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a b s t r a c t 

Perfect rationality (PR) has been widely used in modeling travel behavior. As opposed to 

PR, bounded rationality (BR) has recently regained researchers’ attention since it was first 

introduced into transportation science in the 1980s due to its power in more realistic travel 

behavior modeling and prediction. This paper provides a comprehensive survey on the 

models of BR route choice behavior, aiming to identify current research gaps and provide 

directions for future research. Despite a small but growing body of studies on employing 

bounded rationality principle, BR route choice behavior remains understudied due to the 

following reasons: (a) The existence of BR thresholds leads to mathematically intractable 

properties of equilibria; (b) BR parameters are usually latent and difficult to identify and 

estimate; and (c) BR is associated with human being’s cognitive process and is challeng- 

ing to model. Accordingly, we will review how existing literature addresses the aforemen- 

tioned challenges in substantive and procedural bounded rationality models. Substantive 

bounded rationality models focus on choice outcomes while procedural bounded rational- 

ity models focus on the empirical studies of choice processes. Bounded rationality models 

in each category can be further divided based on whether time dimension is included. Ac- 

cordingly, static and dynamic traffic assignment are introduced in substantive bounded ra- 

tionality while two-stage cognitive models and day-to-day learning models in procedural 

bounded rationality are discussed. The methodologies employed in substantive bounded 

rationality include game theory and interactive congestion game, while those in procedu- 

ral bounded rationality mainly adopt random utility and non- or semi-compensatory mod- 

els. A comparison of all existing methodologies are given and bounded rationality models’ 

scope and boundaries in terms of predictability, transferability, tractability, and scalability 

are discussed. Finally existing research gaps are presented and several promising future 

research directions are given. 

© 2016 Elsevier Ltd. All rights reserved. 

 

 

 

1. Introduction 

Perfect rationality is widely used in modeling travelers’ decision-making behavior. For instance, in mode choice, travel-

ers are assumed to be expected disutility minimizers ( Ben-Akiva and Lerman, 1985 ); and in route choice, only the paths

with the least disutility or the least generalized cost are chosen ( Sheffi, 1984 ). As opposed to ‘rationality as optimization’,
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Simon (1957) proposed that people are boundedly rational in their decision-making processes and they tend to seek a sat-

isfactory choice solution instead. This is either because people lack accurate information, or they are incapable of obtaining

an optimized decision due to complexity of the situations. Bounded rationality also requires less computational burdens

and ensures existence of a satisficing solution. People search decisions dynamically and will not terminate till an alternative

meeting a certain threshold level is found. This level will be adjusted if a satisficing alternative is difficult to find. “Such

changes in aspiration level...tend to guarantee the existence of satisfactory solutions” ( Simon, 1957 ). Due to its prevalence in

human behavior, ‘bounded rationality’ has been studied extensively in economics and psychology. 

Introduction of bounded rationality into transportation science originated from the need to explain experimental findings

of travel behavior which cannot be captured by perfectly rational modeling. Mahmassani and Chang (1987) first employed

bounded rationality (BR) in modeling pre-trip departure time selection for a single bottleneck. Since then, there is “small

but growing” ( Ridwan, 2004 ) literature on incorporating bounded rationality into various transportation models, such as

hyperpath assignment ( Fonzone and Bell, 2010 ), dynamic traffic assignment ( Szeto and Lo, 2006 ), transportation planning

( Gifford and Checherit a, 2007; Khisty and Arslan, 2005 ), traffic policy making ( Marsden et al., 2012 ) and traffic safety ( Sivak,

2002 ). All these studies indicate that the BR assumption plays an important role in transportation modeling. However, “there

is not yet much convergence among them” ( Ridwan, 2004 ). In other words, there does not exist a standard BR framework

for travel behavior study. 

In this paper, we aim to conduct a comprehensive survey on boundedly rational travel behavior. There are two types of

behavioral research ( Simon, 1982 ): “studies that are aimed at discovering and testing invariant laws of human individual or

social behavior” and “studies that estimate parameters we need for fitting theoretical models incorporating known/believed

laws to particular situations where we wish to make predictions”. The former is to reveal behavior and the latter is to model

behavior. Accordingly, we will first review behavioral studies on disclosing and verifying bounded rationality. Then we will

summarize research on boundedly rational route choice behavior models. 

The rest of the paper is organized as follows: in Section 2 , empirical and experimental evidence is listed to support

bounded rationality in modeling people’s choice behavior. An overview of boundedly rational route choice models will be

first summarized in Section 3 . In Sections 4.1.1 –7 , BR formulations are introduced in static traffic assignment, dynamic traffic

assignment, two-stage cognitive process and learning models. An in-depth discussion of the boundaries of bounded ratio-

nality models along with selection criteria are discussed in Section 8 . The present research gaps are summarized and several

promising future research directions are pinpointed in Section 9 . 

2. Behavioral evidence on bounded rationality 

In this section, we will review existing empirical evidence to show that perfect rationality is too ideal and boundedly

rational behavioral framework is needed. 

2.1. Why not perfect rationality 

2.1.1. Heuristic and bias 

Psychologists and experimental economists verify that people use heuristic rules when making decisions, leading to bi-

ases or systematic errors ( Conlisk, 1996 ). For example, people react differently under the same situations when the problem

is presented in different ways, called “framing effect” ( Tversky et al., 1981 ). 

‘Debiasing’ experiments are conducted to test whether biases caused by heuristic processes can be eliminated through

repeated practice and adequate incentives or punishments. However, several research indicates that biases are “substantial

and important behavioral regularities” ( Conlisk, 1996 ) and will not disappear due to deliberation costs. 

On the other hand, heuristics are also critical tools people employ when making decisions. People try to tradeoff “be-

tween cognitive effort and judgemental accuracy”. Due to high costs of deliberation and information search, people tend to

use heuristics to find the first alternative which they are satisfied with instead of calculating an optimal one. 

2.1.2. Cognitive limit and deliberation cost 

Hiraoka et al. (2002) showed that cognitive limits and deliberation costs play important roles in route choices. An ex-

periment was designed where subjects spoke aloud while choosing routes and a protocol analysis was conducted to analyze

subjects’ cognitive processes from verbal data. Results indicate that drivers have the desire to choose routes with less travel

time, involving less cognitive resources and making them feel comfortable while driving along. Among the above three

route choice criteria, a choice consuming less cognitive process dominates the other two criteria and drivers choose routes

dynamically when one route satisfying their criteria is found. 

2.1.3. Violation of taking shortest paths 

Transportation researchers from across the world have found evidence that people do not usually take the shortest paths

and the utilized paths often have higher costs than shortest ones. 

After evaluating habitual routes, only 59% respondents from Cambridge, Massachusetts ( Bekhor et al., 2006 ), 30% from

Boston ( Ramming, 2001 ), 87% from Turin, Italy ( Prato and Bekhor, 2006 ) chose paths with the shortest distance or the

shortest travel time. According to GPS studies, 60% of subject commuters in the Twin Cities, Minnesota took paths longer
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than the shortest travel time paths ( Zhu, 2011 ) and high percentage of commuting routes in Nagoya, Japan ( Morikawa et al.,

2005 ) and Lexington, Kentucky ( Jan et al., 2000 ) were found to differ considerably from the shortest paths. 

2.1.4. Nonexistence of perfect rationality via learning processes 

Some opponents in economics claim that people can improve their rationality via repeated learning process. In other

words, people can approach unbounded rationality while making decisions everyday based on previous experiences. Conlisk

(1996) argued that learning mechanism does improve people’s decision-making towards the optimal in some situations,

but it can also hinder learning and adaptation due to habit. This argument has been supported by a sequence of route

choice experiments. For example, compared to unfamiliar drivers, familiar drivers stick mostly to their usual driving routes

which may be longer than the shortest path ( Lotan, 1997 ). On the other hand, drivers familiar to the destination may adapt

en-route choices dynamically based on real-time traffic information ( Hiraoka et al., 2002 ). 

In summary, all above statements show that perfect rationality cannot capture people’s cognitive processes in decision-

making and more realistic assumption is needed in travel behavior modeling. 

2.2. Why bounded rationality 

Perfectly rational models cause estimation and prediction errors. It is thus imperative to have a new paradigm which

can explain empirical findings deviating from perfect rationality. The theory of bounded rationality has the capability of

capturing observed deviations by considering people’s cognitive limits and deliberation costs, habits and myopia. 

2.2.1. Habit and inertia 

People “place higher value on an opportunity if it is associated with the status quo” ( Samuelson and Zeckhauser, 1988 ),

because it can provide significant energy saving to cognitive thinking. Much empirical evidence suggests that habit plays a

significant role in people’s behavior in stable situations ( Bamberg and Schmidt, 2003 ). 

Habit may result from searching for an optimal solution in prevailing circumstances, but it also prevents people from

pursuing better alternatives when situation changes and can collapse to “bad habit” ( Jager, 2003 ). Lotan (1997) compared the

impact of information on familiar and unfamiliar drivers. Ten familiar drivers and fifteen unfamiliar drivers were selected

to drive in the Newton network in Massachusetts coded in traffic simulators. Results indicated that familiar drivers were

reluctant to receive new information and only considered salient information. Therefore most of them stuck to their usual

driving routes and did not necessarily minimize travel time. 

Habit can be represented by a threshold in modeling travel choices. Cantillo et al. (20 07 , 20 06) applied a discrete choice

model with thresholds to simulated SP/RP mode choice datasets and showed that a model not considering inertia overes-

timates the benefits of transport investments substantially. Lotan (1997) fit an approximate-reasoning based model and a

random utility model respectively to driving simulation data aiming to estimate and predict route choices. Results showed

that the approximate-reasoning based model outperforms the random utility model. Carrion and Levinson (2012) studied

commuters’ day-to-day route choices from GPS data collected from 65 subjects for about 30 days, concluding that com-

muters chose routes based on a specific threshold and might abandon a route if its travel time exceeded the margin. 

Mahmassani and his colleagues conducted a series of route choice experiments in the 1990s showing that even when

all path cost information was available to travelers, commuters would not switch to shorter paths due to existence of in-

ertia, which was quantified by the ‘indifference band’ ( Hu and Mahmassani, 1997; Jayakrishnan et al., 1994; Mahmassani

and Chang, 1987; Mahmassani and Jayakrishnan, 1991; Mahmassani and Liu, 1999; Srinivasan and Mahmassani, 1999 ). Ac-

cordingly a boundedly rational route choice framework was proposed to capture people’s travel behavior with information

provision. By comparing commuter departure time and route choice switch behavior in laboratory experiments with field

surveys in Dallas and Austin, Texas, Mahmassani and Jou (20 0 0) showed that boundedly rational route choice modeling

observed from experiments provided a valid description of actual commuter daily behavior. 

2.2.2. Myopia 

Myopia refers to the fact that people do not usually concern for wider interests or longer-term consequences while

making decisions. Consumers manifest myopia when purchasing large appliances and tend to buy models with lower price

but higher energy consumption ( Conlisk, 1996 ). 

Similarly when making travel choices, travelers tend to switch to a link at an intersection which seems shorter for the

time being but may lead to a longer route. Recent travel experiences also impact people’s travel choice more profoundly.

Bogers et al. (2005) used an interactive travel simulator “TSL” developed by Delft University of Technology to investigate

route choice behavior. Subjects were asked to make route choices among two alternative paths for 25 simulation days. En

route information was provided by a built-in dynamic traffic model and realized travel times were given in three different

scenarios: travel time on the chosen route for the latest period, travel times on both routes for the latest period, and travel

times on both routes for all past periods. Experiential results showed that more weights were given to previous day’s travel

experiences, i.e. lateness in minutes (weights were −2 . 41 when only the previous day’s travel time was provided v.s. −1 . 4

when all past periods’ experienced travel time was provided). Therefore human being’s limited memory partially leads to

myopia. 
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3. Boundedly rational route choice 

Bounded rationality (BR) is rather a more realistic behavioral foundation than a new theory. Thus it permeates every

part of travel behavioral modeling. Due to its power in more realistic travel behavior modeling and prediction, bounded

rationality (BR) has regained researchers’ attention recently since it was first introduced into transportation in the 1980s. 

Despite a small but growing body of studies on employing bounded rationality principle in transport research, BR route

choice behavior still remains understudied because route choice, compared to other travel choices such as mode choice or

departure-time choice, is more challenging: 

• One traveler’s feasible path choice set can be huge. 
• Factors attributable to path choice can be numerous. 
• Major attributes associated with one path, i.e., travel time, travel reliability, are stochastic in nature and thus not easy to

quantify. 
• Other attributes factoring in route choice, such as congestion level, scenery, and other psychological factors, are complex.
• Route choice involves spatial dimensions of networks, which makes the choice process more complex. 
• Many paths overlap with each other for a majority of portions. It is not always easy to distinguish them like mode

choices. In other words, path choice cannot be directly treated as discrete choice. 

In addition to the challenge of modeling route choice behavior, bounded rationality adds more complexity due to the

following reasons: 

1. The existence of BR thresholds leads to mathematically intractable properties of equilibria. 

2. BR parameters are usually latent and difficult to identify and estimate. 

3. BR is associated with human being’s cognitive process and is challenging to model. 

3.1. Models 

Simon (1986) classified two types of rationality: substantive rationality (‘rationality is viewed in terms of the choices it

produces’) and procedural rationality (rationality is viewed ‘in terms of the processes it employs’). Substantive rationality

focuses on the choice results subjective to certain goals, while procedural rationality describes the cognitive process of a

decision-maker. According to Simon (1982) , bounded rationality is a more “ambitious” rationality concept, trying to capture

both the substance of the final decision and the dynamical process of decision-making, based on empirical studies and

psychological research. In route choice modeling, substantive bounded rationality aims to predict route choice outcomes,

while procedural bounded rationality cares more about empirical studies of dynamic processes. 

In terms of route choices, there also exist two categories of travel behavioral models: static traffic assignment (i.e., stable

and time-invariant route choices) and dynamic traffic assignment (i.e., temporal travel behavioral changes with both spatial

and temporal dimensions in the choice set). Both static and dynamic traffic assignment can be embedded into substantive

and procedural bounded rationality. 

To review BR related models and methodologies, a thorough survey on static and dynamic traffic assignment models

should come along. Therefore, we will introduce various route choice models and show how substantive and procedural

bounded rationality are represented. 

3.2. Methodologies 

The existing studies on boundedly rational route choice employ two diverging methodologies. Substantive bounded ra-

tionality focuses on modeling behavior with the game-theoretical approach and obtaining equilibrium link flows in a road

network to facilitate transportation planning (i.e., normative theory of rational choice). Therefore bounded rationality param-

eters are assumed to be exogenous. Though substantive bounded rationality models can describe static and dynamic bound-

edly rational route choice behavior, the cognitive process leading to such behavior has not been fully explored. Therefore,

procedural bounded rationality is proposed. Procedural bounded rationality aims to predict individuals’ decision-making re-

sults and estimate bounded rationality parameters using the random utility model or non-/semi-compensatory strategies

(i.e., positive theory of rational choice). 

Before delving into the methodology framework, we want to pinpoint that aforementioned methodologists are equally

important in boundedly rational route choice literature. Simon (1987) stated that bounded rationality theories are not sim-

ply “ad hoc and casual departures from the subjective expected utility theories underlying neoclassic economics”, rather, the

trademark attribute of contemporary bounded rationality theories should be their “detailed and systematic empirical study

of human decision-making behavior in laboratory and real-world situations.” According to this argument, any substantive

models that only focus on the choice outcomes were not considered as hard-core “bounded rationality” theories. Even when

bounded rationality is considered in the decision-making process (i.e., procedural rationality), the theories cannot be labeled

contemporary “bounded rationality” theories without any empirical component. In transportation literature, however, out-

comes, i.e., traffic equilibrium, is extensively studied, because of its critical role in long-term transportation planning. Solving
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traffic equilibrium will help estimate and predict traffic flows in a road network, which facilitates decision-makers for infras-

tructure investment plans. Therefore, in this paper, we will not only review bounded rationality associated with empirical

studies, also dedicate a large amount of space in discussing traffic equilibrium with bounded rationality. 

In decision theory, there exist two schools of models describing choice preference over uncertain outcomes: choice un-

der certainty or choice under risk and uncertainty. The expected utility theory (i.e., normative or substantive model) as-

sumes that decision-makers choose alternatives in terms of their expected utility, which deals with certainty. On the other

hand, behavioral modeling under uncertainty takes into consideration decision-makers’ risk-taking preference. Incorporating 

bounded rationality into expected utility models remains understudied, not mentioning those under uncertainty. In addi-

tion, sometimes not behaviorally rationally is rather a matter of complexity than a matter of uncertainty ( Simon, 1972 ). For

example, some choice, such as chess, is not inherently stochastic. It appears stochastic due to complexity of decision-making

processes. In this paper, thus, we will mainly focus on reviewing boundedly rational behavioral modeling under certainty.

In other words, expected utility or cost without risk is the main factor in making choices. 

3.3. Summary of models 

The traditional perfect rationality (PR) route choice paradigm ( Wardrop, 1952 ) makes the following assumptions regard-

ing human being’s cognitive processes: 

(1) Each traveler has access to information of all paths and their costs ; 

(2) Each traveler is able to enumerate all alternative paths connecting his or her origin-destination pair in a transportation

network ; 

(3) Each traveler picks a path with the least disutility in static traffic assignment ; 

(4) Each traveler always switches to the path with the least disutility in dynamic route choice processes. 

With these ideal assumptions, the detailed cognitive process modeling is dismissed in PR models. However, the above

assumptions are too restrictive in reality (which are adapted from Simon, 1987 ), because: 

(1) Accessing information of all paths is unrealistic because the costly information acquisition process prevents travelers

from obtaining complete information of path costs. Many factors contribute to path costs, such as travel time, travel

distance, the number of traffic lights and turns, weather, scenery, and so on. Some of these factors cannot be directly

measured from the field or are difficult to measure ; 

(2) Due to the large size of available paths in real traffic networks and people’s limited computational ability, it is impos-

sible to identify all feasible paths connecting each origin-destination pair. In other words, “minimal completeness can

seldom be guaranteed” ( Simon, 1987 ) ; 

(3) Human beings have limited cognitive capabilities such as “lack of knowledge and limited ability to forecast future”

( Simon, 1987 ), which prevents them from acting as utility maximizers or disutitlity minimizers; 

(4) Human beings have inertia, which prevents them from updating route information and switching routes too fre-

quently. 

Accordingly bounded rationality can be proposed to relax the classical PR models. Bounded rationality is a loosely defined

term and different researchers incorporate it into different aspects. In the existing literature, bounded rationality is mainly

represented in four aspects assuming ( Simon, 1987 ): 

(A) searching partial attributes information to obtain knowledge of path costs; 

(B) considering a subset of feasible paths in choice set generation; 

(C) (1) non-optimal route choice mechanism; (2) optimal route choice mechanism with perception errors; 

(D) updating only non-salient information or switching to non-salient shorter paths in repeated route choice learning

processes. 

All relevant models are summarized in Table 1 . Column “Category” represents two major types of bounded rationality

aforementioned. Column “Aspect” divides each category based on whether time dimension is included. Column “Model”

summarizes all the route choice models we will review in this paper. column “BR representation” further explains how the

BR principle is incorporated (with the letter indicating the category of representation) while column “Parameter specifica-

tion” explains the specific form of the associated bounded rationality parameters. Columns “Applications” and “References”

list the context where the proposed models are applied to and their related references. 

The survey of each category of models is arranged as follows: at the beginning of each section, a unifying framework

diagram serves as a navigation map, providing a general picture of each category (including elements and their relations)

and how BR pieces fit the whole picture. It is then followed by analytical models and/or estimation methodologies within

the unifying framework. 

4. Substantive bounded rationality: static game-theoretical models 

Fig. 1 illustrates a framework of equilibrium models. A large population of travelers make route choices in a road network

and suffer from congestion effects expressed in travel costs or disutilities. The travel cost or the disutility is indicated in



X
.
 D

i,
 H

.X
.
 Liu

 /
 Tra

n
sp

o
rta

tio
n
 R

esea
rch

 P
a

rt
 B
 8

5
 (2

0
16

)
 14

2
–

17
9
 

1
4

7
 

Table 1 

Summary of boundedly rational travel behavior models. 

Category Aspect Model BR representation Parameter specification Applications References 

Substantive BR Static traffic assignment 

( Section 4 ) 

BRUE Not take the shortest paths 

(C1) 

An indifference band 

parameter varying among 

OD pairs 

Flow equilibrium in 

disrupted network 

Di et al. (2014 ; 2016 ; 

2013 ); Guo (2013) ; Lou 

et al. (2010) 

IUE Consider a subset of 

feasible paths (B) 

Inertial path patterns 

among OD pairs 

Drivers’ compliance to 

information provision 

Zhang and Yang (2015) 

SUE Not choose the shortest 

paths due to perception 

errors and others’ 

unknown choices (C2) 

A rationality parameter 

varying among 

homogeneous users 

More realistic flow 

equilibrium deviating 

from UE 

Sheffi (1984) 

QRE Not utility maximization 

due to perception errors 

and others’ unknown 

choices (C2) 

A rationality parameter 

varying among homoge- 

neous/heterogeneous 

users 

Finite-player congestion 

games with 

homogeneous or 

heterogeneous users 

McKelvey and Palfrey 

(1995) ; Rogers et al. 

(2009) 

BRNE Not utility maximization 

due to others’ unknown 

choices (C2) 

A rationality parameter 

varying among 

homogeneous users 

Finite-player congestion 

games with subconscious 

utilities instead of utility 

functions 

Chen et al. (1997) 

D2d/within-day traffic 

assignment 

( Section 5 ) 

Deterministic route 

choice 

Take an acceptable path 

every day (C1) 

An indifference band 

parameter varying among 

OD pairs 

Flow evolution prediction 

after a perturbation is 

imposed 

Guo and Liu (2011) 

Stochastic route choice Not always update 

perceived path costs (D) 

An indifference band Flow evolution prediction 

and parameter 

estimation after a 

perturbation is imposed 

Wu et al. (2013) 

Dynamic traffic 

assignment 

Not take the shortest paths 

at each time interval (C1) 

A variable tolerance 

parameter depending on 

endogenous variables 

such as the departure 

rate vector 

simultaneous 

route-and-departure-time 

choice evolution 

Han et al. (2015) ; Szeto 

and Lo (2006) 

Dynamic congestion 

game 

Not utility maximization 

due to others’ unknown 

choices (C1) 

A rationality parameter Finite-player dynamic 

games 

Chen et al. (1997) ; Han and 

Timmermans (2006) ; 

Zhao and Huang (2014) 

Procedural BR Static choice ( Section 6 ) Cognitive cost model Consider a subset of 

alternatives via 

information search (A) 

A random utility function 

in terms of search 

benefit and cost 

Path information search 

given random path travel 

costs 

Gao et al. (2011) 

Endogenous choice set 

generation 

Consider a subset of 

alternatives via 

information search (A) 

search gain v.s. search cost A heuristic process of 

information search given 

random utilities 

Richardson (1982) 

K -shortest path 

algorithms 

Consider a subset of path 

attributes (B) 

An indifference band 

parameter 

exogenous choice set 

generation 

Azevedo et al. (1993) ; de la 

Barra et al. (1993) ; 

Ben-Akiva et al. (1984) ; 

Zhu (2011) 

Non-compensatory 

heuristic 

Consider a subset of 

attributes or paths (A,B) 

An indifference band 

parameter 

Exogenous choice set 

generation 

Rasouli and Timmermans 

(2015) 

Reference-dependent 

model 

Evaluate attributes/utilities 

to some reference point 

(C1) 

An exogenous or 

endogenous reference 

point 

Maximization of relative 

advantage, maximization 

of relative utility, 

minimization of regret 

Rasouli and Timmermans 

(2015) 

( continued on next page ) 
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Table 1 ( continued ) 

Category Aspect Model BR representation Parameter specification Applications References 

Minimum perceivable 

difference model 

Indifferent to alternatives 

with small utility 

difference (C1) 

A fixed parameter Mode choice with addition 

of a new mode 

Krishnan (1977) ; Lioukas 

(1984) 

Indifference to small 

changes in dynamic 

choices 

Alternatives with a greater 

utility difference are 

considered with a higher 

probability (C1) 

A random utility function 

with state dependence 

and/or serial correlation 

Mode choice with addition 

of a new mode 

embedded with state 

dependence and serial 

correlation 

Cantillo et al. (2007) ; 

2006 ); Di et al. (2015b ); 

2015b ) 

Sequential elimination 

by attributes 

Consider a subset of 

attributes based on a 

prior ordering (A) 

A tolerance parameter Vehicle or destination 

choice with dynamic 

tolerance adjustment 

Recker and Golob (1979) 

Elimination by aspects Consider a subset of 

attributes and 

alternatives 

probabilistically (A) 

The probability of 

examining one attribute 

is proportional to its 

importance 

residential location choice Tversky (1972) ; Young 

(1984) 

Semi-compensatory 

models 

Consider a subset of 

alternatives by imposing 

constraints to attributes 

(A) 

Attributes’ cutoff points Auto rental agency choice Martínez et al. (2009) ; 

Swait (2001) 

Learning process 

( Section 7 ) 

Travel time update Only learn salient travel 

information (D) 

An absolute indifference 

band 

Travel time updating Chen and Mahmassani 

(2004) ; Jha et al. (1998) ; 

Jotisankasa and Polak 

(2006) ; Nakayama et al. 

(2001) 

Departure-time and 

route choice 

No switch unless schedule 

delay exceeds a threshold 

(D) 

An absolute and a relative 

indifference bands 

Departure-time and route 

switching 

Chen and Mahmassani 

(2004) ; Hu and 

Mahmassani (1997) ; 

Jayakrishnan et al. 

(1994) ; Mahmassani and 

Chang (1987) ; 

Mahmassani and 

Jayakrishnan (1991) ; 

Mahmassani and Liu 

(1999) ; Srinivasan and 

Mahmassani (1999) 

Agent-based simulation A positive search, 

information, learning, 

and knowledge theory 

(A) 

A Bayesian learning process Non-stationary route 

information search and 

choice 

Zhang (2011) 

Stochastic automation No departure-time switch 

unless schedule delay 

exceeds a threshold (D) 

A fixed parameter Departure-time choice 

adaptation 

Yanmaz-Tuzel and Ozbay 

(2009) 
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Fig. 1. Boundedly rational game-theoretical framework in route choice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ovals which represent latent variables (matching symbols used by Walker, 2001 ) and is also enclosed in a big box with

dotted borders because they are unobservable. Every traveler aims to minimize his or her own travel cost or disutility.

Bounded rationality thresholds can be embedded into either cost or disutility functions in the form of “random error”,

“rationality parameter”, or represented by the route choice principle, indicated in dotted hexagons. Individual’s route choices

and various types of equilibria, such as boundedly rational user equilibria (BRUE), initial user equilibrium (IUE), quantal

response equilibrium (QRE), stochastic user equilibrium (SUE), and boundedly rational Nash equilibria (BRNE) are indicated

in solid parallelograms, representing observable outputs. In this section, we will introduce how different specifications of

travel costs or disutilities and different route choice behavior assumptions lead to different types of equilibria. 

4.1. Static traffic assignment 

In the game-theoretical framework, the traffic network is represented by a directed graph that includes a set of con-

secutively numbered nodes, N , and a set of consecutively numbered links, L . Let W denote the OD pair set and w ∈ W is

connected by a set of simple paths (composed of a sequence of distinct nodes), P 

w , through the network. The traffic demand

between each OD pair is d w . d is a diagonal matrix which has w th diagonal element equal to demand d w for OD pair w . Let

f w 

r denote the flow on path r ∈ P 

w for OD pair w , then the path flow vector is f = { f w } w ∈W = { f w 

r } w ∈W 

r∈P w . The feasible path

flow set is to assign the traffic demand onto the feasible paths: F � { f : f � 0 , 
∑ 

r∈P w f w 

r = d w , ∀ w ∈ W} . Denote x a as the

link flow on link a , then the link flow vector is x = { x a } a ∈L . Each link a ∈ L is assigned a cost function which is a function

of link flows, written as c ( x ). Let δw 

a,r = 1 if link a is on path r connecting OD pair w , and 0 if not; then � � { δw 

a,r } w ∈W 

a ∈L ,r∈P de-

notes the link-path incidence matrix. So x = �f . Denote C w 

r (f ) as the path cost on path r for OD pair w , then C(f ) = �T c (x )

under the additive path cost assumption. 

Wardrop’s first principle says that people take the path with the least disutility (i.e., travel time, monetary cost, etc.). A

Wardrop user equilibrium (UE) is reached when no one can improve his or her travel cost by unilaterally changing routes.

At UE, all utilized routes have the minimum travel cost while all unused routes have higher travel costs. In other words, the

following conditions hold at an equilibrium f ∗: 

C w 

r (f ∗) − πw 

{= 0 , if f w ∗
r > 0 , 

� 0 , if f w ∗
r = 0 . 

, ∀ r ∈ P 

w , ∀ w ∈ W, (4.1)

where πw is the minimum travel cost connecting OD pair w , i.e., πw = min 

j∈P w 
C w 

j (f ) . 

4.1.1. Boundedly rational user equilibrium: non-optimal route choice 

Under bounded rationality, at equilibrium, “every driver uses an acceptable path, where a path is acceptable if the differ-

ence between its travel cost and that of the shortest or least-cost path is no larger than a pre-specified threshold value” ( Lou

et al., 2010 ). In other words, no one can reduce his or her travel cost by a threshold by unilaterally switching routes. This

threshold depends on network users’ behavior and varies among different OD pairs, which needs to be obtained through

behavioral surveys and experiments. 
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Given an indifference band, BRUE is shown to be non-unique ( Lou et al., 2010 ). Lou et al. (2010) proposed a path-based

BRUE formulation and a link-node based formulation for congestion pricing. The link-node based BRUE is shown to be more

restrictive than the path-based one. Di et al. (2013) developed a nonlinear complimentarity condition for one path-based

BRUE flow pattern: 

˜ C w 

r (f ∗) − ˜ πw 

{= 0 , if f w ∗
r > 0 , 

� 0 , if f w ∗
r = 0 . 

, ∀ r ∈ P 

w , ∀ w ∈ W . (4.2)

where, 
˜ C w 

r (f ∗) : the indifference travel cost, computed by ˜ C w 

r (f ∗) = C w 

r (f ∗) + ρw 

r ; 

˜ πw : the highest acceptable path cost within the indifference band ɛ w for OD pair w , equal to the minimum travel cost plus

the indifference band connecting OD pair w , i.e., ˜ πw = min 

j∈P w 
C w 

j (f ) + ε w ; 

ρ: an indifference vector and ρ = (ρw 

r ) 
w ∈ W 

r∈P , where 0 � ρw 

r � ε w . ρw 

r represents the deviation of route r ’s actual cost from

the shortest indifference travel cost, i.e., ρw 

r � 

{ 

˜ πw − C w 

r (f ) , if C w 

r (f ) � min 

j∈P 
C w 

j (f ) + ε w , 

0 , o.w . 

The above condition implies that, under bounded rationality, all chosen paths have the same shortest indifference travel

cost, equal to min j∈P w C w 

j 
(f ) + ε w . The costs of the unused paths should be equal to or larger than the shortest indifference

path cost. 

Denote F 

ε 
BRUE 

as the ε -BRUE path flow solution set, including all the BRUE path flow patterns. Because it is generally

a non-convex set ( Lou et al., 2010 ), the BRUE path flow set is challenging to characterize. Di et al. (2013) developed a

systematic methodology of constructing the BRUE set in transportation networks with fixed demands connecting multiple

OD pairs. With the increase of the indifference band, the path set that contains boundedly rational equilibrium flows will be

augmented. Accordingly, the critical values of indifference bands to augment these path sets can be identified by solving a

family of mathematical programs with equilibrium constraints (MPEC) sequentially. For a network with single OD pair, given

a sequence of finite critical points ε ∗
k 
, k = 1 , . . . , K, with ε ∗0 = 0 , ε ∗K+1 = ∞ , a BRUE solution set is the union of K + 1 subsets:

F 

ε 
BRUE = 

K ⋃ 

k =0 

F 

ε ∗
k 

k 
. (4.3) 

where F 

ε ∗
k 

k 
, k = 0 , . . . , K is the k th subset with associated critical indifference band ε ∗

k 
. 

Built upon BRUE solutions, the transportation network design problem under boundedly rational route choice behavior

(BR-NDP) exhibit new features and bring in new challenges. Due to the existence of indifference bands, the road network

may operate at different equilibrium flow patterns when new links are built or toll pricing is implemented, which results

in uncertainty of road network operation. Accordingly, network planners may hold different attitudes, i.e., risk-averse, risk-

prone, and risk-neutral, towards building a new link or charging tolls when uncertainty exists. Based on different attitudes

towards risk, Di et al. (2014) investigated the occurrence of Braess paradox as both the travel demand and the indiffer-

ence band vary. The Braess paradox under bounded rationality is completely new and Di et al. (2014) conducted the first

analysis on risk-averse, risk-prone, and risk-neutral Braess paradox. Graphical analysis in the Braess network with affine

link performance functions and numerical results in ordinary grid networks with regular BPR (Bureau of Public Roads) link

performance functions were illustrated. 

Due to convexity of the BRUE set, the existing BR related applications only focus on the continuous version of BR-NDP,

BR toll pricing (abbreviated as “BR-TP”). To facilitate model formation and solution algorithms of BR-TP, the topological

properties of the BRUE set, connectedness ( Di et al., 2015a ), compactness, non-convexity, and upper-semicontinuity ( Di et al.,

2016 ) were explored. 

When there exist multiple equilibria in the lower level problem of BR-TP (i.e., each driver has multiple action strate-

gies), planners do not know exactly how drivers will behave. There exists a gap between the “predicted” and the “realized”

equilibria and solving a standard bi-level program may not achieve the expected goal of improving efficiency of the trans-

portation system. Lou et al. (2010) formulated the risk-averse BR-TP based on more restrictive link-node BRUE formulation

and proposed some heuristic algorithm to obtain a suboptimal toll. Furthermore, Di et al. (2016) modeled the risk-averse

and risk-prone BR-TP based on BRUE path flow solutions and gave rigorous proofs of solution existence. The mathematical

formulations of risk-averse and risk-prone BR-TP proposed in Di et al. (2016) are: 

min 

y 
min 

x 
/ max 

x 

∑ 

a ∈A 
x a t a (x a ) + 

∑ 

a ∈T 
x a t a (x a , y a ) (4.4) 

s.t. 0 � y a � ȳ , a ∈ E 
x = �f , ∀ f ∈ F 

ε 
BRUE 

(y ) . 

where, 

y a : the toll charged on link a , between zero and an upper bound ȳ ; 

x a : the link flow for link a ; 
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A : the link set without tolls charged; 

T : the link set with tolls charged; 

x = { x a } a ∈X : the link flow vector; 

t a ( x a , y a ): the cost of traversing link a , which depends on total traffic using link a and the toll charged on link a ; 

F 

ε 
BRUE 

(y ) : the tolled BRUE solution set. 

A decomposition algorithm paradigm taking advantage of the topological properties of BRUE sets was then proposed to

solve risk-averse BR-TP in two numerical examples. 

Guo (2013) proposed a totally different approach to stay away from the issue of non-uniqueness of BRUE. An iterative

roll sequence operation was designed, which either forces one BRUE to converge to UE under homogeneous BR or guides

flow to a reduced BRUE set or a subnetwork of UE under heterogeneous BR among different OD pairs. 

4.1.2. Inertial user equilibrium: considering a subset of alternative paths 

Zhang and Yang (2015) proposed another variant of user equilibrium based on a prevailing choice set of all the alternative

routes, i.e., “initial user equilibrium (IUE)”. At IUE, only a subset of feasible paths are considered. In addition, information

provision may not be able to alter IUE due to the existence of inertia. 

Define an inertia pattern H is to assign traffic demands between O − D pair w ∈ W to a subset of feasible paths set

H ∈ P 

w . Inertial user equilibrium follows Wardrops first principle in every inertia pattern H ∈ H 

w , where H 

w is all the

inertia patterns for OD pair w ∈ W: 

C w 

r (f ∗) − πw 

{= 0 , if f w ∗
r > 0 , r ∈ H, ∀ H ∈ H 

w 

� 0 , if f w ∗
r = 0 , r ∈ H, ∀ H ∈ P 

w \H 

w . 
, ∀ r ∈ P 

w , ∀ w ∈ W . (4.5)

As the flow pattern defined by the above complementarity conditions may be non-unique, furthermore, a probability is

assumed to be known over all inertia patterns connecting the same OD pair and thus: 
∑ 

r∈ H f w 

r,H = d w p w 

H . 

4.2. Congestion game: optimal route choice with perception errors 

Non-cooperative game theory models finite players’ strategic decisions in a conflict and competitive environment. In par-

ticular, in a congestion game ( Rosenthal, 1973 ), the payoff of one player depends on the choice he or she chooses as well

as the number of players choosing the same choice. Nash equilibrium is said to be achieved if no player can improve his

or her payoff by changing strategies. Through repeated game experiments with finite players, researchers realize that the

perfect Nash equilibrium cannot be usually obtained. To explain these anomalies, bounded rationality is then incorporated

into non-cooperative mixed-strategy games in the form of sensitivity of payoff difference, inaccurate perception of payoff

or cost functions. Rosenthal (1989) proposed that a player is insensitive to two choices if their payoff different is small.

McKelvey and Palfrey (1995) assumed that game players are utility maximizers whose perception of utility functions is sub-

ject to noise. Chen et al. (1997) argued that players only know their subconscious utilities attached to each alternative in-

stead of utility functional forms. The associated equilibrium is “t-solution” ( Rosenthal, 1989 ), “quantal response equilibrium”

(QRE) ( McKelvey and Palfrey, 1995 ), and “boundedly rational Nash equilibrium” (BRNE) ( Chen et al., 1997 ), respectively. The

bounded rationality resides in the fact that inferior alternatives may be selected with positive but small probabilities. From

players’ perspectives, “better strategies are played more often than worse ones, but best strategies are not always played”

( McKelvey and Palfrey, 1995 ). In the following, we will mainly introduce the seminal work proposed by McKelvey and Pal-

frey (1995) and its extension proposed in Zhao (1994) . The bounded-rationality equilibrium proposed by Rosenthal (1989)

can be treated as a linear version of QRE ( McKelvey and Palfrey, 1995 ). 

4.2.1. Quantal response equilibrium in congestion game 

In a finite game (M , S, U) , among M = { 1 , . . . , N } total players, player n has a set of pure strategies S n = 

{ 

s 1 n , . . . , s 
J n 
n 

} 

.

Each player knows the strategy sets available to both himself or herself and to others. The probability of player n taking

strategy s nr is p nr � p n ( s nr ) ≥ 0, and 

∑ 

s nr ∈ S n p n (s nr ) = 1 . Denote p n = { p nr } r∈ J n and P = { p n } n ∈M 

. 

Assume player n does not know other players’ utility functions but can conjecture others’ choice probability, which is

called the “conjectured mixed strategy”. Denote p −n = { p n ′ r } r∈ J n ′ n ′ ∈M ,n ′ � = n as the conjectured mixed strategy adopted by players

other than n and P −n as all feasible mixed strategies other than player n . (s nr , p 
−n ) is the strategy pair where player n

adopts the pure strategy s nr and conjectures that all other players adopt their components of p . Therefore, the expected

utility of the r th pure strategy of player n , denoted as V nr , is a function of the strategy pair, i.e., V nr = V nr (s nr , p 
−n ) . Denote

the expected utility over all possible choices of all players other than n as V̄ nr . Then, 

V̄ nr = 

∑ 

p −n ∈ P −n 

( ∏ 

n ′ � = n 
p n ′ r (s n ′ r ) 

) 

V nr (s nr , p 
−n ) . 

One example of the expected utility function V̄ nr is to assume that it depends on the total number of players choosing

alternative r ( Han and Timmermans, 2006 ), i.e., 

V̄ nr (s nr , p 
−n ) = θX nr (s nr ) + f 

(
N r (p −n ) 

)
, 
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where, 

X nr ( · ): a utility mapping only depending on player n ’s strategy s nr ; 

N r : the expected number of players choosing alternative r , depending on others’ choices; 

f ( N r (p −n ) ) : a deterministic cost function depending on the expected number of players choosing alternative r . 

Assume player n ’s utility for each strategy is subject to random error and is defined as: 

U nr = V̄ nr + ζnr , (4.6) 

where ζn = (ζ 1 
n , . . . , ζ

J n 
n ) is the perceived utility error vector for player n . 

Player n will take strategy r if U nr � U n j , ∀ j = 1 , . . . , J n , j � = r. The most common distribution of ζ follows i.i.d. Gumbel

distribution with the scale parameter α. Its resultant equilibrium is logit equilibrium (LQRE) and the probability that player

n selects strategy r is: 

p nr = P (U nr > U n j ) = 

e αV̄ nr ∑ J n 
j=1 

e αV̄ n j 

, j � = r, 

where α is the scale parameter for ζ r 
n . It also represents the rationality level of each player. When varying α from zero

to infinity, the player’s choice behavior varies from “placing equal probability over all alternatives” to “fully rational utility

maximization” ( McKelvey and Palfrey, 1995 ). 

Every player has the same equilibrium conjecture of others’ choices, i.e., p n = p k = p ∗. Therefore a statistical version of

Nash equilibrium can then be defined as follows: 

Definition 4.1. In a finite game (M , S, U) , a quantal response equilibrium (QRE) is any p = (p 1 , . . . , p J n ) ∈ P such that ∀ n ∈
M , 1 � r � J n , 

p ∗(α) = 

{ 

p ∈ P : p nr = 

e αV̄ nr (p) ∑ J n 
j=1 

e αV̄ n j (p) 
, ∀ n, r 

} 

. (4.7) 

McKelvey and Palfrey (1995) showed that QRE exists but is generally non-unique. However, it is unique when α is re-

stricted to be sufficiently small. As α goes to infinity, there always exists one subsequence of p ∗( α) which converges to a

unique Nash equilibrium. 

In QRE, players are assumed to be homogeneous, in other words, α and its resultant probabilities p ∗( α) are the same

across the entire population. By generalizing α to αn for player n , Rogers et al. (2009) extended QRE to heterogeneous

player types. The distribution of player n ’s type, denoted as f n ( α), is common knowledge to every player. However, each

player does not know others’ types. Given the prior probability of player n choosing strategy r (i.e., before αn is drawn), i.e.,

p nr ( α), the induced mixed strategy is computed as: πnr (p) = 

∫ ∞ 

0 p nr (α) f n (α) dα. Therefore a heterogeneous quantal response

equilibrium (HQRE) is any π = (π1 , . . . , π J n ) ∈ P such that ∀ n ∈ M , 1 � r � J n , 

π∗(α) = 

{ 

π ∈ P : πnr = 

e αn ̄V nr (π(p)) ∑ J n 
j=1 

e αn ̄V n j (π(p)) 
, ∀ n, r 

} 

. (4.8) 

QRE is a set of mixed strategies each individual player should follow while playing the game. For example, in a road

network with two routes and each route has the equal probability of being selected, one traveler will first flip a coin and

then choose the first route if it lands with head and the second if it lands with tail. In traffic assignment, we are more

interested in the aggregate number of users choosing each route rather than individual choice probability. As LQRE or HQRE

is a finite-player game, meaning one user cannot be divided into “infinitesimal” fractions, the numbers of users on each

path are assumed to follow a multinomial distribution with d w , ∀ w ∈ W as the number of trails and p r , ∀ r ∈ P as event

probabilities. One random draw from the multinomial distribution gives one realization of the equilibrium choosing each

alternative based on LQRE. 

4.2.2. Stochastic user equilibrium in continuous congestion game 

Continuous congestion game is the limiting case of congestion game as the number of players goes to infinity. Accord-

ingly, in the route choice context, Nash equilibrium converges to Wardrop user equilibrium ( Haurie and Marcotte, 1985 ).

Wardrop user equilibrium, with infinitesimal travelers in a non-cooperative Nash game, is reached when no traveler can

improve his or her travel cost by unilaterally switching routes. 

There exists a branch of studies on Nash equilibrium embedded with bounded rationality, but there does not exist many

studies on boundedly rational Wardrop user equilibrium. Stochastic user equilibrium (SUE) is one commonly used equilib-

rium with the boundedly rational principle. 
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Assume each path’s travel cost is random due to perception error, i.e., C w 

r = C̄ w 

r (f ) + ζ w 

r , where C̄ w 

r is the deterministic

flow-dependent perceived travel cost and ζ w 

r represents the perceived random error. At SUE, no traveler can improve his or

her perceived travel time by unilaterally switching routes: 

C̄ w 

r (f ∗) − πw 

{= 0 , if f w ∗
r > 0 , 

� 0 , if f w ∗
r = 0 . 

, ∀ r ∈ P 

w , ∀ w ∈ W, (4.9)

where 

p w 

r = 

exp (−αC̄ w 

r ) ∑ 

j∈P w exp (−αC̄ w 

j 
) 
, (4.10a)

f w 

r = d w p w 

r . (4.10b)

When α = 0 , each route has the same probability of being chosen; when α → ∞ , SUE converges to UE. SUE can be

formulated as a convex optimization problem and its uniqueness can be guaranteed when the link cost function is separable

and monotone increasing. 

Remark. 

1. Both SUE and QRE are derived from the statistical setting of game theory. SUE gives a set of expected number of

users for each route and QRE is a set of mixed strategies each individual player should follow while playing the game.

Therefore QRE is derived from each individual player’s response strategy, while SUE is focused on an aggregate level of

traffic flow. Loosely speaking, if each player has the same payoff function and the same mixed strategy, in continuous

congestion game, choice probabilities can be interpreted as proportions. Consequently the expected number of play-

ers choosing each alternative should be the product of the total number of players and its choice probability. In this

sense, SUE is the expectation of equilibrium based on LQRE with homogeneous players shown in Eq. (4.10) in contin-

uous congestion game. Though their mathematical results turn to the same, but rigorous proof of their equivalence is

further needed and will be left for future research. 

2. We also need to highlight that in discrete game, LQRE may be different from SUE. As SUE allows fractional users on

each route, while LQRE describes finite players. We conjecture that LQRE may be converged to SUE in large population

approximation but such a claim needs to be mathematically proved. 

3. There exists a minus sign before α in Eq. (4.10a) , but no minus sign in Eq. (4.7) . The reason is, SUE is defined based

on disutility, i.e., travel time, while QRE is defined on utility. However their formulations are essentially equivalent. To

remove the minus sign in Eq. (4.10a) , we can simply add a minus sign in front of travel time to convert it to utility. 

4.2.3. Boundedly rational Nash equilibrium 

Chen et al. (1997) argued that the mathematical interpretations of choice behavior by introducing noise into the utility

function cannot manifest human being’s bounded rationality. Accordingly, a boundedly rational Nash equilibrium model

(BRNE) is developed based on the assumption that the player does not know his utility function, instead, he or she knows

utility values associated with each alternative, v r n . This latent utility is called “subconscious utility” and the subconscious

utility of the r th pure strategy of player n given others’ choice probability p −n can be computed as: V̄ nr (s nr , p 
−n ) � V̄ nr (P n ) =∑ 

p −n ∈ P −n ( 
∏ 

n ′ � = n 
p n ′ r (s n ′ r )) v nr . The probability of choosing one pure strategy r is defined as: 

p nr (P n ) = 

f ( ̄V nr (P n ) ,αn ) ∑ J n 
j=1 

f ( ̄V n j (P n ) ,αn ) 
, 

where αn is the rationality parameter of player n and f ( · ) is a generic function of the expected subconscious utility. 

Definition 4.2. A mixed strategy profile π = (π1 , . . . , π J N ) ∈ P is a boundedly rational Nash equilibrium (BRNE) if ∀ n ∈
M , r = 1 , . . . , J n , 

π∗(α) = 

{ 

π ∈ P : πnr � p nr 

(
P n (π−n ) 

)
= 

f 
(
V̄ nr (P n (π−n )) , αn 

)
∑ J n 

j=1 
f 
(
V̄ n j (P n (π−n )) , αn 

) , ∀ n, r 

} 

. (4.11)

When f 
(
V̄ r n (P n (π−n )) , αn 

)
= exp 

(
αn V̄ r n (P n (π−n )) 

)
, BRNE is mathematically equivalent to the LQRE with heterogeneous

players. However, we need to point out that QRE and BRNE are developed based on different behavioral assumptions. 

4.3. Relations of boundedly rational equilibria 

To briefly illustrate the relationships between a variety of bounded rationality associated equilibria reviewed in the pre-

vious sections, we will compute aforementioned equilibria in the Braess paradox network. 
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Fig. 2. The Braess network. 

 

 

 

 

 

 

 

 

 

Example 4.1. The topology of the network, the OD demand between nodes 1 − 4 , and link cost functions are illustrated

in Fig. 2 . There are three paths: 1-3-4 (path 1), 1-2-4 (path 2), and 1-3-2-4 (path 3). The total demand d = 4 and the

indifference band ε = 3 . 

For the fixed demand level, due to flow conservation, the feasible flow set can be characterized by two path flows, i.e.,

f 3 = d − f 1 − f 2 . Therefore, three path costs can be computed as functions of flows on the first two paths: 

C 1 = 11 f 1 + 10 f 3 + 50 = f 1 − 10 f 2 + 90 , 

C 2 = 11 f 2 + 10 f 3 + 50 = −10 f 1 + f 2 + 90 , 

C 3 = 10( f 1 + f 2 ) + 21 f 3 + 10 = −11( f 1 + f 2 ) + 94 . 

UE is computed by letting three path costs equal, i.e., C 1 = C 2 = C 3 , and the flow pattern needs to be feasible, i.e., f 1 +
f 2 + f 3 = 4 , f 1 , f 2 , f 3 � 0 . Then we have 

f UE = 

[
4 

13 
4 

13 
44 
13 

]T 
. (4.12) 

The BRUE set is composed of only one set: F 

ε=10 
BRUE 

= F 

ε=10 
0 

. All three paths are utilized under UE. Therefore under BRUE

these three paths are all acceptable. According to Di et al. (2013) , the BRUE set can be represented as: 

F 

ε 
BRUE = { f ∈ F : f 1 + f 2 + f 3 = 4 , f 1 , f 2 , f 3 � 0 , 

| f 1 − f 2 | � 

ε 

11 

;
| 12 f 1 + f 2 − 4 | � ε;
| f 1 + 12 f 2 − 4 | � ε} . 

f SUE (α) 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

f 1 = 4 

e −α(C 1 ) 

e −α(C 1 ) + e −α(C 2 ) + e −α(C 3 ) 
, 

f 2 = 4 

e −αC 2 

e −α(C 1 ) + e −α(C 2 ) + e −α(C 3 ) 
, 

f 3 = 4 

e −αC 3 

e −α(C 1 ) + e −α(C 2 ) + e −α(C 3 ) 
. 

(4.13) 

In simulation, we set α ranging from 0 to 6 with a stepsize of 0.1. 

Assume four users are homogeneous, in other words, they have the same probability of choosing a particular path. To

calculate LQRE, we need to know the expected utility V̄ r n , ∀ r, n in Equation (2.4.1). In this example, the expected disutility is

the expected travel cost C̄ n r , r = 1 , 2 , 3 , n = 1 , 2 , 3 , 4 . As four users experience the same travel cost for the same path, we can

omit the superscript n . 

Because the number of users on each path follows a multinomial distribution, the expected flow is equal to the total

demand times the choice probability, i.e., f̄ r = dp r , r = 1 , 2 , 3 . Then the expected path costs can be computed as: 

C̄ 1 = f̄ 1 − 10 ̄f 2 + 90 = d p 1 − 10 d p 2 + 90 , 

C̄ 2 = −10 ̄f 1 + f̄ 2 + 90 = −10 d p 1 + d p 2 + 90 , 

C̄ 3 = −11( ̄f 1 + f̄ 2 ) + 94 = −11(d p 1 + d p 2 ) + 94 . 
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Fig. 3. Illustration of boundedly rational equilibria. 

 

For LQRE, the mixed strategy is: 

p LQRE (α) 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

p 1 = 

e −αC̄ 1 

e −αC̄ 1 + e −αC̄ 2 + e −αC̄ 3 
, 

p 2 = 

e −αC̄ 2 

e −αC̄ 1 + e −αC̄ 2 + e −αC̄ 3 
, 

p 3 = 

e −αC̄ 3 

e −αC̄ 1 + e −αC̄ 2 + e −αC̄ 3 
. 

(4.14)

BRNE is the same as LQRE if multinomial logit function is used. So we will omit calculation of BRNE. 

From Fig. 3 a, we have the following conclusions: 

1. SUE converges to UE as α grows ; 

2. UE is contained in the BRUE set ; 

3. The BRUE set in this example is convex ; 



156 X. Di, H.X. Liu / Transportation Research Part B 85 (2016) 142–179 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. In BRUE and LQRE, path 3 is used while in other equilibria, only path 1 and 2 are used ; 

5. All other equilibria are unique except BRUE. 

Fig. 3 b illustrates the traffic flows on each path for SUE and LQRE. To establish their connections, we will use symbols

for the purpose of generalization. Multiply the total demand d on both sides of Eq. (4.14) , we get: 

f LQRE (α) 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

dp 1 = f̄ 1 = d 
e −αC̄ 1 

e −αC̄ 1 + e −αC̄ 2 + e −αC̄ 3 
, 

dp 2 = f̄ 2 = d 
e −αC̄ 2 

e −αC̄ 1 + e −αC̄ 2 + e −αC̄ 3 
, 

dp 3 = f̄ 3 = d 
e −αC̄ 3 

e −αC̄ 1 + e −αC̄ 2 + e −αC̄ 3 
. 

(4.15) 

By comparing Eqs. (4.13) and (4.15) , we can clearly see that the expected number of travelers on each paths for LQRE is

the same as SUE. However, for one round, players will randomize their path choices and choose paths based on the mixed

strategy defined in Eq. (4.14) . That is why LQRE fluctuates around SUE. As four players are small, LQRE and SUE diverge due

to randomization. In other words, SUE can be fraction numbers while LQRE need to be integers. We can thus suspect that

as the total number of players goes to infinity, homogeneous LQRE will converge to SUE. 

5. Substantive bounded rationality: day-to-day and within-day traffic assignment 

Dynamical travel choices can be studied on a daily basis or within a day. According to different time scales, a dynamic

process can be represented by a day-to-day model or a within-day model. In this section, we will first review analytical

models of day-to-day and within-day dynamics and then introduce parameter estimation for each stage. 

5.1. Day-to-day traffic assignment 

Day-to-day traffic dynamical systems model drivers’ route choice adjustment in response to temporary changes of a traffic

network based on previous experienced travel costs. There are two classes of traffic dynamics in the existing literature: (1)

deterministic user equilibrium dynamical systems ( Friesz et al., 1994; He et al., 2010; Nagurney and Zhang, 1997; Smith,

1979 ), adopting various route choice update mechanism, such as proportional-switch adjustment ( Smith, 1979 ), tatonnement

adjusting process ( Friesz et al., 1994 ), dynamical projection ( Nagurney and Zhang, 1997 ) or link-based adjustment ( He et al.,

2010 ); and (2) stochastic day-to-day dynamics ( Cascetta, 1989; Davis and Nihan, 1993; Watling, 1999 ), assuming drivers

follow logit or probit model. Provided certain regulation conditions, these dynamical systems converge to different types

of equilibria: the deterministic user equilibrium dynamical systems stabilizes to user equilibrium (UE) and the stochastic

day-to-day dynamics’ equilibrium is characterized by a stationary distribution with stochastic user equilibrium (SUE) as its

mean. In this section, we will discuss how BR is embedded into these two types of traffic dynamics. 

5.1.1. Deterministic day-to-day dynamic 

The adjustment processes ( Friesz et al., 1994; He et al., 2010; Nagurney and Zhang, 1997 ) assume: on each day, the flow

pattern tends to move from the current pattern f towards the target pattern u , based on current day’s path costs C ( f ) or

link costs c ( x ) ( Friesz et al., 1994; He et al., 2010; Nagurney and Zhang, 1997 ). He (2010) proposed a general framework of

existing day-to-day dynamics: 

f t = f t−1 + λ(u 

t − f t ) , (5.1a) 

u 

t = Pr �(f t − γC(f t )) , (5.1b) 

where, 

f : the path or the link flow vector; 

u : target flow pattern; 

λ: a positive constant determining the flow changing rate; 

u − f : a flow changing direction; 

�: the feasible path or link flow set, can be either P or X ; 

Pr �(f t − γC(f t )) : projection operator, projecting f − γC(f ) onto �, where γ is a coefficient. 

The aforementioned day-to-day dynamics mainly focus on traffic evolution from disequilibrium to equilibrium within a

network with fixed topology. When the topology of a network is changed, such as a disrupted or restored network, travelers

may behave differently from when the network is stable and the existing perfectly rational day-to-day dynamics will not

work. He and Liu (2012) proposed a prediction–correction process to describe travelers’ reaction within a disrupted network.

Guo and Liu (2011) developed a boundedly rational route choice dynamic to capture travelers’ route choices in face of a

restored network. As the dynamic proposed by Guo and Liu (2011) involves bounded rationality, we will briefly discuss this

model. 
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Under certain regularity assumptions ( Cantarella and Cascetta, 1995 ), the existing perfectly rational day-to-day dynamic

has an unique fixed point. Accordingly the dynamic converges to the same UE flow pattern if a network first disrupts and is

then restored to the original level. This cannot capture irreversible response to the network change observed in Minnesota

( Di et al., 2015b; Guo and Liu, 2011 ). Therefore perfectly rational day-to-day dynamics will predict the same amount of traffic

flow across the bridge. By allowing drivers’ perception errors to vary in a presumed bound, a link-based boundedly rational

day-to-day dynamic ( Guo and Liu, 2011 ) successfully explained the flow reduction phenomenon whereas traffic evolves from

one fixed point towards another within the BRUE solution set. 

In the link-based boundedly rational day-to-day dynamic ( Guo and Liu, 2011 ), Eq. (5.1b) is replaced with the following:

u = Pr �br (c(x )) (x ) , (5.2)

where x is the link flow and �br ( c ( x )) is the acceptable link flow pattern induced by x . 

Before defining �br ( c ( x )), we need to first define the acceptable path set induced by link cost c ( x ): 

P 

br (c(x )) � { r ∈ P : C r (f ) � min 

j∈P w 
C j (f ) + ε} . (5.3)

where f is the path flow vector. 

According to (5.3) , P 

br (c(x )) can be computed in the following steps: based on the current link cost c ( x ), the path cost

C ( f ) can be calculated for each OD pair. Find the shortest path, the 2 nd shortest path, . . . , until the r th shortest path which

has the cost difference from the shortest one less than ε, while the (r + 1) th shortest path with the cost difference from

the shortest one greater than ε. Then these r paths are acceptable paths. 

After the acceptable path set P 

br (c(x )) is known, assign the demand to those acceptable paths for each OD pair, then

�br ( c ( x )) can be mathematically expressed as: 

�br (c(x )) � 

{ 

x ∈ X : x = �f , 
∑ 

r∈P br (c(x )) 

f w 

r = d w , ∀ w ∈ W 

} 

. (5.4)

The fixed point of this dynamic is the BRUE instead of the unique UE. Therefore the stability property of this dynamic is

more difficult to address. Its stability is defined as: the perturbation of a fixed point will make the system to converge to a

fixed point within the set. The new fixed point can be the same as or different from the initial one. Rigorous proofs of the

stability property of the BR dynamic were presented in Di et al. (2015a ). 

5.1.2. Stochastic day-to-day dynamic 

The existing deterministic day-to-day dynamics is a tool in modeling path choices based on the previous day’s experience,

while the existing stochastic day-to-day dynamics have the capability in both modeling and parameter estimation. In this

section, we will focus on modeling. Parameter estimation of stochastic day-to-day dynamics will be introduced in Section 7.1 .

Denote the expected state vector of the stochastic day-to-day dynamic as [ 
g t 

f t 
] . Then the expected states of a stochastic

day-to-day dynamic can be defined in a compact form: [
g 

t 

f t 

]
= h 

([
g 

t−1 

f t−1 

])
, (5.5)

where, 

h ( · ): a nonlinear mapping which will be specified later; 

g t : the perceived travel cost vector on day t ; 

f t : the path flow on day t . 

The mapping h ( · ) defines a nonlinear Markov process. It is continuously differentiable with respect to the state if link

cost functions are continuous. If all eigenvalues of the Jacobian matrix of h ( · ) are within a unit circle ( Cantarella and

Cascetta, 1995 ), the dynamic will converge to a stationary flow distribution. 

The mapping h ( · ) can be further specified according to two stages defined by Cantarella and Cascetta (1995) .

Cantarella and Cascetta (1995) built a unifying theory of both day-to-day and within-day traffic dynamics, including learn-

ing/forecasting mechanism and users’ choice behavior. In the following, we will introduce how to define h ( · ) in these two

stages. 

Travelers update their perceived travel costs based on a weighted average of the previous day’s perceived travel cost and

the experienced cost ( Cantarella and Cascetta, 1995 ). Mathematically, 

g 

t = λg 

t−1 + (1 − λ) C(f t−1 ) , 0 < λ < 1 . (5.6)

where λ is a constant parameter between 0 and 1. 

In reality, travelers may be salient to the travel cost difference between the previous day’s perceived travel cost and the

experienced cost if its value is within a threshold. Therefore, Wu et al. (2013) revised the cost update mechanism defined

in Eq. (5.6) as follows: 

g 

t = 

{
λg 

t−1 + (1 − λ) C(f t−1 ) , if | g 

t−1 − C(f t−1 ) | � ε, 

g t−1 , o.w. 
(5.7)



158 X. Di, H.X. Liu / Transportation Research Part B 85 (2016) 142–179 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This travel time updating along with a logit route choice model is applied to model travelers’ day-to-day evolution within

urban railway networks and this updating model better captures the day-to-day dynamic ( Wu et al., 2013 ). Due to boundedly

rational cost updating, this dynamic is not continuously differentiable with respect to its state any more. Its convergence

and stability properties, unaddressed by Wu et al. (2013) , are more challenging to identify and remain unanswered. 

At the second stage of users’ choice behavioral modeling, the expected path choice dynamic can be defined as a logit

model f t = d P (g t ) , where P ( · ) is a logit probability. More generally ( Cantarella and Cascetta, 1995 ), 

f t = P (g 

t−1 , C(f t−1 )) f t−1 , (5.8) 

where P ( · ) is a transition probability matrix, depending on previous day’s perceived and actual costs. 

The transition matrix P ( · ) can be further decomposed into two parts ( Cantarella and Cascetta, 1995 ): reconsidering

previous day’s choice and choosing today’s path. Then the probability of choosing a path is the probability of reconsidering

the previous day’s choice (switching choice) times the conditional probability of choosing that path given that the previous

day’s choice is reconsidered (path choice). BR can be embedded into calculating both switching choice and path choice.

The representation of BR in these two choices along with the methodology of estimating parameters will be introduced in

Section 7.1 . 

5.2. Dynamic traffic assignment 

Dynamic traffic assignment (DTA) models traveler’s temporal travel choice change. Peeta and Ziliaskopoulos (2001) classi-

fied existing dynamic traffic assignment models into four methodological groups: discrete-time mathematical programming, 

continuous-time optimal control, variational inequality and simulation-based. To the best of our knowledge, bounded ratio-

nality has been only embedded into the third and the forth categories in existing literature, which will be explained in the

following. 

5.2.1. Variational inequality 

A vector f ∈ F is a dynamic user equilibrium (DUE) if and only if it solves an infinite dimensional variational inequality

(VI) ∀ w ∈ W: 

∑ 

r∈P w 

∫ t f 

t 0 

C w 

r (t, f ∗)( f r − f ∗r ) dt � 0 . (5.9) 

Szeto and Lo (2006) indicated that a DTA model with a physical queue paradigm may not even converge. To solve this

anomaly, a tolerance-based principle was proposed that a route carrying flow at a time interval has a travel cost which is

less than an acceptable tolerance from the shortest travel cost. As an extension of the tolerance-based model, Han et al.

(2015) proposed a boundedly rational simultaneous route-and-departure choice dynamic, which is more mathematically 

elegant and rigorous and thus will be our main focus. 

Under bounded rationality, a boundedly rational dynamic user equilibrium (BR-DUE) is reached when “travel times of all

used routes between the same OD pair are within an acceptable tolerance from the minimum OD route travel time” at each

time interval ( Szeto and Lo, 2006 ). Given { ε w } w ∈W 

, a BR-DUE satisfies the following variational inequality: 

∑ 

r∈P w 

∫ t f 

t 0 

φε 
r (t, f ∗)( f r − f ∗r ) dt � 0 , (5.10) 

where φε 
r (t, f ) � min { C r (t, f ) , min j∈P w C j (t, f ) + ε w } , denoting the minimum of the actual cost and the minimum cost plus

the indifference band. 

The rationale underlying VI formulation can be interpreted as follows: assume there is only one path r , to

find BR-DUE f ∗( t ), it requires whenever f ∗r (t) is non-zero, C r (t, f ) � min j∈P w C j (t, f ) + ε w . In other words, f ∗r (t) =
arg min f ∈F 

∫ t f 
t 0 

φε 
r (t , f ∗) f r dt and the left-hand side of Eq. (5.10) should be zero at BR-DUE. 

Han et al. (2015) pointed out that the existence of DUE requires the path cost C ( t , f ) to be Lipschitz continuous with

respect to both t and f . However, to ensure the existence of BR-DUE, C ( t , f ) only needs to be Lipschitz continuous with

respect to t, ∀ f ∈ F . Therefore the existence of BR-DUE is weaker than that of DUE. In other words, under certain conditions,

DUE may not exist but BR-DUE still exists and is not unique. Another contribution of this paper was to characterize the

solution set of discrete time BR-DUE. The solution set is shown to be compact and there always exists a connected but

possibly nonconvex subset which can be generated from a single solution. Three algorithms were proposed to solve BR-

DUE along with rigorous convergence results: a fixed-point method, a self-adaptive projection method, and a proximal point

method. 

5.2.2. Simulation 

Various DTA simulators, such as DYNASMART ( Jayakrishnan et al., 1994 ), DynaMIT ( Ben-Akiva et al., 1997 ), and RouteSim

( Ziliaskopoulos and Waller, 20 0 0 ), are employed to compute DUE. Simulation cannot obtain analytical properties of DUE but

it satisfies FIFO (First In First Out) and circumvents holding-back of vehicles. DTA simulators usually include three compo-

nents ( Cantarella and Cascetta, 1995 ): demand/supply model, learning/forecasting mechanism, and choice behavior. 



X. Di, H.X. Liu / Transportation Research Part B 85 (2016) 142–179 159 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

BR principle can be introduced into learning/forecasting mechanism and choice models in DTA simulators, which is

achieved by the simulator: DynusT ( Chiu et al., 2011 ). DynusT ( Chiu et al., 2011 ), a window-based open source platform,

estimates dynamic traffic flow evolution patterns in large networks based on dynamic equilibrium assignment. It is widely

used by state agencies for transportation policy decision making. One user class, named “En-Route Info”, is introduced in

simulation to represent those travelers who behave boundedly rational under the provision of real-time information. Users

are allowed to input two boundedly rational thresholds into the simulator: (a) the indifference band representing people’s

inertia for switching to a new route, and (b) the threshold bound representing the difference between the chosen travel

time and recommended travel time. 

5.3. Dynamical congestion game and belief learning 

There are two types of learning ( Han and Timmermans, 2006 ): 

1. Belief learning: learn from what choices others have taken in the past; 

2. Reinforcement learning: learn from previous experiences. 

Belief learning is used in the game-theoretical approach, while reinforcement learning is primarily used in random utility

models. In this section, we will discuss belief learning, while reinforcement learning will be introduced in Section 7 . 

When a congestion game is played repeatedly, Chen et al. (1997) proposed a boundedly rational dynamical game and

established the connection between static and dynamic game. Supposing that the subconscious utility a player has depends

on that player’s beliefs about others’ strategies, when the player repeatedly play the game, this belief can be obtained by

the observed choices of other players in the past. Eventually the stead-state distributions of every player’s decisions will

be learned by all players. So a dynamical adjustment process using fictitious play is modeled where each player plays the

game based on others’ historic strategies. Define the empirical distribution of player n is P̄ nt = ( ̄P 1 nt , . . . , P̄ 
J n 
nt ) , which can be

calculated as: 

P̄ t n = 

1 

t 

t−1 ∑ 

τ=0 

ˆ p τn . (5.11)

where ˆ p nτ is the actual choice probability of player n at time τ . 

Based on empirical distributions, the subjective utilities can be calculated every day prior to taking action. It is shown

that both players’ beliefs about others’ strategies and actual choices converge in probability to a boundedly rational Nash

equilibrium (BRNE). 

Han and Timmermans (2006) integrated both belief and reinforcement learning in departure time choice to test how

well the proposed learning mechanism converges to QRE: 

I t n = λI t−1 
n + 1 , (5.12a)

V 

t 
nr = 

λI t−1 V 

t−1 
nr + V̄ nr (s nr , p 

−n ) 

λI t−1 
n + 1 

, (5.12b)

where, 

λ: a constant parameter between 0 and 1. 

 

t 
nr : utility belief of alternative r from traveler n . 

I t n : an indicator of past experience relative to current experience. To simulate decline learning effect, I t−1 
n � I t n . 

Numerical simulation showed that the low initial experience weight and the high learning parameter expedite learning

process and enhance dynamic convergence. The learning process will eventually converge to QRE. 

Zhao and Huang (2014) borrowed the QRE framework to model route choice behavior in a small network with one OD

pair connecting two parallel links. Travelers are assumed to become more rational (i.e., α increases) through repeated game

play, therefore an exponential learning curve is defined: α(t) = αe λ(t−1) where λ is the rate of learning. It showed that QRE

converges to Nash equilibrium (also UE) as the rationality parameter α goes to ∞ or as time progresses. This work provides

a preliminary result of modeling boundedly rational route choice in Nash game, however, the employed road network is too

special in the sense that Nash equilibrium is approximately the same as UE given the travel demand (i.e., 100 units) and the

rationality parameter α are large enough. 

6. Procedural bounded rationality: cognitive search and two-stage cognitive process 

Substantive bounded rationality mainly focus on modeling behavioral outcomes. Parameters associated with bounded

rationality are assumed to be known. The main goal of the behavioral research is to “estimate parameters we need for

fitting theoretical models incorporating known/believed laws to particular situations where we wish to make predictions”

( Simon, 1982 ). Therefore parameter estimation is a critical component of the BR research. Procedural bounded rationality

aims to utilize empirical studies to estimate rationality related parameters. A unified framework for route choice decision-

making processes adapted from Rasouli and Timmermans (2015) and Zhang (2011) is illustrated in Fig. 4 . 
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Before making route choices, travelers are assumed to have some spatial information I via experience, such as network

topology, hierarchy of roads, connectivity, alternative paths, and free-flow travel time (i.e., speed limit). 

Learning L updates spatial knowledge K on day t + 1 based on new information obtained on day t : K 

t+1 = L (I t , K 

t ) . 

Built upon knowledge, search S explores alternatives’ information and can be defined as a mapping from spa-

tial knowledge K to alternatives: S : ( K 

t ) → A . Define subjective expected search gain B depending on knowledge, i.e.,

B = f (K) , and search cost C . A boundedly rational traveler starts search when expected search gain exceeds search

cost. 

A route choice process can be regarded as a two-stage process: choice set generation and alternative route choice. It

can also be treated as a dynamic search process where travelers keep searching routes till a satisfactory route is found.

Accordingly, choice set generation can be categorized into two types: exogenous and endogenous choice set generation. Ex-

ogenous choice set generation means choice set is generated before a decision is made. In endogenous choice set generation

( Richardson, 1982 ), decision-making is a dynamic sequential process where a choice set may not be known till the final

choice is made. 

In the two-stage process, travelers search all feasible paths and form value judgments towards these paths. Define a

set of alternative paths as r selected from the choice set A . The choice set can differ among individuals as time goes on,

then traveler n ’s static alternative set is denoted as A n and at time instant t as A 

t 
n . Each alternative r is characterized

by an attribute set K r . The value of attribute k for alternative r is X rk . Due to perception errors, objective and physical

attribute values is mapped to cognitive values g n (·) : x nrk = g n (X rk ) , ∀ r ∈ A n , k ∈ K r . If travelers: (a) have partial knowledge,

then K nr ⊂ K r ; (b) have imperfect knowledge, then x nrk � = X rk ; and (c) may not be familiar with all choice alternatives, then

A n ⊂ A . Objective or cognitive attribute values are then transformed into a set of value judgments { V nr }: V nr = f n (x nrk ) .

The utility function can be defined as linear, i.e., V nr = 

∑ 

k θn X rk or nonlinear-in-parameter, i.e., V nr = 

∏ 

k ( X rk ) 
θn . Drivers’

risk attitudes, perceptions of alternatives’ utilities, and individual preference impact each process and are represented as

parameters θn , ∀ n , which are unobservable and enclosed in ovals. Note that if route choice is specified, the notation P will

be used to indicate choice set instead of A . 

For ordering choices in order of preference, value judgments are integrated into an overall judgment. It can be a de-

terministic utility value: U nr = f n (V nr ) . It can also adapt the deterministic utility value to a random utility: U nr = V nr + ζnr ,

where ζ nr is a random error with a specific distribution. Gumbel and normal are two commonly used distributions. Deci-

sion rule D determines which alternative to choose based on knowledge: P (A ∗) = D (A, K) . More specifically, P (A ∗) � p nr =
D n (U nr , V nr , X rk ) , where p nr represents choice probability over the choice set or a boolean value. D n ( · ) is the decision-

making mapping regarding which choice to take based on all or partial alternatives’ utility judgments or even attribute

values, resulting in ordering of alternatives. 

Bounded rationality thresholds can be embedded into each process, represented by dotted hexagons. We will review

how BR is modeled and estimated along the course of cognitive processes. As learning involves time dimension, it will be

discussed in Section 7 . 
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6.1. Cognitive search 

In the real-world, paths’ travel costs are generally stochastic. Some researchers argued that travelers do not take the

shortest paths because they are not capable of perceiving actual travel costs due to limited cognitive capacities, or it is too

costly to search information over all alternative paths ( Gao et al., 2011 ). A boundedly rational traveler will not start to search

path information unless its gain exceeds its cost ( Zhang, 2011 ). 

6.1.1. Cognitive cost model 

Gao et al. (2011) proposed a cognitive cost model to capture people’s route choices in complex contexts with costly

information acquisition. 

In cognitive cost model, the path travel time is assumed to be random. Before searching, travelers only know the mean

and the variance. If they decide to search information, travelers will know the exact travel time of the searched path;

however, search consumes cognitive cost. Therefore search action is the trade-off between travel benefit and cognitive cost.

Accordingly, the probability of choosing path r given a choice set P n for traveler n is mainly composed of two parts: 

P (r|P n ) = P (r|P n , no search ) P ( no search ) + P (r|P n , search ) . (6.1)

Assume the ordering of path searching is predefined. At each stage, traveler n has two decide to continue search or stop.

At stage 1, no search is performed. If traveler n decides to search information, at stage 2, information on the first ordered

path is searched. This process will continue till traveler n chooses to stop searching at some stage t . The maximum number

of stages equals to the total number of feasible paths plus one (i.e., no search stage). Each traveler belong to one search

class s , which depends on his or her knowledge of the network and flexibility of arrival time. The probability of choosing

path r given a choice set P n is then further decomposed into the sum of three parts: 

P (r|P n , search ) = 

∑ 

s 

T s n ∑ 

t=1 

P (r| t, P n , H 

s 
n ) P (t| H 

s 
n ) P (H 

s 
n ) , (6.2)

where, 

P (H 

s 
n ) : the probability of individual n belonging to search class s ; 

P (t| H 

s 
n ) : the probability of searching path information till stage t given class H 

s 
n ; 

P (r| t, P n , H 

s 
n ) : the probability of choosing path r given information is searched till stage t . Logit models are used to calculate

all three probabilities. 

In the following, we will mainly introduce the methodologies of computing P (t| H 

s 
n ) and P (H 

s 
n ) , because they both involve

cognitive process modeling. To reflect that a traveler chooses a satisfying route due to information availability, cognitive

constraints and time limit, Gao et al. (2011) adapted a directed cognition model ( Gabaix et al., 2006 ) proposed in economics.

P (t| H 

s 
n ) is computed using a stop-and-go logit model. Let μt,s 

nr , σ
t,s 
nr be mean and standard deviation of path travel cost r

for individual n from class s at stage t respectively. They are random variables at stage t when search is conducted till t − 1 .

At stage t , traveler n decides to continue search or stop. To compute P (t| H 

s 
n ) , the utilities associated with these two actions

are defined as: 

V ( go at t| H 

s 
n ) = θ s 

cost + θ s 
bene f it B 

t,s 
n (go) , 

V ( stop at t| H 

s 
n ) = θ s 

bene f it B 

t,s 
n (stop) , 

where, 

B t,s n (go) : the expected maximum benefit of searching at stage t , computed in Eq. (6.4a) ; 

B t,s n (stop) : the benefit of stopping search at stage t , computed in Eq. (6.4b) ; 

θ s 
cost , θ

s 
bene f it 

: cost and benefit coefficients, which need to be estimated. 

If search stops at stage t , there is no search cost and thus V ( stop at t| H 

s 
n ) does not contain the term θ s 

cost . On the other

hand, when search is conducted, a higher benefit will be obtained. B t,s n (go) and B t,s n (stop) are defined as follows: 

B 

t,s 
n (go) = 

∫ 
μt,s 

nr ,σ
t,s 
nr 

ln 

∑ 

r∈P n 
exp 

[
V 

t,s 
nr (μ

t,s 
nr , σ

t,s 
nr ) 

]
f (μt,s 

nr , σ
t,s 
nr ) d μ

t,s 
nr d σ

t,s 
nr , (6.4a)

B 

t,s 
n (stop) = ln 

∑ 

r∈P n 
exp 

(
V 

t−1 ,s 
nr 

)
, (6.4b)

where, 

 

t,s 
nr (μ

t,s 
nr , σ

t,s 
nr ) : the utility of choosing path r for individual n from class s at stage t , which is a linear function of travel time’s

mean and standard deviation; 

f (μt,s 
nr , σ

t,s 
nr ) : the joint distribution of path travel time means and standard deviations given the search operation. 
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P (H 

s 
n ) is also calculated by a logit model. A class membership function is introduced which includes two classes: search

or no search. The utilities associated with these two classes are defined as: 

V n ( search ) = θ s 
cost + θ s 

bene f it B 

s 1 
n (go) + V (X n , θ ) , 

V n ( no search ) = θ s 
bene f it B 

s 1 
n (stop) , 

where, 

B s 1 n (go) : expected maximum utility of searching one path; 

B s 1 n (stop) : benefit of no search; 

V ( X n , θ): utility related to traveler n ’s characteristics, such as network familiarity and arrival time flexibility of the trip. θ is

a parameter vector associated with individual characteristics. 

Gao et al. (2011) estimated parameters associated with search from simulated revealed preference data among three

alternative routes from home to workplace using three models: the cognitive cost model, a no-information model (i.e., trav-

elers do not search information and choose paths based on unconditional travel time distribution), and a fully-information

model (i.e., a random utility model where travelers know exactly the realized travel time, however, modelers do not have full

information of how they behave). In the cognitive cost model, parameters in class membership function are latent variables

and thus some latent model estimation technique was employed. Without latent explanatory variables (i.e., search cost and

benefit, network familiarity and schedule flexibility), the no-information model the fully-information model generate esti- 

mates with larger variance of error. The higher the search cognitive cost is, the less likely people will search information,

and thus the worse the cognitive cost model will perform in prediction. A commuter who is more familiar with the network

or has more flexible work schedule tends not to search information. Heterogeneity of search costs was also verified from

Twin Cities travel survey ( Zhang, 2006 ). Such finding will provide theoretical basis for deployment of differentiated traveler

information provision. 

6.1.2. Endogenous choice set search 

Richardson (1982) argued that decision-making is a dynamic sequential process where a choice set may not be known

till the final choice is made. Accordingly, all searched alternatives is included into a choice set before the search is stopped.

This process belongs to “endogenous choice set generation”. Search is involved throughout the process. Define utilities of

alternatives as u along with its probability density function as f ( u ) (e.g., standard normal). Search will not stop till the cost

of search, denoted as a constant ε, is beyond expected search gain, denoted as B̄ . In other words, search will stop if B̄ > ε.

The expected search gain is computed as: 

B̄ = ū σ = 

∫ ∞ 

−∞ 

u f (u ) du = 

∫ ∞ 

u max 

(u − u max ) f (u ) du, (6.6)

where, 

ū : the gain of one extra search and is computed as: ū 
∫ ∞ 

−∞ 

u f (u ) du = 

∫ ∞ 

u max 
(u − u max ) f (u ) du ; 

u max : the maximum utility of the alternatives already searched; 

σ : the standard deviation of the actual utility of the alternatives already searched. 

Numerical simulations were performed to validate the proposed search process. The similar result was found as in Gao

et al. (2011) that higher search cost hinders search more. In addition, the more prior information of alternative utilities a

decision-maker has, the more likely he or she will conduct search. 

6.2. Two-stage process 

According to Ben-Akiva et al. (1984) , travelers’ route choice behavior is regarded as a two-stage process: path set gener-

ation (i.e., a path choice set is generated between origin and destination according to route characteristics) and traffic as-

signment (i.e., the traffic demands are mapped to these generated paths based on certain traffic assignment criteria). There

are some variants of such division. For example, the first stage of path set generation can be further divided into two stages

( Hato and Asakura, 20 0 0; Ridwan, 20 04 ): network recognition and alternative generation and elimination. Hiraoka et al.

(2002) proposed three stages: alternative formation, judgment process (including extraction of finite environment proper-

ties and estimation of criterion value), and decision-making process (i.e., evaluation of alternative route costs or choice of

route). In this paper, we will treat route choice as a two-stage process. Its mathematical formulation is ( Rasouli and Tim-

mermans, 2015 ): 

P (r|P) = 

∑ 

P n ∈ 2 P n 
P (r|P n ) P (P n |P) , (6.7) 

where, 

P n : the consideration path set; 

2 P n : the set of all possible path sets; 

P (r|P n ) � p nr : the path choice probability; 

P (P n |P) : the alternative path set choice probability. 
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6.3. Exogenous choice set generation 

In the two-stage theory, choice set generation is generated before a decision is made, i.e., “exogenous choice set genera-

tion”. In the following, we will introduce models to generate exogenous choice set. 

6.3.1. K-shortest path algorithms 

The K -shortest path algorithms, widely used in path set generation, search for the first K paths with the least path costs.

This algorithm relaxes the requirement of obtaining the shortest paths and reduces computational burdens, which reflects

the BR principle. 

Using GPS data collected in Minneapolis, MN, Zhu (2011) evaluated four K -shortest path algorithms: 

1. link labeling approach ( Ben-Akiva et al., 1984 ): generates K shortest paths by minimizing multiple objectives, including

shortest travel time, shortest free-flow travel time, shortest distance, the number of intersections and so on. 

2. link elimination ( Azevedo et al., 1993 ): “generates the K th shortest path by removing all links of the first K − 1 short-

est paths from the network”. 

3. link penalty ( de la Barra et al., 1993 ): “generates shortest paths after multiplying the link travel time of the current

shortest path by 1.05.”

4. simulation ( Zhu, 2011 ): each link’s travel time is assumed to follow a normal distribution with mean computed from

ensemble GPS speed data and variance as 15% of mean. A path travel time is the average of multiple draws from link

distributions. The path with the shortest average travel time will be chosen. 

A measure, named “overlap thresholds of predicted and actual chosen paths”, is used to compare the performance of

each method. Simulation is shown to generate the highest overlap threshold, which covers 63% observed paths. 

6.3.2. Non-compensatory heuristic 

The non-compensatory heuristic is commonly employed in choice set generation to reduce the size of the problem. Its

principle is that only a partial set of alternatives are selected based on attribute values. It includes two strategies ( Rasouli

and Timmermans, 2015 ): conjunctive (i.e., an alternative is selected only when all attributes meet requirements), i.e., p r ={
1 , X rk � ε k , ∀ k ∈ K r 

0 , o.w. 
; and disjunctive (i.e., an alternative is selected if at least one attribute meets requirements), i.e.,

p r = 

{
1 , X rk � ε k , ∃ k ∈ K r 

0 , o.w. 
. Satisfactory heuristic ( Simon, 1955 ) is one example of conjunctive strategy as an alternative is

selected if it meets the minimum aspiration level on all attributes ( Simon, 1955 ). 

6.4. Route choice decision strategies 

At the stage of route choice, two decision strategies are employed: compensatory, non-compensatory. There exists a third

strategy which is the mix of compensatory and non-compensatory strategies: semi-compensatory. The definitions of three

strategies are: 

1. Compensatory strategy: there exist trade-offs among attributes. In other words, the attribute of one alternative can be

compensated by another attribute. The traditional random utility maximization framework utilizes the compensatory

strategy; 

2. Non-compensatory strategy: each alternative is treated as a set of attributes (i.e, aspects). Alternatives are selected

attribute-by-attribute. For one alternative, its superior attribute cannot compensate its inferior attribute. The non-

compensatory strategy can be heuristic as only a partial set of alternatives are compared to obtain an optimal one.

It can also be exhaustive, for example, satisfactory heuristic ( Simon, 1955 ) selects an alternative that meets the mini-

mum requirements on all attributes; 

3. Semi-compensatory strategy: the non-compensatory strategy is employed for choice set generation and the compen-

satory strategy is used to find an optimal choice. 

6.4.1. Compensatory strategy 

The discrete choice model is a common tool to model people’s choice behavior and estimate behavioral parameters.

Within the framework of discrete choice modeling, the random utility maximization model (RUM) is adopted in modeling

and predicting drivers’ route choice behavior among a set of finite paths. Provided perception errors are Gumbel distribution,

RUM can be expressed in the form of a multinomial logit model. The logit model assumes paths are independent of each

other and has independence from irrelevant alternatives (IIA) property. In reality, however, many paths overlap with each

other and are thus not independent. To overcome this limitation, various RUM models were proposed: C-logit ( Cascetta

et al., 1996 ), path-size logit ( Ben-Akiva and Ramming, 1998 ), nested logit ( Jha et al., 1998 ), cross-nested logit ( Vovsha and

Bekhor, 1998 ), multinomial probit ( Cascetta, 1989; Daganzo et al., 1977; Jotisankasa and Polak, 2006 ), and mixed logit or

multinomial probit with logit kernel ( Ben-Akiva and Bolduc, 1996 ). However, all these models assume decision-makers are

fully rational and fully informed, and most importantly, they are utility-maximizers ( Swait, 2001 ). 
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The generic framework of the discrete choice model for utility maximization is: 

P (A r ) = P (U nr > U nr ′ ) = P (V nr + ζnr > V nr ′ + ζnr ′ ) . (6.8)

Different specifications of error structure, ζ nr , give different models. Gumbel distribution gives logit model while normal

gives probit model. The utility function can be defined as linear, i.e., V nr = 

∑ 

k θn X rk or nonlinear-in-parameter, i.e., V nr =∏ 

k ( X rk ) 
θn . Maximum likelihood is used to estimate coefficients defined in the utility V nr . 

The discrete choice model may be unrealistic because: 

1. the utility associated with a choice is associated with a ‘ reference point ’ (Section: Reference-dependent model); 

2. decision-makers are indifferent to small differences in utility values (Sections: Indifference relation and Indifference

to small changes in dynamic choices) . 

In the following, we will introduce how the discrete choice model can be extended to accommodate more realistic choice

behavior. Note that there only exist a small amount of existing studies on extending the discrete choice model in route

choice, due to its complex nature. However, there are a large body of literature on other travel choices, such as mode

choice. We will introduce generic travel choice models and hope readers can apply them to model boundedly rational route

choice behavior in their own research. 

Reference-dependent model. Reference-dependent models play an important role in boundedly rational behavioral modeling. 

People generally evaluate attributes/utilities compared to the best value or some reference point instead of using absolute

values. Such models can be applied to both route choice and choice set generation. 

The relative evaluation value of alternative r with respect to attribute k is defined as a mapping f n ( X rk ) over the attribute

value X rk . Based on relative evaluation, one or more reference points are used to determine the alternatives in attribute or

utility space. Such reference points can be categorized into endogenous or exogenous reference points. An exogenous refer-

ence point is a constant that has already been calibrated from experimental data. An endogenous reference point needs to

be determined from system values, such as a path with the minimum travel time or the maximum attribute value across

all alternatives. Relative attribute or utility threshold/cutoff or aspiration level, denoted as ε, will be introduced to capture

people’s indifference to alternatives whose evaluation values are below the thresholds. Travelers may adjust aspiration level

based on updated knowledge. If some endogenous reference point, such as the maximum attribute value across all alterna-

tives, is chosen as a reference, the relative attribute is: f n (X rk ) = 

max j∈A n X jk −X rk 
max j∈A n X jk 

. 

Accordingly the BR principle is reflected as elimination of alternatives whose attributes or utilities are below certain

thresholds. The behavioral mechanism includes maximization of relative advantage, maximization of relative utility, mini-

mization of regret (such as maximin, maximax, minimax regret models). Interested readers can refer to Rasouli and Tim-

mermans (2015) for detailed description of each model. The unified framework of reference-dependent models is: 

p nr = P (E r � ε ) ∈ [ 0 , 1 ] , (6.9) 

where, 

P ( · ): the probability of alternative r being chosen or included in a consideration set; 

E r : a relative evaluation in attribute/cognitive/utility space, can be f ( X rk ) or g ( V nr ); 

ε : attribute or utility threshold/cutoff or aspiration level. 

Thresholds can be deterministic or stochastic. Define ε = [ ε 1 , . . . , ε N ] 
T as a vector of random variables with its joint

density function as f (ε 1 , . . . , ε N ) . 

P (E r � ε ) = 

∫ ∞ 

E r1 

∫ ∞ 

E r2 

. . . 

∫ ∞ 

E rK 

f (ε 1 , . . . , ε K ) dε 1 dε 2 . . . dε N . (6.10)

Thresholds can also be fixed or dynamic. If there does not exist an optimal solution, thresholds can be adjusted dynam-

ically till an optimal solution is attained. 

Indifference relation. Discrete choice models assume implicitly the existence of a preferable ordering over alternatives even

if the difference in utilities is negligible. However, travelers may be indifferent to small differences in utility values or small

changes in utilities when some change happens. The utility function needs to be modified to account for similarity of choice

alternatives. Also, “alternative utility threshold” will be introduced to capture such indifference. 

Psychological experiments ( Guilford, 1954 ) showed that people may be indifferent to two alternatives with similar util-

ities. Ridwan (2004) defined three fuzzy preference relations for two alternatives: strict preference; indifference; incompa-

rability, and a fuzzy choice function was proposed capturing the fuzziness feature of choices to calculate their rankings.

Krishnan (1977) proposed a minimum perceivable difference (MPD) model describing travelers’ mode choices among two

alternatives with two relations: strict preference and indifference. Denote U r as the utility of alternative A r , r = 1 , 2 . It can

be expressed as the sum of a deterministic component V r and a random component ζ r : U r = V r + ζr . Denote ε as an indif-

ference threshold. The ordering over two alternatives and its associated probability can be defined as follows: 

1. A 1 �A 2 if U 1 > U 2 + ε, A 1 will be chosen with probability 1. The probability of preferring A 1 is computed as: p 1 =
P (ζ − ζ > V − V + ε) ; 
1 2 2 1 



X. Di, H.X. Liu / Transportation Research Part B 85 (2016) 142–179 165 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

V

 

 

2. A 2 �A 1 if U 2 > U 1 + ε, A 2 will be chosen with probability 1. The probability of preferring A 2 is computed as: p 2 =
P (ζ1 − ζ2 < V 2 − V 1 − ε) ; 

3. A 1 ∼ A 2 if | U 1 − U 2 | � ε, A 1 and A 2 will be chosen with probability π and 1 − π respectively. The probability of being

indifferent to A 1 and A 2 is computed as: p 12 = P (A 1 ∼ A 2 ) = P (| U 1 − U 2 | � ε) = P (V 2 − V 1 − ε � ζ1 − ζ2 � V 2 − V 1 + ε) . 

Given distributions of ζ 1 and ζ 2 , the above preferring probability can be computed. Krishnan (1977) adopted the inverted

exponential distribution. The probabilities of choosing each alternative is thus computed as: {
P (A 1 ) = p 1 + π p 12 , 

P (A 2 ) = p 2 + (1 − π) p 12 . 
(6.11)

The above model was applied to estimate commuters’ mode choice, car or train, between Lindenwold and Philadelphia in

order to evaluate the Lindenwold High Speed Line. The estimated threshold ε is the by-product of the above program. The

threshold is estimated as 23, meaning that only when the utility (a linear function of travel time and travel cost) of the high

speed line is 23 higher than that of cars, people will be likely to take the train to work. It predicts better than the logit

model in more than 75% of the cases. 

The MPD model can only accommodate two alternatives. Lioukas (1984) extended it to the multinomial logit model with

more than two choices: 

P (A r ) = 

exp (V nr ) ∑ 

r ′ exp (V nr ′ ) + 

∑ 

r ′ exp (V nr ′ + ε) 
, ∀ r ′ � = P n . (6.12)

Equations ( 6.11 ) and ( 6.12 ) describe individuals’ static decision-making results. When some change happens to alterna-

tives, such as a new alternative is introduced or the value of one attribute has changed, people may also be indifferent to

small changes in utility values. 

Indifference to small changes in dynamic choices. Due to existence of inertia, people may place higher weight on the alterna-

tive he or she regularly uses, which introduces state dependence and serial correlation in dynamic choices. This dependence

can be captured by an inertial variable depending on the utility difference between chosen alternative and others. Cantillo

et al. (20 07 , 20 06) further specified the threshold ε in Eq. (6.12) by introducing an inertial variable with state dependence

(due to inertias, Cantillo et al., 2006 ) and serial correlation (due to persistence of unobservable attributes across a sequence

of choices, Cantillo et al., 2007 ). 

The inertia variable, denoted as ε r 
′ r 

n,t+1 , is represented by a random utility function depending on the utility difference,

i.e., 

ε t+1 
n,r ′ r = ε t+1 

n,r ′ r (V (X n , Z 
t 
n , θ

t 
n ) , V 

t 
nr − V 

t 
nr ′ ) , (6.13)

where, 

V ( · ): a utility function; 

X n : individual characteristics for traveler n ; 

Z t n : trip features for traveler n on day t ; 

θ t 
n : a vector of parameters needed to be estimated; 

 

t 
nr : the deterministic utility for the alternative r . 

Denote the utility of the alternative A r as U 

t 
nr = V t nr (X n , Z 

t 
n , θ

t 
n ) + ζ t 

nr , where ζ t 
nr is the error term. The traveler n picks a

choice r on day t based on a multinomial logit model. A change happens to some attribute attached to an alternative mode

on day t + 1 . Assume travelers make stable mode choice right after the change is made. Due to inertia, the probability of

switching from the current choice A 

t 
n = r to A 

t+1 
n = r ′ , r ′ � = r is equivalent to: 

U 

t+1 
nr ′ − U 

t+1 
nr � I t+1 

n,r ′ r , (6.14a)

U 

t+1 
nr ′ − U 

t+1 
n j 

� I t+1 
n,r ′ r − I t+1 

n, jr 
, ∀ j ∈ P 

t 
n , j � = r, (6.14b)

where, 

I t+1 
n,r ′ r : the inertia variable, represented by a random utility function depending on the utility difference, i.e., I t+1 

n,r ′ r =
γn (V (X n , Z 

t 
n , θ

t 
n ) , V 

t 
nr − V t 

nr ′ ) , where γ n is an unknown coefficient varies randomly among individuals and V ( · ) is a utility

function; 

X n : individual characteristics for traveler n ; 

Z t n : trip features for traveler n on day t ; 

θ t 
n : a vector of parameter needed to be estimated; 

 

t 
nr : the deterministic utility for the alternative r . 

Given the error vector νn as Gumbel, on day t + 1 , the conditional probability of choosing the same alternative r as on

day t and choosing a different alternative r ′ are: 

P (A 

t+1 
n = r| νnr ) = 

exp (V 

t+1 
nr + νnr ) ∑ 

A j ∈ A, j � = r 
exp (V n j − ε t+1 

n, jr 
+ νn j ) + exp (V 

t+1 
n j 

+ νn j ) 
, (6.15a)
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P (A 

t+1 
n = r ′ | νnr ′ ) = 

exp (V 

t 
ir ′ − ε t+1 

n,r ′ r + νnr ′ ) ∑ 

A j ∈ A, j � = r 
exp (V 

t+1 
n j 

− ε t+1 
n, jr 

+ νn j ) + exp (V 

t+1 
n j 

+ νn j ) 
, r ′ � = r. (6.15b) 

This model was used to describe travelers’ mode switching choice after a new mode is added. Two sets of data were

collected in Cagliari, Italy: the RP data in terms of people’s mode choices among car, bus, and train; the SP data inquiring

the choice between a new train service and the current mode choice. Estimation results showed that a misspecified model

without inertia and serial correlation may lead to biases and errors when a newly implemented policy has a substantial

impact. The inertia mean γ̄n is 0.67 while inertia standard deviation σγn is 0.81. The standard deviation is higher than the

mean. One possible explanation is that a small portion of drivers have inertia but others not. Moreover, “an RP/SP model

may underestimate the mean of the inertial effect and overestimate its variance” because SP survey results may have bias

which predicts that more people tend to overcome inertia if a substantial change happens in alternatives than it would

actually happen. 

Di (2014) and Di et al. (2015b ) proposed a boundedly rational route switching approach to model commuters’ route

switching choice after a new route was introduced. This model assumed that commuters would not switch to the new

bridge unless the time saving by taking the new bridge was higher than an indifference band. To validate this behavioral

assumption, route choices of 78 subjects from a GPS travel behavior study were analyzed before and after the addition of

the new I-35W Bridge. Here we will only introduce the work presented in Di et al. (2015b ). 

Di et al. (2015b ) assumed indifference band follows lognormal distribution and presented two ways for parameter spec-

ification. The first model assumes everyone’s indifference band is drawn from a population indifference band and the esti-

mated population indifference band has mean of 6.56% and standard deviation of 0.17%. The second one specifies that each

individual’s indifference band depends on their bridge related experiences. Data has shown that in the context of the re-

opening of the I-35W Bridge, people’s bridge related experiences such as whether they used the old bridge and whether

they were afraid of driving on bridges influence their route switching behavior significantly. However, limited by the sample

size, the indifference band does not show any dependence on people’s demographic information. 

Note. According to von Neumann–Morgenstern utility theorem (or the “rational man” paradigm), in the context of choices

under uncertainty, the expected utility can be used to define the order of preferences for a rational decision-maker, if four

axioms are fulfilled: completeness, transitivity, independence, and continuity. One or more of these axioms may be vio-

lated for a boundedly rational decision-maker. For example, under indifference relation or weak preference, alternatives

with extreme choice probabilities may not be chosen. In other words, the expected utility cannot represent choice outcomes

( Rasouli and Timmermans, 2015 ). Choosing one alternative from a reduced choice set due to expensive search cost also

conflicts with the “rational man” paradigm ( Rubinstein, 1998 ). In reference-dependent models, the dependency of one al-

ternative’s preference on its relative position to other alternatives violates these axioms as well ( Rasouli and Timmermans,

2015 ). However, satisficing heuristic with aspiration levels still defines a “rational man” ( Rubinstein, 1998 ). Such a paradigm

is commonly discussed in economics literature. However, there exists very little literature in transportation on analyzing

whether any bounded rationality models violate the “rational man” paradigm. To the best of our knowledge, we only found

one study discussing it, which is Rasouli and Timmermans (2015) . It will not be the focus of this paper. However, exploring

the relationship between the “rational man” paradigm and a newly developed boundedly rational framework is imperative. 

6.4.2. Non-compensatory strategy 

Non-compensatory and semi-compensatory strategies discuss order of attribute evaluation and attribute cutoff selection. 

If there does not exist one optimal solution, decision-makers are assumed to either adapt attribute cutoff or violate cutoff

to a certain degree. 

Sequential elimination attribute-by-attribute. Decision-making is a dynamic decision process. When attributes are considered 

sequentially and partially, the BR principle is reflected that only a partial set of attributes is considered if alternatives are

selected based on more important attributes. People examine alternatives sequentially by comparing the attributes of one

alternative against a set of minimally acceptable standards for each attribute. In lexicographic model Tversky (1972) , at-

tributes of interest are specified in order and the alternatives without the selected attributes are eliminated. At each stage,

one attribute is specified and the alternatives without the selected attributes are eliminated. Attributes can also be assigned

to numerical values as importance levels and are ordered by such subjective rating ( Recker and Golob, 1979 ). At each stage,

one attribute of all alternatives is evaluated and alternatives which fail to satisfy the tolerance at a particular importance

level are removed from the choice set. 

If there exists multiple alternatives after comparing the first attribute, there exist two rules of eliminating alternatives:

static or dynamic mechanism. In static mechanism, the attribute with the second importance level is compared, and the

third is compared ... till one alternative is eventually picked. It may also end up with no alternative left. Dynamic mechanism

allows people to adjust the standards to reality so that a single alternative will be guaranteed ( Simon, 1972 ). In the following,

we will briefly introduce how dynamic mechanism works in transportation behavior proposed by Recker and Golob (1979) . 

Denote the attribute with the i th importance ranking as k ( i ). At each stage, one attribute of all alternatives is evalu-

ated, alternatives which fail to satisfy some tolerance at a particular importance level are removed from the choice set.

Critical tolerances will be adjusted till a single optimal choice is found and thus the decision-making dynamic is iterative.
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Denote the attribute with the i th importance ranking as k ( i ). The key of this model is to estimate the appropriate critical

tolerances ε nk (i ) , k (i ) = 1 , . . . , K. Because the output of the model is a single alternative not a probability over a choice set,

standard estimation techniques fail. Assume ε nk (i ) ∼ some distribution: ( ̄ε k (i ) , σk (i ) ) . Then the problem is equivalent to deter-

mine the mean values of these critical tolerances that are generalizable to groups in the population as a whole, i.e., estimates

of ε̄ k (i ) , k (i ) ∈ { 1 , . . . , K} , such that σk (i ) , k (i ) ∈ { 1 , . . . , K} of the individual tolerances ε nk (i ) , k (i ) ∈ { 1 , . . . , K} , n = 1 , . . . , N are

minimized, subject to the constraint that every decision maker is assigned his or her chosen choice. 

Two datasets were used to test the proposed sequential decision model: Dataset I was individual’s choice of vehicles,

Dataset II was travelers’ choices of grocery stores from a mail survey. Both datasets included attitudinal data of attributes’

ratings. Estimation results had similar pattern that attributes with higher median importance levels exhibit greater mean

critical tolerances. Such a conclusion makes sense that people tend to have higher critical tolerances for those attributes

they think more important to them. Though the relative comparison of mean critical tolerances is reasonable, no general

conclusion can be drawn from the absolute magnitude of these tolerances. 

Elimination-by-aspects. In sequential elimination of alternatives by attribute, the final choice highly depends on the ordering

of attributes examination. Instead, Tversky (1972) proposed a probabilistic model, i.e., “elimination-by-aspects (EBA)”, which

assumes no fixed prior ordering of attributes. In EBA model, the probability of examining one attribute is proportional to its

importance, therefore more important attributes are more likely of being considered earlier. However, individuals rank the

importance of attributes differently, consequently their attribute-ordering procedure is probabilistic and results in different

optimal choices. Thus a set of probabilities over alternatives is generated: 

P (A r | A ) = 

∑ 

k ∈ X ′ −X 0 X (k ) P (k | A k ) ∑ 

k ′ ∈ X ′ −X 0 X (k ′ ) , (6.16)

where, 

X 

′ : the attributes that belong to at least one alternative in the choice set; 

X 

0 : the attributes that belong to all alternatives in the choice set; 

A k : the alternatives that contain the attribute k . 

Young (1984) applied this model to residential location choice and illustrated how this model works in a case with three

residential location choices. Assume three alternatives are: A = { x, y, z } and each alternative is composed of a collection of

attributes: x = { ̄x , xy , xz , xyz } , y = { ̄y , xy , yz , xyz } , z = { ̄z , xz , yz , xyz } , where x̄ are the attributes that only belong to the alter-

native x , xy are the attributes that only belong to the alternatives x and y , and xyz are the attributes that only belong to

the alternatives x, y, z . Other notations share the similar meanings. Define K = 

∑ 

k X(k ) , which is the sum of the impor-

tance values over the relevant attributes. As the attributes common to all the alternatives do not affect choice probabilities,

attribute xyz may be omitted from the summation and the remaining analysis. Then the alternative x can be chosen with

three possibilities: 

1. Attribute x̄ is selected in the first stage, its probability is: P 1 (x ) = 

X( ̄x ) 
K ; 

2. Attribute xy is selected and then x is chosen over y , its probability is: P 2 (x ) = 

X( xy ) P(x | xy ) 
K ; 

3. Attribute xz is selected and then x is chosen over z , its probability is: P 3 (x ) = 

X( xz ) P(x | xz) 
K . 

P (x | xy ) = 

X ( ̄x ) + X ( xz ) 

X ( ̄x ) + X ( xz ) + X ( ̄y ) + X ( yz ) 
, (6.17a)

P (x | xz) = 

X ( ̄x ) + X ( xy ) 

X ( ̄x ) + X ( xy ) + X ( ̄z ) + X ( yz ) 
. (6.17b)

The total probability of selecting x is: 

P (x | xyz) = 

X ( ̄x ) + X ( xy ) P (x | xy ) + X ( xz ) P (x | xz) 

K 

. (6.18)

The probabilities of choosing y or z can be derived in the same way. 

Using the similar concept of critical tolerances in sequential selection model ( Recker and Golob, 1979 ), the probability of

choosing alternative x depends on the critical tolerance, i.e., P (x | xyz) = P (X rk � (1 − ε k ) max r X rk ′ ) , where X rk is the sancti-

fication level of the k th attribute of alternative r for individual n . The tolerance ε k is generalized to be a Weibull random

variable and its mean and standard deviation can be estimated from a survey of 716 male new residents for residential lo-

cation choice in Melbourne in 1977–78. The significant attributes included thirteen factors, such as friends, air, trees, shops

and so on. These attributes’ tolerances vary from 0.2 to 1.0 with a standard deviation of 0.1. 

6.4.3. Semi-compensatory strategy 

The number of feasible choice set increases exponentially with the number of alternatives and thus choice set selec-

tion formation is computationally intensive, especially for spatial choice (e.g., route choice or destination choice). Adding

constraints to attributes is one way of reducing the cost of generating choice set. 
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Assume the k th attribute is constrained by upper and lower cutoff points, i.e., x rk � X rk � x rk , k ∈ K r . For example, the

distance of the alternative path should be within 1.33 times the shortest distance, or the number of left or right turns

cannot exceed 5 times ( Hato and Asakura, 20 0 0 ). 

The semi-compensatory strategy adopts the non-compensatory strategy for stage one and the compensatory strategy for

stage two: 

Stage 1 Alternatives are eliminated whose attributes do not satisfy x rk � X rk � x rk and the choice set is reduced using the

non-compensatory strategy. For example, conjunctive heuristic can be employed, i.e., only the alternatives whose 

every attribute meets the constraints will be included in the choice set: r ∈ P ⇔ 

∏ 

k ∈K r I( x rk � X rk � x rk ) = 1 , ∀ k ∈
K r . 

Stage 2 An optimal choice is made using the compensatory strategy of utility maximization. 

In the two-stage optimization, attribute cutoffs must be satisfied and cannot be violated. However, it may not gener-

ate an optimal alternative. Then people tend to either adapt thresholds or violate them. In semi-compensatory strategy,

thresholds are assumed to be fixed but treated as “soft” constraints. In other words, they can be violated to a certain de-

gree. Accordingly two-stage optimization can be reduced to one stage ( Martínez et al., 2009; Swait, 2001 ) by converting

attribute constraints to linear ( Swait, 2001 ) or nonlinear penalties ( Martínez et al., 2009 ) embedded into utility functions.

Swait (2001) added a penalized term to the original utility function to accommodate attribute constraints: 

V nr (X rk ) � V 

∗
nr (X rk ) + 

∑ 

k ∈K 
p nr ( w k λrk + v k κrk ) , (6.19) 

where, 

λrk � 0 , κrk � 0 , ∀ r ∈ A , k ∈ K: dual variables of two constraints, respectively; 

w k , v k , ∀ k ∈ K r : marginal disutilities of violating the k th lower and upper cutoff constraints, respectively. 

The penalized term generates “kinks” in the utility function with respect to parameters. Such non-smooth property

can pose difficulty in utility parameter estimation. Instead, Martínez et al. (2009) proposed a nonlinear penalty: V̄ nr (X rk ) �
V ∗nr (X rk ) + log (φnr ) , where φnr = 

1 
1+ exp ( x rk −X rk )+ ρk 

and ρk is a sufficiently small non-zero constant. φnr represents the proba-

bility of violating cutoffs. This nonlinear utility function is continuously differentiable and facilitates optimization. 

A SP survey of 264 customers was conducted for the choice among tree auto rental agencies. The proposed penalty model

could capture the heterogeneity effects and was thus able to explain more variability than a random coefficient model. 

7. Procedural bounded rationality: learning processes 

Making travel decisions is a repeated learning process and three stages are usually considered during dynamic decision-

making processes (illustrated in Fig. 5 ). These stages are indicated in rectangles and enclosed in a big box with dotted bor-

ders because they are unobservable. Individual’s socioeconomic characteristics, available information and their route choices 
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are indicated by solid parallelograms, representing observable inputs or outputs. Before making decisions, travelers are as-

sumed to have some knowledge of networks from previous experiences. Salient information and new experiences may trig-

ger travelers’ update mechanism. Then adaptation to switch departure time or route is made based on certain learning

principle, which will provide more information to the next decision-making process. Due to the existence of habit, there

exists a threshold at each stage to capture more realistic behavior, indicated in dotted hexagons. 

The models discussed in this section will solely adopt reinforcement learning. 

7.1. Day-to-day departure-time and route choices 

When travel choices are made repeatedly, travelers adjust their behavior accordingly based on previous experiences.

Therefore habit plays a critical role and a threshold representing habitual choice behavior should be introduced to charac-

terize habit. In this section, we will discuss how BR is embedded into travel time updating and choice adaptation stages and

how the BR parameters are estimated from observed choices by employing stochastic day-to-day dynamics framework. 

In the repeated learning process illustrated in Fig. 5 , it is found that, as a result of habit, commuters will not update their

travel time perception if the perceived one minus the predicted one is within a threshold. Moreover, they will not adjust

their departure time unless the difference between the preferred arrival time and the actual arrival time exceeds a bound

( Chen and Mahmassani, 2004; Hu and Mahmassani, 1997; Jayakrishnan et al., 1994; Mahmassani and Chang, 1987; Mahmas-

sani and Jayakrishnan, 1991; Mahmassani and Liu, 1999; Srinivasan and Mahmassani, 1999; Yanmaz-Tuzel and Ozbay, 2009 ).

This bound for lateness and earliness are different and people are usually more sensitive to lateness. In addition, commuters

will not switch routes if the difference between perceived travel time and experienced one exceeds a bound ( Akiva, 1994 ). 

In the following, modeling travel time perception update and departure-time and route choice adaptation will be intro-

duced along with parameter estimation. 

7.1.1. Travel time perception updating 

Jha et al. (1998) assumed that individuals update their travel time whenever new traffic information is obtained or new

travel time is perceived. This assumption is unreasonable due to the existence of updating costs. Chen and Mahmassani

(2004) and Jotisankasa and Polak (2006) proposed that only salient information impacts travelers. Assume travelers do not

update travel time if the difference between the perceived travel time ˆ C t n and the experienced travel time C t n exceeds some

threshold. Let y t ,t ime 
n denote a travel time update indicator for traveler n at the end of day t , which equals to 1 if traveler n

updates travel time after day t , and 0 otherwise: 

y t ,t ime 
n = 

{
0 , if ˆ C t n − C t n � ε t ,t ime 

n,o , C t n − ˆ C t n � ε t ,t ime 
n,u , 

1 , o.w. 
(7.1)

where ε t ,t ime 
n,o , ε t ,t ime 

n,u denote travel time overestimation and underestimation thresholds for user n on day t respectively.

Denote ε t ,t ime 
n as a fraction threshold instead of an absolute value, then travel time updating only happens if | ̂  C t n − C t n | �

ε t ,t ime 
n 

ˆ C t n . In this case, overestimation and underestimation share the same fractional threshold. 

If travel time is random, Chen and Mahmassani (2004) proposed another updating mechanism that a traveler will not

update travel time perception until his or her confidence in all path travel times is below a desired level, i.e., αt 
nr � 

1 
σn ̄C 

t 
nr 

, r ∈
P, where αt 

nr is traveler’s confidence in path r ’s travel time, σ n is the variance of the perceived travel time over a segment

of unit travel time, and C̄ t nr is the mean perceived travel time of path r . 

Overestimation and underestimation thresholds are random variables depending on individual characteristics and trip

features. Therefore they can be expressed as: 

εt ,t ime 
n,o = V 

time 
o (X n , Z 

t 
n , θ

t 
n ) + ζ t ,t ime 

n,o , (7.2a)

εt ,t ime 
n,u = V 

time 
u (X n , Z 

t 
n , θ

t 
n ) + ζ t ,t ime 

n,u , (7.2b)

where, 

 

time 
o (·) , V time 

u (·) : deterministic utility functions for overestimation and underestimation; 

X n : individual characteristics for traveler n ; 

Z t n : trip features for traveler n on day t ; 

θ t 
n : parameters for traveler n on day t ; 

ζ t 
n : error terms for traveler n on day t , is either ζ t 

n,o or ζ t 
n,u . 

The probability of updating can be calculated by a multinomial logit or a multinomial probit model. If the traveler decides

to update travel time, there are three classes of models in travel time updating: weighted average ( Nakayama et al., 2001 ),

adaptive expectation ( Nakayama et al., 2001 ), or Bayesian ( Jha et al., 1998; Jotisankasa and Polak, 2006 ). 

If drivers are myopic and only use yesterday’s travel cost, updating is reduced to ˆ C t n = C t−1 
n , i.e., the perceived travel time

on day t is equal to the experienced travel time on day t − 1 . 
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7.1.2. Departure-time and route choice adaptation 

After travel time is updated, drivers adjust their departure-time and route choices based on certain rules. There are two

classes of research on modeling choice adaptation: the first one is based on utility maximization ( Chen and Mahmassani,

2004; Jotisankasa and Polak, 2006 ) and the second one is based on bounded rationality. We will only focus on boundedly

rational departure-time and route choice adaptation. 

To study the impact of advanced travel information on people’s behavior, Hu and Mahmassani (1997) ; Jayakrishnan et al.

(1994) ; Mahmassani and Chang (1987) ; Mahmassani and Jayakrishnan (1991) ; Mahmassani and Liu (1999) conducted a series

of experiments and showed that people are boundedly rational when choosing routes repeatedly with information. These

experiments were run on an interactive simulator-DYNASMART, incorporating pre-trip departure time, route choices and 

en-route path switching decisions. Subjects, as travelers, picked departure time pre-trip based on the previous days’ travel

experiences and chose paths en-route at each node based on available information. 

Let y 
t,dep 
n denote a departure time switching indicator for traveler n on day t , which equals to 1 if traveler n switches

departure time on day t + 1 , and 0 otherwise. Assume traveler n will not adjust his or her departure time unless the

schedule delay (i.e., preferred arrival time minus actual arrival time) exceeds some threshold. Early and late arrivals have

distinct indifference bands, denoted as ε t,dep 
n,e , ε t,dep 

n,l 
respectively, representing tolerable schedule delay. Then, 

y t,dep 
n = 

{
0 , if T ∗t 

n − T t n � ε t,dep 
n,e , T t n − T ∗t 

n � ε t,dep 

n,l 

1 , o.w. . 
(7.3) 

where T ∗t 
n , T 

t 
n denote preferred arrival time and actual arrival time for traveler n on day t respectively. 

Let y t,route 
n j 

denote a route switching indicator for traveler n at the intermediate junction node j on day t , which equals to

1 if traveler n switches his or her initial route or route en-route at node j after day t , and 0 otherwise. Assume travelers do

not change pre-trip route or path en-route unless the trip time saving (the difference between predicted travel time of the

current path and that of the best path from this node to destination) remains within his or her route indifference band: 

y t,route 
n j 

= 

{
0 , if C t 

n j 
− C t,b 

n j 
� ε t,route 

n j 
C t 

n j 
, 

1 , o.w. 
(7.4) 

where, 

C t 
n j 

, C t,b 
n jt 

: the trip times of the chosen and the best path for traveler n from node j to destination on day t respectively; 

ε t,route 
n j 

: the relative indifference band defined as a fraction of C t 
n j 

. 

The aforementioned indifference bands vary among the population over time and thus are random: 

εt,dep 
n,e = V 

dep 
e (X n , Z 

t 
n , θ

t 
n ) + ζ t,dep 

n,e , (7.5a) 

εt,dep 

n,l 
= V 

dep 

l 
(X n , Z 

t 
n , θ

t 
n ) + ζ t,dep 

n,l 
, (7.5b) 

where subscripts e, l represent early and late sides. V 
dep 
e (X n , Z 

t 
n , θ

t 
n ) , V 

dep 

l 
(X n , Z 

t 
n , θ

t 
n ) are linear-in-parameter functions of

user’s initial absolute or relative indifference bands, real-time information reliability (defined as the difference between ac-

tual travel time and reported travel time from the real-time information system), the travel time difference between today’s

and yesterday’s (myopic factor), age, and gender. 

7.1.3. Estimation of departure-time and route choices 

There are two schemes of estimating departure time and route choices under real-time information: joint estimation

based on joint probability and hierarchical estimation based on conditional probability. 

Given specifications for utility errors of switching departure-time and routes, repeated observations of departure time

and route switching decisions can be modeled as a multinomial logit or a multinomial probit function. The maximum likeli-

hood estimation is adopted to estimate parameters in utility functions. In Jha et al. (1998) , the initial indifference bands for

route switching were shown to be one dominant covariate: the relative indifference band for route switching was 19% for

the pre-trip route decision and 18% for the en-route decision; the absolute indifference band for departure-time switching

is 1 min. If a commuter experienced an increase in travel time in the previous day, he or she was less likely to switch. In

addition, male commuters tended to switch routes more frequently than females. 

Departure-time and route choices can be also estimated by a hierarchical model ( Jha et al., 1998 ): the probability of

selecting departure interval i and path r on day t by individual n is based on a conditional probability instead of a joint

probability: P t 
n,ri 

= P t 
ni 

× P t 
n,r| i , where, P t 

ni 
is the probability of selecting departure interval i and P t 

n,r| i is the conditional proba-

bility of selecting route r given the traveler n has selected departure interval i . These two probabilities can be calculated by

logit models, respectively. 

7.2. Agent-based models 

As the cognitive process is complex and involves numerous decision-making rules, agent-based simulation is a useful tool

to emulate such behavior and generate equilibrium solutions aside from analytical approaches. An agent-based model in-

cludes three elements: agents (i.e., independent or interactive decision-makers), an environment, and rules. Travelers search
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routes based on a set of rules. Therefore rule-based learning simulation is a natural representation of how each agent makes

decisions. 

7.2.1. Rule-based learning simulation 

Travelers search routes dynamically while adjusting their indifference bands so that an optimal route can be found.

To accommodate such a cognitive process, Zhang (2006) proposed a positive search, information, learning, and knowledge

(SILK) theory wherein travelers update their spatial knowledge K 

t+1 about network by a Bayesian learning process based

on some prior knowledge K 

t when new information I is available: P (K 

t+1 | I) = 

P (I| K t ) P (K t ) 
P(I) 

. The search cost is calibrated from

a route search process survey conducted in the Twin Cities area. The behavior of searching for and changing routes are

defined by ‘if-then’ rules, calibrated from GPS-based route choice field experiments. One application of the SILK theory is to

compute the behavioral user equilibrium (BUE) which is achieved “when all users with imperfect network knowledge stop

searching for alternative routes” due to higher perceived search cost compared to the expected gain from an extra search

( Zhang, 2011 ). The simulation was performed in the Twin Cities road network with 7976 nodes, 20, 194 links, and 600, 000

travelers during the peak hour. Simulation results demonstrated that at BUE, the actual travel cost a drivers experiences is

on average 18% higher than the minimum path cost, which can go as high as up to 42% in the worst scenario. Only 25%

travelers use the minimum travel cost paths. 

Zhang (2011) also compared UE, SUE, and BUE. In the Twin Cities road network, UE underestimates congestion level on

highly congested links such as freeway bottlenecks. On the other hand, under SUE and BUE, travelers are less sensitive to

increased congestion level either due to perception error or search cost. 

7.2.2. Stochastic learning automaton 

When travel time is assumed to be random, Yanmaz-Tuzel and Ozbay (2009) applied another learning mechanism,

stochastic learning automata (SLA), to study drivers’ departure-time choice adaptation in response to a toll change on New

Jersey Turnpike (NJTPK). Travelers have three options to depart for work: pre-peak, peak and post-peak. Each driver’s de-

parture time choice is assumed to be automated by a stochastic learning automaton which generates a sequence of actions

based on drivers’ past experiences and interactions with the environment. 

The transportation system is defined as a random medium where a traveler can decide and update their departure-time.

Denote A 

t 
n as traveler n ’s departure-time choice on day t . y 

t,dep 
n is the utility experienced from a departure-time choice,

which is calculated from the automaton based on personal experiences. The utility is a binary variable in the form of re-

ward ( y 
t,dep 
n = 0 ) or punishment ( y 

t,dep 
n = 1 ). Drivers will not update their departure time if deviation of actual arrival time

from desired arrival time given the selected departure time falls within an indifference band. The probability of an alter-

native A 

t 
n being unfavorable is then computed as P (y t n = 1 | A 

t 
n ) , which is estimated by a Bayesian random coefficient model

via individual travel surveys in terms of their departure time choices and socio-economic characteristics. Individual char-

acteristics include the amount of toll charged, work schedule flexibility, education, age, employment, and gender. Then the

transition probability of departure-time choice P (A 

t+1 
n ) on day t + 1 is updated based on a linear reward-penalty reinforce-

ment learning scheme. 

Learning parameters introduced in the reinforcement scheme are estimated from drivers’ departure time choices ob-

served from NJTPK toll data. This model successfully mimics NJTPK users’ day-to-day travel behavior. However, the learning

parameters are close to zero, which were quite different from the values in other fields because of biased samples. Most

commuter samples this study included were regular commuters, thus they were familiar with traffic conditions and tended

to adapt their choice behavior quickly. 

8. Discussions 

8.1. Summary of methodologies 

The existing methodologies reviewed can be categorized into four types: game-theoretical approach (BRUE, IUE,

SUE), statistical congestion game (QRE, BRNE), random-utility models (representing compensatory strategy), and non-

or semi-compensatory models. All these approaches include five elements and differ in one or combinations of them

( Tables 2 ). 

In modeling route choice behavior, which model is adopted depends on the goal. Game-theoretical models and statisti-

cal congestion game models focus on outcomes and consider the congestion effect caused by other users. Random-utility

models and non- or semi-compensatory models assume individuals independently choose routes but it may depend on trip

features or individuals’ demographic characteristics. Behavioral related parameters can also be estimated. Non- or semi-

compensatory models with bounded rationality simplify the cognitive process of decision-making and have great potential

in reducing computational complexity of modeling boundedly rational route choice behavior. Among them, statistical con-

gestion game models are mixtures of game-theoretical models and random-utility models, which capture both individual

interaction and statistical aspects of route choice behavior. However, they suffer from critiques. For example, in logit quantal

response equilibrium (LQRE), the source of variations in the rationality parameter is unclear: it may come from individuals

or from different contexts (e.g., with or without real-time information). Its value may not increase with repeated experi-

ments due to inertia. Therefore quantifying this extra parameter requires deep understanding of rationale underlying choice
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Table 2 

Methodologies of modeling boundedly rational route choice. 

Elements Game-theoretical models Statistical congestion game Random-utility models (i.e., 

compensatory models) 

Non- or semi- 

compensatory models 

Attribute Travel time Travel time Multiple attributes Multiple attributes 

Attribute value Flow-dependent Flow-dependent Flow-independent Flow-independent 

Alternative All paths All paths All or partial paths All or partial paths 

Utility Accurate Erroneous or cognitive Erroneous or cognitive Accurate 

Choice Deterministic aggregate 

flow 

Choice probability and 

integer flows 

Choice probability Boolean or choice 

probability 

Category Aggregate travel demand 

model 

Disaggregate statistical 

model 

Disaggregate statistical 

model 

Disaggregate statistical 

model 

Pros Captures congestion level Captures both congestion 

level and 

error/stochasticity 

Captures error/stochasticity Simplifies search and 

reduces choice set 

Cons No demographic 

information, no 

parameter estimation 

Complex equilibrium 

calculation and 

parameter estimation 

No individual interaction Difficult to model heuristics 

Table 3 

Comparison of bounded rationality related equilibria. 

Equilibrium Application Issues Existence or uniqueness 

conditions 

Uniqueness 

BRUE Capture irreversible network 

change 

Solving it is challenging and 

may be mathematically 

intractable 

Increasing link cost functions Generally non-unique 

BR-DUE Ensure existence of a DUE Solving it is challenging and 

may be mathematically 

intractable 

Increasing link delay functions Generally non-unique 

IUE Manifest people’s inertia in 

response to information 

Individual’s inertial path 

patterns need to be known, 

which involves cumbersome 

enumeration of all inertial 

path patterns and requires 

nontrivial estimation 

procedures of such patterns 

(Strictly) monotone link cost 

functions 

(Non-)unique 

SUE Commonly used to describe an 

equilibrium flow pattern 

which deviates from UE 

Not statistical and thus not for 

parameter estimation 

Monotonically increasing cost 

functions 

Unique 

QRE/BRNE Can be used for parameter 

estimation 

Variation sources of rationality 

parameters are unclear 

Monotonically increasing 

functions 

Unique 

BUE Captures searching behavior 

using positive behavioral 

model 

Not guarantee an equilibrium 

exists 

NA NA 

 

 

 

 

 

 

 

 

 

 

outcomes. It also lead to a more complex estimation process, as the computation of equilibrium is needed when a likelihood

function is constructed. It thus requires a fixed-point algorithm embedded into a maximum likelihood estimation procedure

( Seim, 2006 ). 

8.2. Which boundedly rational equilibrium? 

Section 4.3 compared the static equilibria using a numerical example. We want to extend the comparison of all equilibria

which have been discussed so far to a more abstract level. Each boundedly rational equilibrium prescribes different aspects

of bounded rationality, which are illustrated in Table 1 . Which equilibrium concept to use depends on which aspect of

bounded rationality needs to be highlighted and is illustrated in Table 3 . 

Remark. SUE is commonly used to describe an equilibrium flow pattern which deviates from UE. However, it is insufficient

in some scenarios: 

1. It is unique if the path cost is monotonically increasing ( Sheffi, 1984 ). Such uniqueness cannot describe the substantial

change in traffic flow in a disrupted or a restored road network ( Guo and Liu, 2011 ). 

2. As shown in the relationship between SUE and LQRE, SUE only captures the expected traffic flow without stochasticity

and thus it does not contain statistical features. ”Stochastic” is actually misleading. It cannot be used for parameter

estimation in static traffic assignment. Instead, it is mainly used for traffic flow prediction. On the other hand, SUE is

more widely used in stochastic day-to-day dynamics for learning parameter estimation as shown in Section 5.1.2 . 
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8.3. Perfect or bounded rationality? 

As numerous evidence shown in Section 2 , the failure of explaining realistic travel behavior using perfect rationality

motivates bounded rationality in a variety of contexts. However, we need to first answer the philosophical question raised

by Simon (1987) before employing any models: “where the bounds of human rationality are located?” In other words, under

what conditions shall we need bounded rationality? 

To answer this question, we need to discuss four aspects associated with behavioral models: predictability, transferability,

tractability, and scalability. 

8.3.1. Predictability 

If we need to obtain stable link traffic flows in a fixed network, user equilibrium (UE) should be sufficient. When the

network is subject to a significant change due to new road additions, new travel mode construction, or unexpected net-

work disruptions, equilibrium patterns can change substantially and using UE may result in huge deviation from the real

equilibrium patterns. Consequently it will result in wrong policy implementation and waste of infrastructure investment.

Danczyk et al. (2015) compared drivers’ route choice responses in face of non-expected and expected network disruption

respectively using real-world data, which was the collapse of the I-35W Bridge and a planned closure of Trunk Highway 36

both in Minneapolis in 2007. It was found that drivers imposed excess travel costs to the roads near the disruption area

so that avoidance behavior occurs when the network was disrupted unexpectedly, which was not observed in the planned

disruption case. The similar pattern was observed when the new I-35W Bridge was reopened a year later: commuters still

tried to avoid the new bridge. In the restored network, UE was not able to predict realistic traffic flows, which motivated

the usage of boundedly rational user equilibrium (BRUE) ( Di et al., 2015b; Guo and Liu, 2011 ). 

8.3.2. Transferability 

Due to inclusion of extra parameters, BR models are quite sensitive to relevant parameters. The misspecified models

can result in even worse prediction than PR models. Thus the calibration of indifference bands or cognitive processes is

critical in determining the prediction accuracy of models. They can be individual-specific or the same across the entire

population. Individual specific parameters require more data and more complicated models to estimate. By far there do

not exist sufficient empirical studies on estimation processes due to lack of large amounts of individual route choice data.

Therefore we should be cautious when using BR models for the policy-making purpose. 

Even a well-specified BR model is calibrated by data collected from one area, a more critical question is, whether such

a model can easily be transferred to another area, context, or time period. So far there exists only one study which touched

upon the issue of transferability from a laboratory experiment to the real-world scenario in route choice study. By com-

paring commuter departure time and route choice switch behavior in laboratory experiments with field surveys in Dallas

and Austin, Texas, Mahmassani and Jou (20 0 0) showed that boundedly rational route choice modeling observed from ex-

periments provided a valid description of actual commuter daily behavior. Such a claim is quite conservative and whether

laboratory experimental experiences can truly represent actual commuter daily behavior still remains unclear. In game-

playing experiments, McKelvey and Palfrey (1995) found out that the rationality parameter defined in QRE may vary from

experiment to experiment. In some games, the rationality parameter grows as time goes on; however in other games, it

does not grow as expected. Therefore this parameter can be individual-specific or context-dependent and may not be able

to transfer to a different population or a new context. 

8.3.3. Tractability 

Tractability is one important measure in picking a model. The tractability of BR models is like a two-sided sword.

Whether a BR model is mathematically tractable depends on the size of the problem, the emergency of coming up with

a solution for policy-making, and most importantly, the behavioral aspects it incorporates. Decision-makers should evaluate

the trade-of between accuracy and efficiency. 

In substantive rationality, BR equilibria are less efficient to solve than PR equilibria due to existence of indifference bands.

Equilibrium is commonly used for policy-making in long-term transportation planning, as it predicts traffic flows and con-

gestion levels within a network, after a change is made (i.e., a toll charge, a lane expansion, a new road addition, or a new

travel mode construction). User equilibrium is the most widely adopted because its formulation is a convex program and a

variety of algorithms, such as the Frank-wolf algorithm, exist to solve UE efficiently. By introducing the indifference band,

equilibria formulation is more complicated because of, for example, non-uniqueness of bounded rationality user equilib-

rium (BRUE) or numerous potential inertial path patterns each traveler may have for inertial user equilibrium (IUE). Most

of the existing studies do not discuss or consider computation complexity of relevant equilibria. Such ignorance hinders the

popularity of bounded rationality related equilibria in spite of its prediction power. 

We are glad to see that some traffic software starts to take effort in incorporating BR into traffic simulation, such as

DynusT ( Chiu et al., 2011 ) and POLARIS (short for “Planning and Operations Language for Agent-based Regional Integrated

Simulation”). DynusT was introduced in Section 5.2 and will be skipped here. POLARIS is a transportation system modeling

suite developed at Argonne National Laboratory, which is based on an agent-based activity-based travel demand model

( Auld et al., 2013 ). The boundedly rational en-route switching rule using real-time traffic information is employed to model

switching behavior. All these effort s make computation of equilibria much easier and should advance BR related research. 
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In procedure rationality, the cognitive process with the BR principles may be simpler than that with the PR principle, as

fewer attributes and alternatives are considered. On the other hand, inclusion of the cognitive process may also complicate

modeling and parameter estimation. 

8.3.4. Scalability 

Scalability of a BR related route choice model deals with the issue such as: if the total travel demand among one origin-

destination (OD) pair is shrunk, will the same value of BR parameters still predict travel behavior correctly? To answer this

question, the scale of BR parameters, more specifically, indifference bands, plays an important role. 

In the existing literature, both absolute ( Di et al., 2013; Han et al., 2015; Lou et al., 2010 ) (mainly for equilibrium com-

putation) and relative ( Di et al., 2015b; Guo and Liu, 2011; Mahmassani and Liu, 1999 ) (mainly for parameter estimation)

indifference bands are adopted. Whichever scale is used really depends on researchers’ purpose. 

An absolute indifference band of 1 min means differently in different networks. For a network with an average travel

time of 10 min versus one with an average travel time of 100 min, the BR model may be unnecessary for the latter case

as 1 min may be in-salient compared to 100 min. Therefore the magnitude of an absolute indifference band may not be

very meaningful. In the same network, the average travel time can vary significantly among different OD pairs, thus the

relative indifference band is more commonly used. In the existing literature, it ranges from 2.3% ( Di et al., 2015b ) to 18%

( Mahmassani and Liu, 1999 ). It was found in both Cantillo et al. (2007) and Di et al. (2015b ) that the variance of the

indifference band may be larger than its mean due to population of heterogeneity. 

We need to note that the aforementioned four aspects of evaluating a model are not independent with each other, instead

they are correlated. For example, predictability is determined by transferability, tractability, and scalability. Tractability can

impact transferability. Scalability is one aspect of transferability. In conclusion, decision-makers should weigh these aspects

before choosing a model. 

8.4. Substantive or procedural? 

Another question of interest raised by Simon (1987) is: “which kind of theory, substantive or procedural, can better

predict and explain what decisions are actually reached”? “Are we interested only in the decisions that are reached, or is

the human decision-making process itself one of the objects of our scientific curiosity”? 

Substantive bounded rationality describes how people ought to behave boundedly rational while procedure bounded 

rationality describes how people actually behave boundedly rational from empirical data. Using substantive or procedu-

ral bounded rationality depends on the goal. If it is for policy-making in long-term transportation planning, such as a

toll charge, a lane expansion, a new road addition, or a new travel mode construction, substantive rationality models are

sufficient. If the cognitive process in route choice is the interest, such as path information search or learning, procedu-

ral rationality models are desirable. As the cognitive process is usually hidden and cannot be observed directly, some la-

tent variable models need to be employed. Moreover, procedural rationality are empirical studies oriented. Therefore if

field or laboratory experimental data is available and parameters are needed to estimate, procedural models should be

adopted. 

8.5. Behavioral homogeneity or heterogeneity? 

Numerous studies reviewed in this paper revealed that people’ socio-demographic characteristics influence decision- 

making, such as age, gender, and network familiarity. Failure to capture such heterogeneity may result in worse prediction.

There exist two approaches to accommodate people’s taste variations. 

1. Random effect models: BR related parameters are assumed to be continuous random variables. Distribution related

quantities, such as mean and variance, need to be estimated. To avoid misspecification, longitudinal data for indi-

viduals (i.e., repeated route choice observations) and more complicated estimation procedures, such as Markov chain

Monte Carlo simulation, are needed. 

2. Latent class models: the entire population is divided into a finite number of homogeneous subgroups (i.e., certain

latent membership classes) defined by certain ranges of socio-demographic characteristics. Within each class, indi-

viduals are assumed to exhibit similar route choice behavior. However, using this type of models for estimation suf-

fers from three issues: identifiability, determination of the number of latent classes, and stationarity ( Dillon et al.,

1994 ). Identifiability relates to attainment of unique solutions, including two main aspects: (a) whether a param-

eterized distribution is identifiable; and (b) whether the estimation procedure can yield unique parameter values.

How many latent classes used for estimation is also a critical question. It needs trade-off between accuracy and

efficiency. A rough classification of subgroups can generate large within-group heterogeneity. Stationarity assumes 

travelers have fixed membership classes over time. However, in reality, it may evolve when travelers become more

familiar with roads or when real-time information is provided. In this case, non-stationary latent class models are
needed. 



X. Di, H.X. Liu / Transportation Research Part B 85 (2016) 142–179 175 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9. Conclusions and future research directions 

Recently there exists a small but growing body of literature on boundedly rational route choice model. However, a unified

framework has been lacking. In this paper, we aim to develop a unified framework of boundededly rational route choices

based on a comprehensive review of the state-of-the-art of boundedly rational travel behavior modeling. 

First, empirical evidence and their references from psychology, economics, and transportation were cited to show that

perfectly rational choice behavior cannot reflect realistic aspects of human choice behavior, because of cognitive limits,

expensive deliberation costs, non-attainability of perfect rationality via repeated learning process, and infeasible perfectly

rational models. On the other hand, people are boundedly rational because of habit, myopia, less cognitive cost, and solution

existence. 

Then the paper gives an in-depth discussion of all boundedly rational route choice related models in both substantive

and procedural rationality. In each rationality category, the static choice and the time-dependent choice are discussed. 

Substantive bounded rationality models include static and dynamic traffic assignment. In static traffic assignment, equi-

librium is the most concerned concepts. Five equilibria are introduced and compared in a numerical example, each of which

represents one aspect of bounded rationality. In dynamic choice, day-to-day/within-day traffic assignment and dynamic con-

gestion games are introduced. 

In procedural bounded rationality models, cognitive processes associated with route choice decision-making are modeled,

including a two-stage model and learning processes. Three analytical tools are utilized: random utility models based on the

compensatory strategy, non-compensatory models, and semi-compensatory models. In addition, agent-based simulation is

commonly used in modeling learning behavior. 

Based on the reviewed literature, we would like to point out some research gaps which need to be filled in the existing

literature. 

9.1. Present research gaps 

9.1.1. Empirical verification and estimation of bounded rationality 

Though there exist several studies which utilize travel survey data to estimate bounded rationality parameters, they are

mainly restricted to laboratory data. Nowadays, not only aggregated detector data at fixed locations, but also mobile sensor

data from GPS or smart-phones for individual travelers are available. With travel behavioral data from various sources in

place, empirical verification of bounded rationality should continue and bounded rationality parameters need to be esti-

mated for various scales of regions. 

9.1.2. Boundedly rational route choice behavior modeling under uncertainty 

In substantive bounded rationality models, existing studies on analytical properties of BRUE assume that deterministic

flow-dependent travel time is the only factor influencing route choices. Two other major contributing factors, travel time

reliability and monetary cost, are completely dismissed. These two factors have been incorporated into perfect rationality

models and accordingly UE is subjected to many variants: Probabilistic UE (PUE) ( Lo et al., 2006 ), Late arrival penalized

UE (LAPUE) ( Watling, 2006 ), Mean-excess traffic equilibrium (METE) ( Chen and Zhou, 2010; Chen et al., 2011 ), Stochastic

bicriterion user-optimal ( Dial, 1996; 1997 ) and Bi-objective UE (BUE) ( Wang et al., 2009 ). Significant contributions can be

made if these two factors are also incorporated into BRUE. 

In procedural bounded rationality models, the expected utility model does not generally consider decision-makers’ risk-

taking preference, nor does it consider decision-makers’ responses to outcome’s probabilities associated with their choices.

To further capture decision-makers’ risk-taking preference, behavioral modeling under uncertainty is desirable. Embedding

bounded rationality into choice models under uncertainty to reflect people’s risk-taking and different responses should be

further explored in route choice study. 

Prospect theory introduces a reference point to capture people’s loss-gain asymmetry relationship and adds weighting

functions to each alternative’s utility to describe the fact that people underweights outcomes with a low probability com-

pared to those with a greater probability. It is also introduced to model transport choice, including route choice behavior.

Interested readers can refer to Avineri and Ben-Elia (2015) for a comprehensive review on applying prospect theory to route

choice behavior. Employing prospect theory or cumulative prospect theory to boundedly rational route choice behavior mod-

eling and traffic assignment equilibrium is one prominent direction. 

9.1.3. Transportation network design under bounded rationality 

New methodologies are needed regarding transportation network design problem (NDP) with boundedly rational travel

behavior. The classical network design problem is usually formulated as a bi-level program: the upper level is the decision

made to either enhance capacities of the established links, apply congestion pricing, or add new links to an existing road

network; the lower level is an equilibrium problem, describing how travelers are distributed within the new road network.

Due to the existence of the indifference band, travelers may respond differently to a network design proposal, leading to

non-uniqueness of the equilibrium and causing difficulties in BRUE link flow pattern prediction and proposal evaluation. In

existing literature, Lou et al. (2010) was the first to propose a risk-averse congestion pricing scheme in bounded rationality,
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however, the mathematical properties of BR-NDP have not been fully explored. To better implement BR-NDP, the mathemat-

ical properties of BRUE set are needed. Di et al. (2013) showed that the BRUE set can be decomposed into multiple convex

subsets provided with affine link cost functions and Di et al. (2016) utilized this property to solve toll pricing assuming

risk-averse and risk-prone attitudes. However, such analysis heavily relies on the topological properties of the BRUE set and

it can become quite complicated when general link cost functions are employed. 

With the proliferation of rule-based agent-based simulation that incorporates bounded rationality and simulation-based 

optimization, BR-NDP may be solved more easily in complex large-scale networks. Though simulation is able to emulate

complex boundedly rational non-stationary behavior, they cannot explain the rationale underlying the simulated phenomena

and thus cannot replace analytical methods. 

The above three directions are mainly focused on generalizing topics mentioned in this paper. Boundedly rational travel

behavior is still understudied and broader research directions need to be provided. 

9.2. Future research directions 

In addition to the research gaps in existing literature, there also exist many promising research directions on bounded

rationality which are worth of exploration in future. 

9.2.1. Cognitive process modeling 

Bounded rationality, involving extensive psychology and behavorial aspects, has been well-studied in economics and psy-

chology for decades. However, the cognitive process of boundedly rational travel behavior remains understudied in trans-

portation. In other words, more studies on procedural bounded rationality should be developed because the emerging tech-

nologies are transforming people’s route choice behavior in many ways: 

• With the popularity of smartphones and other social media tools (i.e., Waze ), real-time information provision becomes

more common, which facilitates information search process modeling. Travelers’ compliance to en-route information also 

involves cognitive processes; 
• Provided with rich traffic information, decision-makers spend more time in generating alternatives than in making final

decisions ( Simon, 1987 ); 
• Information provision can alter travelers’ day-to-day or within-day travel decisions, which requires dynamic learning

models. 

Moreover, non- and semi-compensatory strategies represent more nature psychological aspects of decision-making and 

are crucial in simplifying travelers’ route choice processes. However, they are not fully explored in modeling route choice.

Most of existing literature focused on travel choices other than route choice, such as residential location choice ( Young, 1984 )

or destination choice ( Recker and Golob, 1979 ). The intricacies of incorporating non-compensatory or semi-compensatory

strategies into complex route choice processes should be explored. 

In recent years, there are several studies which aim to model route choice cognitive processes in very different schemes

compared to the methods introduced in this paper. For example, Manley et al. (2015) assumed that travelers obtain route

information based on some hierarchical model of urban space. At the strategic level of route planning, a traveler first se-

lects regions where a destination resides. Then influential nodes, including gateways (i.e., major roads connecting regions),

are selected. The complete route to the destination is the one with the shortest distance connecting all influential nodes.

Heuristics, such as elimination by aspects or non-compensatory strategies, are employed at each level of decision. In addi-

tion, analyzing verbal reports collected from ten subjects in an laboratory experiment with semantic content analysis, Senk

(2010) pointed out that route choice is process-oriented wherein a list of strategies are adopted by travelers. These effort s

shed light on marriage of psychological research and transportation engineering research. 

9.2.2. Boundedly rational stochastic game-theoretical modeling 

The boudedly rational game-theoretical model results in boundedly rational Nash equilibrium and its analytical properties

are generally tractable. With these elegant properties, Zhao and Huang (2014) opened up a new direction for borrowing the

game-theoretical framework to model boundely rational route choice behavior. But it is simply a direct application of quantal

response equilibrium (QRE) whereas travelers are finite instead of infinitesimals assumed in stochastic user equilibrium

(SUE). To establish the relationship between QRE and SUE, large population approximation may be needed. 

QRE is a statistical version of game-theoretical equilibrium. Such integration facilitates parameter estimation in inter-

active game. Therefore QRE can be used to estimate rationality parameters in route choice framework. In addition, the

heterogeneous QRE framework is flexible in incorporating each individual’s distinct indifference bands and should be more

suitable for route choice modeling. 

9.2.3. Boundedly rational multi-modal departure-time and route choices 

Most existing dynamic travel behavioral models incorporated bounded rationality into both departure-time and route 

choices and these two choices are jointly estimated. Mode choice is always treated as a separate decision apart from these

two choices. In future, a unifying framework of boundedly rational multi-modal departure-time and route choices should be

developed to integrate all travel decisions. 
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Though bounded rationality is appealing in modeling realistic travel behavior and has attracted an increasing number

of researchers, it has not drawn sufficient attentions from practitioners and is ignored in real-world implementation, partly

because of its heavy computational burdens caused by indifference bands. Transportation planners should take into account

more realistic prediction results within boundedly rational modeling framework while making strategic planning policies in

future. 
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