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a b s t r a c t 

This paper proves that in traffic flow model calibration and validation the cumulative sum 

of a variable has to be preferred to the variable itself as a measure of performance. As 

shown through analytical relationships, model residuals dynamics are preserved if discrep- 

ancy measures of a model against reality are calculated on a cumulative variable, rather 

than on the variable itself. Keeping memory of model residuals occurrence times is es- 

sential in traffic flow modelling where the ability of reproducing the dynamics of a phe- 

nomenon – as a bottleneck evolution or a vehicle deceleration profile – may count as much 

as the ability of reproducing its order of magnitude. According to the aforesaid finding, in 

a car-following models context, calibration on travelled space is more robust than calibra- 

tion on speed or acceleration. Similarly in case of macroscopic traffic flow models valida- 

tion and calibration, cumulative flows are to be preferred to flows. Actually, the findings 

above hold for any dynamic model. 

© 2016 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The measures of discrepancy between a simulation and the real world are at the core of any methodology aimed at

reducing the uncertainty involved in scientific modelling, as model calibration and validation (in traffic simulation calibration

and validation constitute the object of substantial research efforts see e.g. the EU COST Action TU0903-MULTITUDE and

related outcomes, Daamen et al., 2013; Brackstone and Punzo, 2014 , or the starting TRB’s Task Force on Transportation

System Simulation; AHB80T, 2015 ). 

As for dynamic models, discrepancy is mainly measured on the interest variables time-series. With this kind of measure,

the ability of a dynamic model to reproduce the temporal evolution of a system can be observed. Several error statistics –

also known as ‘global error statistics’ – are generally used to quantify such discrepancy, or degree of match, between simu-

lated and measured time-series. Examples include the sum of squared or absolute errors and all their linear transformations,

and Theil’s inequality coefficient (for a review about their use in traffic modelling, see Hollander and Liu, 2008; Brackstone

and Punzo, 2014; Buisson et al., 2014 ). 

In global error statistics the simulated value of an interest variable at each instant is compared with its measured value

at the same instant. However, the temporal evolution of model residuals and its features, among them the autocorrelation
∗ Corresponding author. Tel.: + 39 081 76 8394 8; fax: + 39 081 7683946. 

E-mail addresses: vinpunzo@unina.it (V. Punzo), marcello.montanino@unina.it (M. Montanino). 

http://dx.doi.org/10.1016/j.trb.2016.04.012 

0191-2615/© 2016 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.trb.2016.04.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/trb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trb.2016.04.012&domain=pdf
mailto:vinpunzo@unina.it
mailto:marcello.montanino@unina.it
http://dx.doi.org/10.1016/j.trb.2016.04.012


22 V. Punzo, M. Montanino / Transportation Research Part B 91 (2016) 21–33 

0
10
20
30
40
50
60
70
80
90

100

6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

Sp
ee

d 
[k

ph
]

Time

Measured vs. Simulated speed profiles
Measurement Simula�on A Simula�on B

Fig. 1. Comparison between a measured speed time-series (“Measurement”) and two simulated speed time-series (“Simulation A” and “Simulation B”). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of residuals, do not play any role and, therefore, do not affect the calculation of the error statistic. It is only the magnitude

of residuals that matters, not their occurrence time or sequence. For instance, if the sum of squared residuals has to be

minimized in calibration, the minimization will be driven by the residuals with the highest magnitude (the residuals being

squared) irrespective of their occurrence time. This is a major drawback in dynamic traffic models validation too, where

the model ability to reproduce the duration of an event, as a bottleneck, may count as much as the ability to capture its

magnitude. 

This issue is illustrated in Fig. 1 . It shows a time-series of measured speed data and two time-series of simulated speed

data. It provides a qualitative representation of time-series of vehicle mean speeds at a spot detector, or of vehicle speed

profiles (on a different time scale). The measured speed profile exhibits a drop in the period 7:00–9:30 a.m. while the

two simulated speed profiles i.e. Simulation A and Simulation B exhibit a drop that is equal to the drop in the measured

profile as for magnitude, but it is shifted in time (for simulations A and B the speed drop occurrence period is respectively

10:00 a.m. to 12:30 p.m. and 1:00–3:30 p.m.). It is easily understood that any of the above mentioned error statistics would

yield the same value for both the simulated profiles, as those statistics have no memory of the residuals occurrence time.

Actually profiles A and B are very different from one another, and A is closer to the measured profile than B. 

With regards to model residuals autocorrelation, in particular, Hoogendoorn and Hoogendoorn (2010) acknowledged that

it affects microscopic traffic flow model calibration. To avoid biased calibration results, they suggest an a posteriori trans-

formation of measured and simulated time-series in the ‘time-domain’ that is proved to eliminate autocorrelation in case

of linear models. Montanino et al. (2012) pointed instead at the aforementioned weakness of global error statistics in the

time-domain suggesting to conceive error statistics in the ‘frequency-domain’. Frequency-domain statistics make the most 

of the information about residuals autocorrelation in time-series data. Yet in a frequency-domain approach the magnitude

of local errors is not directly taken into account. 

Therefore, a feasible approach to overcome the issue raised (in the time-domain), i.e. keeping memory of the model

residuals order, might be assigning weights to the residuals. In a systematic way, this can be obtained through a convolution

of residuals and time. This is the basic idea inspiring this paper. 

In general, given two functions f and g , their convolution is defined as the integral of their product after one is reversed

and shifted ( Damelin and Miller, 2011 ): 

( f ∗ g ) ( t ) = 

∫ + ∞ 

−∞ 

f ( τ ) g ( t − τ ) dτ = 

∫ + ∞ 

−∞ 

f ( t − τ ) g ( τ ) dτ

In our case, the discrete convolution of the model residuals time-series g [ k ] and the time k , in the time interval [1, N ],

can be written as: 

( f ∗ g ) [ h ] = 

N ∑ 

k =1 

[ h − k ] g [ k ] 

For a shift h equal to the total length N of the time-series the previous equation yields: 

( f ∗ g ) [ N ] = 

N ∑ 

k =1 

[ N − k ] g [ k ] (1) 

The discrete convolution in Eq. (1 ) represents the linear combination of the model residuals with the reversed discrete

time. The first residual is weighted with the length N of the time-series, while the last residual is weighted with one.

It is easily understood that the time convolution above allows preserving the memory of model residuals dynamics. The

mathematical operation in Eq. (1 ) is therefore a possible method to overcome the aforementioned weakness of global error

statistics. 
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Fig. 2. Comparison between the measured cumulative speed profile (“Measurement”) and the simulated cumulative speed profiles (“Simulation A” and 

“Simulation B”). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Actually, in Section 2.2 we show that if in the calculation of a global error statistic a variable is replaced by its cumulative

sum, the transformation of model residuals in Eq. (1 ) is implicitly obtained. In fact, given the two time-series of the model

residuals of a variable Z and of its cumulative Y , the Sum of the Absolute or Squared Errors of Y ( SAE or SSE ; for their

definition see Eqs. (5 ) and ( 6 ) include the time convolution of the residuals of Z . A first contribution of this paper, therefore,

is a model for the propagation of model residuals from a time-discrete variable to its cumulative in SAE and SSE statistics

and in all their linear transformations. 

In Section 2.3 a specification of such error propagation model for traffic flow models is provided. Said property of a

cumulative variable, i.e. keeping memory of the temporal evolution of its derivative residuals, suggests that cumulative

variables are to be preferred as measures of performance in traffic flow models too. This finding solves longstanding

methodological issues especially in car-following modelling as recalled by the question raised into the title of this paper

(see Section 3 for a discussion on the field literature). This is the second major contribution of the paper. 

In summary, the paper is organized as follows. In Section 2 , a general model for the propagation of errors in SAE or

SSE statistics is first provided. The model is then specified for car-following and macroscopic traffic flow models. The impli-

cations for the validation and calibration of traffic flow models of theoretical findings are discussed in Section 3 , where a

numerical example on car-following is included. As conclusions a summary and a brief discussion are provided. 

2. Methodology 

2.1. Introduction 

In Fig. 2 , the cumulative functions of the speed profiles shown in Fig. 1 are reported (in case the profiles in Fig. 1 are

the speed profiles of a vehicle, the cumulative functions depicted in Fig. 2 are its measured and simulated trajectories, x ( t ),

i.e. the space travelled by the vehicle until instant t ). 

From the visual inspection it is easily understood that if we calculated discrepancy measures of these cumulative speed

profiles A and B from the cumulative profile of measurements by means of error statistics as SAE or SSE , we would ob-

tain a value for the statistic of A different by that of B (on the contrary of what happens when calculating these statis-

tics on the speed profiles A and B in Fig. 1 ). In particular, we would obtain a value for the error statistic of A sensibly

smaller than that of B (this result is intuitive when looking at the areas between the two simulated profiles and the mea-

sured one). This is the sought result as the speed drop in the simulated profile A is closer to the measured speed drop

than that in the profile B. The rationale is clear: a discrepancy measure calculated on the speed profiles has no mem-

ory of the model residuals dynamics while it keeps this memory when calculated on the time integrals of the profiles

themselves. 

Properties of cumulative functions – monotonicity, in particular – and their graphical representation have been already

largely exploited in studies on traffic flow theory – see for example Newell (1993a,b ), Daganzo (1994 ), Cassidy (1998 ) and

Cassidy and Bertini (1999 ) – and on queuing systems, e.g. Newell (1982 ) (some examples of common applications in trans-

portation problems can be found in Daganzo, 1997 ). 

In this paper, instead, we wish to investigate how the model residuals of a variable propagate to the model residuals

of the cumulative sum of the variable in global error statistics. In fact, this will give a new insight in the calibration and

validation of traffic flow models. 

Therefore in the next subsection we first show how to obtain a general model for the propagation of the residuals from

a time-discrete variable Z to its cumulative sum Y in SAE and in SSE . Then we show how this model can be specified for the

case of car-following dynamics or, equivalently, for the case of flow measurements at point detectors. 
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2.2. General error propagation model 

Given a continuous variable z ( t ) and its time-discrete representation z [ k ] 
def . = z(k · �t) , ∀ k ∈ { 0 , ..., N} , with �t the unit

time step, we define the variable y [ k ] as the cumulative sum of z [ k ] as follows: 

y [ k ] = 

k ∑ 

i =0 

z [ i ] (2) 

In the following, for the sake of convenience, we refer to z [ k ] as z k , and to y [ k ] as y k . 

We then indicate with z obs 
k 

the real world observations of the variable z k , and with z sim 

k 
its simulated values. 

The model error or residual on the variable z k is defined as: ε Z 
k 

= z sim 

k 
− z obs 

k 
. Similarly, the model error on the variable y k 

is defined as: ε Y 
k 

= y sim 

k 
− y obs 

k 
. 

Assuming that a simulation starts at time k = 0, with ε Z 
0 

= ε Y 
0 

= 0 , the model error evolution for the variables z k and y k 
can be derived recursively as follows: {

z sim 

1 = z obs 
1 + ε Z 1 

y sim 

1 = y sim 

0 + z sim 

1 = y obs 
0 + z obs 

1 + ε Z 1 = y obs 
1 + ε Z 1 {

z sim 

2 = z obs 
2 + ε Z 2 

y sim 

2 = y sim 

1 + z sim 

2 = y obs 
0 + z obs 

1 + z obs 
2 + ε Z 1 + ε Z 2 = y obs 

2 + 

∑ 2 
i =1 ε 

Z 
i {

... 

... {
z sim 

k 
= z obs 

k 
+ ε Z 

k 

y sim 

k 
= y obs 

k 
+ 

∑ k 
i =1 ε 

Z 
i 

(3) 

Thus, at the generic step k , the error ε Y 
k 

on the cumulative variable can be expressed as follows: 

ε Y k = 

k ∑ 

i =1 

ε Z i (4) 

To evaluate the discrepancy between model outputs and measurements, we may adopt error measures like the Sum of

the Absolute Errors, SAE , or the Sum of the Squared Errors, SSE : 

SAE = 

N ∑ 

k =1 

| ε k | (5) 

SSE = 

N ∑ 

k =1 

( ε k ) 
2 

(6) 

where ɛ k stands for ε z 
k 

or ε y 
k 

when the error measures are evaluated on z [ k ] or on y [ k ], respectively. Accordingly, correspond-

ing error measures will be indicated in the following as SAE Z , SSE Z and SAE Y , SSE Y . 

In case the SAE is calculated on the variables z [ k ] and y [ k ], from Eq. (5 ) it is obtained: 

SA E Z = 

∑ N 
k =1 

∣∣εZ 
k 

∣∣
SA E Y = 

∑ N 
k =1 

∣∣εY 
k 

∣∣ (7) 

However, the SAE Y can be expressed also as a function of z [ k ] through a recursive application of Eq. (4 ): ∣∣ε Y 1 

∣∣ = 

∣∣ε Z 1 

∣∣∣∣ε Y 2 

∣∣ = 

∣∣ε Z 1 + ε Z 2 

∣∣∣∣ε Y 3 

∣∣ = 

∣∣ε Z 1 + ε Z 2 + ε Z 3 

∣∣
... ∣∣ε Y 

k 

∣∣ = 

∣∣∑ k 
i =1 ε 

Z 
i 

∣∣
(8) 

As | ∑ k 
i =1 ε 

Z 
i 
| ≤ ∑ k 

i =1 | ε Z i 
| , it results: 
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∣ε Y 1 
∣ ≤ ∣ε Z 1 

∣∣∣ε Y 2 

∣∣ ≤
∣∣ε Z 1 

∣∣ + 

∣∣ε Z 2 

∣∣∣∣ε Y 3 

∣∣ ≤
∣∣ε Z 1 

∣∣ + 

∣∣ε Z 2 

∣∣ + 

∣∣ε Z 3 

∣∣
... ∣∣ε Y 

k 

∣∣ ≤ ∑ k 
i =1 

∣∣ε Z 
i 

∣∣
(9)

Summing up the left- and the right-hand-side terms in Eq. (9 ) and rearranging terms, it yields: 

SA E Y ≤
N ∑ 

k =1 

( N − k + 1 ) ·
∣∣ε Z k 

∣∣ = 

N ∑ 

k =1 

∣∣ε Z k 

∣∣ + 

N ∑ 

k =1 

( N − k ) ·
∣∣ε Z k 

∣∣ (10)

Then, recalling the definition of SAE Z in Eq. (7 ) and the one of convolution in Eq. (1 ), it is obtained: 

SA E Y ≤ SA E Z + 

(
k ∗

∣∣ε Z k 

∣∣)[ N ] (11)

that is the sought relationship between the error statistic calculated on the variable Z, SAE Z , and the same statistic calculated

on its cumulative variable Y, SAE Y . It is worth noting that the upper bound for the difference between the values of the two

error measures is given by the convolution with time of the absolute residuals of Z . Therefore, in the case of the SAE and

assuming equality in Eq. (11 ), the SAE on a cumulative variable Y is given by the sum of two terms: the SAE calculated on

the derivative of the variable Y i.e. Z , and the convolution of time and model residuals on the variable Z . Eq. (11 ) explains

why a statistic calculated on an integral variable is able to keep memory of the model residual dynamics, as shown in the

example of Figs. 1 and 2. 

As for the SSE, in case it is calculated on the variables z [ k ] and y [ k ], from Eq. (6 ) it is obtained: 

SS E Z = 

N ∑ 

k =1 

(
εZ 

k 

)2 

SS E Y = 

N ∑ 

k =1 

(εY 
k ) 

2 
(12)

Similarly to the SAE , the SSE Y can be expressed as a function of z [ k ] through a recursive application of Eq. (4 ): (
ε Y 1 

)2 = 

(
ε Z 1 

)2 = 

(
ε Z 1 

)2 

(
ε Y 2 

)2 = 

(
ε Z 1 + ε Z 2 

)2 = 

(
ε Z 1 

)2 + 

(
ε Z 2 

)2 +2 
(
ε Z 1 ε 

Z 
2 

)
(
ε Y 3 

)2 = 

(
ε Z 1 + ε Z 2 + ε Z 3 

)2 = 

(
ε Z 1 

)2 + 

(
ε Z 2 

)2 + 

(
ε Z 3 

)2 +2 
(
ε Z 1 ε 

Z 
2 

)
+ 2 

(
ε Z 1 ε 

Z 
3 

)
+2 

(
ε Z 2 ε 

Z 
3 

)
(
ε Y 4 

)2 = 

(
ε Z 1 + ε Z 2 + ε Z 3 + ε Z 4 

)2 = 

(
ε Z 1 

)2 + 

(
ε Z 2 

)2 + 

(
ε Z 3 

)2 + 

(
ε Z 4 

)2 +2 
(
ε Z 1 ε 

Z 
2 

)
+ 2 

(
ε Z 1 ε 

Z 
3 

)
+ 2 

(
ε Z 1 ε 

Z 
4 

)
+2 

(
ε Z 2 ε 

Z 
3 

)
+ 2 

(
ε Z 2 ε 

Z 
4 

)
+ 2 

(
ε Z 3 ε 

Z 
4 

)
· · ·(
ε Y k 

)2 = · · ·
· · ·

(13)

Summing up the terms on the left hand-side and those on the right-hand-side in Eq. (13 ), and rearranging, it is ob-

tained: 

SS E Y = 

N ∑ 

k =1 

( N − k + 1 ) ·
(
ε Z k 

)2 + 2 

N−1 ∑ 

k =1 

N ∑ 

i = k +1 

( N − i + 1 ) ·
(
ε Z k · ε Z i 

)

= 

N ∑ 

k =1 

(
ε Z k 

)2 + 

N ∑ 

k =1 

( N − k ) ·
(
ε Z k 

)2 + 2 

N−1 ∑ 

k =1 

ε Z k ·
N ∑ 

i = k +1 

( N − i + 1 ) · ε Z i (14)

Then, recalling the definition of the SSE Z in Eq. (12 ) and the one of convolution in Eq. (1 ), we can express the SSE Y as a

function of ε Z 
k 

and k : 

SS E Y = SS E Z + 

(
k ∗

(
ε Z k 

)2 
)

[ N ] + 2 

N−1 ∑ 

k =1 

ε Z k ·
N ∑ 

i = k +1 

( N − i + 1 ) · ε Z i (15)

Similarly to Eq. (11 ), Eq. (15 ) defines the relationship between the error statistic SSE on the variable Z and the same

statistic on the cumulative variable of Z i.e. Y . Here the structure of the error model is clear when looking at Eq. (13 ). The

first term in Eq. (15 ) i.e. SSE z is given by the squared errors in the diagonal of the first block of terms on the right-hand-side.
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Fig. 3. Speed profiles and space travelled in case of a shifting error. (a) The actual speed profile (black solid line) and three simulated profiles that present 

an error that is the same as for magnitude but occurring at different times (dashed/dotted lines); and (b) the four corresponding integral functions that is 

the travelled spaces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second term, that is the sum of the remaining squared residuals in the same block, is the convolution of the squared

residuals and time. The third term instead, also containing a convolution of errors and time, accounts for the sum of all the

double products (and can be negative, of course). 

It is worth noting that Eqs. (11 ) and ( 15 ) are model-independent. In fact, they apply to the time-series of an output

variable of any model, once it has been simulated. Of course, if the variable Y (that is the cumulative variable in Eq. (2 )) is

also an input for the model and thus affects its numerical solution, the definition of Y in Eq. (2 ) must be consistent with

the one adopted in the model solution scheme. This is cleared in Section 2.3 where the specifications of Eqs. (11 ) and ( 15 )

for traffic flow models are presented. 

It is worth observing also that previous results can be easily extended to any linear transformation of the two error

statistics discussed, such as the mean absolute error ( MAE ), the mean absolute normalized or percentage error ( MANE/MAPE ),

the root mean squared error ( RMSE ), the root mean square normalized or percentage error ( RMSNE/RMSPE ). Differently,

Theil’s inequality coefficient would require a slightly more complex error propagation model. 

An intuitive explanation of the above results is provided in Figs. 3–5 . In Fig. 3 , in particular, an actual vehicle speed

profile (the flat line) and three simulated profiles are reported. The three simulated profiles present the same error in speed

as for magnitude but shifted in time. It is easily verified that in case of the speed profile with a zero shift, the error on

the cumulative variable i.e. on the space travelled is kept constant for almost all the simulation (the error at each instant

is given by the vertical distance between the measured space and the simulated space). Instead, for the other two profiles

the error accumulation is shorter. It is easily understood that the process of error accumulation in a cumulative variable is

given by the convolution terms in Eqs. (11 ) and ( 15 ). 

To get further insight into the significance of the three terms in Eq. (15 ), a notable case is presented in Figs. 4 and 5 . The

case of simulated speed profiles that present two errors with the same magnitude but with opposite sign is presented. In

the following these errors are referred as compensatory errors. The case is interesting because, at a first glance, one might

argue that error statistics calculated on cumulative variables are not able to account for such kind of error (a good example

is that of two cars following one another at a constant speed: in this case, one might argue that the inter-vehicle spacing

before and after the occurrence of two compensatory errors on the speed profile of the follower is the same). In Fig. 4 (a)

the dashed (red) line represents a speed profile with a zero lag between the positive residual and the negative one; the
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Fig. 5. (a) Simulated speed profiles with increasing lag between two ‘compensatory’ errors; and (b) individual contribution of each term of Eq. (15 ), and 

total value of the SSE Y , vs. the lag. 
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dashed dotted (blue) line the case of a k time steps lag, while the dotted (green) line the case of a lag covering the entire

simulation period. In fact, in Fig. 4 (b) it is easily recognized that the integral functions of the three simulated speed profiles

overlap only after the occurrence of the compensatory error (and at the beginning of the simulation). Therefore, any global

statistic calculated on the integral measure will return error values increasing with the lag. The same statistic calculated on

speed, instead, does not make any distinction between errors taking place in different instants, as already discussed. 

This result is generalized in Fig. 5 (a) where the case of a negative residual drifting apart from the positive one is depicted.

Fig. 5 (b), instead, shows the relative contribution of each term in Eq. (15 ) as a function of the lag. Notably, the first term

on the right hand side of Eq. (15 ), i.e. the SSE Z , is insensitive to the lag width as explained before. The second term weights

early errors more than late ones. Therefore, it decreases with the lag increase that is with the shift of the speed error

towards the end of the simulation period (note that the error terms are all positive, being squared). Eventually, the third

term, which can include both positive and negative error terms, sharply increases. In fact, with the shift of the negative

error towards the end of the simulation period, positive terms increase while negative ones decrease. 

2.3. Specification for traffic flow models 

In case of microscopic traffic flow models, usually referred as car-following models, the variable z [ k ] can be thought as

the speed of the follower vehicle while the cumulative variable y [ k ] is the trajectory of the vehicle i.e. the space travelled.

In the following, these variables are referred as v k and x k . This implies a definition of the cumulative variable different from

the one given in Eq. (2 ), as cleared in the following. 

A general formulation for a car-following model can be given as ( Wilson, 2008 ): 

a k = f ( s k , v k , �v k , β) (16) 

where �v k = v k − v L 
k 

is the relative speed, that is the difference between the follower’s ( v k ) and the leader’s ( v L 
k 
) speeds;

s k = x L 
k 

− L k − x k is the net inter-vehicle spacing between the leader ( x L 
k 
) and the follower ( x k ) positions, with L k the length

of the leader vehicle; β is the vector of model parameters, and a k is the instantaneous acceleration of the follower vehicle

at time k returned by the model. 

Assuming that a k is constant between instant k and k + 1, the follower’s speed at time k + 1 can be derived straightfor-

wardly (see Eq. ( 17 )(a)). The position of the follower vehicle at time k + 1 has to be updated through the motion equation. In

the field literature, mostly used integration schemes to solve such equation are the forward Euler method and the ballistic

update (see Treiber and Kanagaraj, 2015 ) that yield: 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

v k +1 = v k + a k · �t ( a ) 

x k +1 = x k + v k +1 · �t Eulerian ( b ) 

or 

x k +1 = x k + 

v k +1 + v k 
2 

· �t Ballistic ( c ) 
(17) 

where �t is the integration step. It is worth observing that the cumulative variable to be used in the derivation of an error

propagation model (see Eq. (2 ) for the general model), has to be the same as the one defined by the model integration

scheme i.e. by Eq. ( 17 )(a) or ( 17 )(b). 

At the generic instant k , the model errors on speed and position, i.e. ε V 
k 

and ε X 
k 

, can be derived following the approach

in Eq. (3 ). With such error definition, the relationship between the SSE X on the travelled space and the SSE V on speed, for

both the Eulerian and the ballistic integration schemes can be derived as follows (the derivation for the SAE is here omitted

for brevity, given the minor relevance of the SAE for the calibration of car-following models; see Punzo et al., 2012 ). 

In case of the Euler method, the follower’s position x k can be intended as the cumulative sum of the space travelled at

each interval k , i.e. 
∑ k 

i =1 ( v k · �t ) yielding a result equivalent to that in Eq. (4 ): 

ε X k = �t ·
k ∑ 

i =1 

ε V i (18) 
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Conversely, a ballistic integration scheme yields: { 

v sim 

1 = v obs 
1 + ε V 1 

x sim 

1 = x sim 

0 + 

v sim 
1 + v sim 

0 

2 
· �t = x obs 

0 + 

v obs 
1 + v obs 

0 

2 
· �t + 

ε V 1 

2 
· �t = x obs 

1 + 

ε V 1 

2 
· �t { 

v sim 

2 = v obs 
2 + ε V 2 

x sim 

2 = x sim 

1 + 

v sim 
2 + v sim 

1 

2 
· �t = x obs 

1 + 

ε V 1 

2 
· �t + 

v obs 
2 + ε V 2 + v obs 

1 + ε V 1 

2 
· �t = x obs 

2 + ε V 1 · �t + 

ε V 2 

2 
· �t {

... 

... { 

v sim 

k 
= v obs 

k 
+ ε V 

k 

x sim 

k 
= x obs 

k 
+ �t ·

(∑ k −1 
i =1 ε 

V 
i 

+ 

ε V 
k 

2 

)

(19)

Thus, at the generic step k , the error ε X 
k 

can be expressed as follows: 

ε X k = �t ·
( 

k −1 ∑ 

i =1 

ε V i + 

ε V 
k 

2 

) 

(20)

On these bases, following the approach described in Eq. (13 ), the relationships between SSE X and SSE V for the Euler

method and the ballistic update scheme are, respectively: 

SS E X = �t 2 ·
[ 

SS E V + 

(
k ∗

(
ε Z k 

)2 
)

[ N ] + 2 

N−1 ∑ 

k =1 

ε V k ·
N ∑ 

i = k +1 

( N − i + 1 ) · ε V i 

] 

(21)

SS E X = �t 2 ·
[ 

SS E V 

4 

+ 

(
k ∗

(
ε Z k 

)2 
)

[ N ] + 2 

N−1 ∑ 

k =1 

ε V k ·
N ∑ 

i = k +1 

(
N − i + 

1 

2 

)
· ε V i 

] 

(22)

Eqs. (21 ) and ( 22 ) are the sought relationships between the SSE calculated on travelled space and the same statistic

calculated on speed, for the two integration schemes considered. They are similar to Eq. (15 ) so that considerations made

on structure and terms of the Eq. (15 ) remain valid. 

It is worth noting that in the field of car-following an approach to weight speed errors with traffic regimes (that is

deemed to overcome the overestimation of errors at low/high speeds when using normalized/non-normalized discrepancy

measures) has been proposed by Kesting and Treiber (2008) (see also Hamdar et al., 2015 ). In fact, also such measures are

linear transformation of Eq. (6 ) and thus the structures of Eqs. (21 ) and ( 22 ) do not change. 

In case of macroscopic traffic flow models, the variable Z can be thought as the flow rate at a point detector ( Z = flow )

while the variable Y is the cumulative number of vehicles arrived at the same detector until time k : 

Y = cum = 

k ∑ 

i =1 

( f lo w i · �t ) (23)

It is straightforward to verify that the derivation of the relationship between SSE cum and SSE flow is the same as the

one between SSE X and SSE V obtained for the case of the forward Euler method applied to the motion equation in the car-

following example, thus yielding again Eq. (21 ). This result – i.e. the error propagation between a variable and its cumulative

counterpart in an error statistic – holds for any measured traffic characteristic. 

3. Implications on model validation and calibration 

As for validation, Eqs. (21 ) and ( 22 ) and the earlier discussion suggest that, if a dynamic model is to be validated against

a specific variable, it is preferable to calculate the statistic on the cumulative of the variable itself. In fact, through this

device model residuals dynamics are taken into account and meaningful information on the capability of a dynamic model

to reproduce the temporal evolution of a phenomenon is obtained. In case of car-following dynamics, for instance, validating

models on the errors made on the space travelled implicitly takes into account the speed errors too, while the opposite is

not true. In turn, for macroscopic traffic flow models the use of cumulative flows is preferable to that of flows. In a single

link, for instance, at each instant, the sum of cumulative inflows and outflows gives the number of vehicles accumulated in

the link at that instant, i.e. the link density (when divided by the link length). Therefore, the time-series of residuals between

measured and simulated cumulative flows returns the evolution over time of the error in the link density that represents a

meaningful measure of performance for validating dynamic traffic flow models. It is worth observing that when using flows

as a measure of performance, instead, two simulated flow profiles returning the same value for an error statistic might

depict completely different evolutions of the traffic density on a link. 
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Also in case of model calibration the adoption of a cumulative variable in the objective function is more effective than

the adoption of the variable itself, as shown below. This holds for any dynamic model of a system. 

In case of car-following models, for instance, the problem of selecting a variable in the objective function intertwined

with many issues hindering the calibration problem solution. These includes the scarceness, incompleteness, or inconsis-

tency of data as to the model complexity (see e.g. Hoogendoorn and Hoogendoorn, 2010; Treiber and Kesting, 2013; Punzo

et al., 2015 ), the measurement errors in the data ( Ossen and Hoogendoorn, 2008; Montanino and Punzo, 2015 ), the compu-

tational complexity of the analysis ( Ciuffo et al., 2008 ), the probabilistic modelling of parameters, including their covariance

structure ( Kim and Mahmassani, 2011 ) and the asymmetry in the importance of model parameters ( Punzo et al., 2015 ).

Overall, these make the calibration problem all but trivial, with over-fitting of models and non-transferability of parameter

values as possible drawbacks ( Brockfeld et al., 2004; Punzo Simonelli, 2005; van Hinsbergen et al., 2015; Zheng et al., 2013 ).

Leaving aside these problems and focusing only on the choice of the variable in the measure of discrepancy, feasible

variables have been the space travelled by a vehicle (or, equivalently, the spacing between vehicles), the vehicle speed (or,

equivalently, the relative speed) and the acceleration. In a ‘global approach’ for calibration (see Treiber and Kesting, 2013 ),

where each single evaluation of the objective function entails a simulation of an entire trajectory, and a Least Squares (LS)

estimation is the favourite solving method, speed and spacing are usually preferred to acceleration. In fact, usually being

indirectly obtained by position or speed measurements through differentiation, the acceleration is affected by strong noise

(high frequency error components amplify in the differentiation process; see Punzo et al., 2011 ). 

However, the choice between speed and spacing has been controversial in the field literature with many studies making

use of one variable or the other, and some even of their combination (see e.g. Ossen and Hoogendoorn, 2008; Kim and

Mahmassani, 2011 ). Although some attempts to provide arguments in favour of the spacing have been produced, a sound

theoretical interpretation of results has never been provided. For instance, Punzo and Simonelli (2005) first claimed that

spacing is preferable to speed as the variable in the objective. The authors provided an intuitive explanation supported

by results of a cross-comparison of model calibration against speed and spacing. In Ossen and Hoogendoorn (2007) , the

numerical analysis showed that the calibration against speed does not allow estimating some of Gipps’ model parameters,

confirming a preference for the spacing. Furthermore, the use of a combination of speed and spacing did not improve the

calibration results. Kesting and Treiber (2008) also suggest the use of spacing and compare the impact on results of using

different error measures in the objective function (see also Hamdar et al., 2015 ). Eventually, in the exploratory study of

Punzo et al. (2012) , the preference for spacing was confirmed through substantial empirical evidence. 

From a conceptual point of view, if we could rely on a ‘perfect’ car-following model, it would not matter whether to

calibrate on speed or space. We would have a unique global minimum, in which the objective function would be null, and a

unique set of optimal parameters being the model calibrated either against speed or space. In reality, as no model is error-

free we have two different minima and two different set of optimal parameters when calibrating against speed or space.

Clearly, if the model is calibrated against speed, we will never find another set of parameters returning a speed profile closer

to the real speed profile than the one calibrated. However, we can find a set of parameters that returns a space profile closer

to the real space travelled than the one obtained with parameters calibrated against speed. The same holds when calibrating

on space, so that either optimality is reached on speed or on space. 

The only way to define the dominance of a variable in the objective function over the other is by measuring the ro-

bustness of calibration results with respect to the other variable that is making a cross-validation, as proposed in Punzo

and Simonelli (2005) . In fact, if the model is calibrated against speed, it will be possible to calculate the error it makes in

reproducing the spacing, and vice versa. We can therefore calculate the spread, as measured by a relative error statistic,

between the spacing resulting from the speed calibration and the optimal spacing i.e. the one obtained calibrating directly

against spacing ( Eq. (24 )(a)), and likewise on speed ( Eq. (24 )(b)): 

RMSE ( s,βV ) − RMSE ( s,β S ) 

RMSE ( s,β S ) 
( a ) 

RMSE ( v ,β S ) − RMSE ( v ,βV ) 

RMSE ( v ,βV ) 
( b ) 

(24) 

where RMSE ( i, β j ), with i, j ∈ { s, v }, is the Root Mean Square Error of the variable i obtained by running the model with the

optimal parameters calibrated against the variable j . 

We performed such cross-validation by calibrating the Intelligent Driver Model (IDM) by Treiber et al. (20 0 0) against

both speed and inter-vehicle spacing for all the 2037 trajectories in one of the I80 NGSIM datasets, therefore covering a

wide range of driving dynamics. The methodology for the IDM calibration applied here is the one described in Punzo et al.

(2015) where all the calibration phases, including criteria for the definition of parameters ranges of car-following models

and the set-up of the calibration problem are provided. 

It is worth noting that the dataset used here is the ‘reconstructed’ NGSIM I80-1 dataset described in Montanino and

Punzo (2015) and not the original one ( NGSIM, 2005 ) which is known to be affected by massive errors that corrupt the

accuracy of vehicle kinematics and microscopic traffic dynamics (see Thiemann et al., 2008; Punzo et al., 2011 ). In fact, the

analyses performed in Montanino and Punzo (2015) , which also provide the methodology to process the original NGSIM

data, unequivocally suggest the use of such new processed dataset. The paper compares, for the two datasets, the impacts

of the measurements errors in trajectories on the calibration and validation of traffic flow models (against microscopic and
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Fig. 6. Cross-validation of calibration results. In red, the histogram of relative errors on spacing obtained when calibrating on speed. In blue, the histogram 

of relative errors on speed when calibrating on spacing. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

macroscopic measures, at both the scale of individual traffic models and traffic simulation) quantifying the benefit for traffic

modelling of using the ‘reconstructed’ dataset (this dataset is available at MULTITUDE, 2014 ). 

The result of the cross-validation experiment is shown in Fig. 6 . It can be clearly observed that results of calibration on

spacing (see the blue bars) are much more robust than those obtained when calibrating on speed (see the red bars). In fact,

the mean relative error on speed that is obtained by calibrating on spacing is equal to 9%, while the mean relative error

made on spacing when calibrating on speed is equal to 63%. Similar results hold for the standard deviation. 

The explanation comes clear from the findings in the previous section. In fact, calibrating a car-following model against

speed or spacing, using the Sum of Squared Errors as measure of discrepancy, means minimizing the following objective

functions, respectively: 

min 

{
SS E V 

}
(25)

min 

{
SS E X 

}
= min 

{ 

SS E V + 

(
k ∗

(
ε Z k 

)2 
)

[ N ] + 2 

N−1 ∑ 

k =1 

ε V k ·
N ∑ 

i = k +1 

( N − i + 1 ) · ε V i 

} 

(26)

It is clear that calibrating on spacing (see Eq. (26 )) an algorithm will try to minimize residuals on speed through the

SSE V , as well as, their optimal allocation in time through the other two terms in Eq. (26 ), that is the time allocation of

speed errors that minimizes errors on spacing (see again examples in Figs. 3–5 ). The result of calibration on spacing will

be therefore optimal for spacing and suboptimal for speed. On the contrary, when calibrating on speed (see Eq. (25 )), the

algorithm will be insensitive to spacing. In fact, the objective function in Eq. (25 ) makes no difference between speed profiles

that have the same SSE V but different values of the error on spacing i.e. different values of the SSE X . In this case results of

calibration on speed will be optimal for speed and indeterminate for spacing, for the same reasons arising in Figs. 1 and 2. 

A further and straightforward mathematical argument in favour of using spacing in place of speed in calibration (see

Treiber and Kesting, 2013 ) is that, assuming that the spacing was perfectly fit by the model (i.e. the model is ‘perfect’)

and that trajectory data were internally and platoon consistent, calibrating on spacing would fit perfectly also the speeds.

However, the contrary is not true because of the integration constant. 

From the above discussion is also clear that combining speed and spacing in the objective function, through normalized

measure of discrepancy, introduces a bias on the results of validation and calibration even in case of adopting equal weights.

In case of calibration, in particular, a numerical evidence of the impact of such bias was given in Punzo et al. (2012) for the

case of Theil’s inequality coefficient. 
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4. Summary and conclusions 

The comparison of model outputs and real world measurements is at the core of the building and corroboration of any

scientific model. To this aim time-series of output variables are adopted. Discrepancy between simulated and real world

variable time-series is usually measured through global error statistics whose major drawback is to ignore model residuals

dynamics. That global statistics keep no memory of the occurrence times of model errors, or of their order, is an unfortunate

condition for the evaluation of dynamic models accuracy as models of this kind are chiefly used for their ability to describe

the temporal evolution of phenomena. 

In this paper we show that this weakness may be solved by considering the convolution of model errors and time. Fur-

ther we demonstrate that a convolution of this kind can be achieved by replacing a time-discrete variable by its cumulative

in global error statistics as the Sum of Absolute Errors or the Sum of Squared Errors ( SAE and SSE ). In fact, given the two

time-series of the model residuals of a variable Z and of its cumulative Y , the above statistics calculated on Y include the

convolution of model residuals of Z and time. Model residuals of a cumulative variable are therefore able to keep memory

of the temporal evolution of its derivative model residuals. 

To prove this condition a general model for the propagation of model residuals in the above error statistics from a

variable to its cumulative has been developed. The model holds for all the linear transformations of SAE and SSE . It has

been specified for the car-following modelling in case of two integration schemes (i.e. Euler method and ballistic update),

and in case of macroscopic modelling of traffic flows. The model yields mathematical relationships between the above error

statistics applied to a variable and the same statistics applied to the cumulative of the variable itself. It is worth observing

that the obtained relationships are model-independent, as they apply to the time-series of output variables of any model

once it has been simulated. 

These results have significant implications on the validation and calibration of traffic flow models. As for validation, if

a dynamic model is to be validated against a specific variable it is recommended to calculate the error statistic on the

cumulative of the variable itself e.g. for car-following models, that means on space rather than speed; for macroscopic

traffic flow models, on cumulative flows rather than flows. In fact, as a cumulative variable keeps memory of model residuals

dynamics it returns more meaningful information on the capability of a dynamic model to reproduce the temporal evolution

of a phenomenon than the variable itself. 

As for calibration, if a model is to be calibrated on a variable, it is recommended to adopt the cumulative of the variable

as a measure of performance in the objective function. In fact, when adopting a variable in the objective function, the

calibration is insensitive to the cumulative of the variable itself while it is affected by its derivative. This result provides

a solution to a long-standing issue in the calibration of car-following models: inter-vehicle spacing is to be preferred to

vehicle speed or acceleration as a variable in the objective function. The impact of this finding has been quantified through

an extensive calibration exercise of the Intelligent Driver Model on all trajectories of a NGSIM dataset. 
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