2009) require a minimum of 80%, Gendreau et al. (2006) , Fuellerer et al. (2010) , Tarantilis

et al. (2009) and ( Zhang et al., 2015 ), 75%, Gehring and Bortfeldt (1997) , 70% and Mack et al. (2004) , 55%. 
• Static mechanical equilibrium requires that the entire base of a box be in contact with the base of the container or, 

• the sum of external forces acting on the box is zero and; 
• the sum of torque exerted by the external forces is zero. 

An example, applied to the three-dimensional bin packing problem, can be found in de Castro Silva et al. (2003) . The

center of gravity condition is a condition found in the literature which is derived from the static mechanical equilibrium

conditions applied to rigid bodies. This condition requires the center of gravity of a box be located above the contact

surface of the supporting boxes ( Lin et al., 2006; Mack et al., 2004 ). However, by itself, enforcing this condition does not

guarantee static stability ( Ramos et al., 2016 ). 

Recent approaches in the literature consider the concept of static stability as equivalent to enforcing full base support

( Araya and Riff, 2014; Gonçalves and Resende, 2012; Zhu and Lim, 2012 ). Consequently these approaches developed both

algorithms that enforce full base support and algorithms that have no such requirement (Unsupported). The performance

benchmarking used for these algorithms is the percentage of volume loaded with or without full base support. As a result,

the goal is not to obtain a loading arrangement that is statically stable but a loading arrangement where all boxes have full

base support. 

Table 1 summarizes the results of the previously identify best existing CLP approaches without the static stability con-

straint (Unsupported) and with enforcement of the full base support constraint (Full Support). In the table BSG-CLP refers

to the Beam Search Approach of Araya and Riff (2014) and BRKGA refers to the multi-population biased random-key genetic

algorithm of Gonçalves and Resende (2012) . The values in columns 2 to 5 of the table correspond to the average percentage

of volume utilization for the test instances of Bischoff and Ratcliff (1995) and Davies and Bischoff (1999) organized in 15

classes, with a total of 100 instances per class. Classes BR1 to BR7 are weakly heterogeneous classes while BR8 to BR15 are

strongly heterogeneous classes. The values in the columns below the label “Difference”, represent the difference between

the results of the Unsupported and Full Support variants. Looking at the results leads to the conclusion that the full base

support constraint is very costly for algorithm efficiency, particularly in the strongly heterogeneous instances. To give an

idea of the impact this represents for transportation cost, 3% of the volume of a 40-foot container is around 1.5 m 

3 of space.

The best performing algorithms use two different heuristic approaches: BSG-CLP uses a beam search heuristic approach

while BRKGA uses the genetic algorithm. The BSG-CLP provides the best results for the Unsupported and Full Support CLP

variants. However, these algorithms are not so flexible when faced with additional constraints, such as load bearing, weight

limit or weight distribution, that can only be evaluated after the loading arrangement has been completed. 

3. The container loading algorithm with static stability 

The proposed container loading algorithm hybridizes a multi-population biased random-key genetic algorithm (BRKGA)

with a constructive heuristic embedded with a static stability constraint, based on the static mechanical equilibrium con-

ditions applied to rigid bodies, which derive from Newton’s laws of motion. In a BRKGA, as in all metaheuristics, there is
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Fig. 4. Architecture of the base algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a problem-independent part, responsible for the evolution of coded solutions (chromosomes), and a problem-specific part,

responsible for decoding the chromosome, generating a solution and evaluating its fitness ( Gonçalves and Resende, 2011 ). 

The use of a BRKGA for the CLP was first proposed by Gonçalves and Resende (2012) to solve the 3D-SLOPP and 3D-SKP

and by Gonçalves and Resende (2013) for the three-dimensional, Single Bin-Size Bin Packing Problem (3D-SBSBPP). 

Gonçalves and Resende (2011) stated that it is the chromosome representation and the problem-specific part of the al-

gorithm that requires research effort, and distinguishes the different BRKGA’s approaches to the same or different problems.

For the here proposed algorithm, a new chromosome representation and a new problem-specific part (that is, a constructive

heuristic) are specified. Fig. 4 illustrates the architecture of the algorithm. 

The constructive heuristic starts with the decoding procedure that generates the sequence by which the boxes are loaded

into the container. The generation of an actual solution is obtained by a box placement procedure that uses a maximal-space

representation of the empty spaces and a layer building strategy (2D box arrangement strategy). Finally, the value of the

solution is determined by the percentage of total packed volume. 

The following section firstly provides a description of two indirect solution representations and decoding procedures.

Then, presents a placement heuristic and the fitness function for the Unsupported and Full Support CLP variants. Finally the

description of the placement heuristic and fitness function for the static mechanical equilibrium variant, used to guarantee

cargo static stability, is presented. 

3.1. Chromosome encoding and decoding 

A chromosome in a genetic algorithm represents a solution to the problem. It can be a direct or indirect representation,

depending on whether the chromosome is a representation of the solution to the original problem or whether additional

procedures are needed to obtain a solution. The use of an indirect representation for the CLP, within a genetic algorithm

framework, is preferable to the direct use of chromosomes as packing sequences for the CLP, since in a direct representation,

the genes must represent the box placement coordinates, which would make the overlay constraints much harder to enforce.

By using a biased random-key genetic algorithm, where the chromosome is encoded as a vector of random keys (real num-

bers between 0 and 1), an indirect representation of the solution is used which guarantees that the offspring formed by

crossover of the chromosomes are feasible solutions ( Gonçalves and Resende, 2011 ). The use of an indirect representation of

the solution requires the chromosomes to be decoded for the CLP. 

Two indirect representations of the solution are adopted: one strongly heterogeneous and one weakly heterogeneous. In

the strongly heterogeneous case, each gene is used to represent the box type for each of the boxes to be loaded. In the

weakly heterogeneous case, a first set of genes represent the box type of each of the boxes to be loaded and a second set

of genes represents one of the three planes along which layers of boxes can be built up ( x − y, x − z and y − z) to fill the

maximal-spaces . The second set of genes aims increasing the diversity of generated solutions by the constructive heuristic. 

Let chromosome G = { gene 1 , gene 2 , . . . , gene g } be an indirect representation of a CLP solution and let M represent the

number of boxes to be loaded ( M = 

∑ K 
k =1 n k ). The number of genes, g , of the chromosome depends on the indirect solution

representation and the total number of boxes to be loaded M . 

• In the strongly heterogeneous representation, g is equal to M . Each gene j represents the type of box of the j th box to

be loaded. By sorting the genes in ascending order a new box type sequence is generated. The new vector sequence is

designated the Box Type Packing Sequence (BTPS). 
• In the weakly heterogeneous representation, g is equal to 2 M . For the first M genes, each gene j represents the type of

box of the j th box to be loaded while the last M genes ( gene M+ j ) represent the layer filling plane of the j th box to load.
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Fig. 5. Strongly heterogeneous chromosome decoding procedure example. 

Fig. 6. Weakly heterogeneous chromosome decoding procedure example. 

 

 

 

The layer filling plane of box j is determined using (1) . { 

0 ≤ gene M+ j < 1 / 3 x − y plane 
1 / 3 ≤ gene M+ j < 2 / 3 x − z plane 
2 / 3 ≤ gene M+ j < 1 y − z plane 

(1)

By sorting the first M genes in ascending order a BTPS is generated as well as a vector of Layer Filling Planes (LFP). 

Figs. 5 and 6 respectively illustrate the decoding procedure for the strongly heterogeneous and weakly heterogeneous

chromosome representation. In the examples there are 4 types of boxes, b 1 , b 2 , b 3 and b 4 , with n 1 = 3 , n 2 = 1 , n 3 = 2 and

n = 2 . 
4 
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Fig. 7. Distances between container corners and the maximal-space reference vertex. 

Fig. 8. Two potential placements of a layer in a maximal-space . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. The placement heuristic 

The placement heuristic is an iterative process with four main steps: selection of the box type, selection of the maximal-

space , filling the maximal-space , and updating the system information. At each iteration the process tries to pack a layer

of identical boxes in the container using a set of maximal-spaces . Three elements are combined in the process, a box type

packaging sequence vector, a list of unpacked boxes and a list of maximal-spaces . 

Step 0: Initialization 

S = { C} , set of maximal-spaces 

B = { b 1 , b 2 , . . . , b K } , set of box types—unpacked 

q k = n k , number of boxes of type k —unpacked 

P = ∅ , set of boxes—packed 

Step 1: Selecting the box type 

The aim of the first step is to select the type of box to be loaded. The order in which the type of boxes are loaded into

the container is provided by the BTPS vector obtained from the decoding procedure. The i th type of box to be loaded is

given by BTPS ( i ). Successive iterations check to see if q k = 0 for the selected box type k , whereby, if true, the next box type

in the sequence is selected. 

Step 2: Selecting the maximal-space 

To select an empty maximal-space we use the back-bottom rule. The back-bottom rule first selects the maximal-space

that is closest to the back of the container ( x -axis), then selecting the space closest to the bottom of the container ( z -axis),

finally selecting whichever space is closer to one of the two back-bottom corners of the container ( y -axis). The smallest

distance between maximal-space s , with coordinates ( x 1 s , y 1 s , z 1 s ) and ( x 2 s , y 2 s , z 2 s ), to the two corners of the container, with

coordinates (0, 0, 0) and (0, W , 0) respectively, is given by y V s = min { y s 1 , (W − y s 2 ) } . 
Determining the smallest distance to the back-bottom corners of the container also determines the maximal-space Inser-

tion Vertex, V , since it is the closest vertex to one of two back-bottom corners of the container ( Fig. 7 ). The Insertion Vertex

determines the vertex of the maximal space where the build layer (see step 3) will be placed. Fig. 8 illustrates two potential

placements of a layer in a maximal-space . 

This rule is similar to the back-bottom-left placement rule commonly use in CLP algorithms. However, by introducing

a new potential insertion vertex, another surface of the container surface may be used, inducing the generation of larger

empty spaces ( Parreño et al., 2008 ). 
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Fig. 9. Example of the six different feasible layer types for a box position. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 3: Filling the maximal-space 

Having selected the box type and the maximal-space , the heuristic fills the maximal-space using box layers (that is, several

identical boxes are arranged in rows and columns), constrained by the number of unpacked boxes. There are 6 possible layer

arrangements for each box position ( Fig. 9 ). Considering that each box can be placed in up to 6 different positions (depend-

ing on the number of rotations allowed), a total of 36 layer types can be generated. When using the weakly heterogeneous

indirect representation of a solution, this value is reduced to a maximum of 12, since the building plane is determined by

the chromosome. In the strongly heterogeneous indirect representation, the number of boxes per type is smaller, resulting

in layers of smaller dimension which reduces the impact of the layer building plane on the solution. The Best-fit criterion

proposed by Parreño et al. (2008) was used to evaluate the layer configurations. 

• The Best-fit criterion selects the layer with the best fit inside a maximal-space . The layer fit is determined by calculating

the gap between the parallel faces of the layer and the maximal-space , ordering the values in non-decreasing order and

choosing the best layer as given by the lexicographic order. Ties are broken using the number of inserted boxes criterion,

(that is, the layer with the higher number of boxes). 

If the selected box type does not fit the selected maximal-space , a new maximal-space is selected. If the selected box type

does not fit any of the current maximal-spaces the box is skipped and the next box on the sequence is selected. 

Step 4: Updating the system information 

After packing a layer of m boxes of type k , the number of unpacked boxes q k is updated. Also, the selected maximal-space

s is removed from list S , new maximal-spaces are generated using the difference process and elimination process developed

by Lai and Chan (1997) . These processes not only generate new maximal-spaces from s , but also verify the intersection of

the added layer with other maximal-spaces and eliminate maximal-spaces with dimensions that cannot be filled with the

remaining unpacked boxes, thus saving computational time. The list of maximal-spaces, S , is then updated. The placement

procedure is repeated until all the boxes are packed or there are no more maximal-spaces available. 

3.3. Solution fitness computation 

The constructive heuristic finishes by determining the percentage of the container volume packed using (2) , where N k is

the number of loaded boxes of type k with volume d k × w k × h k packed in a container of volume D × W × H . 

K ∑ 

k =1 

N k (d k × w k × h k ) 

D × W × H 

× 100% (2)

3.4. Static stability constraint 

The static stability constraint is enforced by introducing a set of conditions during the filling of the maximal-space and

the computation of the packed container volume, based on the static mechanical equilibrium conditions applied to rigid

bodies that derive from Newton’s first and third laws of motion. 

The first condition of equilibrium is ∑ −→ 

F = 

−→ 

0 (3)



574 A. Galrão Ramos et al. / Transportation Research Part B 91 (2016) 565–581 

Fig. 10. Condition 2 support polygon example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where 
−→ 

F represents the external forces applied to a rigid body. A force is a vector quantity describing the force magnitude

and the direction of its action ( Hibbeler, 2010 ). 

The second condition of equilibrium is ∑ −→ 

M O = 

∑ 

( 
−→ 

r × −→ 

F ) = 

−→ 

0 (4) 

where 
−→ 

r represents the vector from point O to the line of action of force 
−→ 

F . 
−→ 

M O represents the moment of a force, that

is, the tendency of a force to rotate a body about a point or axis. The first condition allows us to evaluate the translational

equilibrium and the second condition allows us to evaluate the rotational equilibrium of a body ( Hibbeler, 2010 ). 

These conditions, however, can only be fully validated with the complete loading arrangement. Therefore, in the proposed

algorithm with static stability constraints, stability is first partially enforced in the maximal-space filling procedure, and

secondly, in the fitness computation procedure, once a solution has been generated. 

3.4.1. Filling the maximal-space 

The partial static stability condition, enforced when filling the maximal-spaces , only evaluates the stability of a box in

relation to its direct supporting boxes, when is placed in the selected maximal-space . As such, it considers that for every

box, the resultant of the forces acting downwards, parallel to the z -axis (that is, the weight), is located on the geometric

center of the box. Therefore, a box b can be loaded at ( x, y, z ), if the projection of its geometric center cg , with coordinates

( x cg , y cg , z cg ) in plane (0, 0, z ), lies inside the box b support polygon SP . The support polygon SP of box b is formed by

the convex hull of all horizontal support points of box b . The support polygon concept is frequently used in the research

field of human movement simulation for stability modelling purposes ( Badler et al., 1980; Vukobratovi ́c and Borovac, 2004 ).

Therefore, to guarantee that the partial static stability condition during filling holds, one of the three following conditions

must be satisfied. 

1. The support polygon of the box is the container floor, that is, whenever z (the z -axis coordinate of a box) equals zero; 

z = 0 

2. The support polygon is defined by the top edges of a support box b j ( Fig. 10 ); The condition holds for box b , supported

by box b j placed at (( x 1 j , y 1 j , z 1 j ), ( x 2 j , y 2 j , z 2 j )), when 

x 1 j ≤ x cg ≤ x 2 j 

y 1 j ≤ y cg ≤ y 2 j 

z = z 2 j 

3. the support polygon is a convex polygon defined by the convex hull of the vertices of the polygons generated by the

intersection of box b with its supporting boxes ( Fig. 11 ). Consider SP to be a convex polygon in plane (0, 0, z ) with m

vertices (p 0 , p 1 , . . . , p m −1 ) defined by a sequence of points (x 0 , y 0 ) , (x 1 , y 1 ) , . . . , (x m −1 , y m −1 ) running in counterclockwise

direction. Condition 3 holds whenever point cg is an interior point of the convex polygon SP . Point cg is an interior

point of the convex polygon SP if cg is located on a line segment that connects a pair of points a, b in SP , such that
cg = λa + (1 − λ) b for 0 ≤ λ ≤ 1 ( LaValle, 2006 ). 
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Fig. 11. Condition 3 support polygon example. 

Algorithm 1 Static Stable Filling of a Maximal-Space (box b ) 

Input: Let box b be a box placed at coordinates ((x 1 , y 1 , z 1 ) , (x 2 , y 2 , z 2 )) 

Output: Let stable be a boolean variable where TRUE represents a box that respects the stable filling conditions and FALSE 

otherwise 

Begin 

if z = 0 then 

return TRUE 

end if 

stable ← FALSE 

Let U be the set of boxes b j that support box b 

Let cg be the geometric centre of box b with coordinates x cg , y cg 

for each box b i ∈ U do 

if (x 1 j ≤ x cg ≤ x 2 j ) and (y 1 j ≤ y cg ≤ y 2 j ) then 

stable ← TRUE 

end if 

end for 

if stable = FALSE then 

for each box b j ∈ U do 

Determine the intersection vertices v with box b 

end for 

SP ← Call Gift wrapping ( v ) � Determine box b support polygon 

stable ← Call Point-in-Polygon (cg, SP ) � Determine box stability 

end if 

return stable 

End 

 

 

 

 

 

 

 

 

 

 

The algorithm for enforcing the stability condition during the filling of a maximal-space is described in Algorithm 1 .

A more detailed description of the Gift wrapping algorithm, that determines the support polygon of a box, and the Point-

in-Polygon algorithm, that determines if a given point is in the interior of a convex polygon, is presented in Ramos et al.

(2016) . 

To the best of the authors’ knowledge, there is not any approach in the literature that combines the use of maximal-spaces

and the evaluation of static stability, when there are gaps between supporting boxes, as proposed in this paper. Adding this

possibility adds complexity to the management and filling of maximal-spaces , since it is required to determine the support

boxes of the maximal-space in order to fill it and evaluate the fitness of the build layer configuration. However, this approach

increases the flexibility of the algorithm. 

The criterion used to evaluate layer configurations is the best-overhanging criterion. 

• The best-overhanging criterion selects the layer which best fits the supporting boxes of the selected maximal-space . The

layer fit is determined by calculating the gap between the parallel faces of the layer that are perpendicular to the x − y

plane and the support polygon of the selected maximal-space , ordering the values in non-decreasing order and choosing
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Fig. 12. Best-overhanging criterion illustration example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the best layer, given by the lexicographic order. Ties are broken by first evaluating the gap in the z -axis direction and

secondly by calculating the additional number of boxes to be placed. Fig. 12 illustrates the criterion. 

Even thought, the partial stability conditions, by themselves, do not guarantee the static stability of the cargo arrange-

ment, when combined with the best-overhanging criterion, potentiate the generation of statically stable solutions. 

3.4.2. Solution fitness computation 

As in other approaches previously published in the literature, the metric used to evaluate the fitness of a solution is the

percentage of the container volume packed by boxes. The difference in this algorithm is that only boxes that can be loaded

in the container while guaranteeing static stability are considered, that is, boxes that would make the cargo unstable are

withdraw from the physical packing sequence and their volume not considered. 

Given that static stability conditions were already applied during the maximal-spaces filling procedure, how can still

happen that a cargo is unstable? The conditions applied during the maximal-space filling procedure guarantee local stability,

that is, that the arrangement inside the maximal-space is stable. However, the effect of filling that space on the remaining

cargo is not taken into account because it would be unnecessarily restrictive. As the order by which maximal-spaces are

filled during solution generation is not the actual sequence by which boxes are loaded inside the container, when filling

later on spaces physically related to the one that is currently being filled may revert a situation of potential instability into

a globally stable cargo. For this reason, in the algorithm here proposed, static stability is locally enforced when filling the

maximal-spaces and globally checked and imposed after the loading arrangement is finished, when the solution fitness is

computed. 

The final verification of the static stability of the finished loading arrangement is, therefore, done by the physical packing

sequence algorithm (PPSA) with static stability as presented in Ramos et al. (2016) . The PPSA, given a container loading

arrangement, generates a physical sequence by which each box can be actually loaded inside the container, considering

static stability and efficiency of loading operations constraints. The approach to stability used in the PPSA is also based on

the static mechanical equilibrium conditions applied to rigid bodies, derived from Newton’s laws of motion. In generic terms,

PPSA starts by determining a physical sequence by which boxes should be loaded in the container. Using this sequence, it

loads one box at a time and for each one evaluates the static stability of the box and the static stability of the subset of

all boxes already loaded. If, as a result of loading this new box, statical stability of the overall cargo is lost, then the box is

removed from de physical packing sequence. As PPSA deals with a physical loading sequence and considers the effect of each

box on all the previous loaded cargo, global static stability is guaranteed. As PPSA removes from the sequence (and from the

solution) unstable boxes, the solution fitness (percentage of the container’s space that is used) reflects only statically stable

boxes. 

4. Computational experiments 

This section presents the results of the computational experiments run to evaluate the efficiency of the proposed con-

tainer loading algorithm with static stability (CLA-SS). The proposed algorithm is run without any static stability constraint

(Unsupported), with the classical full base support constraint (Full Support) and with the new static stability constraint

(Supported), with the results then being compared among themselves. These results are also compared with the most re-

cent and efficient approaches to the CLP. The algorithm was coded in Visual C++ and run on an computer with 2 Intel Xeon

CPU E5-2687W at 3.1 Ghz with 128 Gigabytes of RAM running the Windows 7 Pro 64 bit operating system. 

Two versions of the algorithm are tested contrasting the use of strongly heterogeneous (CLA-SS(S)) and weakly heteroge-

neous (CLA-SS(W)) chromosome indirect representations. We start by comparing the CLA-SS(S) and CLA-SS(W) Unsupported

and Full Support variants with the most efficient algorithms. Then we compare the CLA-SS Unsupported, Full Support and

Supported variants, for both CLA-SS(W) and CLA-SS(W) versions. Finally, we compare the Supported variant of the two CLA-

SS versions with the most efficient algorithms that guarantee full base support, and thus indirectly also guarantee static
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Table 2 

Genetic algorithm parameters used in all computational experiments. 

Parameters Values 

Top 15% 

Bottom 15% 

Crossover probability 0 .7 

Population size 20 × number of boxes 

Number of populations 2 

Exchange between pop. Every 15 generations 

Fitness function Maximize the % of packed container volume 

Stopping criteria after 10 0 0 generations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

stability. The column headings for the computational results in the tables that follow refer to the different algorithms used,

namely: BSG—the Beam Search Approach of Araya and Riff (2014) ; HBMLS—the block-loading heuristic based on multi-

layer search of Zhang et al. (2012) (two versions are presented, the AS version that uses simple blocks and the AC version

that uses composite bocks); ID-GLTS—the iterative-doubling greedy-lookahead algorithm of Zhu and Lim (2012) ; BRKGA—

the multi-population biased random-key genetic algorithm of Gonçalves and Resende (2012) ; and CLA-SS—the proposed

container loading algorithm with static stability. 

4.1. Test problem instances 

The problem tests used to evaluate the effectiveness of the new algorithm are the 1500 problems proposed by Bischoff

and Ratcliff (1995) and Davies and Bischoff (1999) . These instances are organized in 15 classes, with a total of 100 instances

per class. They are designated here as BR1 to BR15. The instances used cover a wide range of situations. The heterogeneity

of the boxes increases from just 3 different box types in BR1 to 100 box types in BR15. The number of boxes per box type

also varies from 50.15 boxes per type in BR1 to 1.33 in BR15. The dimensions of the boxes are generated independently from

the dimensions of the container and the total volume of the boxes in each individual instance never exceeds the container

volume. On average the total volume of the boxes to be packed represents 99.46% of the container volume. All tables pre-

senting computational results show the average solution value, in terms of percentage of container space utilization, for the

100 instances of each class, the aggregate results for the class instances BR1–7 and BR8–15, and the aggregate results for

the class instances BR1–15. 

4.2. Genetic algorithm parameters 

The genetic algorithm parameters used in the algorithm are based on the recommended parameter value settings pro-

posed by Gonçalves and Resende (2011) for generic BRKGA, and the parameters used by Gonçalves and Resende (2012) and

Gonçalves and Resende (2013) for BRKGA developed for the CLP. Preliminary computational experiments allowed the selec-

tion of the parameters presented in Table 2 . 

4.3. CLA-SS performance compared to other CLP algorithms 

The first set of experiments aimed to compare the two CLA-SS versions against the most efficient algorithms, that can

be found in the literature, using both Unsupported and Full Support variants. Comparing the results (presented in Table 3 )

of the Unsupported variant against the equivalent algorithms (BSG, HBML S(AS), HBML S(AS) and ID-GLTS) there is an overall

difference to the best (BSG) of −0.98 percentage points, for the CLA-SS(S), and −0.69 for the CLA-SS(W). It must be stated

that the BSG outperforms all the algorithms in the Unsupported variant. A comparison against the original BRKGA algorithm

shows an overall difference of −0.12 percentage points to the CLA-SS(S) and of 0.17 to the CLA-SS(W). It can be observed

that both CLA-SS versions underperform against the BRKGA for weakly heterogeneous instances, and outperform for the

strongly heterogeneous ones. 

Analysing the results for the Full Support variant (presented in Table 4 ) show that the equivalent algorithms with the

best performance, BSG and HBMLS(AC), have an overall difference to the CLA-SS(S) of −0.53 and −0.29 percentage points

respectively and an overall difference to the CLA-SS(W) of −0.05 and 0.19 percentage points; comparing with the results

for the original BRKGA algorithm there is an overall difference of 0.10 percentage points to the CLA-SS(S) and 0.58 to the

CLA-SS(W). Notably, the CLA-SS(W) presents the best overall results for the BR8–15 classes of problems. 

These results show that the proposed versions of the CLA-SS algorithm have a level of performance similar to the best-

in-class CLP algorithms, both in the Unsupported and Full Support variants. 

The comparison of computational times between the different approaches would only provide significant information if

the software programming technologies, such as the use of parallel programming or memory management, were similar,

and the tests run on identical computers and operating systems. Regardless this fact, Table 5 presents the reported average

running time of each approach. 



578 A. Galrão Ramos et al. / Transportation Research Part B 91 (2016) 565–581 

Table 3 

Performance comparison of Unsupported variants. 

Class BSG HBMLS (AS) HBMLS (AC) ID-GLTS BRKGA CLA-SS(S) CLA-SS(W) 

Problems (2014) (2012) (2012) (2012) (2010) 

BR_1 95 .69 94 .87 93 .54 95 .59 95 .28 93 .54 95 .10 

BR_2 96 .24 95 .41 94 .47 96 .13 95 .90 94 .83 95 .76 

BR_3 96 .49 95 .56 95 .12 96 .30 96 .13 95 .40 95 .85 

BR_4 96 .31 95 .38 95 .10 96 .15 96 .01 95 .38 95 .74 

BR_5 96 .18 95 .22 95 .08 95 .98 95 .84 95 .43 95 .65 

BR_6 96 .05 95 .10 95 .21 95 .81 95 .72 95 .36 95 .61 

BR_7 95 .77 94 .69 94 .87 95 .36 95 .29 95 .18 95 .32 

BR_8 95 .33 94 .16 94 .60 94 .80 94 .76 94 .80 95 .07 

BR_9 95 .07 93 .76 94 .24 94 .53 94 .34 94 .64 94 .77 

BR_10 94 .97 93 .38 94 .08 94 .35 93 .86 94 .32 94 .47 

BR_11 94 .80 92 .87 93 .86 94 .14 93 .60 94 .01 94 .14 

BR_12 94 .64 92 .59 93 .67 94 .10 93 .22 93 .77 93 .93 

BR_13 94 .59 92 .25 93 .45 93 .86 92 .99 93 .56 93 .37 

BR_14 94 .49 91 .84 93 .34 93 .83 92 .68 93 .28 93 .22 

BR_15 94 .37 91 .53 93 .14 93 .78 92 .46 92 .81 92 .65 

Mean (BR 1–7) 96 .11 95 .18 94 .77 95 .90 95 .74 95 .02 95 .58 

Mean (BR 8–15) 94 .78 92 .80 93 .80 94 .17 93 .49 93 .90 93 .95 

Mean (BR 1–15) 95 .40 93 .91 94 .25 94 .98 94 .54 94 .42 94 .71 

∗ The best values appear in bold. 

Table 4 

Performance comparison of Full Support variants. 

Class BSG HBMLS (AS) HBMLS (AC) ID-GLTS BRKGA CLA-SS(S) CLA-SS(W) 

Problems (2014) (2012) (2012) (2012) (2010) 

BR_1 94 .50 94 .30 93 .95 94 .40 94 .34 92 .36 93 .86 

BR_2 95 .03 94 .74 94 .39 94 .85 94 .88 93 .68 94 .55 

BR_3 95 .17 94 .89 94 .67 95 .10 95 .05 94 .21 94 .75 

BR_4 94 .97 94 .69 94 .54 94 .81 94 .75 94 .23 94 .63 

BR_5 94 .80 94 .53 94 .41 94 .52 94 .58 94 .05 94 .38 

BR_6 94 .65 94 .32 94 .25 94 .33 94 .39 93 .87 94 .24 

BR_7 94 .09 93 .78 93 .69 93 .59 93 .74 93 .26 93 .82 

BR_8 93 .15 92 .88 93 .13 92 .65 92 .65 92 .64 93 .16 

BR_9 92 .53 92 .07 92 .54 92 .11 91 .90 92 .13 92 .62 

BR_10 92 .04 91 .28 92 .02 91 .60 91 .28 91 .62 92 .09 

BR_11 91 .40 90 .48 91 .45 90 .64 90 .39 91 .19 91 .56 

BR_12 90 .92 89 .65 90 .91 90 .35 89 .81 90 .91 91 .28 

BR_13 90 .51 88 .75 90 .43 89 .69 89 .27 90 .66 90 .93 

BR_14 89 .93 87 .81 89 .80 89 .07 88 .57 90 .31 90 .38 

BR_15 89 .33 86 .94 89 .24 88 .36 87 .96 90 .01 90 .08 

Mean (BR 1–7) 94 .74 94 .46 94 .27 94 .51 94 .53 93 .66 94 .32 

Mean (BR 8–15) 91 .22 89 .98 91 .19 90 .56 90 .23 91 .18 91 .51 

Mean (BR 1–15) 92 .87 92 .07 92 .63 92 .40 92 .24 92 .34 92 .82 

∗ The best values appear in bold. 

Table 5 

Average computational times (s) for test classes BR1 to BR15. 

BSG HBMLS ID-GLTS BRKGA CLA-SS(W) 

Unsupported 500 597 500 147 274 

Full Support 150 519 150 232 146 

 

 

 

 

 

 

4.4. CLA-SS performance for the different versions 

A second set of experiments evaluates the performance of the two CLA-SS versions (CLA-SS(S) and CLA-SS(W)) across the

Unsupported, Supported and Full Support variants. The average results obtained are presented in Table 6 . In the case of the

Unsupported variant, the results show that the CLA-SS(S) performs better over the classes BR13 to BR15; in the case of the

Supported variant the CLA-SS(S) performs better over the classes BR9 to BR15; and in the case of the Full Support variant,

the CLA-SS(W) always returns the best performance. It can also be observed that for each class, the average Unsupported

results are higher than the comparable results of the Supported variant, which in turn are higher than the respective Full

Support results. 
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Table 6 

Performance comparison of CLA-SS versions. 

Class Unsupported Supported Full Support 

Problems CLA-SS(S) CLA-SS(W) CLA-SS(S) CLA-SS(W) CLA-SS(S) CLA-SS(W) 

BR_1 93 .54 95 .10 93 .16 94 .79 92 .36 93 .86 

BR_2 94 .83 95 .76 94 .73 95 .40 93 .68 94 .55 

BR_3 95 .40 95 .85 95 .21 95 .55 94 .21 94 .75 

BR_4 95 .38 95 .74 95 .29 95 .51 94 .23 94 .63 

BR_5 95 .43 95 .65 95 .15 95 .43 94 .05 94 .38 

BR_6 95 .36 95 .61 95 .09 95 .31 93 .87 94 .24 

BR_7 95 .18 95 .32 94 .93 95 .14 93 .26 93 .82 

BR_8 94 .80 95 .07 94 .69 94 .78 92 .64 93 .16 

BR_9 94 .64 94 .77 94 .51 94 .45 92 .13 92 .62 

BR_10 94 .32 94 .47 94 .07 93 .95 91 .62 92 .09 

BR_11 94 .01 94 .14 93 .68 93 .38 91 .19 91 .56 

BR_12 93 .77 93 .93 93 .23 92 .61 90 .91 91 .28 

BR_13 93 .56 93 .37 92 .59 91 .64 90 .66 90 .93 

BR_14 93 .28 93 .22 91 .68 90 .72 90 .31 90 .38 

BR_15 92 .81 92 .65 90 .58 90 .10 90 .01 90 .08 

Mean (BR 1–7) 95 .02 95 .58 94 .79 95 .30 93 .66 94 .32 

Mean (BR 8–15) 93 .90 93 .95 93 .13 92 .70 91 .18 91 .51 

Mean (BR 1–15) 94 .42 94 .71 93 .91 93 .92 92 .34 92 .82 

∗ The best values of each variant (that is, Unsupported, Supported and Full Support) appear in bold. 

Table 7 

Number of times the CLA-SS versions provided better solutions. 

Class Unsupported Supported Full Support 

Problems CLA-SS(S) CLA-SS(W) CLA-SS(S) CLA-SS(W) CLA-SS(S) CLA-SS(W) 

BR_1 2 96 4 94 5 86 

BR_2 5 93 18 81 13 85 

BR_3 22 78 32 68 18 82 

BR_4 25 75 35 65 31 68 

BR_5 32 68 32 68 32 68 

BR_6 28 70 33 65 31 69 

BR_7 40 60 33 65 28 72 

BR_8 25 72 45 55 22 78 

BR_9 41 59 52 48 22 78 

BR_10 44 56 55 45 23 76 

BR_11 42 56 53 47 33 67 

BR_12 30 70 63 37 27 73 

BR_13 53 46 71 29 35 63 

BR_14 52 48 69 31 49 51 

BR_15 59 41 59 41 46 53 

Mean (BR 1–7) 22 .0 77 .1 26 .7 72 .3 22 .6 75 .7 

Mean (BR 8–15) 43 .3 56 .0 58 .4 41 .6 32 .1 67 .4 

Mean (BR 1–15) 33 .3 65 .9 43 .6 55 .9 27 .7 71 .3 

 

 

 

 

 

 

 

Table 7 presents the number of times for each class and variant, that each of the CLA-SS versions outperforms the other.

All three CLA-SS(W) variants outperform the CLA-SS(S) variants in the weakly heterogeneous classes of instances. As for the

strongly heterogeneous classes, CLA-SS(S) outperforms CLA-SS(W) in the Supported variant. However in the Unsupported

and Full Support variants it is CLA-SS(W) that has the best overall performance. 

The impact of the number of generations of the algorithm is depicted in Fig. 13 . The evolution of the solution is fastest

under the Full Support variant, with the Unsupported and the Supported variants requiring progressively more iterations. 

4.5. Performance of statically stable algorithms 

Finally, the CLP algorithms with the best performance in the Full Support variant (BSG and CLA-SS(W)), that is, with static

stability, are compared with the two versions of the CLA-SS Supported variant. The average results obtained are presented

in Table 8 . The Supported variant CLA-SS(W), had the best average performance for BR1 to BR8 classes of instances, while

the CLA-SS(S) version outperformed all approaches for BR9 to BR15 classes of instances. 
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Fig. 13. Influence of the number of generations. 

Table 8 

Performance comparison of statically stable solutions. 

Class BSG CLA-SS(W) CLA-SS(S) CLA-SS(W) 

Problems (2014) Full Support Supported Supported 

BR_1 94 .50 93 .86 93 .16 94 .79 

BR_2 95 .03 94 .55 94 .73 95 .40 

BR_3 95 .17 94 .75 95 .21 95 .55 

BR_4 94 .97 94 .63 95 .29 95 .51 

BR_5 94 .80 94 .38 95 .15 95 .43 

BR_6 94 .65 94 .24 95 .09 95 .31 

BR_7 94 .09 93 .82 94 .93 95 .14 

BR_8 93 .15 93 .16 94 .69 94 .78 

BR_9 92 .53 92 .62 94 .51 94 .45 

BR_10 92 .04 92 .09 94 .07 93 .95 

BR_11 91 .40 91 .56 93 .68 93 .38 

BR_12 90 .92 91 .28 93 .23 92 .61 

BR_13 90 .51 90 .93 92 .59 91 .64 

BR_14 89 .93 90 .38 91 .68 90 .72 

BR_15 89 .33 90 .08 90 .58 90 .10 

Mean (BR 1–7) 94 .74 94 .32 94 .79 95 .30 

Mean (BR 8–15) 91 .22 91 .51 93 .13 92 .70 

Mean (BR 1–15) 92 .87 92 .82 93 .91 93 .92 

∗ The best values appear in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 

In this paper we addressed the static stability constraint within the three-dimensional rectangular single CLP. We pro-

posed two versions of an hybrid genetic algorithm based on a multi-population biased random key genetic algorithm and a

constructive heuristic that uses a two dimensional box arrangement strategy and a maximal-spaces representation of empty

spaces inside the container. A new procedure for filling the maximal-spaces , based on the static mechanical equilibrium con-

ditions applied to rigid bodies derived from Newton’s laws of motion, that allows the evaluation of stability when there are

gaps between supporting boxes, was also proposed. The two versions of the algorithm were tested using the well known

benchmark instances of Bischoff and Ratcliff (1995) and Davies and Bischoff (1999) and compared to the best known CLP

solutions in the literature. The proposed approach improved the best known average results for the instances BR-8 to BR15

from 91.22% to 91.51%, using the full base support constraint, and improved the overall average of the solutions from 92.87%

to 93.92%, for statically stable solutions. 
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