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The main obstacles to boosting the bicycle as a mode of transport are safety concerns due
to interactions with motorized traffic. One option is to separate cyclists from motorists
through exclusive bicycle priority lanes. This practice is easily implemented in uncon-
gested traffic. Enforcing bicycle lanes on congested roads may degenerate the network,
making the idea very hard to sell both to the public and the traffic authorities. Inspired
by Braess Paradox, we take an unorthodox approach to seeking latent misutilized capacity
in the congested networks to be dedicated to exclusive bicycle lanes. The aim of this study
is to tailor an efficient and practical method to large size urban networks. Hence, this paper
appeals to policy makers in their quest to scientifically convince stakeholder that bicycle is
not a secondary mode, rather, it can be greatly accommodated along with other modes
even in the heart of the congested cities. In conjunction with the bicycle lane priority, other
policy measures such as shared bicycle scheme, electric-bike, integration of public trans-
port and bicycle are also discussed in this article. As for the mathematical methodology,
we articulated it as a discrete bilevel mathematical programing. In order to handle the real
networks, we developed a phased methodology based on Branch-and-Bound (as a solution
algorithm), structured in a less intensive RAMmanner. The methodology was tested on real
size network of city of Winnipeg, Canada, for which the total of 30 road segments – equiv-
alent to 2.77 km bicycle lanes – in the CBD were found.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

A futurist author, H.G. Wells (1866–1946) stated: ‘‘Cycle tracks will abound in utopia” (Stephenson, 2015). The bicycle as
a green and sustainable mode of transport is gaining ground (Mesbah et al., 2012; Milne and Melin, 2014; Smith, 2011). In
one estimate half of the morning trips in the US is less than 5 miles (Stephenson, 2015), should it be made by 24 min cycling,
no job is left for transport engineers. Governments across the world have started to invest in more bicycle facilities (Duthie
and Unnikrishnan, 2014; Mesbah et al., 2012; Smith, 2011). A strong correlation has been reported between the usage rate of
bicycles and health indices (Milne and Melin, 2014). Fortunately the use of bicycle is on the rise (Brady et al., 2010), so much
so some coined the term of ‘‘bicycling renaissance” (Pucher et al., 2011). The main obstacles to boosting the bicycle as a
ce).
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regular mode of transport are safety concerns due to interactions with motorized traffic (Buehler and Dill, 2015; Habib et al.,
2014; Menghini et al., 2010).

Based on GPS dataset, a recent study in the United States suggests cyclists give high value to off-street bike paths and
enhanced neighbourhood bikeways with traffic calming features (Broach et al., 2012). A similar observation has also
reported for cases in Canada (Su et al., 2010). In other words, ‘‘segregation” is the cyclists’ most heralded slogan. In the
Netherland which is the mecca of the cyclists, the public see the separated bicycle lanes an indispensable part of their
transport system (Stephenson, 2015). Retrofitting existing facilities at no (or least) cost to better accommodate cyclists
and pedestrians has emerged as an effective tool in the hands of policy makers (Buehler and Dill, 2015) One option is
to segregate bicycles and motorized vehicles by providing exclusive lanes for the cyclists (Lin and Liao, 2014; Mesbah
et al., 2012; Smith, 2011). The importance of bicycle lane has been correlated to the ‘‘bikeability” of the cities (Habib
et al., 2014). Empirical analyses strongly suggest that bicycle lanes improve safety of both cyclists and motorists on
multi-lane roadways (Brady et al., 2010). Even in narrow streets where space is scarce a simple lane marking in the shared
lanes (known as ‘‘Sharrows”) can greatly contribute to betterment of driving behaviours and hence the safety (Brady et al.,
2010; Meng, 2012).

Bicycle lanes come at the expense of restricting the motorists to less space (Alliance for Biking & Walking, 2014), which
may lead to a much worse traffic circulation and hence more severe congestion. This genuine fear has precluded the intro-
duction of bicycle lane in many cities. Despite great efforts to analyse network design problem – notably road and transit
network design – (Bagloee and Ceder, 2011; Bagloee et al., 2013b, 2015; Farahani et al., 2013; Mesbah et al., 2011a,
2011b; Sarvi et al., 2016) the literature has yet to address the Bicycle Priority Lanes Design (BPLD) problem.

The introduction of bicycle lanes needs to be viewed in the context of the motorized modes at the urban network level. A
recent review on the literature sheds light in the shortcomings of the methodologies based on which the importance of net-
work level approaches has been highlighted (Buehler and Dill, 2015).

As such one can divide the task into two categories: uncongested and congested urban networks:

� In uncongested urban networks, bicycle lanes cause no congestion. Under this category, bicycle lanes are relatively
unproblematic, and one can follow standard procedures in urban design and planning.

� In congested urban networks, bicycle lanes are more contentious, and debate arises when a portion of the road space of
the already congested network is reserved for cyclists.

Mesbah et al. (2012) consider the BPLD problem as a bilevel programing problem and a genetic algorithm was developed
as a solution method. In their attempt although the both transport classes of bicycle and motorized vehicle are considered,
the interaction between these modes is not considered (the problem is modelled as if they are operating on two separate
networks). Furthermore the application of their method to a large size network has yet to be addressed. Duthie and
Unnikrishnan (2014) investigate the design of an integrated bicycle network while the impact of congestion is overlooked.
Lin and Liao (2014) tackle the BPLD problem with an all-out binary programing framework. Enforcing all the variables as a
binary variable makes the solution computationally prohibitive as the size of the problem increases. Regardless the conges-
tion is largely overlooked.

The intent of this study is to address the BPLD problem in the context of a congested city, and we show that even in this
context there might be some latent spare capacities that can be released and allocated to the cyclists without worsening the
overall congestion. This seemingly unorthodox notion is rooted in the Braess Paradox (Braess et al., 2005) that is; adding road
to the network may worsen the traffic circulation. In other words, there might be some roads in an existing network whose
closure could improve traffic circulation (Bagloee et al., 2013a).

This study contributes to the literature by addressing the BPLD problem in the congested cities considering three impor-
tant features: (i) network-wide impact, (ii) congestion, and (iii) scalability to real-size networks. We model the BPLD prob-
lem as a bilevel programing problem. In the upper level the total system cost is minimized, while the lower level accounts for
the behaviour of the users (motorists and cyclists). Specifically, the lower level models a Multiclass User Equilibrium (MUE)
traffic flow. The bilevel programing problems are proven to be NP-hard, a term referring to utmost difficulty in solving the
respective problems (Bard, 1998; Jeroslow, 1985).

The necessity of studying mixed modes traffic flow (bicycle with motorized mode) is rooted in the fact that, it is not
always possible or feasible to provide a fully-fledged and connected network of exclusive bicycle lanes. In other words, hav-
ing mixed mode roads in some part of the (bicycle) network is inevitable. In a similar fashion, shared lanes between motor-
ized modes such as heavy trucks and cars are omnipresent in traffic modelling. Hence we articulate the problem as a
multiclass traffic flow model using the concept of bias term (Spiess, 1984) that is, both motorized modes and bicycles will
experience a common delay term plus an exclusive term (the bias term). Nevertheless, arriving at a proper estimation for the
parameters of the roads’ delay functions including the bias terms for car and bicycle requires a field survey and model cal-
ibration. Using the bias term is computationally efficient and has been consolidated by much empirical evidence (INRO,
2009). Other alternative methods give raise to either microsimulation or asymmetric delay functions via approaches such
as Variational Inequality and Complementarity Methods which are computationally expensive.

Given a set of candidate roads where bicycle lanes can be allocated, and a budget to cover the implementation costs
(marking, curb raising, etc.), the decision variables are binary variables (1 or 0) associated with the candidate roads. The
value 1 indicates a bicycle lane is allocated, and 0 that it isn’t. Inspired by the work of Leblanc (1975) we develop a purpose
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built Branch-and-Bound (BB) as search algorithm. The algorithm is then applied to the large size dataset of the city of Win-
nipeg, Canada through a phased process which resulted in 3 km bicycle lanes in the Central Business District (CBD).

The rest of the article is organized as follows: In the next section the mathematical formulation of the problem is pre-
sented; The solution algorithm is developed in Section 3, followed by numerical results in Section 4; The conclusion is pro-
vided in Section 5.

2. Mathematical formulation

Let be:

A: Set of roads currently with mixed modes (bicycle and motorized modes) but are considered as candidate to be exclu-
sively used by bicycle and the rest of the roads are denoted by A. Note; in order to preserve the connectivity of the net-
work, the roads that are speculated to give away a lane to bicycle must have at least two lanes; should they become
nominated to give away one lane as an exclusive bicycle lane, they still would have at least one lane remained (the can-
didate roads henceforth is simply called ‘‘candidate”). For ease of formulation, we adopt the following convention: con-
sider road ‘ (with for instance three lanes), it is replaced with two new links: (i) link ‘0 2 A with only one lane pending to
either remain as a mixed mode road or become an exclusive bicycle lane or road3 and (ii) road ‘00 2 A with two lanes for
mixed mode use.
N: set of nodes.
B: budget available to cover the costs of bicycle lane implementations such as marking, pavement, and curb raising.
ya: binary decisions variable associated with candidate a 2 A; 1: to be used as an exclusive bicycle lane and 0: to remain
mixed use road or lane.
ca: Implementation cost associated with candidate a 2 A.
xa; �xa: motorized and bicycle traffic flow in passenger car equivalent or unit (‘‘pce” or ‘‘pcu”) on link a 2 A [ A respectively
(Note; the network available to the motorists and cyclists are A and A [ A respectively, hence xa; �xa P 0 for a 2 A and
xa ¼ 0; �xa P 0 for a 2 A).
taðxa þ �xaÞ: general travel time of road a 2 A [ A; a non-decreasing BPR function of link flow xa þ �xa (called delay function)
(Sheffi, 1985; Spiess, 1990). The general travel time is a term to describe the disutilities involved in making a trip such as
delay, travel time, petrol cost, fare, waiting time, parking fee, toll, pollutions, and safety. For the sake of simplicity hence-
forth we call it ‘‘travel time”.
A�
n ;A

þ
n : set of links starting and ending at node n respectively; A�

n ;A
þ
n � A [ A.

ba;
�ba: additional delay (constant bias) perceived by motorized and bicycle mode of travelling on link a 2 A [ A.

I: set of origin–destination pairs (OD pairs) I � N � N.
qi; �qi: motorized and bicycle travel demand in pcu for OD i 2 I respectively.
Pi: set of paths between origin–destination i 2 I.
hk;

�hk: total motorized and bicycle flows on path k 2 Pi respectively.

The bilevel BPLD problem may be written as (all variables and parameters are considered non-negative unless otherwise
stated):
3 Hen
min
X
a2A[A

xa þ �xað Þ � ta xa þ �xað Þ þ
X
a2A[A

xa � ba þ �xa � �ba
� � ð1Þ

S:t: ya ¼ 1 or 0; a 2 A ð2Þ
X
a2A

ca � ya 6 B ð3Þ

min
X
a2A[A

Z xaþ�xa

0
taðxa þ �xaÞdxþ

X
a2A[A

ðxa � ba þ �xa � �baÞ ð4Þ

S:t:
X
k2Pi

hk þ �hk ¼ qi þ �qi; 8i 2 I ð5Þ
ce bicycle lanes are separately denoted by one-lane roads, we then alternatively refer to them as bicycle lane or bicycle road.
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xa ¼
X
i2I

X
k2Pi

hkda;k da;k ¼
1 a 2 k
0 a R k

�
; a 2 A [ A ð6Þ
�xa ¼
X
i2I

X
k2Pi

�hkda;k da;k ¼
1 a 2 k
0 a R k

�
; a 2 A [ A ð7Þ
�xa 6 U a 2 A ð8Þ
xa 6 ð1� yaÞ � U a 2 A ð9Þ
where in the upper level (Eq. (1)) the total travel time is minimized. Eq. (2) sets out the binary decision variables. Eq. (3)
ensures feasibility of the solutions with respect to the implementation costs of the projects versus available budget. In
the lower level (Eqs. (4)–(9)), the MUE traffic flow is ensured (INRO, 2009; Spiess, 1984). Although Eq. (8) is redundant, it
is intentionally placed in the constraints to emphasize that cyclists can use a candidate road either exclusively (if it turns
out to be ya ¼ 1) or mixed with motorized mode (i.e. ya ¼ 0). Note that U is a sufficiently large number which can be con-
sidered as

P
iqi. If it is decided that road a to become an exclusive bicycle lane/road (i.e. ya ¼ 1), then Eq. (9) makes the

respective road closed to motorized mode (i.e. 1� ya ¼ 0). The above equations treat the MUE traffic assignment in a sim-
plistic form in which all different classes using link a are subject to the same congestion level (based on the total traffic vol-
ume) plus an additional bias term denoted by ba;

�ba for motorized and bicycle travel respectively. For instance the total travel
time perceived by motorists on road a is tðxaþ�xaÞ þ xa � ba, and for cyclists it is tðxaþ�xaÞ þ �xa � �ba. Obviously, delay functions
including the bias terms need to be calibrated based on field survey data.

Nonetheless it is worth noting that a comprehensive inclusion of multiclass into the traffic assignment comes at the cost
of facing a non-convex optimization with asymmetric delay functions in which the feasibility and uniqueness of the solu-
tions are not guaranteed. A variety of algorithms based on methods such as Variational Inequality, Complementarity Method,
Fixed-Points and Entropy Maximization have been proposed in the literature (Bar-Gera and Boyce, 1999; Chen et al., 2011;
Dafermos, 1972; Florian and Morosan, 2014; Nagurney, 2000; Nagurney and Dong, 2002; Zhang and Chen, 2010). Despite all
these efforts, there is no consensus in the literature (Boyce, 2014) and how to approach the multiclass traffic assignment
problem is still an ongoing debate.

Moreover, some scholars advocate microsimulation methods to better replicate the interaction of the bicycle and cars.
Luo et al. (2015) present a recent reviews on the microsimulation-based methods. Nonetheless, the applications of the
microsimulation-based methods cannot be extended to the large size networks. Apart from the scalability concern, Li
et al. (2015b) have recently shown that the available simulation models first need to be thoroughly and rigorously evaluated.
For instance in one case study, the fundamental diagram4 observed in the field survey was different from that obtained from
previous simulation models.

Despite the complexities involved, the above formulation (Eqs. (4)–(9)) is empirically proven to be a reliable method for
the MUE traffic assignment (INRO, 2009). In this study, Eqs. (4)–(9) have been coded using Frank–Wolfe algorithm as a mod-
ule in EMME 3 a leading transport planning application (INRO, 2009) and it is called upon in the algorithmwhenever needed.

As for bicycle routing models found in the literature, our findings suggests that, cycling time along with other factors per-
taining to the characteristic of the roads such as slope are of highest importance. Some studies provide alternative bicycle
routing methodologies. Ehrgott et al. (2012) advocate considering travel time and multiple incommensurable objectives per-
taining to the suitability of the routes. Consideration of multi objective functions gives raise to the issue of non-unique solu-
tions. Furthermore the interaction of bicycles and motorized vehicles as well as the impact of congestions have yet to be
addressed in their methodologies. Congestion is the most important thing which is overlooked in the literature. Recently
consideration of bicycles with motorized vehicles under an integrated multi-class traffic model subject to congestion has
been emphasized in the literature. Nonetheless, no real applications has been reported (Li et al., 2015a). In light of the afore-
mentioned knowledge gap we employed the multiclass routing model.
3. Branch-and-Bound algorithm

3.1. Initialization

The BB algorithm is conducted on a tree comprising nodes and branches where each node (if it is not a dead end) is fol-
lowed by two successor nodes. The bilevel BPLD problem expressed in Eqs. (1)–(9) is a mixed integer programming problem
with jAj binary decision variables which constitute the solution space. Each node represents either a complete feasible solu-
tion or a ‘‘partial solution”, representing a subarea of the solution space.
a famous diagram in transport science that shows the relation between flow rate, density and speed. These three aggregate indices are deemed
ental, hence, a reliable simulation model is expected to properly replicate them, let alone other detailed indices.
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The algorithm starts by first solving the MUE traffic assignment for the do-nothing scenario (no bicycle lanes are allo-
cated) that is ya ¼ 0; a 2 A. For this run and throughout the tree once the MUE is solved for a feasible binary solution, the
best value of the objective function (total travel time, Eq. (1)) is kept as the incumbent value. Each node of the tree represents
a sub area of the solution space. The tree is built up via an iterative process as follows: a node of the tree is selected at which
two branches crop up to make two new nodes. The branching is made at one candidate, one branch represent binary value of
1 and the other one 0.

It is highly desirable to arrive at optimum solution in earlier iterations by expanding the tree at the right candidates.
Knowing the right candidates means that having the conundrum solved. We are still able to find some clues or insights based
on the following heuristic. A scenario with all the projects – irrespective of the budget – is made and a MUE traffic assign-
ment is computed. The ensuing traffic volume, the capacity and the cost associated with individual candidates are invaluable
indications to make an educated guess about the possible best solution. Let us define a merit index as:
ðvca � ð�xa=xaÞ � ðxa þ �xaÞÞ=ca ð10Þ
where vca stands for volume per capacity ratio of candidate a 2 A. The rationale behind the proposed merit index is: (i) the
first term pick up the congested roads as candidates which is the main subject of this research (ii) the second term ensures
that under all things being equal the road that carries more bicycles gains more priority. (iii) The third term guarantees that
under all things being equal the road that carries more traffic gets more priority. (iv) At the end, the index is normalized by
the implementation costs, to make the task economically more efficient. In the course of branching, the projects are chosen
from the top of the sorted merit list until the budget is depleted.

3.2. How does the BB work?

Each node in the tree represents a discrete solution either partial or complete. Consider a ‘‘partial solution” (01022) cor-
responding to five binary variables that represents a scenario in which the first three components are decided to become
either bicycle lane represented by ‘‘1” or not represented by ‘‘0” and the last two (represented by ‘‘2”) are unspecified (or
yet to be decided). The index sets I0ðzÞ, I1ðzÞ, I2ðzÞ are used to represent the projects decided as no-bicycle-lane, bicycle-
lane and yet-to-be-decided respectively at node z. For the above mentioned partial solution we have: I0ðzÞ ¼ f1;3g,
I1ðzÞ ¼ f2g, I2ðzÞ ¼ f4;5g. The set of descendants (all possible completions) of the partial solution (01022) at node z on

the tree is shown by SðzÞ ¼ fy 2 RjA0 jjy1 ¼ 0; y2 ¼ 1; y3 ¼ 0; ya ¼ 0=1; a ¼ 4;5g.
The tree iteratively grows up, at each iteration a node z of the tree representing a partial solution is chosen, out of which,

an undecided project (represented by value ‘‘2”) is selected and is assigned two values ‘‘1” bicycle-lane and ‘‘0” no-bicycle-
lane on two newly emerged branches leading at two new nodes. In other words S(z) is partitioned into two parts by the two
new nodes. For each new node z of the tree, LBz, lower bound on the objective function (Eq. (1)) for all the solutions in the
descendants set SðzÞ is evaluated. The lower bound LBz is compared against the incumbent value denoted by UB�. In case LBz

rests above UB� we can argue that descendant solutions represented by node z (i.e. SðzÞ) will never render any better solution
than the current incumbent value. Hence the algorithm stops branching at node z that is known as ‘‘fathoming”. The fath-
oming action can be mathematically expressed as follows:
ðUB� � LBzÞ=UB� 6 e ð11Þ
where e is a pre-specified relative gap. In case node z does not satisfy fathoming criterion the branching proceeds until the
budget is depleted or no more undecided projects are left which leads to a complete solution. The traffic assignment is car-
ried out once a complete solution is found and a new upper bound ðUBzÞ is computed. The newly computed upper bound
replaces the incumbent value if UBz < UB�. The process carries on until there are no more partial solutions left.

3.3. Node selection and branching rules

As the process proceeds and the tree expands, the algorithm may find a lot of nodes with partial solutions and wondering
which one to choose for branching. Once a node is selected, the algorithm still has to pick one undecided project of the cor-
responding partial solution to conduct branching. To this end there are some methods requiring solving additional problems
or retrieving the entire database to finding hopefully best node and branching. As the size of the network increases such
methods become computationally intensive.

Alternatively, we consider the order of the projects in the descendingly sorted merit list as priority for the node selection
and branching. As for branching, there is only one rule: choose the very next undecided project in the corresponding partial
solution. As for node selection the algorithm follows two rules: (i) choose the deepest node of the tree (ii) in case of two
nodes at the same level choose the one made of a branch associated with ya ¼ 1.

Some advantages of the proposed depth-first search: (i) finding good solution quickly and thus achieving better fathom-
ing – given the fact that the projects are sorted on merit basis it make more sense to go deep into the tree and selecting the
next best project for branching in a greedy manner hoping that the optimum solution lies deep there. (ii) Algorithm needs
not to save/retrieve/process the information of the entire tree.
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Fig. 1. Proposed node selection and branching in the Branch-and-Bound algorithm.
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At each node the algorithm just need to move forward as much as possible on the paths consists of ya ¼ 1 branches. In
case there is no space for such moves, the algorithm moves only one node back to the previous node and then move through
the ya ¼ 0 and then follow ya ¼ 1 branch (if any). Fig. 1 illustrates gradual built up of the tree based on the above mentioned
rules for a case consists of three candidates.

As the algorithm proceeds deep into the BB’s tree, it may stop due to fathoming. There are two cases at which fathoming
occur: (i) budget depletion and (ii) reaching at inferior lower bound. Should fathoming happens (in either case), there would
be no point to proceed on that particular edge or node. Hence the algorithmmoves one node back and resumes navigation on
the other edge. Navigation over the BB’s tree stops when there is no unfathomed node left. In other words, termination of the
algorithm is pegged to having the entire BB’s tree processed. It is worth noting that budget depletion can occur many times. If
an edge/node representing a sub-optimal becomes fathomed due to budget depletion, it does not mean that the entire algo-
rithm terminates. In such cases, the cursor of the algorithm moves to a new node (as described before).

As the tree structure expands the algorithm does not need to remember the already taken paths nor the paths ahead. As
shown in Fig. 1, it just needs to know the lower bounds of the nodes on the current path plus the best solution found – so far
– which is a string of binary values (0/1) and the corresponding incumbent value. For example if the current node is (11002)
the next move is to processing node (11001) followed by the node represented by (11000). For the third move the algorithm
moves three nodes back to reach at node (10222).

3.4. Tight lower bound for Branch-and-Bound

Compared to the UE, it is proven that the best traffic pattern (or least cost) is the System Optimal traffic flow (Patriksson,
1994; Sheffi, 1985). Now, given a partial solution, in order to arrive at a valid lower bound, one needs to solve a SO based
problem as follows (Leblanc, 1975): (1). . .(3),(5). . .(9)5 which is a mixed integer nonlinear programing (MINLP) problem.

Instead of directly solving the MINLP problem – which is highly difficult for large size networks – a valid but loose6 solu-
tion can be found as follows: set all undecided candidates to mixed use (i.e. all ‘‘2” in partial solution must turn to ‘‘0”) and
calculate total travel time of the SO flow. Such a conservative estimation is not a healthy lower bound. The ratio of total travel
time of the UE flow to the SO flow is called Price of Anarchy and for transportation network it can be as high as 2.15
(Roughgarden and Tardos, 2002). Hence it becomes highly unlikely to cut the solution space due to finding the lower bounds
above the incumbent value. If it happens, the algorithm has to process every single solution of the solution space, that is, the
algorithm has no superiority against exhaustive enumeration. In fact it is much worse, because, in addition to calculating merely
5 Note: in the partial solutions some of the binary variables have already been assigned values (0 or 1) which makes the SO problem easier to solve.
6 Loose means the lower bound value is too low, we rather to get a tighter lower bound.
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the upper bounds as required in the enumeration, the algorithm has to calculate the lower bounds too. The following exposition
offers an easy way to find a much tighter lower bound value.

The Multiclass SO (MSO) flow can be easily computed using the Frank–Wolfe by replacing tað:Þ the delay function in Eqs.
(4)–(9) with ~tað:Þ as follows:
7 As s
problem
travel t
traffic a
junction
~taðuaÞ ¼ taðuaÞ þ ua � @taðuaÞ
@ua

a 2 A [ A ð12Þ
where ua ¼ xa þ �xa. The deep gap between SO and UE emerges from the second term in the right side of the equation which is
the additional externality cost that the commuters must pay. The two functions t;~t show benign and similar behaviour as
long as the volume is below the capacity. As the volume gets close to (or exceeds) the capacity level the externality cost
increases rapidly that results in a much deeper gap between the total travel times in MSO and MUE flows. In order to abate
such mathematically-driven deep gap we propose 0 6 a 6 1 a coefficient to the externality term as follows:
~taðuaÞ ¼ taðuaÞ þ a � ua � @taðuaÞ
@ua

a 2 A ð13Þ
As alpha gets close to zero the MSO flow gets close to MUE and the gap vanishes. It is worth noting that the alpha addresses
the unfortunate trade-off between computational time and accuracy of the algorithm. The lower alpha ensures a faster and
less accurate algorithm. The value of alpha can be identified as per the modeler’s discretion depending on the computational
technology at the time and how affordable is the computational time.

4. Numerical demonstration

For numerical implementation of the proposed methodology we use the real size transportation data of the city of Win-
nipeg, Canada, which is a standard benchmark in the literature (Bar-Gera, 2015) (it is also provided by INRO in EMME 3
(INRO, 2009)). The case study comprises of 154 zones, 903 nodes, 2995 directional links. There are 20 different BPR functions
considered for the Winnipeg model (INRO, 2009). The BPR functions comply with following format: t0⁄(1 + a⁄(x/c)^b) where
t0, x and c are free flow travel time, traffic volume and capacity respectively. In addition, ‘‘a” and ‘‘b” are parameters which
vary from 0.5423 to 1.1491 and 3.5038 to 6.8677 respectively7. The most congested area in the city is the Central Business
District (CBD) served by 444 roads for which the bicycle lanes are sought in this study. The average volume capacity ratio in
the CBD was calculated above 80% which is regarded as ‘‘working at capacity” condition equivalent to level of service E
(HCM2010, 2010). The extent of the citywide road network and the CBD are shown in Fig. 2. The total citywide motorized vehi-
cle and bicycle demands for a typical one hour peak are 84,324 and 4107 respectively. Given the widely accepted passenger car
unit (pcu) of 0.2 for bicycle (Khan and Maini, 1999; Salter and Hounsell, 1996; Wang et al., 2008) the bicycle demand is equiv-
alent to 822 equivalent vehicle in the peak hour which is mostly concentrated in the CBD. The methodology is coded in a Visual
Basic environment linked to MS Access and MS Excel to communicate the data and synchronized with EMME 3 to solve the
traffic assignment problems. A desktop PC with a 3.70 GHz CPU and 64 GB of ‘‘RAM” is employed.

The maximum speed of bicycle is considered to be 25 km/h (HCM, 2000). Due to higher flexibility of bicycle movement in
congested areas, its interaction with motorized classes has yet to be investigated. In terms of travel time, despite relatively
low speeds, the bicycle can compete with the motorized modes in the inner-city areas including CBDs, where the speed of
traffic is controlled and kept low (Jensen et al., 2010; Sustrans, 2014). Therefore the bias terms in Eq. (1) for both bicycle and
motorized classes are assumed identical. Nevertheless arriving at a proper estimation for the parameters of the delay func-
tions including the bias terms for car and bicycle requires field survey data and calibration process. As for the bias term in
particular and the delay function in general, recent studies endorse application of delay functions to model cyclist behaviour.
A comprehensive survey in the United Sates revealed that cyclists are more concerned with travel time and distance and less
sensitive to other characteristics for commuting trips (Broach et al., 2012). In particular, the findings suggest that cyclists are
sensitive to the effects of distance, traffic volumes, slope, intersection control (e.g. presence or absence of traffic signals). All
these factors can be included in a convex delay function.

As noted before, BPR delay functions are widely used as delay functions. The BPR is a multinomial function of order of 4
which can be calibrated using any statistical soft ware such as SPSS based on the field survey data. As noted above, the survey
data must entail information pertaining to the roads individually such as traffic volumes of various classes (car, truck, bicy-
cle, etc.), distances, slope of the roads, and type of intersection control.

First the candidate roads are identified. Table 1 shows the candidate roads to accommodate the bicycle lanes in the CBD
identified as per Eq. (10) which accounts for 151 roads of total lengths of 20 km. Second, the BB algorithm is run over the
candidate roads so as to identify the roads to yield a network of bicycle lane without deteriorating the total travel time
of the system. Given the total length of candidate roads (20 km) the plan is to lay down bicycle lanes up to 10 km in the
een, the delay functions are merely function of respective links flow, which is required by Frank–Wolfe (FW) algorithm to solve link based assignment
. In other words the FW algorithm is not able to consider delay at junctions (nodes). Explicit consideration of junction delay gives raise to asymmetric
imes which in turn calls on different and more complicated methodologies such as variational inequality and complementarity method to solve the
ssignment problem. Instead, in the undertaken Winnipeg case study (as issued by INRO, 2009) there is a pool of different BPR functions. In fact, delay at
s has been implicitly considered for the junctions’ approaching links in the calibration process.



Fig. 2. Winnipeg case study; the extent of the network undertaken in the analysis and the Central Business District (CBD).
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CBD subject to caring for the overall performance of the system including the motorized traffic. As discussed earlier the over-
all performance of the system is quantified as total disutilities or travel time. The result of the first traffic assignment (on
which Table 1 is derived) indicates that the total travel time of the existing network (no-bicycle-lane scenario) is
2,615,545 min per peak hour. In the course of taking road spaces from motorized traffic in favour of bicycles which may



Table 1
The candidate roads to yield a bicycle lane in the CBD, Winnipeg.

No Inode Jnode Len Vc Vlmtr Vlcls M No Inode Jnode Len Vc Vlmtr Vlcls M No Inode Jnode Len Vc Vlmtr Vlcls M

1 1050 1047 0.07 2.24 3287 66 2033 51 936 949 0.1 1.21 881 24 298 101 920 919 0.06 0.88 344 9 132
2 1047 1046 0.09 2.43 3565 74 1364 52 1053 1052 0.24 1.71 2531 41 297 102 909 908 0.14 1 1235 18 122
3 1051 1050 0.11 2.24 3287 66 1332 53 1059 1051 0.24 1.38 2542 51 297 103 902 905 0.2 1.07 1311 22 122
4 983 982 0.06 1.69 2484 47 1323 54 936 932 0.1 1.32 969 22 297 104 908 906 0.19 1.19 1467 19 118
5 1010 1009 0.06 1.87 2762 42 1059 55 995 990 0.1 1.29 1425 23 293 105 1038 1039 0.17 0.86 1264 23 118
6 951 950 0.03 1.19 1467 26 988 56 982 981 0.17 1.29 1903 38 292 106 958 959 0.16 1.05 774 18 110
7 1008 1007 0.07 1.76 2609 39 890 57 949 965 0.1 1.19 872 24 289 107 910 909 0.17 1.01 1250 18 110
8 982 1003 0.04 1.5 1104 23 834 58 1039 1040 0.07 0.86 1274 23 285 108 970 944 0.09 0.86 954 11 103
9 1041 1040 0.07 1.63 2412 35 763 59 937 948 0.1 1.05 1541 27 283 109 894 895 0.16 0.92 1131 18 99
10 986 985 0.09 1.64 2422 41 716 60 906 905 0.15 1.48 1817 28 282 110 931 930 0.1 1.13 445 9 91
11 987 986 0.1 1.7 2515 41 671 61 891 892 0.21 1.47 2719 40 277 111 947 967 0.1 1.06 414 8 91
12 980 979 0.09 1.43 2101 41 671 62 981 980 0.18 1.29 1903 38 273 112 1025 1022 0.15 1.05 1174 13 90
13 1018 1017 0.05 1.13 2084 29 636 63 1061 1060 0.09 2.13 840 11 273 113 1039 1038 0.17 0.92 1357 16 90
14 1046 1045 0.07 1.35 1998 32 604 64 1051 995 0.11 1.3 1440 23 265 114 944 941 0.11 0.86 954 11 87
15 783 1054 0.07 1.06 2601 39 577 65 948 966 0.1 1.01 1484 26 261 115 918 917 0.08 0.86 334 8 85
16 1044 1043 0.1 1.5 2207 38 559 66 931 937 0.1 1.01 1489 25 256 116 901 902 0.27 1.13 1397 20 82
17 1031 1032 0.05 1.48 1651 19 557 67 981 1005 0.1 0.97 1432 26 252 117 1027 1026 0.09 1.29 512 6 81
18 989 988 0.16 1.98 2926 44 551 68 1011 1015 0.1 1.27 1413 20 247 118 1022 1002 0.12 0.94 1043 10 77
19 988 987 0.12 1.64 2419 40 545 69 1061 1041 0.18 1.41 2080 31 245 119 969 968 0.17 1.16 687 11 75
20 1011 1010 0.12 1.73 2554 37 514 70 911 910 0.09 1.08 1325 20 243 120 992 991 0.21 0.95 1407 16 75
21 1004 1003 0.05 1.55 1145 16 506 71 1053 993 0.13 1.9 1407 16 234 121 970 969 0.18 1.48 585 9 74
22 990 989 0.19 2.04 3013 46 496 72 1036 1031 0.11 1.4 1556 18 232 122 1029 1028 0.17 1.38 544 9 72
23 1012 1011 0.17 1.51 3723 55 478 73 966 981 0.11 0.97 1432 26 229 123 919 918 0.11 0.88 344 9 70
24 1052 1051 0.12 1.48 2186 38 476 74 1038 1028 0.12 1.07 1983 25 209 124 1026 1020 0.1 1.11 438 6 69
25 908 914 0.06 1.23 1515 23 458 75 914 934 0.11 1.08 1334 21 202 125 930 938 0.1 0.9 352 8 69
26 1043 1044 0.1 1.23 1804 37 439 76 1025 1021 0.1 0.87 1281 23 201 126 938 947 0.1 0.91 356 7 68
27 1009 1008 0.17 1.8 2653 41 430 77 1005 1004 0.15 1.23 1821 24 199 127 906 915 0.11 0.94 368 8 65
28 939 929 0.04 0.86 1583 20 425 78 991 990 0.13 1.07 1587 24 196 128 1031 1029 0.18 1.37 541 8 64
29 1020 1019 0.05 1.65 647 13 420 79 932 936 0.1 0.94 686 20 184 129 910 954 0.16 1.18 464 8 64
30 1015 1032 0.06 1.27 1413 20 419 80 912 911 0.12 1.08 1325 20 183 130 1033 1031 0.24 1.62 638 9 63
31 1045 1046 0.07 0.91 1333 32 405 81 1044 1045 0.16 0.91 1333 32 181 131 941 940 0.19 1.48 585 8 62
32 1041 1042 0.12 1.35 1997 35 396 82 975 970 0.1 1.14 1269 16 178 132 902 901 0.27 1.06 1179 16 58
33 917 931 0.1 1.23 1812 32 394 83 912 958 0.17 1.39 1025 21 171 133 962 986 0.16 1.04 408 9 58
34 1001 1000 0.05 0.97 1432 20 391 84 1042 1043 0.18 1.09 1607 28 169 134 1039 1026 0.12 1.11 438 6 54
35 965 982 0.1 1.43 1048 27 389 85 949 936 0.1 1 734 17 169 135 1059 1052 0.19 1.06 784 10 51
36 1040 1039 0.07 1.2 1774 22 387 86 902 916 0.12 0.98 718 20 166 136 1021 1020 0.22 1.14 446 10 50
37 1037 1038 0.17 1.68 2483 39 386 87 1052 994 0.12 1.55 1148 13 166 137 948 947 0.14 1.02 402 7 48
38 1035 1036 0.22 2.11 3124 40 385 88 950 964 0.15 1.05 1284 23 162 138 954 955 0.16 0.94 367 8 47
39 892 893 0.11 1.24 2282 34 378 89 965 949 0.1 1 732 16 159 139 940 939 0.17 0.99 583 8 47
40 901 917 0.1 1.21 1790 31 361 90 1011 975 0.1 1.08 1205 15 157 140 955 962 0.17 0.99 390 8 45
41 1045 1044 0.16 1.5 2207 38 345 91 893 894 0.25 1.37 1683 28 153 141 960 959 0.16 1.01 748 7 45
42 782 783 0.12 1.08 2673 38 334 92 994 991 0.1 1.31 968 12 150 142 988 960 0.16 1 745 7 42
43 901 900 0.12 1.02 2516 39 332 93 1028 1018 0.19 1.04 1915 27 148 143 959 958 0.16 0.99 735 7 34
44 1042 1025 0.12 1.31 1939 30 321 94 964 983 0.16 1.03 1270 22 147 144 1044 999 0.18 1.19 472 5 31
45 1043 1042 0.18 1.5 2207 38 317 95 967 980 0.1 1.34 527 11 145 145 949 948 0.21 0.96 379 7 30
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Table 1 (continued)

No Inode Jnode Len Vc Vlmtr Vlcls M No Inode Jnode Len Vc Vlmtr Vlcls M No Inode Jnode Len Vc Vlmtr Vlcls M

46 934 951 0.09 1.18 1450 24 316 96 986 1001 0.08 1.27 501 9 142 146 947 946 0.17 0.88 346 6 29
47 916 932 0.1 1.24 902 25 315 97 1042 1060 0.24 1.45 1067 23 141 147 966 965 0.2 0.97 383 6 26
48 993 992 0.1 1.9 1407 16 313 98 1028 1027 0.08 1.55 612 7 140 148 1060 1042 0.24 0.89 657 7 25
49 1054 1053 0.18 1.41 2601 39 308 99 900 901 0.12 0.88 1300 19 136 149 937 936 0.24 0.92 362 6 23
50 1036 1037 0.18 1.57 2326 35 299 100 982 965 0.1 0.91 666 15 133 150 950 949 0.29 0.95 372 7 21

151 1026 1025 0.24 0.87 516 6 0

Len: length in km; vc: volume-per-capacity; vlmtr and vlcls: motorized and bicycle traffic volume in pcu; M: merit index.
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Table 2
Numerical results; application of the algorithm in successive phasing stages; CBD, Winnipeg.

New roads identified as bicycle priority lanes at respective phases are flagged using shaded values.
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Fig. 3. Phase 4; variation of lower bound and upper bound.
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Fig. 4. The roads identified as bicycle lanes in successive phases, CBD, Winnipeg.
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adversely deteriorate the overall performance, we consider a ceiling to such adverse impact. With respect to the current total
travel time the ceiling is assumed as maximum 1% additional travel time. It is worth noting that achieving 10 km bicycle
lanes subject to only maximum 1% additional travel time in the system may not be possible. Hence the 10 km bicycle lanes
in the CBD is a target and the algorithms tries its best to lay down as many as possible bicycle lanes.



Fig. 5. Ultimate traffic volume in the peak hour after implementing the bicycle lanes, CBD, Winnipeg.
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In order to get to a working solution in a timely manner we start with alpha equal to zero in Eq. (12). We will later on
show that the computation time is heavily dependent upon the value of alpha.

In order to cope with the intensive size of the problem, given a budget level, the algorithm starts with a very tight budget.
In each phase the identified roads for bicycle lanes are carried over to the next phase with additional budget until the budget
is consumed or no more bicycle lanes are found. Such a phased approach to the problem is greatly appealing to the industry.
Given limited resources, or understandable hesitation and cautiousness with traffic authorities in making new decisions,
phasing the projects or conducting the projects through a pilot exercise is a prudent and valid action in practice (Bagloee
and Asadi, 2015; Bagloee and Tavana, 2012).

In summary, one first needs to identify a target value of the maximum allowable total travel time. We consider max-
imum 1% additional travel time of the existing condition. Hence the target total travel time became 2,641,700
(=1.01 ⁄ 2,615,545) minutes per peak hour. This value is then set as the incumbent value at the onset of the algorithm.
At the end, if the algorithm reaches at a lower incumbent value it gives us motivation to run the algorithm for further
phase to find more bicycle lanes. Otherwise (no better incumbent value is found), there would be no more space for a
new bicycle lane.

4.1. Phasings

The first phase starts with budget of 1 km. The algorithm was run on 151 candidate roads, as shown in Table 1, for
which the computation elapsed time was 7.67 h, and a solution of 14 roads equivalent to 0.97 km with total travel time
of 2,641,623 min per peak hour was found. Even if a solution near to the ceiling target is found, it is in general worth
continuing until no better solution is found. For the next phase, in our experiment, the do-nothing scenario was updated
by incorporating the 14 roads as bicycle lanes and hence the candidate set was updated too. The algorithm was restarted
with the same ceiling total travel time and a shrunk candidate set of 137 (=151 � 14) candidate roads. This time the
computation lasted 1.63 h and a solution of 8 roads equivalent to 0.92 km with total travel time of 2,640,722 min per
peak hour was found.

With regards to the total travel time one may ask why the second solution is superior to the first solution found, in other
words, why the algorithm could not find the second solution in the first phase. To answer this question one needs to remem-
ber that the undertaken TPLD problem is an NP-hard problem and the alpha (in Eq. (13)) which is supposed to be 1 – to ren-
der the global solution – is considered 0 – the minimum possible value – to render a good solution in an efficient and
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affordable timeframe. We shall show that even for a meagre value of alpha (say half a percent) the computation time tends to
infinity).

These newly found 8 roads were also added to the previous 14 roads to update the do-nothing network and the candidate
set ðjAj ¼ 129Þ for the third phase. Application of the algorithm resulted in a solution of 6 roads equivalent to 0.71 km and
total travel time of 2,641,456 min per peak hour. The same practice was repeated for the fourth phase which returned a solu-
tion of 2 roads equivalent to 0.17 km and the total travel time of 2,640,724 min per peak hour. The algorithmwas carried out
for the fifth phase and no solution was found. In Table 2 the progressive results in the phases including the 30 roads with
total length of 2.77 km selected as bicycle lanes are shown.

As noted before, target value of maximum allowable total travel time based on maximum of 1% additional travel time of
the existing condition resulted in an upper bound (UB) or incumbent value at the onset of the algorithm. At the end of each
phase, if the algorithm reaches at a lower UB, it means that the entire 1% is not yet depleted, hence it gives us motivation to
run the algorithm for further phases to find more bicycle lanes. Otherwise (no better incumbent value is found), there
would be no more space for a new bicycle lane. This corresponds to Table 2, Phase 5, where the total travel time is identical
to the one of Phase 4. Furthermore there is an interesting observation in the fluctuation of total travel time reported in
Table 2: at Phase 2 versus Phase 1 and Phase 4 versus Phase 3, the introduction of more bicycle lanes led to lower total
travel time. This means that the bicycle lanes are on Braess infected roads which is the primary design of the proposed
methodology.

Fig. 3 illustrates variation of lower bound based on the SO traffic flow and upper bound based on the UE traffic flow per-
taining to Phase 4 –as an example – over successive iterations as the algorithm navigates through the BB’s tree. As seen, in
three occasions (iterations 1, 3 and 44) the lower bound values were found below the incumbent value.

The topographical demonstration of the bicycle lanes laid down on the CBD in the progressive phases is shown in Fig. 4.
This figure shows that the latent misutilized road capacities are scattered in the heart of the city at the peak hour where the
congestion is the case. The bicycle network can be connected by other means such as exclusive bicycle/parking lane, shared
bicycle/parking lane, off road/Shared Path, Copenhagen style (VicRoad, 2000). These results can propel up the arguments
made by the bicycle advocates to seek space in the heart of the cities and even in the peak hours of traffic as well as in
the heavily congested roads. The ultimate traffic volume in the peak hour (bicycle and motorized) pertaining to the last
phase are shown in Fig. 5.

As discussed earlier the value of alpha was first set to zero to find good (not necessarily best) solutions within an afford-
able time. Hence it was worth trying to seek a solution at this phase by changing the value of alpha. As such a meagre value
of 0.005 was set for the alpha and the algorithm was run on a candidate set of the size of ðjAj ¼ 121Þ. After almost 10 days
computation no better solution was found and we stopped it.

According to Eq. (13), alpha = 0 means that the SO is lifted to the level of UE. As shown, zero alpha results in
practical (although not necessarily global) solution for a real size network. Hence, this does not contradict the
scalability of the algorithm, rather it is devised to serve its scalability. In other words the lower alpha compromises
the quality of the solution (with respect to the global solution) in order to empower the algorithm to handle real
size networks.

As noted before the total travel time of the existing network (with no bicycle lanes) is 2,641,623 min per peak hour. The
changes of total travel time over successive phases are presented in Table 2 which varies within 1% above that of the existing
network.
5. Conclusion

We started this article with a wishful quote, to which this study aims to contribute. Given many proven advantages of
bicycle compared to motorized traffic the studies are still in their infancy. One way to promote the market share of the bicy-
cle mode is to separate bicycles from motorized transport in order to ensuring a safe and streamlined class of mobility. As
such, some advocate dedicating road network space to exclusive bicycle lanes at the cost of leaving less space for the motor-
ized traffic. This practice is easily implemented in an uncongested traffic network where the road network is underutilized.
However, enforcing bicycle lanes on congested roads may degenerate the network as a whole, making the idea very hard to
sell both to the public and the traffic authorities.

With respect to congested networks, we took an unorthodox approach to searching for latent misutilized capacity to be
dedicated to exclusive bicycle lanes based upon the Braess Paradox. The problem was formulated as a bilevel mathematical
programing with binary elements as decision variables which is widely believed to be an intractable problem to solve.
Despite all the complexities involved, the aim of this study was to tailor an efficient and working method to real size net-
works. Unlike previous attempts, the interaction of bicycles with motorized traffic was considered, and formulated as a mul-
ticlass traffic assignment problem in the lower level of the bilevel problem. The objective function in the upper level was to
minimize all the disutilities involved in making a trip such as time, cost, parking fee, fare, pollutions, etc., encapsulated as
‘‘travel time” for easier reference.

First a set of roads deemed appropriate to accommodate bicycle lanes was identified (set of candidates). Laying
out the bicycle lanes comes with some implementation costs and hence a budget is considered in the problem for-
mulation. A successive phasing methodology was developed such that, in each phase a subset of the candidate set
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is identified, subject to not to degenerating the total travel time of the network above a pre-specified level nor
does breaching the budget level. A Branch-and-Bound (BB) algorithm was developed to solve the bilevel problem
in each phase. The BB was structured in a less – intensive – RAM manner in order to handle the large scale
networks.

The methodology was tested on real size network of city of Winnipeg, Canada, for which the total of 30 roads equivalent
to 2.77 km bicycle lanes in the CBD were found.

This article primarily appeals to practitioners, policy makers and traffic authorities in their quest to promote bicy-
cle. The proposed algorithm has been developed as a module in EMME a popular leading planning software. The
phasing nature of the methodology makes it a flexible tool in the hands of planners to keep track of the changes
in the network and add their engineering judgment to the decision making process. For instance, one can add,
remove, or enforce a certain number of candidate roads in the outset of the algorithm based on discretion, vested
interest and other concerns. As the title of the article suggests, the main emphasis of this article is to empower pol-
icy makers in their uphill battle to fit bicycle infrastructure and lines in tightly – packed roads of the CBDs, without
losing the battle to car-obsessed vested interests. In this quest we unearthed the Braess Paradox from the academic
literature and used it as a leverage to get the voices of cyclists heard in practice using sound and flawless scientific
language.

The methodology proposed can be further improved on several threads:

I. Bicycle transport comes short in competing with motorized transport in long distance trips. One solution can be inte-
grating bicycles into public transport (Flamm et al., 2014; Krizek and Stonebraker, 2011; Wang and Liu, 2013). Some
European cities are leading in paving the way for coexistence of environment for both bicycle and public transport. For
instance, cyclists can take their bicycles to the metro, or even buses are equipped with special bicycle-racks to accom-
modate cyclists in their long range commutes. Accordingly a joint problem considering the public transport network
needs to be formulated in which the decision variables include which roads are to become bicycle lanes and which
roads are to become transit priority. The problem can be extended to a higher level of decision making to adjust
the public transport system (in terms of route, fleet, frequency, stop stations. etc.) to accommodate bicycle demand
fully.

II. In addition to the exclusive bicycle lane, consideration of other types of bicycle lanes to provide a connected network
also deserves to be studied. One possible solution is to tie a range of consecutive road segments together as a single
road in the candidate set. Therefore the proposed algorithm will be forced to choose from these tied-up roads which
excludes occurrence of secluded short segment bicycle lanes.

III. Given rapid advances in telecommunication and smart phones, there has been a surge of interest in an old concept of
bicycle sharing (Angeloudis et al., 2014; Bachand-Marleau et al., 2012; Corcoran et al., 2014; Langford et al., 2013;
Pucher et al., 2011; Vogel et al., 2014). How to accommodate fleet size and the required facilities such as bicycle sta-
tions as well as the bicycle network remain to be investigated. As such bicycle priority lanes can be tailored to catering
to the bicycle sharing schemes. In such schemes, a joint model is needed to identify sharing stations, fleet size of
shared bicycles as well as a network of bicycle lanes connecting the stations. Moreover, bicycle sharing schemes by
themselves can be extended to a fully-fledged supply chain problem in which a variety of logistic and scheduling
issues exists. An example is that of how to move shared bicycles between stations during peak and off peak times
and directions.

IV. The relatively new interest in the electric bicycle (E-bike) warrants further investigation. Recent studies have shown a
significant changes in the traffic related indices attributed to the presence of the E-bike (Jin et al., 2015). Operational
characteristic of the E-bike in terms of coping with long distance commutes, high gradients and speed as well as being
dependent on charging stations give a whole new dimension to the problem. First of all given the promising charac-
teristics (long distance, high gradients, and speed)8, the e-bike must be treated as a new bicycle class distinct from the
conventional bicycles which are trickled down to calibrating specific bias terms in the delay functions. Secondly, locating
best places for the charging stations should also be included amongst the constraints. Hence the problem of bicycle lane
priority is extended to catering to conventional bicycles as well as reaching out to the e-bikes and connecting the charg-
ing stations.
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Appendix A

A.1. Efficacy of tree structure in calculation the lower bounds

At each iteration a (parent) node renders two new (offspring) nodes, but it is only required to calculate the lower bound
for one of the newly generated nodes. Because the other offspring node inherits the lower bound from the parent node,
hence, it makes the computation more efficient. Fig. A-1 depicts this observation graphically: the parent node corresponds
to partial solution (1122..22) has lower bound corresponding to string (1100..00) with lower bound value of 85. The branch-
ing is made at the third project (the very next project with value of ‘‘2”) which results in offspring nodes (1112..22) in the
left-hand side and (1102..22) in the right-hand side.

For new offspring node (1102..22), the lower bound is computed by replacing the ‘‘2”s with ‘‘0” which is already calcu-
lated for the parent node. Hence it is only imperative to calculate a new lower bound for the other offspring (1112..22) which
will not be found better ð88¥85Þ (Leblanc, 1975). In fact new lower bound is computed only for the nodes residing on the
left wing.

A.2. General assessment of the merit index in Branch and Bound

In this section a general Branch-and-Bound algorithm for solving mixed integer nonlinear programing (MINLP) problem
with and without merit index via a simple example is assessed. The example is also a general network design problem: con-
sider network consists of a road (#4) connecting an origin–destination pair with travel demand of qod ¼ 10. There are three
road construction projects (#1, #2, #3), while the budget can cover maximum two roads ðc1 ¼ c2 ¼ c3 ¼ 1; B ¼ 2Þ. Fig. A-2
shows the network and delay functions associated with the roads and projects.

The objective function is defined as minimizing the total time spent on the network. Hence the MINLP problem can be
written as follows:
min f ðx; yÞ ¼ :125x1x1 þ :25x2x2 þ :5x3x3 þ x4x4

s:t: : x1 þ x2 þ x3 þ x4 ¼ 10

x1 � 10y1 6 0

x2 � 10y2 6 0

x3 � 10y3 6 0

y1 þ y2 þ y3 6 2

x1 . . . x4 P 0; y1 . . . y3 2 f0;1g

From the delay functions of the three projects one can intuitively deduce that the merit order of the candidates is as ðy1,

y2, y3Þ. As such, the optimal solution is found ðy1; y2; y3Þ ¼ ð1;1;0Þ, ðx1; x2; x3Þ ¼ ð6:1;3:1;0:0;0:8Þ and f ðx; yÞ ¼ 7:7. The com-
putations provided in below were made using GAMS (2014) a leading optimization software.

Details of BB to solve a MINLP problem can be found in any integer programing text book (Floudas, 1995; Li and Sun,
2006). Below is an overview of a generalized BB.

Step 0. Initialize the upper bound as UB� ¼ þ1. Find a feasible solution for MINLP as the incumbent solution to be rep-
resented by the root node of the tree. Set the root node as the current node identified by c ¼ 1.
Step 1. Relax the MINLP on the integer variables and obtain corresponding continuous variables ðyc1 . . . ycj Þ and vc the value
of the objective function.
1122..22
LB (1100..00) = 85

01

1112..22 1102..22
LB (1110..00) = 88

.

. 

. 

01

Inherited from parent, 
no need to calculate LB

LB (1100..00) = 85

at this node, the LB 
must be calculated

Fig. A-1. Computation of lower bound in the tree structure of Branch-and-Bound.
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Step 2. if vc P UB� or the current node represents a feasible solution (all y are integer) then fathom the current node. Con-
sider the current node as incumbent solution if the current node is a feasible solution and it renders a better solution than
the incumbent solution (i.e. UB� ¼ minðvc;UB�Þ.
Step 3. If there is no unfathomed node left, stop, the incumbent solution is optimal. Otherwise select an unfathomed node
as the current node. Then choose a y whose value in the current node is not integer ðy–½y�Þ and split the solution space in
two domains one by adding y 6 and the other one by y P ½y� þ 1 in the constraints (½y� returns the first integer value
before y). Represent these two subareas by adding two branches at the end of the current node of the tree. Go to Step
1.j

In Step 3, one needs to choose an integer variable to be split for which we proposed the concept of merit index. Projects
are first sorted based on their merit indices in a string and it is used for split process. In the following exercise performance of
BB with and without merit index is evaluated.

A.3. Branch and Bound; sorted string based on merit index is (y1, y2, y3)

Step 0. Set UB� ¼ þ1 and the initial feasible solution as the incumbent solution: ðy01; y02; y03Þ ¼ ð0;0;0Þ, z� ¼ 100 in the root
node of the BB’s tree. Set the current node c ¼ 1.
d

1

2

3

4

Delay functions :
t1(x1)=0.125.x1

t2(x2)=0.25.x2

t3(x3)=0.5.x3

t4(x4)=1.x4

o

Demand: Dod=10
Costs: c1= c2= c3=1
Budget: B=2

x1
.. x4 traffic flow on respective links

Fig. A-2. Network design example.

i Y i X i v i ub*

0 0,0,0 0.0,0.0,0.0,10.0 100.0 100.0
1 0.5,03,0.1 5.3,2.7,1.3,0.7 6.7 100.0
2 1,0.3,0.1 5.3,2.7,1.3,0.7 6.7 100.0
3 1,1,0 6.1,3.1,0.0,0.8 7.7 7.7
4 1,1,0.2 7.3,0.0,1.2,0.9 9.1 7.7
5 0,0.6,0.3 0.0,5.2,2.9,1.4 14.3 7.7

1≤ y1 y1≤ 0

1≤ y2  y2≤ 0

1

2 5

43

1 Node number

  Optimal solution

Fig. A-3. Results of Branch and Bound method with merit index.



i Y i X i vi ub*

0 0,0,0 0.0,0.0,0.0,10.0 100.0 100.0
1 0.5,03,0.1 5.3,2.7,1.3,0.7 6.7 100.0
2 0.5,0.3,1 5.3,2.7,1.3,0.7 6.7 100.0
3 0,1,1 0,5.7,2.9,1.4 14.3 14.3
4 0.7,0,1 7.3,0,1.8,0.9 9.1 14.3
5 1,0,1 7.3,0,1.8,0.9 9.1 9.1
6 0,0,1 0,0,6.7,3.3 33.3 9.1
7 0.6,0.3,0 6.2,3.1,0,0.8 7.7 9.1
8 0.6,1,0 6.2,3.1,0,0.8 7.7 9.1
9 1,1,0 6.2,3.1,0,0.8 7.7 7.7
10 0,1,0 0,8,0,2 20 7.7
11 0.9,0,0 8.9,0,0,1.1 11.11 7.7

1≤ y3 y3≤ 0

1≤ y2 y2≤ 0

1 

2 7

43

1 Node number

  Optimal solution

1≤ y1 y1≤ 0

65

1≤ y2 y2≤ 0

118

1≤ y1  y1≤ 0

109

Fig. A-4. Results of Branch and Bound method without merit index.
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Step 1. Solve the relaxed (continuous) version of the MINLP which renders optimal value of UB1 ¼ v1 ¼ 6:7 and solution
ðy11; y12; y13Þ ¼ ð0:5;0:3;0:1Þ.
Step 2. Since v1 ¼ 6:7jUB� ¼ þ1 the current node cannot be fathomed. Update the best upper bound
UB� ¼ minð6:7;þ1Þ. Since the current node does not represent a feasible solution it is considered as unfathomed node.
Step 3. if there is no unfathomed node, consider the incumbent solution as the optimal and terminate. Select the current
node which is the only unfathomed node (so far) for branching. Then select y1 which has the maximum value for branch-
ing one with additional constraint y1 P 1 and the other with y1 6 0. This leads to two new nodes. Select the former as the
current node and go to Step 1. The configuration of the tree structure as well as the detail of calculations are shown in
Fig. A-3.

A.4. Branch and Bound; Without merit index, a randomly sorted string (y3, y2, y1)

Similar steps need to be taken which is summarized in Fig. A-4. A quick comparison highlights significant and construc-
tive role of the merit index in efficacy of the BB, such that number of attempts to reach at global solution and total compu-
tational time increase almost three folds should no merit index is considered.
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