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a b s t r a c t

Although smart-card data were expected to substitute for conventional travel surveys, the re-

ality is that only a few automatic fare collection (AFC) systems can recognize an individual

passenger’s origin, transfer, and destination stops (or stations). The Seoul metropolitan area is

equipped with a system wherein a passenger’s entire trajectory can be tracked. Despite this

great advantage, the use of smart-card data has a critical limitation wherein the purpose be-

hind a trip is unknown. The present study proposed a rigorous methodology to impute the

sequence of activities for each trip chain using a continuous hidden Markov model (CHMM),

which belongs to the category of unsupervised machine-learning technologies. Coupled with

the spatial and temporal information on trip chains from smart-card data, land-use charac-

teristics were used to train a CHMM. Unlike supervised models that have been mobilized to

impute the trip purpose to GPS data, A CHMM does not require an extra survey, such as the

prompted-recall survey, in order to obtain labeled data for training. The estimated result of

the proposed model yielded plausible activity patterns that are intuitively accountable and

consistent with observed activity patterns.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

From the perspective of transportation planners, the Seoul metropolitan area is equipped with the world’s best transit fare

collection system. This system recognizes every passenger’s origin, transfers, and destination stops (or stations) as well as provid-

ing exact time stamps. However, smart-card data will not replace conventional household surveys until the trip purpose can be

identified in a reliable manner. In this regard, the present study proposed a robust methodology to impute activities for smart-

card data by using a continuous hidden Markov model (CHMM). The model uses unsupervised machine-learning technology

that requires no labeled data for training. When imputing the purpose, destination, or mode of GPS-based location data, many

researchers have utilized various mathematical models that require a calibration procedure (Yang et al., 2010; Moiseeva et al.,

2010; Allahviranloo and Recker 2013a, 2013b; Lu et al., 2013; Reumers et al., 2013; Liu et al., 2013), which computer scientists

regard as supervised machine-learning technology. Furthermore, prompted-recall surveys have been a mainstream tool to ob-

tain labeled data for calibrating and validating supervised imputation models (Feng and Timmermans, 2014; Giaimo et al. 2010;

Greaves et al., 2010). Such surveys present the most probable activity to respondents and then ask them to check the correctness

and to fill in the details of the true activity, all of which is usually conducted using a portable electronic device. The present study

instead adopted an unsupervised model to recognize hidden activities behind a smart-card holder’s trip chain.

The proposed unsupervised model incorporated two critical tasks in imputing activities of smart-card data. That is, clustering

activities was done simultaneously with deriving both membership probabilities for each cluster and transition probabilities
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between clusters. Kroesen (2014) suggested a similar methodology, which is referred to as latent transition analysis, for both

clustering travelers and deriving the transition probabilities between clusters. He used panel data to estimate the transition

probabilities between traveler groups. If activity chains are viewed as consecutive panel data, the latent transition analysis can

be directly applied to imputing the smart-card data. However, to the best of our knowledge, an unsupervised machine-learning

technology that fully integrates both clustering and transition models has rarely been used when imputing the missing activities

of human mobility data.

The proposed model requires neither labeled data for training nor subsequent measurements such as prompted-recall sur-

veys. Instead, this model utilizes only smart-card and aggregate land-use data. The latter provides additional proxy variables

for hidden activities. The spatial and temporal information of each activity within a trip chain is elicited from the smart-

card data, and the building floor areas categorized for each land-use type are obtained from the national taxation data in

GIS format. The present study is in parallel with many studies that use land-use data to deduce the trip purpose of GPS-

based location data (Wolf et al., 2001; Stopher et al. 2007; Stopher et al. 2008; Bohte and Maat, 2009; Elango and Guensler,

2010).

GPS-based technology provides location data reported in short time intervals, which can be used to track the trajectory of

travelers, but smart-card data contains only stop (or station) locations with time stamps when a passenger boards and alights.

If, however, the latter form of information is incorporated with the actual history of transit operations, the exact route that a

passenger used can be recognized. There is a distinction between the GPS-based trajectory data and the smart-card data. An

individual trajectory identified by smart-card data is error-free at the spatial level of stops and stations. On the other hand,

the GPS-based travel data must not circumvent errors in identifying locations, particularly in densely developed urban areas.

Of course, the smart-card data also has an intrinsic problem wherein the exact location of activity is unknown, although it

could be guessed to be within a certain distance from the identified stop or station. Furthermore, the data cannot offer infor-

mation about activities before boarding or after alighting transit modes. The smart-card data has another drawback wherein

only the trip chains of transit users are covered. Trips made by motorists and mix-mode users cannot be traced via smart-card

data. The activity sequence of motorists could be inferred by incorporating ever-increasing GPS-based data with car navigation

technologies. The contribution of the present study, however, is confined to inferring the activities of transit users. Annotating

smart-card data with activity types based on an unsupervised machine-learning model was the ultimate objective of the present

study.

The proposed methodology must be distinguished from existing attempts to impute the motivations behind human mobility

data. While previous researchers have focused on deducing the true activity type of a specific traveler, the present study was

concentrated on the probability of choosing the next activity given that the current activity is known. Researchers in the field

of artificial intelligence are delving into identifying the exact trip purpose of each specific traveler within a small sample (Kohla

and Meschik, 2013; Rasmussen et al., 2013; Bohte and Maat, 2009; Itsubo and Hato, 2006; Kelly et al. 2013). On the other hand,

in a dimension of transportation planning and policy-making, it is meaningless to estimate the exact trip purpose of a specific

individual. Rather, it is sufficient to know the probability that a traveler will have a certain purpose under certain conditions. The

probability could then be used to synthesize the sequence of activities for a trip chain elicited from smart-card data, which could

reproduce an imaginary population that is as close as possible to the real population. This synthesized population could provide

good input for an activity-based demand-forecasting model.

An activity-based model has recently been spotlighted as an alternative to the conventional transportation demand analysis

approach (Yang et al., 2014; Chow, 2014; Arentze and Timmermans, 2000; Bowman and Ben-Akiva, 2001), but it has the burden

of validating the result directly against observed data. Recently, Liu et al. (2013) verified that mobile phone data could be a

good candidate for observed data for the validation. Trip chains from smart-card data with the imputed trip purposes also could

facilitate the validation of an activity-based travel analysis model.

The present study is formatted as follows. The next section will introduce a continuous hidden Markov model and will suggest

how to apply it to imputing the trip purposes of smart-card data. The solution algorithm for the model will be addressed in the

third section. In the fourth section, the nature of smart-card data of the Seoul metropolitan area will be described, and how to

choose a sample to train the proposed model will be addressed. The training result of the proposed model will be discussed and

validated in the fifth section. Finally, in the last section, conclusions will be drawn and further possible improvements of the

model will be proposed.

2. Continuous hidden Markov model (CHMM) for activity imputation

2.1. Overview of CHMM

A Markov chain and a Gaussian mixture are fused together to form a continuous hidden Markov model (CHMM). A Markov

chain accounts for the state transition between two consecutive activities of a traveler. As the title implies, determining a state

is dependent only on its previous state. In the present study, a state corresponds to the missing activity of a transit user such as

home, work, maintenance, or personal business. A memoryless transition of states has been widely adopted when estimating

the trip purpose (Leszczyc and Timmermans, 2002; Goulias, 1999; Serfozo, 1979). Recently, Allahviranloo and Recker (2013b)

extended this hypothesis, so that a next transition could be affected by the state history including the current state. For this

extension, the typical Markov chain was discarded and a support vector machine (SVM) was adopted in order to recognize activity

patterns, with the past states included in the input feature vector. The SVM required labeled data for training as a representative



G. Han, K. Sohn / Transportation Research Part B 83 (2016) 121–135 123

x1 xT-1x2 x3 …………… xT

m1 mT-1m2 m3 …………… mT

o1 oT-1o2 o3 …………… oT

Hidden states

Hidden clusters

Observations

Fig. 1. The mechanics of determining states and observations behind a CHMM.
supervised machine-learning tool. On the other hand, the present study adhered to the conventional assumptions of the Markov

process, incorporating it with an unsupervised machine-learning model. The title “hidden Markov” stems from the fact that the

sequence of activities of a trip chain are unobservable.

For a CHMM, a Gaussian mixture model is responsible for the other side of a Markov chain. Each hidden state of an episode

has the output probability of belonging to a cluster in the feature space. Each cluster is also unobservable, and the number of

hidden clusters should be given in advance. Some researchers called these clusters the second-level hidden states (Movellan,

2003). There are two options when dealing with the hidden clusters. First, each state could be assumed to have an independent

set of clusters. Although this specification has the advantage of addressing the unique properties of each state, there is a burden

of computation time. The other model specification allows all hidden states to share a set of clusters. The present study adopted

the latter convention to both save the computation time and secure the parsimony of the model specification.

Feature variables are only observed data in a CHMM. The number of feature variables determines the dimension of the feature

space for a Gaussian mixture model in a CHMM. In the present study, a feature vector is composed of 6 feature variables: the

start and duration times of activity and 4 land-use characteristics around activity locations (stops or stations). The mixture

model clusters feature vectors into a predefined number of components. A CHMM then identifies the mean (or centroid) of each

cluster, the variance and covariance in the features of each cluster, the transition probabilities between states, and the emission

probabilities that each state is linked to each cluster. To avoid transportation researchers’ misunderstanding, the original term

‘emission’ will be changed to ‘membership’.

The procedure of imputing the activity sequence of trip chains based on a CHMM is summarized as follows. First, the sample

trip chains are extracted from smart-card data. Second, the number of potential activities is determined. At this stage, there is no

information about mapping imaginary activities with physical activities. Third, the possible number of clusters is determined.

Fourth, feature data are collected for every hidden activity within the sequence of activities for trip chains in the sample (see

Fig. 1). The fifth step is to implement a solution algorithm for estimating the parameters of a CHMM. The sixth step is to charac-

terize clusters and to map each state with them by investigating the estimated parameters. Last, using the parameters, the most

probable sequence of activities is imputed for trip chains. The details of the last three steps will be addressed in the next two

sub-sections.

2.2. Formulation of a CHMM

A CHMM is constructed of state and observed variables. The number of possible values that a state variable can have should

be determined in advance prior to setting up the model. Eq. (1) denotes the set of probabilities that an initial state is a specific

activity.

π = {πi} = {P(x1 = i)}, for i = 1, . . . , N (1)

where x1 denotes the initial state variable of the activity sequence for a trip chain, N is the number of possible activities that can

be taken by a state variable, i represents the i thactivity out of the entire N of possible activities, π i is the probability that the first

state would be a i th activity, and π is a vector of the initial probabilities.

Eq. (2) represents the matrix of transition probabilities between two consecutive states. In the present model, a trip chain is

converted to a state sequence that follows the Markov process. That is, the state of an activity within a trip chain is assumed to

depend solely on the state of the previous activity, regardless of past history.

A = {ai j} = {P(xt = j|xt−1 = i)}, for i = 1, . . . , N, and j = 1, . . . , N (2)

where xt denotes the t th state of the sequence of activities for a trip chain, aij is the transition probability that the t th state selects

the activity j when the previous (t − 1) th state was given as the activity, i, and A is a N × N matrix that consists of the transition

probabilities.
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Eq. (3) stands for the output probability [=bi(ot)] that ot will be observed in the state i, which takes the form of a Gaussian

mixture model.

bi(ot ) =
K∑

k=1

gik f (ot |μik,�ik), f or i = 1, ..., N (3)

where ot is an observed feature vector for the t th state of the sequence, K is the number of hidden clusters in a feature space, gik

is the membership probability that an observation comes from the k th cluster when the current state is the activity i, μik is a

mean feature vector of the kth cluster of the activity i, �ik is a variance-covariance matrix of the kth cluster of the activity i, and

f(ot|μik, �ik) is a Gaussian probability density function.

For brevity, every state is assumed to share a common set of clusters [see Eq. (4)]. The N × K weight matrix (G) for a Gaussian

mixture model can be interpreted as Eq. (5), which will hereafter be referred to as the membership probability matrix.

μik = μk and �ik = �k, f or i = 1, ..., N and k = 1, ..., K (4)

G = {gik} = {P(mt = k|xt = i)}, f or i = 1, ..., N and k = 1, ..., K (5)

where mt denotes a hidden cluster in a feature space for the tth hidden state of a sequence.

The hypothetical mechanics behind a CHMM between hidden states and observations can be summarized as follows. For

a certain state in the sequence of activities for a trip chain, an activity is determined according to the transition probabilities

based on the previous state. The next step is to choose a hidden cluster for the state according to the determined activity and the

membership probabilities. Last, based on the determined cluster, observations are drawn from a Gaussian probability distribution

with the cluster’s mean and variance–covariance. This procedure is represented by the simple diagram in Fig. 1.

As mentioned earlier, the observations in a CHMM are feature vectors that are generated from a multivariate Gaus-

sian distribution. The parameters to be estimated based on the observations are represented by a vector collection [λ =
〈π, A, G, {μk}, {�k}〉]. The likelihood function of the observation sequence for a trip chain must be set up to estimate the pa-

rameters. However, hidden states of activities hamper formulating the likelihood function in a straightforward manner. The

likelihood function with hidden or latent variables should be integrated over all possible values of the variables. For a model

with discrete hidden variables, the mathematical integration is reduced to a simple summation (or average) across all possible

values of the hidden variables. Eq. (6) denotes the likelihood function [L(λ)] that will be maximized in the next sub-section. The

first line of the equation shows that a marginal probability is factorized based on Bayes’ theorem. The second line is derived from

both the independence assumption of observations and the memorylessness assumption of the Markov process. The last line is

derived easily from the structure of a CHMM, as described above.

L(λ) = P(o1, , , oT |λ) =
∑

all possible x1,,,xT

P(o1, , , oT |x1, , , xT , λ)p(x1, , , xT |λ)

=
∑

all possible x1,,,xT

(
T∏

t=1

p(ot |xt , G, {μk}, {�k}
)(

T∏
t=1

p(xt |xt−1, A)

)

=
∑

all possible x1,,,xT

(
T∏

t=1

(
K∑

k=1

gxt k f (ot |μk,�k)

))(
T∏

t=1

axt−1xt

)
(6)

where T is the length of the activity sequence for a trip chain.

The likelihood function could be extended to accommodate multiple trip chains, each of which has a different length of the

activity sequence. Under the assumption of independence between observations, Eq. (7) denotes the extended version of Eq. (6)

wherein the superscript l stands for a specific trip chain.

L̂(λ) =
M∏

l=1

{ ∑
all possible x1,,,x

Tl

(
T l∏

t=1

(
K∑

k=1

gxt k f
(
ol

t |μk,�k

)))(
T l∏

t=1

axt−1xt

)}
(7)

where L̂(λ) represents the extended likelihood function, M is the number of trip chains, Tl is the length of the activity sequence

for the lth trip chain, and ol
t represents an observed feature vector for the tth state within the activity sequence for the lth trip

chain.

The extended likelihood function is more difficult to handle, since it contains the sum of individual likelihoods over every

possible assignment of state variables. Maximizing the extended likelihood with hidden variables cannot be done when using a

typical gradient method such as the Newton–Raphson algorithm. A more elaborated solution algorithm will be introduced in the

next sub-section.

2.3. Solution algorithms for a CHMM

Regarding a CHMM, 3 typical problems are of interest. The first problem is how to compute the probability that a particu-

lar sequence of states is observed, given that the hidden states and parameters of the model are known. This problem can be
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solved using the forward–backward algorithm. The second problem is to estimate the optimal parameters given that a sequence

of observations or a set of multiple observed sequences (or multiple trip-chains) are known. This problem can be resolved using

the Baum–Welch algorithm. When implementing the Baum–Welch algorithm, the forward–backward algorithm is utilized to

compute the probability of a certain state or a certain pair of two consecutive states, given that all observations are available. The

third problem is to derive the most likely sequence of hidden states, given that the sequence of observations and the model pa-

rameters are known. The Viterbi algorithm is necessary to solve this problem. The present study used the former two algorithms

to estimate the parameters of a CHMM, and applied the Viterbi algorithm to imputing the sequence of activities for a trip chain

based on both observations and the estimated parameters.

It is impossible to handle the summation of individual probabilities across every possible activity sequence, when either the

length of activity sequence or the number of possible hidden states becomes larger. The forward-backward algorithm is a key to

tackling this problem. The algorithm facilitates the computation of the probability of either a hidden state or a consecutive pair

of hidden states when a full sequence of observations is given. Backward and forward variables [αt(j) and β t(i)] must be created

in order to compute the probability. More specifically, these variables provide an easy way to compute both P(xt|o1„, oT, λ) and

P(xt , xt+1|o1, , , oT , λ), which are included in the Baum–Welch algorithm to train a CHMM. The forward variable, αt(j), represents

P(xt = j, o1, , , ot |λ), and the backward variable, β t(i), represents P(ot+1, , , oT |xt = i, λ). Both variables are computed recursively

according to the procedures of Eqs. (8) –(11) . As a result, P(xt|o1„, oT, λ) and P(xt , xt+1|o1, , , oT , λ) are computed recursively by

the forward and backward variables [see Eqs. (12) and (13)]. Details of the derivation can be found in the literature (Cappe et al.,

2005; Zraiaa, 2010).

Forward recursion procedure:

1. Initially,

α1(i) = πibi(o1), f or i = 1, ..., N (8)

2. For t = 2, 3, ..., T ,

αt ( j) = bj(ot )
N∑

i=1

αt−1(i)ai j, f or j = 1, ..., N (9)

Backward recursion procedure:

1. Initially,

βT (i) = 1, f or i = 1, ..., N (10)

2. For t = T − 1, T − 2, ..., 1,

βt (i) =
N∑

j=1

ai jb j(ot+1)βt+1( j), f or j = 1, ..., N (11)

Forward–backward computation

P(xt = i|o1, , , oT , λ) ∝ P(xt = i, o1, , , oT |λ) = P(xt = i, o1, , , ot |λ)P(ot+1, , , oT |xt = i, λ)

= αt (i)βt (i), f or i = 1, ..., N and t = 1, ..., T − 1 (12)

P(xt = i, xt+1 = j|o1, , , oT , λ) ∝ P(xt = i, xt+1 = j, o1, , , oT |λ)

= P(xt = i, xt+1 = j, o1, , , ot+1|λ)P(ot+2, , , oT |xt = i, xt+1 = j, λ)

= αt (i)ai jb j(ot+1)βt+1( j)

f or i = 1, ..., N, j = 1, ..., N, and t = 1, ..., T − 1 (13)

The Baum–Welch algorithm, a training methodology for a CHMM, is a specific instantiation of the more general expectation-

maximization (EM) algorithm. The EM algorithm was developed as a powerful tool for solving a maximization problem when

latent variables are involved (Dempster et al., 1977). The algorithm switches the original maximization of the log-likelihood

function that contains multiple integrations (or summations) across all the possible latent variables into a simple recursive pro-

cedure. In summary, the Baum–Welch algorithm is an iterative procedure for estimating λ from only {o1„, oT}. At each iteration,

a proxy function [Q(λ, λs)] is maximized instead of maximizing the original log-likelihood function. The proxy function can

be interpreted as a weighted sum of the log-likelihood, wherein the weight represents the probability that hidden states are

observed conditional on the parameters that were estimated in the previous iteration. The weight is originally set up as P(x1„,

xT|o1„, oT, λs), but switches to P(x1„, xT, o1„, oT|λs) using the Bayes’ theorem [P(X|Y ) = P(X,Y )/P(Y ) ∝ P(X,Y )]. The Baum–

Welch algorithm can be described simply as repeating the following expectation and maximization steps. Eqs. (14) and (15) are
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for a single trip chain, and Eqs. (16) and (17) are for multiple trip chains. The weight is computed depending on the previously

derived parameters (λs). Thus, only the log-likelihood in the proxy function includes decision parameters to be estimated in

the maximization step. Repeating the procedure guarantees the convergence according to the theory of the conventional EM

algorithm.

For a single trip chain

1. Expectation step:

Compute Q(λ, λs) =
∑

all possible x1,,,xT

log[P(o1, , , oT |λ)]P(x1, , , xT , o1, , , oT |λs) (14)

2. Maximization step:

Set λs+1 = arg max
λ

Q(λ, λs) (15)

For multiple trip chains (Extended case)

1. Expectation step:

Compute Q(λ, λs) =
M∑

l=1

∑
all possible x1,,,x

Tl

log
[
P
(
ol

1, , , ol
T l |λ

)]
P
(
x1, , , xT l , ol

1, , , ol
T l |λs

)
(16)

2. Maximization step:

Set λs+1 = arg max
λ

Q(λ, λs) (17)

The difference between the Baum–Welch algorithm and the conventional EM algorithm is that the former has constraints on

the parameters to be estimated. As mentioned earlier, the parameters of a CHMM contain a vector of initial state probabilities and

two matrices of transition and membership probabilities. The former vector’s elements, as well as each column of the transition

matrix and each row of membership matrix, should sum up to 1. Thus, in the maximization step, the Lagrangian relaxation for

the original proxy function is necessary to accommodate the constraints [see Eq. (18)].

L(λ, λs) = Q(λ, λs) − uπ

(
N∑

i=1

πi − 1

)
−

N∑
i=1

uA
i

(
N∑

i=1

ai j − 1

)
−

N∑
i=1

uB
i

(
K∑

k=1

gik − 1

)
(18)

where L(λ, λs) is the Lagrangian relaxation for the original proxy function, and 〈uπ , uA
1
, ..., uA

N
, uB

1
, ..., uB

N
〉 is a set of Lagrangian

multipliers, each of which corresponds to its corresponding constraint.

The first-order condition of the Lagrangian function [Eq. (18)] is that the derivative of the function with respect to each original

parameter (πi, ai j, gik,μkd, σkd1d2
), and to each Lagrangian multiplier, should be zero, which offers an incumbent parameter

solution set in each iteration of the Baum–Welch algorithm. For details of the derivation, readers can refer to tutorials available

on the Internet (Bishop, 2006; Movellan, 2003). Only the final procedures are introduced and interpreted in an intuitive manner,

so that transportation researchers can simply track them to accommodate their own activity imputation work for various types

of human mobility data.

The optimal parameters (π̂i, âi j, ĝik, μ̂kd, σ̂kd1d2
) in an iteration of the Baum–Welch algorithm, which are derived from the

first-order condition of the Lagrangian function, can be summarized as follows.

π̂i =

M∑
l=1

P(x1 = i|ol
1, ..., ol

T l , λ
s)

M
, f or i = 1, ..., N (19)

âi j =

M∑
l=1

T l−1∑
t=1

P(xt = i, xt+1 = j|ol
1, ..., ol

T l , λ
s)

M∑
l=1

T l−1∑
t=1

P(xt = i|ol
1, ..., ol

T l , λ
s)

, for i = 1, ..., N and j = 1, ..., N (20)
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ĝik =

M∑
l=1

T l∑
t=1

P(xt = i, mt = k|ol
1, ..., ol

T l , λ
s)

M∑
l=1

T l∑
t=1

P(xt = i|ol
1, ..., ol

T l , λ
s)

, for i = 1, ..., N and k = 1, ..., K (21)

μ̂kd =

M∑
l=1

T l∑
t=1

P(xt = i, mt = k|ol
1, ..., ol

T l , λ
s)ol

td

M∑
l=1

T l∑
t=1

P(xt = i, mt = k|ol
1, ..., ol

T l , λ
s)

, for k = 1, ..., K and d = 1, ..., D (22)

where, ol
t = (ol

t1
, ..., ol

tD
)′, μ̂k = (μ̂k1, ..., μ̂kD)′, andD denotes the dimension of observed feature vector.

σ̂kd1d2
=

M∑
l=1

T l∑
t=1

P(xt = i, mt = k|ol
1, ..., ol

T l , λ
s)(ol

td1
− μ̂kd1

)(ol
td2

− μ̂kd2
)

M∑
l=1

T l∑
t=1

P(xt = i, mt = k|ol
1, ..., ol

T l , λ
s)

, for

k = 1, ..., K, d1 = 1, ..., D, and d2 = 1, ..., D (23)

where,

�̂k =

⎛
⎜⎝

σ̂ 2
k1

· · · σ̂k1D

.

.

.
. . .

.

.

.

σ̂kD1 · · · σ̂ 2
kD

⎞
⎟⎠

Eqs. (19)–(23) contain 3 probability terms that cannot be computed directly when the number of states or clusters gets

larger. The forward–backward algorithm is inevitable to compute the three probabilities: P(xt = i, xt+1 = j|ol
1
, ..., ol

T l
, λs),P(xt =

i|ol
1
, ..., ol

T l
, λs), and P(xt = i, mt = k|ol

1
, ..., ol

T l
, λs). The computation method for the 3 probabilities can be summarized as fol-

lows. Eqs. (24) and (25) are simply scaled versions of Eqs. (12) and (13), respectively. Eq. (26) is self-evident, and accounts for the

probability of a certain pair of a hidden state and a cluster, given that all observations are available. For details of the computa-

tions, refer to Movellan (2003) and Zraiaa (2010).

P(xt = i, xt+1 = j|ol
1, ..., ol

T l , λ
s) = αl

t (i)ai jβ
l
t+1( j)bj(ol

t+1)

N∑
i=1

N∑
j=1

αl
t (i)ai jβ

l
t+1( j)bj(ol

t+1)

(24)

P(xt = i|ol
1, ..., ol

T l , λ
s) = αl

t (i)β l
t (i)

N∑
i=1

αl
t (i)β l

t (i)

(25)

where, αl
t (i)and β l

t (i) stand for the forward and backward variables computed for the l th trip-chain, respectively.

P(xt = i, mt = k|ol
1, ..., ol

T l , λ
s) = P(xt = i|ol

1, ..., ol
T l , λ

s)
gik f (ol

t |μk,�k)

bi(ol
t )

(26)

Eqs. (19)–(26) are all that transportation researchers should utilize to estimate the parameters for imputing the hidden activ-

ities of their own travel data. All the equations are simple and some of them take the recursive form. Repeating the computations

yields robust parameter estimates for a CHMM: the probabilities of initial state, the most likely transition and membership
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probabilities, the mean, and variance information about each cluster of feature vectors. All proposed algorithms were coded

using R programming language. The full procedure for the Baum–Welch algorithm is summarized as follows:

1. Randomly initialize parameters of πi, ai j, gik.

2. For each iteration for EM algorithm.

2.1. Implement forward–backward algorithm [Eqs. (8)–(11)] for each trip chain to compute αl
t ( j) and β l

t (i).
2.2. Compute three types of probabilities using Eqs. (24)–(26).

2.3. Compute the incumbent parameters using Eqs. (19)–(23).

2.4. Convergence test: If the incumbent solutions are different from those in the previous iteration, then repeat the

loop. Otherwise, escape the loop and stop the procedure.

The initial values for the three parameter sets were determined randomly. The initial values for transition and membership

matrices were chosen through the following two steps. That is, elements of each column for transition matrix (or each row

of membership matrix) were chosen randomly, and then normalized to sum up to 1. The initial values for the probabilities of

an initial state were also determined in the same manner. A simple criterion was adopted for the convergence of the Baum–

Welch algorithm. The algorithm stopped if every estimated parameter in the current iteration was not different from that in the

previous iteration. The threshold for the difference was set as 10−7. The threshold was sufficiently small, since most parameters

to be estimated were probabilities ranging from 0 to 1.

The greatest strength of a CHMM is that it belongs to the category of unsupervised machine-learning tools. A CHMM requires

no labeled data for the calibration procedure. The parameter estimates can be obtained without fitting the model to the observed

activity sequences. Usually, the activity sequence for a trip chain cannot be observed without an additional survey, which entails

considerable cost. Instead, a CHMM requires two intuitive processes in order to characterize the estimated clusters and to link

each state to them. The former characterization is based on the means and variances of cluster centroids in the feature space.

The latter mapping of a latent activity onto the relevant clusters is done by using the estimated membership probabilities. These

processes seem unfamiliar to transportation researchers who are accustomed to calibrating models with observed data. However,

researchers should understand the power of unsupervised machine-learning models, since it is clear that data technology (DT)

is evolving in the direction of the target wherein the data itself reveals all. The future of DT will be governed by unsupervised

machine-learning tools. In the same context, it is recommended that the typical activity types most researchers have adopted

thus far should be reconsidered from a different point of view. All previous studies have confined human activities to several

predefined types. Self-clustered activities could offer novel insight into understanding human mobility, even though they have

neither a clear description nor an exact title. In other words, human activities could be clustered and interpreted without any

fixed conceptual framework.

Once the Baum–Welch algorithm is used to estimate the parameters of a CHMM, the Viterbi algorithm can be used to derive

the most probable sequence of activities for a trip chain based on both the estimated parameters and the observed feature data.

The Viterbi algorithm also utilizes a recursive computation to derive the optimal state sequence for a trip chain. How to derive

the algorithm are not also introduced here, since the objective of the present study was to provide a straightforward procedure

that transportation researchers and practitioners could follow without confusion. Readers who are interested in the theory of

the algorithm can refer to the original paper (Viterbi, 1967). The resultant process of the Viterbi algorithm can be summarized as

follows:

Initialization: for all j = 1, ..., N

δ1( j) = π jb j(o1),ψ1( j) = 0 (27)

Recursion: for all t = 2, ..., T and all j = 1, ..., N

δt ( j) = max
i

(δt−1(i)ai j)bj(ot ),ψt ( j) = arg max
i

(δt−1(i)ai j) (28)

Termination:

P∗(o1, ..., oT |λ) = max
j

(δT ( j)), x∗
T = arg max

j

(δT ( j)) (29)

Backtracking of optimal state sequence:

x∗
t = ψt+1(x∗

t+1), f or t = T − 1, T − 2, ..., 1 (30)

where, δt ( j) is the probability of the most probable state sequence responsible for the first t observations that have j
as the final state, ψt ( j) is the state that results in δt ( j), P∗(o1, ..., oT |λ) is the optimal probability for all observations,

and x∗
t is the optimal state at t.
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3. Data preparation for training a CHMM

The automatic fare collection system in the Seoul metropolitan area can provide time stamps and the corresponding station

(or stop) IDs, when a passenger boards, transfers, and alights a transit mode. The data, however, have not been fully utilized for

the purpose of transportation planning, since privacy issues are yet to be addressed. The data have rarely been collected with

passenger identification information kept for long-term periods. Data for only two weekdays were available in the present study

to train the developed model. The raw data covered fare transactions during two specific weekdays (16/10/2013 and 17/10/2013),

from which samples of trip chains were extracted.

The Seoul metropolitan government allows for free transfers unless the time spent between two different lines or modes

exceeds 30 min. This rule clearly distinguishes an activity from simple waiting for transfers. Of course, there could be an activity

shorter than 30 min or a passenger could have waited for more than 30 min for transfers, but these remote possibilities were

ignored in the present study. After tracing the data for 2 days, only the second day’s trip chains were sampled. The first-day trip

data were used only for establishing that the first activity of a trip chain was an overnight activity that was most likely a home

stay. We chose only passengers who started and terminated their trips at the same locations (approximately in the same TAZ) for

both days. The last activity of the trip chains included no information about the duration time, since the third-day trip data were

absent. Thus, the last activity’s duration time was assumed to be identical to the first. This stopgap measure would have been

unnecessary if multi-day smart-card data had been available. Although smart-card holders were categorized as adults, senior

citizens, or students, only adults were included in the training sample, since the latter two took up a small proportion and might

have shown different behaviors due to the advantage of free or discounted fares.

Featured variables encompassed the start and duration times of activity and the land-use characteristics around activity

locations. An activity was regarded as an episode between two consecutive trips within a trip chain. The start and duration times

of each activity were extracted from the trip chain data, whereas the land-use data were obtained from the other data source.

The Korean government offers data for the floor area of each individual building, which was established for taxation purposes.

The floor areas are categorized as either residential, commercial, office, or other. The floor area data for only 25 boroughs of Seoul

city were available for 2008 in SHAPE, which is an open GIS format. Although a more recent taxation data set from 2013 was also

released, it has not yet been linked to spatial data. It should thus be noted that the present study has a temporal gap between the

smart card data of 2013 and the land-use data of 2008.

The exact location of the activity of a smart-card holder is unknown. Instead, activity locations were identified at the level of

bus stops or metro stations. The present study did not identify the activity type of specific individuals, but focused instead on

deriving the probability that an inter-trip episode would take a certain activity type. The land-use characteristics within a 200 m

radius around a bus stop and a 400 m radius around a metro station were collected to establish the feature variables of activities.

The floor area around every stop and every station was computed in advance for the four land-use types using a GIS buffering

technology, and was reserved for training the developed model. Consequently, the dimension of a feature vector was set at 6.

Two of them were for the start and duration times of an activity, and the remaining four were for the land-use characteristics.

The former two time variables were scaled to range from 0 to 1 to facilitate the computation. When applying the floor data to

the model, they were rescaled so that stops and stations could have the same influential area and then were standardized across

stops and stations so that the distribution of floor areas for each land-use could have a zero mean and unity variance.

There is no rigorous methodology that can recognize the true number of hidden clusters in the feature space. The present

study varied the number of clusters to investigate how well the clustering results matched prior expectations and/or common

sense. As a result, 8 potential clusters were adopted as the most plausible number of clusters. The number of hidden states

might differ from the number of clusters. After investigating the 8 clusters, 4 hidden states were found to be appropriate (see

the next section for details). It is well known that a hidden Markov model could not always estimate membership probabilities

with a small variance and nonzero values (Rank and Pernkopf 2004). Based on the numbers of 8 and 4, the model parameters

were estimated in a very stable manner without failure. Further studies could adopt either an information criteria or a Bayesian

approach as an alternative way to determine the optimal numbers of hidden states and clusters, which have already been applied

to choosing the most plausible number of components for a mixture model (Richardson and Green, 1997; Park et al., 2010).

The smart card data of the Seoul metropolitan area contains more than 20 million transactions during a weekday. The number

of trip chains elicited from the smart card data for 2 weekdays was tantamount to 11.76 million. After screening the data according

to the criteria established above, and including only trip chains that had activities within a boundary of 25 boroughs of Seoul

city, the number of trip chains was reduced to 306,766. The distribution of trip chains by the length of their activity sequence is

shown in Table 1. The maximum length was found to be 6. The present study used a small sample, so that the model could be
Table 1

Distribution of trip chains according to the number of episodes.

# of episodes (the length of

activity sequence)

3 4 5 6 Total

Population trip chains 271,971

(88.65%)

23,829

(7.76%)

9428

(3.07%)

1538

(0.5%)

306,766

(100%)

Sample trip chains 1268

(88.92%)

113

(7.92%)

39

(2.74%)

6

(0.42%)

1426

(100%)
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trained in a realistic computation time by using a PC. The reason the sample proportion was slightly different from the population

proportion in Table 1 was because the land-use data of some chosen trip chains were unavailable and thus they were excluded

from the sample. In fact, there were no missing values in the raw data for building floor areas since they were made for taxation

purposes. However, a considerable amount of data was discarded when being matched with the existing imperfect spatial data.

4. Results and discussion

4.1. Model training results

Implementing the Baum–Welch algorithm based on the sample data, we obtained estimates for the 4 parameter sets: the

probabilities of initial state, the transition probabilities, the membership probabilities, and the mean and variance (including

co-variances) of each cluster in the feature space. First, we focused on the latter to characterize the resultant clusters and to

confer plausible titles to them. Proper descriptions were given to the imaginary clusters that were recognized by the proposed

model. They were characterized by considering its mean vector and variance-covariance matrix. The resultant characterizations

are listed in Table 2. Since transit users usually accommodate miscellaneous activities within walking distance of their main

activity venue, relatively short activities were not apparent from smart-card data. This is an intrinsic handicap of the proposed

model, because it totally depends on the location resolution at the stop or station level. Clusters that were assigned the title

flexible activity had start and duration times that fluctuated more than those titled a typical activity, and also took place in the

area of mixed land-use. For example, two clusters corresponding to the flexible home stay had larger standard deviations in both

start and duration times, and their dominant land-use was mixed rather than residential.

The next step was to match the derived clusters to hidden activities (or states) based on the estimated membership prob-

abilities. Table 3 shows the membership probabilities for each activity. For clarity, the dominant membership probabilities are

highlighted in bold font. According to these probabilities, the first activity (Activity 1) was associated with clusters 1 and 8. Both

were linked to flexible home stay, since their start and duration times fluctuated more than the typical home stay, which was rep-

resented by the sixth and seventh clusters. The second activity (Activity 2) was linked to clusters 2 and 4, which were associated

with out-of-home activities. Flexible out-of-home activity differed from typical work in that it started later and showed a large

variance in both start and duration times. That activity also had a modest probability for the fifth cluster that represented typical

work in a mixed land-use area. The third activity (Activity 3) was governed by clusters 3 and 5, which were closely associated

with typical work in commercial, office, or mixed land-use areas. The last activity (Activity 4) was strongly linked to clusters 6

and 7, which represented a typical home stay in residential areas. In summary, Activity 1 likely belongs to flexible home stays,

Activity 2 is likely to encompass flexible out-of-home activities, Activity 3 strongly implies typical work, and Activity 4 could be

defined as a typical home stay.

The next step was to investigate the transition matrix to show how the activity sequence for a trip chain is generated.

Table 4 shows the transition matrix with a possible title for each activity. The reason the transition probabilities are simple
Table 2

Description of the resultant clusters based on (μ̂k ,�̂k).

Cluster description Cluster centroid Most likely title

Average start

time (standard

deviation)

Average duration

time (standard

deviation)

Average

end time

Dominant

land-use

Cluster 1: long overnight activity in

mixed land-use area of low density

with large variance in start and

duration times

7:30 P.M.

( 2:31)

13 h

(2:49)

8:30 A.M. Mixed (low

density)

Flexible home stay

Cluster 2: afternoon activity in

commercial/office area with large

variance in start and duration times

4:30 P.M.

(4:10)

7 h

(4:57)

11:30 P.M.

Commercial/office

Flexible out-of-home activity

(recreation, societal activity,

afternoon work, etc.)

Cluster 3: early and long diurnal activity

in office/commercial area

8:30 A.M.

(0:56)

10.5 h

(2:04)

07:00

P.M. Office/commercial

Typical work

Cluster 4: afternoon activity in other

land-use area with large variance in

start and duration times

3:30 P.M.

(4:53)

8 h

(4:27)

11:30 P.M. Others Flexible out-of-home activity

(recreation, societal activity,

afternoon work, etc.)

Cluster 5: early and long diurnal activity

in mixed land-use area

8:30 A.M.

(1:01)

10.5 h

(2:14)

7:00 P.M. Mixed Typical work

Cluster 6: long overnight activity in

residential area of high density

8:00 P.M.

(1:52)

12 h

(2:00)

08:00

A.M.

Residential

(high density)

Typical home stay

Cluster 7: long overnight activity in

residential area of low density

8:00 P.M.

(1:43)

12 h

(1:49)

08:00

A.M.

Residential (low

density)

Typical home stay

Cluster 8: long overnight activity in

mixed land-use area of high density

with large variance in start and

duration times

8:00 P.M.

(2:44)

14.5 h

(3:42)

10:30

A.M.

Mixed (high

density)

Flexible home stay
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Table 3

Estimated membership probabilities (ĝik).

Land-use Mixed Commercial/

office

Office/

commercial

Others Mixed Residential Residential Mixed

Cluster 1

(flexible

home stay)

Cluster 2

(flexible

out-of-home

activity)

Cluster 3

(typical

work)

Cluster 4

(flexible

out-of-home

activity)

Cluster 5

(typical

work)

Cluster 6

(typical home

stay)

Cluster 7

(typical

home stay)

Cluster 8

(flexible

home stay)

Activity 1 0.341 0.107 – 0.023 – – – 0.530

Activity 2 – 0.290 0.159 0.313 0.239 – – –

Activity 3 – 0.013 0.410 0.048 0.529 – – –

Activity 4 – – – 0.055 – 0.521 0.424 –

Table 4

Estimated transition probabilities (âi j).

Transition probabilities Activity 1 (flexible

home stay)

Activity 2 (flexible

out-of-home activity)

Activity 3 (typical work) Activity 4 (typical

home stay)

Activity 1 (flexible home

stay)

– 1.000 – –

Activity 2 (flexible

out-of-home activity)

0.771 0.116 – 0.114

Activity 3 (typical work) – 0.117 – 0.883

Activity 4 (typical home

stay)

– – 1.000 –
is that the lengths of the trip chains in the sample ranged from 3 to 6, which is very short. The estimated transition patterns were

so straightforward that such a complex methodology could be unnecessary. However, if longer trip chains were available from

multi-day smart-card data, the transition probability would provide in-depth understanding for use in composing the activity

sequence for a trip chain. It should be noted that the trip chains used in the proposed model were extracted from only two con-

secutive days. Nonetheless, as a whole, the matrix well reflected both priori expectations and intuitions. For example, when the

current state was a flexible out-of-home activity (Activity 2), the next state was most likely to be a flexible home stay (Activity 1).

An interesting finding was that a flexible out-of-home activity (Activity 2) might switch to another flexible out-of-home activity

(Activity 2) with a considerable degree of probability (0.116). This implies that trip chains other than piston trips of home-to-

work-to-home, the length of which were longer than 3, included consecutive flexible out-of-home activities. A current typical

home stay (Activity 4) could be perfectly paired with the next typical work activity (Activity 3). On the other hand, a current

typical work activity (Activity 3) did not perfectly match the next typical home stay (Activity 4). There was a considerable proba-

bility (=0.117) that a current typical work activity (Activity 3) would transition to the next flexible out-of-home activity (Activity

2). This implies that passengers might have flexible activities after work before going home. It was rational that a current flexible

home stay (Activity 1) perfectly switched to the next flexible out-of-home activity (Activity 2). Of course, if longer trip chains

were available, the model would estimate more diverse transition probabilities.

The remaining parameters to be estimated for a CHMM were the initial probabilities for choosing each activity (π̂i). Since all

trip chains in the sample were chosen such that they started with an overnight stay from the first day to the next day, only two

activities (Activity 1 and Activity 4) were estimated to have an initial probability. While the typical home stay covered 62.4% of

the initial state, the flexible home stay accommodated the remaining 37.6%.

The last step was intended to generate the most probable sequence of activities for a trip chain based on the parameters

estimated above and on the observed feature vectors. This procedure was accomplished using the well-known Viterbi algorithm.

It should be noted again that a CHMM is an unsupervised machine-learning tool that requires no labeled data for training. That

is, there is no need to calibrate the model based on surveyed activity sequences. The Viterbi algorithm guarantees the estimated

activity sequences to be the best reflection of the available observations. Table 5 shows the results of the activity imputation of

trip chains in the sample.
Table 5

Distribution of the most probable activity sequences in the training sample.

Activity sequence Counts (%) Activity sequence Counts (%) Activity sequence Counts (%)

4-3-4 810 (56.8) 1-2-1-2-1 11 (0.77) 4-3-2-2-1 1 (0.07)

1-2-1 439 (30.79) 1-2-1-2 8 (0.56) 4-3-2-2 1 (0.07)

4-3-2-4 53 (3.72) 1-2-2 6 (0.42) 4-3-2 1 (0.07)

1-2-2-1 34 (2.38) 4-3-2-2-4 5 (0.35) 1-2-2-4 1 (0.07)

4-3-2-1 16 (1.12) 4-3-2-1-2 5 (0.35) 1-2-1-2-2 1 (0.07)

4-3-4-3-4 14 (0.98) 1-2-2-1-2 5 (0.35) Total 1426 (100)

1-2-4 12 (0.84) 1-2-1-2-4 3 (0.21)
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4.2. Model validation results

Although the proposed methodology adopted an unsupervised machine learning tool that requires no calibration process

based on labeled data, the result should be validated against observed activity data. Liu et al. (2014) shed light on the validation

issue by providing a robust method to validate activity-based transportation models based on mobile phone data. Since it was

impossible to identify the real trip purpose of smart-card holders, another data set that contained observed trip purposes was

utilized for validation. Fortunately, a conventional travel survey was conducted on a regular basis in the same area where the

sample smart-card data was collected. The validation data, however, had a less accurate resolution of activity locations. Since the

main purpose of the survey was to identify both the origin and destination of individual trips, the spatial unit was limited to a

traffic analysis zone (TAZ) that is much wider than the catchment area of bus stops and metro stations adopted in the proposed

model. Another limitation was that the survey was conducted for a single day, while the training sample of trip chains was taken

on two consecutive dates. For the travel survey data, the duration of the initial and the last activities within a trip chain must be

inferred under the assumption that travelers repeated the same trip chains every weekday.

These two handicaps entailed a discrepancy between the estimated and observed activity types later. Nonetheless, the travel

data was the only option we could adopt. For validation, sample trip chains were taken from the survey data that contained only

travel modes of public transportation. Table 6 shows the profile of travelers in the survey data across different travel modes. As

expected, mix-mode users who utilized both car and transit were negligible. The validation sample was compatible with the

training sample from smart-card data with respect to the distribution of the number of episodes within a trip chain, as shown in

Table 7. As in the training sample, the validation sample also included only trip chains that started from and ended at home.

To estimate activities of data from the direct travel survey, a Viterbi algorithm was implemented again using the parameters

estimated from smart-card data. The resultant activity sequences shown in Table 8 reveal a pattern that differed from the result

of the training sample in Table 5. The trip chains that included flexible activities showed a larger proportion in the estimation

result. This suggests that the validation sample was less accurate in both temporal and spatial resolutions.

Table 9 shows 4 activity types derived from smart-card data and 10 observed trip purposes in the travel survey. Among the

trip purposes, “Work” represents a job requiring a commute, “Business” encompasses other works associated with a regular

job, “Academy” represents a private education after school, and “Others” includes all other purposes that do not belong to any

of the 9 predefined purposes. Since 4 activity types derived from smart-card data were not consistent with ten trip purposes

employed by the travel survey, a direct comparison between the estimated and observed activities was not possible. Thus, the

profile of observed activity sequences was examined for an activity sequence estimated using the Viterbi algorithm under the

parameters derived from smart-card data. The relationship between two different classifications of activities will be discussed

in the following.

For brevity, only profiles corresponding to the three most frequent activity sequences (i.e., “121”, “434”, and “1221”) were

provided in Table 10. As expected, the observed work and school activities accounted for the relatively smaller portion (66.5%)

out of the estimated activity of “flexible out-of-home activity” than that (92%) out of the estimated activity of “typical out-of-
Table 6

Distribution of trip chains chosen from a direct travel survey.

Car-only users Transit-only users Mix-mode users

Number of trip chains (%) 34,038 (32.13) 66,547 (63.83) 4285 (4.03)

Table 7

Comparison of samples with respect to the number of episodes within a trip chain.

Number of episodes 3 4 5 6 Total

Sample from smart-card data 1268 (88.92%) 113 (7.92%) 39 (2.73%) 6 (0.42%) 1426 (100%)

Sample from direct travel survey 61,839 (92.93%) 3099 (4.66%) 1476 (2.22%) 133 (0.19%) 66,547 (100%)

Table 8

Distribution of the most probable activity sequences in the validation sample.

Activity sequence Counts (%) Activity sequence Counts (%) Activity sequence Counts (%)

“121” 37,607 (56.51%) “43224” 44(0.07%) “1224” 6(0.009%)

“434” 24,052 (36.14%) “122121” 44(0.07%) “43221” 4(0.006%)

“1221” 1777 (2.67%) “12212” 43(0.06%) “1222” 4(0.006%)

“12121” 1027 (1.54%) “121221” 33(0.05%) “12122” 3(0.005%)

“4321” 530 (0.8%) “12221” 32(0.05%) “4322” 2(0.003%)

“4324” 469 (0.7%) “12124” 32(0.05%) “121224” 2(0.003%)

“1212” 293 (0.44%) “432124” 20(0.03%) “432122” 1(0.002%)

“43434” 241(0.36%) “4343” 18(0.03%) “12224” 1(0.005%)

“122” 180(0.27%) “121212” 18(0.03%)

“43212” 49(0.07%) “432121” 15(0.02%)



G. Han, K. Sohn / Transportation Research Part B 83 (2016) 121–135 133

Table 9

Comparison of activity types.

Proposed model Travel survey

1. Flexible home stay 1. See someone off

2. Flexible out-of-home activity 2. Return home

3. Typical work 3. Work

4. Typical home stay 4. School

5. Academy

6. Business

7. Return to work

8. Shop

9. Recreation

10. Others

Table 10

Profiles of observed activity sequences for the top three estimated activity sequences.

(a) For estimated sequence “121” (flexible home stay → flexible out-of-home activity → flexible home stay)

Observed activity sequence Counts (%)

Home stay → work → home stay 19,966 (53.09%)

Home stay → school → home stay 5091 (13.54%)

Home stay → others → home stay 4719 (12.55%)

Home stay → recreation → home stay 2865 (7.62%)

Home stay → shopping → home stay 2819 (7.50%)

Home stay → academy → home stay 1663 (4.42%)

Home stay → business → home stay 416 (1.11%)

(b) For estimated sequence “434” (typical home stay → typical out-of-home activity → typical home stay)

Observed activity sequence Counts (%)

Home stay → work → home stay 18880 (78.5%)

Home stay → school → home stay 3253 (13.52%)

Home stay → others → home stay 758 (3.15%)

Home stay → academy → home stay 597 (2.48%)

Home stay → recreation → home stay 319 (1.33%)

(c) For estimated sequence “1221” (flexible home stay → flexible out-of-home activity → flexible out-of-home activity → flexible home stay)

Observed activity sequence Counts (%)

home stay → work → business → home stay 279 (15.70%)

home stay → others → others → home stay 242 (13.62%)

home stay → others → shopping → home stay 105 (5.91%)

home stay → work → recreation → home stay 84 (4.73%)

home stay → work → others → home stay 84 (4.73%)

home stay → school → academy → home stay 79 (4.45%)

home stay → recreation → recreation → home stay 63 (3.55%)

home stay → school → recreation → home stay 62 (3.49%)

home stay → school → others → home stay 57 (3.21%)

home stay → work → shopping → home stay 56 (3.15%)

home stay → recreation → others → home stay 46 (2.59%)

home stay → recreation → shopping → home stay 42 (2.36%)

home stay → shopping → shopping → home stay 42 (2.36%)

home stay → business → business → home stay 37 (2.08%)

Observed sequences that took up less than 1% were omitted for (a) and (b).

Observed sequences that took up less than 2% were omitted for (c).
home activity”. The remaining proportion (33.5%) was taken by various observed activities such as recreation, shopping, academy,

business, and other activities. The observed work activity was more likely to be clustered to the estimated flexible out-of-home

activity, if either its start time did not correspond to the morning peak hours or the venue where it took place did not belong to

locations of the typical office or commercial land-uses. On the other hand, observed activity sequences “home-to-work-to-home”

and “home-to-school-to-home” covered more than 92% of the estimated activity sequence of “typical home stay → typical out-

of-home activity → typical home stay”. As a result, estimated activity sequences, the length of which was 3, turned out to be

well validated with the observed activities. Table 10 (c) shows the validation result for a longer activity sequence, the length of

which was 4. Observed activity sequences for the estimated sequence of “flexible home stay → flexible out-of-home activity →
flexible out-of-home activity → flexible home stay” were distributed across a wide range. The most typical patterns encompassed

various non-work activities after completing work or school, which covered business, recreation, shopping, academy, and other

activities. The remaining estimated activity sequences were also found to be intuitively accountable, but details of them were

omitted for brevity. It should be noted that the validation performance could be enhanced if the observed data were collected

in a more precise manner and more plausible features were added in the model. The present study did not offer the completed

version of the imputation model, but introduced a novel possibility to accurately annotate various human mobility data.
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5. Conclusions

The current stream of machine-learning study concentrates more than ever on the advantage of an unsupervised model. At

the stage when massive amounts of transportation-related data are accessible, it is high time for transportation researchers to

turn their eyes to unsupervised machine learning tools and to excavate precious values hidden inside the data itself. The proposed

model to infer latent activities behind smart-card data could be regarded as such an effort.

Despite the limitation that multi-day smart-card data were unavailable, very promising results were yielded from the pro-

posed model based only on smart-card data collected during only two consecutive days. Feature vectors were properly clustered

into eight categories, each of which was both intuitively accountable and sufficiently specific. The estimated membership prob-

abilities characterized four distinctive activities in a straightforward manner without confusion. The estimated transition proba-

bilities also accounted well for the relationship between the derived activities. Finally, the proposed model provided an efficient

way to estimate the most probable activity sequence for a trip chain, given that the observed features were known. This could

contribute to developing a more practical activity-based transportation demand analysis model.

With few reservations, we recommend that the typical activity types most researchers have adopted thus far should be

reconsidered from a different point of view. All previous studies have confined human activities to several predefined types.

Self-clustered activities could offer novel insight into understanding human mobility, even though these have neither a clear

description nor an exact title. In other words, human activities could be clustered and interpreted without any fixed conceptual

framework.

If the provision that the number of hidden states and clusters should be arbitrarily chosen could be overcome, this would

be a great improvement for the proposed model. Recently, Lee and Sohn (2015) shed light on the possibility that parameters

changing the model specifications could be determined in a rigorous manner. They used a reversible jump Markov chain Monte

Carlo simulation to determine the most probable number of used routes when recognizing transit-route use patterns within

a Bayesian framework. Even though the present model is much more complex than their model, the methodology could be

applied to the present model without the necessity of large-scale changes to the frame. The fact that the proposed model cannot

accommodate human interactions is another handicap. We continue the search for a way to include them into the model, and

expect the next version will resolve the problem.
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