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This study contributes by presenting an empirical assessment of the accuracy of the target-
year populations synthesized with different base-year populations, data-fusion methods,
and control tables. Forty-five synthetic populations were generated for 12 census tracts
in Florida for this purpose. The empirical results indicate the value of synthesizing base-
year populations more accurately by accommodating multi-level controls. Although fewer
controls are typically available for target years, the use of multi-level controls in the target
year with appropriate synthesis methods does benefit the accuracy of the synthetic popu-
lation. This study also establishes that the magnitude of the overall error in the synthesized
population appears to be linearly related to the magnitude of the input errors introduced
via the control tables. The improvements in accuracy are statistically significant and hold
after controlling for differences in population sizes and growth rates for the different cen-
sus tracts. Overall, efforts to accurately synthesize base-year populations and to good fore-
casts of target-year controls can help synthesize accurate target-year populations.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The need for detailed socio-economic population characteristics as an important pre-requisite to the application of dis-
aggregate, microsimulation-based travel-demandmodels such as the activity-based models has increased significantly in the
recent years. The true characteristics of the population of an area is usually very time consuming, expensive and sometimes
impossible (e.g., for future population) to obtain (Barthelemy and Toint, 2013). Therefore, a synthetic population, described
in terms of several household and/or person attributes (socio-economic characteristics), is developed to serve as a proxy for
the true population.

Once a synthetic population for a target year (generally a future year for which planning is being undertaken) is available,
disaggregate – travel-demand – models can be applied to the artificial households and persons in this population to deter-
mine the travel patterns. The travel patterns of the individual persons and households can be suitably aggregated to deter-
mine the overall demand and system-performance. This approach improves forecast by addressing the issue of aggregation
bias that current aggregate-models suffer from (i.e., the behavior of an average person in the population is not truly repre-
sentative of the overall behavior of the population; see for example, Koppelman, 1974; Landau, 1978). This is because dis-
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aggregate models can accurately represent the underlying activity-travel generation process by making the individual deci-
sion maker, their choices, and their decision-making processes the center of the modeling paradigm. Further, the approach
allows for extensive scenario testing; i.e., assessments of travel patterns under a variety of socio-economic futures. Such
scenario-based planning methods are becoming increasing important and relevant (Bartholomew, 2007; Swartz and
Zegras, 2013). Finally, the overall disaggregate approach also enables the assessments of benefits and costs of any transporta-
tion project/policy on several specific population sub-groups (such as the elderly, the low-income, and the transit-captive).
There is increasing emphasis (Alsnih and Hensher, 2003; Chakraborty, 2006) being placed on such detailed environmental
justice analyses. Existing aggregate modeling methods are limited in the number of market segments that can be studied;
in contrast, disaggregate models with synthetic populations can deal with any number of market segments as each individ-
ual/household is explicitly represented in the model.

While the needs and theoretical benefits of the disaggregate approach is established, it is also evident that the benefits
realized are subject to accuracy of the synthetic populations and the effectiveness of the demand models. The focus of this
study is on the accuracy of the target-year synthetic populations. Toward this end, this study contributes to the literature by
presenting an empirical assessment of the accuracy of the target-year populations synthesized with different seed data, data-
fusion methods, and control tables.

The rest of this paper is organized as follows. Section 2 presents a synthesis of literature and positions the paper in the
context of past literature. Section 3 presents the analysis framework. The data used in the study are discussed in Section 4
and the results are summarized and discussed in Section 5. The paper ends (Section 6) by presenting an overall summary of
the work, the major conclusions, and the directions for future work.
2. Literature synthesis

A conceptual overview of the procedure for synthesizing target-year population characteristics is presented in Fig. 1. The
population for a ‘‘base year” is generated first. The base year is usually the most recent census year in the past. The synthesis
of the base-year population is performed by ‘‘fusing” aggregate data in the form of control totals of select attributes with
detailed (disaggregate) population characteristics available for a sample of households in the area (called the seed data
and are typically available from the census). The data fusion was first accomplished using the Iterative Proportional Fitting
(IPF) methodology (Beckman et al., 1996) and using only household-level attributes as controls. Other than the commonly
used IPF approach, earlier studies also developed combinational optimization approaches for the generation of base-year
populations (Williamson et al., 1998; Voas and Williamson, 2000), and more recently, Farooq et al. (2013) developed a
method using the Markov Chain Monte Carlo principle to generate base-year populations. Subsequently, other methods
for data fusion have also been developed which simultaneously accommodate multi-level controls (such as household
and person level) thereby relaxing the IPF procedures’ requirement that all control tables be at the same ‘‘universe” (see
for instance, Srinivasan et al., 2008). In order to combine information from different ‘‘universe” (for example, household
and person information), approaches based on modified or multi-stage IPF procedures (Arentze et al., 2007; Guo and
Bhat, 2007; Ye et al., 2009; Auld and Mohammadian, 2010; Müller and Axhausen, 2011; Pritchard and Miller, 2012; Zhu
and Joseph, 2014); entropy optimization methods (Bar-Gera et al., 2009; Lee and Fu, 2011); heuristic search techniques
(Ryan et al., 2010; Abraham et al., 2012; Ma and Srinivasan, 2015) or a bipartite graph approach (Anderson et al., 2014) have
been proposed during the last several years. Methods to generate populations from only aggregate data also exist (see, for
example, Gargiulo et al., 2010; Barthelemy and Toint, 2013). These approaches are particularly useful when the prototypical
households (seed data) are not available.

Given the base-year synthetic population, there are two approaches for generating the target-year population (Fig. 1). In
one approach (called the evolution approach), each base-year household is ‘‘grown” over time to determine its characteris-
tics at the target year. This involves modeling phenomenon such as ageing, births, deaths, formation (marriage) and disso-
lution (divorce) of households, employment and education choices, children moving out of the household, automobile
ownership decisions, and emigration from or immigration to the study region. Some of the currently available model sys-
tems that adopt such an approach include MIDAS (Goulias and Kitamura, 1996), MASTER (Mackett, 1990), CEMSELTS
(Eluru et al., 2008; Pendyala et al., 2012), DEMOS (Sundararajan and Goulias, 2003), and the HA module of the Oregon2
model system (Hunt et al., 2004). Other studies have focused on evolving specific attributes of the population. For example,
Paleti et al. (2011) formulate the automobile holding patterns of households by simulating the activities of disposing, replac-
ing and adding for household vehicles. Zhu et al. (2013) evolve the ageing process to predict the marginal age distribution for
a target year. Such methods are appealing as they try to mimic the real processes that households and persons go though and
model behavioral decisions made at different stages of the life cycle. However, limited theoretical knowledge on the complex
socio-economic evolution processes and the minimal availability of relevant data at the household level limit our ability to
specify and estimate good models of household evolution (Eluru et al., 2008).

An alternate approach for generating the target-year population employs the data fusion technique which is similar to the
one used in base-year population synthesis. The base-year synthetic population will serve as seed data in target-year pop-
ulation synthesis along with projected aggregate control totals of select attributes in the target year. Thus, unlike the evo-
lution approach, the data fusion approach does not require evolution models and, therefore, is practical for target-year
population synthesis. In this paper, we will focus on data fusion methods for target-year population synthesis.
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Fig. 1. A conceptual framework for target-year population synthesis.
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It is also conceivable that the target-year populations can be directly synthesized using target-year controls and seed-data
from the base year. While this eliminates the need for synthesizing the base year population, this procedure also ignores data
available from the base-year control tables at a finer spatial geography. In situations in which the expected future growth
patterns are in line with past trends, having this additional information from the base-year controls can be expected to
increase the accuracy of the target year population. However, in situations in which the target year characteristics are
expected to be significantly different, making the population more like the base year (by using base-year controls) can lead
to increased errors rather than increase accuracy.

The literature on population synthesis using data-fusion methods is indeed quite extensive. A summary list is presented
in Table 1. The reader is referred to Ma (2011) and Ma and Srinivasan (2015) for further discussions. It is quickly evident that
the substantive focus of research thus far has been on synthesizing and validating the base-year populations. This is not sur-
prising given that the primary goal of these studies has been to improve on the data-fusion methods in order to address
issues with the basic IPF procedure such as the zero-cell problem (Beckman et al., 1996; Auld et al., 2009), the need for
accommodating multi-level controls (Arentze et al., 2007; Guo and Bhat, 2007), and the computational issues (Rizi et al.,
2013; Ma and Srinivasan, 2015) associated with dealing with large number of controls. Indeed, the spectrum of improve-
ments proposed do empirically demonstrate that base-year populations can be synthesized more accurately by controlling
for multi-level attributes

However, the analysis of the accuracy of results on target-year population synthesis is still limited. Although, conceptu-
ally, the application of the data-fusion approach for target-year synthesis is similar to its application for base-year synthesis,

there are three important issues of concern. First, the target-year synthesis uses the base-year synthesized population as
seed data (the base-year synthesis used PUMS (Public Use Microdata Sample) data as seed and these are directly obtained
from the census). Thus, the methodology and controls used in the base-year synthesis impact the accuracy of the base-year

population, and in turn, the accuracy of the target-year population. Second, one can expect significantly fewer socio-
economic controls to be available for the target year synthesis as opposed to the base year synthesis (the base-year synthesis
can take advantage of a large number of control tables available from census data bases). Some of these controls could be at
the household level (such as the household size distribution) and others at the person level (such as age and gender distri-
butions). In this situation, there might be benefits to using approaches that control for both person- and household-level
information as opposed to methods that control for only household-level information so as to take advantage of all the min-

imal data available. Third, the target year control tables are projections in contrast to base year control tables which are
derived from the census counts. It has been well documented (see for instance, McCray et al., 2012; Smith and
Shahidullah, 1995) that there are significant errors in these projected aggregate distributions of population characteristics.
Therefore, examining the effects of errors in control tables is of interest.

Few studies have empirically assessed the accuracy of target-year populations. Bowman and Rousseau (2008) conducted
back-casting analysis (the year 2000 was used as the base year and the year 1990 was used as the target year). This analysis
concluded that the accuracy of synthetic population heavily depends on the controlled tables, and for either base-year



Table 1
Literature on population synthesis using data fusion.

Studies IPF
involved

Multi-level
controls

Base year
synthesis

Base year
validation

Target year
synthesis

Target year
validation

Beckman et al. (1996) U U U

Williamson et al. (1998) U U

Voas and Williamson (2000) U U

Frick and Axhausen (2004) U U U

Simpson and Tranmer (2005) U U U

Bowman and Bradley (2006) U

Arentze et al. (2007) U U U

Guo and Bhat (2007) U U U U

Bowman and Rousseau (2008) U U U U U

Srinivasan et al. (2008) U U U U U

Auld et al. (2009) U U U

Bar-Gera et al. (2009) U U U U

Ye et al. (2009) U U U U

Auld et al. (2010) U U U

Auld and Mohammadian (2010) U U U U

Gargiulo et al. (2010) U U U

Ryan et al. (2010) U U U

Lee and Fu (2011) U U U

Müller and Axhausen (2011) U U U

Abraham et al. (2012) U U U

Kao et al. (2012) U U

Otani et al. (2012) U U U

Pritchard and Miller (2012) U U U U

Rich and Mulalic (2012) U U U

Rizi et al. (2013) U U U

Barthelemy and Toint (2013) U U U U

Farooq et al. (2013) U U

Anderson et al. (2014) U U U

Zhu and Joseph (2014) U U U U

Ma and Srinivasan (2015) U U U

250 L. Ma, S. Srinivasan / Transportation Research Part A 85 (2016) 247–264
populations or target-year populations, the uncontrolled variables will be less accurate. Another study (Srinivasan et al.,
2008) performed a similar back-cast validation for several census tracts in Florida. This study suggests that a more accurate
base-year population (which is usually synthesized by controlling both household-level and person-level characteristics), is
likely to lead to a more accurate target-year population. Auld et al. (2010) introduced methods for forecasting the control
tables of target-year. These methods are implemented in a routine with flexible features to define different scenarios of
target-year demographic changes. The method was applied to forecast the marginal controls of household size and number
of workers, which are believed the important variables for target-year input of population synthesis.

However, the studies discussed above assume that the target-year controls are known accurately. The target-year control
information is usually from demographic forecasts and it is well documented that these projected numbers might be signif-
icantly inaccurate (Tayman, 1996; McCray et al., 2012; Smith and Shahidullah, 1995; Rayer and Smith, 2014). The accuracy of
population projections is affected through factors such as population size, growth rate, the base period length, projection
horizon (Rayer, 2008) and projection methodologies vary from the simple extrapolation models which extent historical pop-
ulation trends into target years, to more complicated cohort-component models in which births, deaths, and migration are
projected separately for different age–sex cohort (Smith and Rayer, 2011). However, the pattern of performance of different
methodologies is not clear and complicated models may not necessarily provide consistently better results (Smith and
Tayman, 2003). On the other hand, the pattern of some factors is clear. For example accuracy tends to decline with increasing
time length between the base and forecast years (Duthie et al., 2007) and between the launch and target years (Rayer, 2008,
2010). Recently, Rich and Mulalic (2012) examined the influence of the length of forecast period on accuracy of synthesis
population and the results shows that, as expected, longer forecast period will result in greater inaccuracy. Further, if such
erroneous population data are fed as input to further models, there is a chance for the population forecast errors to propa-
gate; see for example applications in transportation and land-use models (Duthie et al., 2010), health tracking and analytic
epidemiology (Baker et al., 2013) and the target-year population synthesis (Srinivasan et al., 2008). Therefore, there is a need
to understand the effect of inaccurate (aggregate) target-year controls on the accuracy of the synthesized (disaggregate)
populations.

Overall, many factors could affect the accuracy of target-year synthetic population, including the quality of base-year
population, the presence of multilevel controls of target-year population and more notably the accuracy of target-year con-
trol tables. However, past studies have not provided a comprehensive assessment of target-year populations with the con-
sideration of all of these factors. Further, the past studies have not established that the differences in accuracy from alternate
approaches are statistically significant.
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In light of the above discussions, the intent of this paper is to contribute to our understanding of target-year population
synthesis by addressing the following questions: (1) What is the effect of the accuracy of the base-year population (which
will serve as the seed data for target-year synthesis) on the accuracy of the target-year population? (2) What is the value of
controlling both household- and person-level information in the target-year versus only household-level controls? (3) How
do errors in the projections of target-year controls affect the accuracy of the population synthesized?
3. Analysis framework

A total of forty-five synthetic populations (five ways of generating the seed data � three sets of control-attributes/

data-fusion methods for the target year � three levels of accuracy for target controls) were generated for a target year for
each of several census tracts to address the three fundamental research questions of this study.

As already discussed, the synthesis of target-year population generally begins with the synthesis of base-year populations
as these provide the seed data for target-year synthesis. Four different base-year populations were generated for each census
tract with varying number of controls and differing in data-fusion methods to serve as the seed data for target-year popu-
lation synthesis. The first base year population was generated using only household-level controls and IPF as the data fusion
methodology (this population is referred to as B-IPF in the rest of this document). The second base year population was syn-
thesized using the Fitness-Based Synthesis (FBS; see Ma, 2011; Ma and Srinivasan, 2015) approach with the same controls as
the first base year population, and this population is referred to as B-FBS0. The other two base-year populations were
synthesized using the FBS approach but with both household- and person-level controls. These populations are referred
to as B-FBS1 and B-FBS2 with the latter having more controls than the former. Thus, given the differences in the number
of controlled attributes, one may expect the following order for the accuracy of the synthesized base-year population:
B-FBS2 > B-FBS1 > B-FBS0 � B-IPF. In addition to the four base-year synthetic populations, the base-year data from the PUMS
were also directly as a source for the seed data for the target year synthesis. These populations are referred by B-PUMS.
Overall, five ways of generating the seed-data for target-year synthesis are used in this analysis.

It is useful to emphasize that there are several data-fusion methods available now (see Table 1) many of which are fairly
recent contributions to the literature. As a starting point, and to focus the effort, we limit our analysis to only two methods;
the IPF and the FBS. In the IPF procedure, the cell values of a multi-way contingency table are estimated such that the mar-
ginal totals are fixed to target values and the odds ratios among the attributes are retained from the seed data (Beckman
et al., 1996; Deming and Stephan, 1940; Ireland and Kullback, 1968). In the FBS procedure (Ma, 2011; Ma and Srinivasan,
2015), households are iteratively selected from seed data until the control tables (at multiple levels) are matched. Further,
during the iterative procedure, some households already selected are allowed to be removed if losing such household can
contribute to reducing the matching error of control tables. Thus, in every iteration a household is either added or removed
to improve the overall fitness of the synthesized population to the control targets and the algorithm terminates when there
are no more households to add or remove (i.e., fitness does not improve any further). The FBS approach is also conceptually
similar to the stochastic hill climbing (Abraham et al., 2012) and simulated annealing (Harland et al., 2012) methods that
have also been recently proposed. The reader is referred to Ma (2011) and Ma and Srinivasan (2015) for an extensive discus-
sion of the FBS approach, it computational performance, and validations (against known, ‘‘true” populations) in the context
of base-year synthesis.

The second research question relates to the attributes in the target-year controls and the corresponding data-fusion
method employed. To address this, the target-year populations were synthesized using three different methods and controls.
The first target year population was generated using only household-level controls and the IPF method (referred to as T-IPF).
The second and third target year populations were synthesized using the FBS method, where one population adopted the
same household-level controls as the population synthesized using IPF (referred to as T-FBS0), and the other population con-
trolled both household- and person-level controls (referred to as T-FBS1). Each of the five seed data (four base year synthetic
populations and the base-year PUMS) were used with each of the three target-year controls/data fusion methods giving a
total of fifteen target year populations. These are referred to as T-IPF-B-FBS2 (i.e., target year IPF and base year FBS2),
T-IPF-B-FBS1, T-IPF-B-FBS0, T-IPF-B-IPF, T-IPF-B-PUMS, T-FBS0-B-FBS2, T-FBS0-B-FBS1, T-FBS0-B-FBS0, T-FBS0-B-IPF,
T-FBS0-B-PUMS, T-FBS1-B-FBS2, T-FBS1-B-FBS1, T-FBS1-B-FBS0, T-FBS1-B-IPF, and T-FBS1-B-PUMS reflecting the population
used as seed data and the target-year synthesis methodology.

The fifteen populations described above were first synthesized using the true tract-level control tables. In order to assess
the impact of erroneous target-year controls, an approximate control table was generated for each target-year controlled
attribute by replacing the true distribution with the distribution of the same attribute in the county to which the tract
belongs. Therefore, fifteen additional populations were synthesized using these approximate control tables and there are
referred to as T⁄-IPF-B-FBS2, T⁄-IPF-B-FBS1, T⁄-IPF-B-FBS0, T⁄-IPF-B-IPF, T⁄-IPF-B-PUMS, T⁄-FBS0-B-FBS2, T⁄-FBS0-B-FBS1,
T⁄-FBS0-B-FBS0, T⁄-FBS0-B-IPF, T⁄-FBS0-B-PUMS, T⁄-FBS1-B-FBS2, T⁄-FBS1-B-FBS1, T⁄-FBS1-B-FBS0, T⁄-FBS1-B-IPF, and
T⁄-FBS1-B-PUMS. In these populations, all target year controls were assumed to be erroneous. In addition, another set of
populations assumed that only one control table, namely household size for the target year was erroneous and the rest were
taken to be the true values. These fifteen populations are referred to as T#-IPF-B-FBS2, T#-IPF-B-FBS1, T#-IPF-B-FBS0,
T#-IPF-B-IPF, T#-IPF-B-PUMS, T#-FBS0-B-FBS2, T#-FBS0-B-FBS1, T#-FBS0-B-FBS0, T#-FBS0-B-IPF, T#-FBS0-B-PUMS,
T#-FBS1-B-FBS2, T#-FBS1-B-FBS1, T#-FBS1-B-FBS0, T#-FBS1-B-IPF, and T#-FBS1-B-PUMS.
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Note that, in the labels used to describe the synthetic populations, the ‘‘⁄” is used to indicate that all target-year control
tables were approximate and the ‘‘#” indicates that only one target-year control table (household size) was approximate. If
the label has neither a ‘‘⁄” nor ‘‘#”, this means that the population was synthesized using accurate values for all target-year
controls.

Once the populations were synthesized, they were compared in terms of their ability to accurately replicate several mar-
ginal tables available for the target year. The marginal tables also include attributes that were uncontrolled in the synthesis
procedure. This study uses absolute percentage errors which is the most commonly used measure for judging the accuracy of
population projections (Smith and Tayman, 2003; Rayer, 2007). The error specific to marginal table j, Dj is calculated as
follows:
Table 2
Populat

Case

1
2
3
4
5
6
7
8
9

10
11
12
Dj ¼
PKj

k¼1jTjk � Sjkj
PKj

k¼1Tjk
Here, Tjk is the true value of the kth category in table j and Sjk is the corresponding value of synthesized marginal table. The
synthesized marginal tables were obtained by simply aggregating the synthesized population along the appropriate
dimensions.

4. Data

Data for 12 census tracts and their corresponding PUMAs (Public Use Microdata Areas) and counties from Florida were
used for this analysis (Table 2). These census tracts are from some of the major urban regions in Florida where advanced
travel-demand models are likely to be needed or developed. Data were collected for years 1990 and 2000. The reader will
note that there are wide variations in the populations and the changes in population between the years. Finally, for all these
census tracts, the boundaries did not change between 1990 and 2000. The year 2000 was used as the base year in this anal-
ysis and the year 1990 was set as the target year. Thus, we adopt a back-casting approach (as in Bowman and Rousseau, 2008
and Srinivasan et al., 2008) as opposed to a forecasting approach. The primary reason for this was that the PUMA-level data
required for base-year population synthesis were available more readily for US census 2000.

Table 3 identifies eleven base-year (2000) control tables (eight two-dimensional tables and three one-dimensional tables)
used in this study. These distribution tables were obtained from the US census SF1 and SF3 files. Each of these tables corre-
sponds to the joint distribution of a subset of the population attributes typically required as inputs for travel models. All
these 11 tables were controlled for in the synthesis of the B-FBS2 (base-year) population. For the synthesis of the other three
base-year populations, only a subset of these controls were used with only household-level controls being used for the B-IPF
and B-FBS0 population. Table 3 also identifies the controls used for the synthesis of each of the base-year populations. The
seed data of base-year synthesis come from US census 5% PUMS for the year 2000.

For the target-year synthesis, the marginal distributions of household size and dwelling-unit type were used as controls
in the T-IPF and T-FBS0 procedures. These are two major attributes used as inputs in four-step travel demand forecasting
models. Person level controls for age and gender were used in addition to the two household level controls in the T-FBS1
procedure. The true tract-level tables were obtained from the US Census SF1 tables of 1990. The approximate control tables
were obtained from the counties of the respective census tracts from the US census data of 1990. In generating the approx-
imate control tables for the target year, we assume that the total population (persons and households) is still accurately
known at the tract-level. Only the distribution is borrowed from the county level.

In addition to the controls actually used in the synthesis of the population for the target year, several other marginal
tables are also available for the target year from the SF1 and SF3 census files of 1990 (Fig. 2). These were used to assess
the accuracy of the synthesized target-year populations. Fig. 2 also indicates whether any or all of the attributes of the
ion characteristics of the census tracts in 1990 and 2000.

ID Census Tract ID PUMA ID County name Households Population Group quarters population

2000 1990 % Change 2000 1990 % Change 2000 1990 % Change

0012 701 Leon 474 491 3.59 1030 1094 6.21 0 0 NA
0273.09 2601 Pinellas 643 240 �62.67 1606 617 �61.58 55 11 �80.00
0215.03 2003 Seminole 593 556 �6.24 1630 1561 �4.23 130 112 �13.85
0202 300 Okaloosa 711 612 �13.92 1799 1592 �11.51 0 0 NA
0101.24 4016 Miami-Dade 581 429 �26.16 2257 1290 �42.84 87 0 �100.00
0142.02 1104 Duval 1992 1797 �9.79 3770 3683 �2.31 30 0 �100.00
0016 3502 Palm Beach 1606 1515 �5.67 3875 3423 �11.66 0 34 NA
0219.02 2001 Seminole 1862 1857 �0.27 4513 4469 �0.97 14 25 78.57
0019.06 3502 Palm Beach 4170 2274 �45.47 7728 4260 �44.88 342 0 �100.00
0168.02 1106 Duval 3529 2203 �37.57 8145 5409 �33.59 0 0 NA
9801 600 Jefferson 3128 2747 �12.18 8894 7634 �14.17 1034 205 �80.17
0054.02 4011 Miami-Dade 3720 3572 �3.98 9426 8855 �6.06 12 0 �100.00



Table 3
Control tables for base-year population synthesis.

No. Control
tables

Controlled in Universe Dimension 1 Dimension 2

B-FBS2 B-FBS1 B-FBS0 B-IPF Attribute Categories Attribute Categories

1 H15 Y Y Y Y Households TENURE Own, Rent HHSIZE 1, 2, 3, 4, 5, 6, 7+
2 H32 Y Households TENURE Own, Rent DUTYPE Single Family, Multi-Family
3 H44 Y Y Y Y Households TENURE Own, Rent NUMAUTO 0, 1, 2, 3, 4, 5+
4 P26 Y Households HHSTRUCT Family, Non-Family HHSIZE 1, 2, 3, 4, 5, 6, 7+
5 P34 Y Families HHSTRUCT Married couple, Other family CHAGEa None, Only <6 years, Only P6 years, Both <6 years and

P6 years
6 P48 Y Families HHSTRUCT Married couple, Other family NUMWORKb 0, 1, 2, 3+
7 P52 Y Households INCOME <30 K, 30–50 K, 50–75 K, 75–125 K,

more than 125 K
NA

8 P7 Y Y Total Population ETHNICITY White, Black, Other, and Multiple Race NA
9 P12 Y Y Total Population GENDER Male, Female AGE 0–5, 6–15, 16–17, 18–24, 25–34, 35–44, 45–54, 55–64,

65–74, over 75
10 P21 Y Total Population CITIZEN Native, Naturalized, Non Citizen NA
11 P47 Y Population

P16 years
GENDER Male, Female WRKHOURSc 0, 1–14, 15–35, more than 35

a Age distribution of ‘‘own children” in the household.
b Number of workers (more than 0 h per week in 1999).
c Hours of work per week in 1999.
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Fig. 2. Marginal tables for assessing the target-year populations.
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different marginal tables used for validation were controlled for in synthesizing either the base-year or the target-year
populations.
5. Results

For each of the twelve census tracts analyzed, forty-five populations were synthesized (five ways of generating the seed

data � three sets of control-attributes/data-fusion methods for the target year � three levels of accuracy for target controls).
For each tract and synthetic population, error measures were calculated for each of the marginal tables available for valida-
tion using the formula described in Section 3. The errors are then averaged across the 12 census tracts for each of the forty-
five synthetic populations and each of the marginal tables available for validation. Thus, we obtain the average error of each
synthetic population in replicating each of several marginal tables for the target year.

Section 5.1 examines the marginal impact of the accuracy of the base-year population on the accuracy of the target-year
population. Section 5.2 examines the impact of target-year controls and methods. Section 5.3 presents the impact of the
accuracy of the target year control tables. Section 5.4 presents a simple regression model to determine the relative impacts
of all three factors (target-year seed data, target-year controls and methods, and accuracy of target-year controls) on target-
year population errors.
5.1. Impact of accuracy of the base year population

Prior to assessing the impact of the base-year synthetic population on the accuracy of the target-year population, it is
useful to examine the accuracy of the base-year synthetic population. Table 4 compares the four base-year synthetic popu-
lations using the error measures as defined before. The B-FBS2 population (synthesized with the maximum number of con-
trols and using the FBS methodology) is generally the most accurate in replicating most tables (for each control table, the
least error is highlighted in bold font). Further, the numbers also indicate that increasing accuracy (or decreasing error) with
the addition of more controls to the base-year synthesis).

Fig. 3 includes three sets of graphs which compare the accuracy of the target-year populations synthesized with five dif-
ferent seed-data (four synthetic populations for the base year and the base-year PUMS) but with the same (accurate) target
year controls and data fusion methodology. The top graph is for the target-year synthesis with FBS methodology and both
household and person controls (T-FBS1), the middle and the bottom graph is for the cases when the target year synthesis was
undertaken with only household controls using the FBS and IPF procedures respectively (T-FBS0 and T-IPF). The entries along
the ‘‘X” axis represent the target-year marginal tables used for validation. All these are for the case when the accurate
tract-level controls were used (similar trends were observed for the case of approximate controls and hence these are not
presented graphically here). In general, we observe that the errors for most marginal-tables are least for populations synthe-
sized using B-FBS2 as the seed data and are maximum for the populations synthesized using B-IPF or B-PUMS as the seed
data for most cases. The differences are particularly striking for marginal tables such as P52 (17% errors for T-FBS/IPF-B-
FBS2 versus 32–38% errors for T-FBS/IPF-B-PUMS) which has attributes that are not controlled for in the target year synthe-
sis. This indicates that if the base-year populations are synthesized controlling for as many attributes as possible, then the
corresponding target-year populations are also more accurate irrespective of the target-year controls/data fusion methodol-
ogy employed. Of course, this result holds over a ten-year projection horizon and for the range of changes in the population
observed across the census tracts analyzed.



Table 4
Accuracy of synthesized base-year populations.

Control tables H15 P26 P34 P7 P12 H32 H44 P48 P52 P21 P47
Attributes TENURE

� HHSIZE
HHSTRUCT
� HHSIZE

HHSTRUCT
� CHAGE

ETHNICITY GENDER
� AGE

TENURE
� DUTYPE

TENURE
� NUMAUTO

HHSTRUCT
� NUMWORK

INCOME CITIZEN GENDER
�WRKHOURS

B-FBS2 0.03 0.02 0.03 0 0.01 0.01 0.02 0.04 0.01 0 0
B-FBS1 0.03 0.05 0.15 0 0 0.22 0.01 0.22 0.24 0.07 0.13
B-FBS0 0 0.05 0.2 0.23 0.17 0.22 0.01 0.23 0.28 0.08 0.16
B-IPF 0.01 0.05 0.2 0.26 0.17 0.21 0.01 0.25 0.28 0.09 0.18
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Fig. 3. Impact of base-year populations on the accuracy of target-year population.
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5.2. Impact of target-year control tables and methods

Fig. 4 includes five sets of graphs which compare the accuracy of the populations synthesized with the same base-year
populations but with different target year controls and data fusion methodologies. Each graph compares the (target) popu-
lation synthesized with both household and person controls and using the FBS methodology against the population synthe-
sized with only household controls using the FBS and IPF methodologies. The topmost graph is for the cases when the seed
data were the B-FBS2 population (base year population synthesized with most controls). This is followed by the results when
the seed data were B-FBS1. The bottom-most graph represents the seed data of B-PUMS. All these are for the case when true
tract level controls were used (similar trends were observed for the case of approximated controls and hence these are not
presented graphically here).

For each fixed seed-data, the three target year populations perform similar, especially for the T-FBS0 and T-IPF popula-
tions in the context of accuracy with the T-FBS1 populations providing slightly better accuracy. This relatively low magni-
tude of improvement is as expected as the FBS essentially controls for only age and gender over and above the IPF target-year
controls. Further, with the gender being practically equally distributed, the real difference is the control for age in the T-FBS1
populations. Consistent with this discussion, the reader will note significant differences in the error for control table P12
which is the two dimensional joint table between gender and age. Since gender and age are controlled in the FBS method
but not in IPF during target-year synthesis, the population under method ‘‘FBS” performs systematically better than ‘‘IPF”
for these attributes.
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Fig. 4. Impact of target-year controls and data-fusion methodology on the accuracy of target-year population.
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5.3. Impact of inaccurate control tables

The final research question examines the effect of the inaccuracies in the control tables on the accuracy of the synthetic
populations. As shown in Table 5, the errors increase significantly when the approximate, county-level distributions are used
as controls instead of the true controls. This holds irrespective of the base-year synthesis methodology and the target-year
synthesis methods. Note that Table 5 presents the results of all 45 synthetic populations organized in groups of three. The
first row in any group of three represents the case when true target-year control totals are used in the synthesis (T). The
second row represents the case in which approximate control totals are used for all attributes (T⁄). The third row represents
the case in which the approximate controls were used only for one table (household size distribution) and accurate controls
were used for the rest (T#). Therefore, for any column, the value in the first row of any group would be lowest (less error or



Table 5
Accuracy of target-year synthetic populations.

Control tables H15 P26 P12 H32 H44 P52 P21 P47
Attributes TENURE � HHSIZE HHSTRUCT � HHSIZE GENDER � AGE TENURE � DUTYPE TENURE � NUMAUTO INCOME CITIZEN GENDER �WRKHOURS

T-FBS-B-FBS2 0.14 0.05 0.09 0.09 0.29 0.17 0.12 0.16
T⁄-FBS-B-FBS2 0.34 0.22 0.28 0.41 0.41 0.20 0.13 0.25
T#-FBS-B-FBS2 0.25 0.22 0.10 0.1 0.27 0.18 0.12 0.16

T-FBS-B-FBS1 0.16 0.06 0.11 0.15 0.29 0.25 0.16 0.13
T⁄-FBS-B-FBS1 0.27 0.23 0.26 0.41 0.32 0.32 0.14 0.20
T#-FBS-B-FBS1 0.26 0.22 0.11 0.15 0.28 0.28 0.15 0.14

T-FBS-B-FBS0 0.17 0.06 0.09 0.16 0.28 0.30 0.16 0.14
T⁄-FBS-B-FBS0 0.27 0.23 0.26 0.41 0.33 0.36 0.15 0.22
T#-FBS-B-FBS0 0.27 0.22 0.10 0.16 0.29 0.32 0.16 0.15

T-FBS-B-IPF 0.18 0.06 0.10 0.18 0.30 0.32 0.15 0.15
T⁄-FBS-B-IPF 0.26 0.23 0.26 0.41 0.31 0.40 0.16 0.22
T#-FBS-B-IPF 0.28 0.22 0.10 0.16 0.27 0.35 0.15 0.15

T-FBS-B-PUMS 0.16 0.06 0.08 0.16 0.30 0.34 0.16 0.15
T⁄-FBS-B-PUMS 0.39 0.24 0.25 0.46 0.49 0.41 0.16 0.24
T#-FBS-B-PUMS 0.26 0.22 0.09 0.15 0.35 0.38 0.17 0.15

T-FBS0-B-FBS2 0.14 0.05 0.22 0.09 0.28 0.17 0.11 0.16
T⁄-FBS0-B-FBS2 0.34 0.24 0.29 0.40 0.36 0.21 0.18 0.20
T#-FBS0-B-FBS2 0.27 0.23 0.26 0.09 0.30 0.21 0.15 0.17

T-FBS0-B-FBS1 0.17 0.04 0.21 0.16 0.30 0.27 0.14 0.13
T⁄-FBS0-B-FBS1 0.27 0.23 0.25 0.41 0.30 0.30 0.17 0.15
T#-FBS0-B-FBS1 0.30 0.23 0.26 0.16 0.30 0.29 0.16 0.15

T-FBS0-B-FBS0 0.17 0.04 0.25 0.15 0.29 0.31 0.14 0.18
T⁄-FBS0-B-FBS0 0.27 0.23 0.29 0.41 0.32 0.37 0.18 0.18
T#-FBS0-B-FBS0 0.29 0.23 0.29 0.16 0.32 0.35 0.15 0.17

T-FBS0-B-IPF 0.18 0.05 0.25 0.17 0.30 0.35 0.14 0.20
T⁄-FBS0-B-IPF 0.28 0.24 0.29 0.42 0.33 0.40 0.17 0.20
T#-FBS0-B-IPF 0.31 0.23 0.29 0.17 0.32 0.38 0.15 0.19

T-FBS0-B-PUMS 0.20 0.05 0.24 0.19 0.35 0.36 0.15 0.20
T⁄-FBS0-B-PUMS 0.40 0.25 0.29 0.47 0.49 0.43 0.19 0.20
T#-FBS0-B-PUMS 0.29 0.24 0.28 0.19 0.38 0.40 0.16 0.21

T-IPF-B-FBS2 0.14 0.05 0.21 0.10 0.27 0.17 0.11 0.16
T⁄-IPF-B-FBS2 0.33 0.24 0.28 0.40 0.37 0.22 0.17 0.21
T#-IPF-B-FBS2 0.28 0.23 0.25 0.09 0.28 0.19 0.15 0.18

T-IPF-B-FBS1 0.18 0.04 0.22 0.17 0.30 0.29 0.15 0.14
T⁄-IPF-B-FBS1 0.26 0.24 0.26 0.42 0.31 0.33 0.18 0.16
T#-IPF-B-FBS1 0.29 0.23 0.27 0.17 0.32 0.32 0.17 0.16

T-IPF-B-FBS0 0.17 0.05 0.25 0.16 0.29 0.34 0.15 0.17
T⁄-IPF-B-FBS0 0.28 0.24 0.28 0.42 0.31 0.39 0.16 0.19
T#-IPF-B-FBS0 0.30 0.23 0.30 0.16 0.31 0.35 0.16 0.17

T-IPF-B-IPF 0.19 0.05 0.25 0.19 0.33 0.36 0.15 0.17
T⁄-IPF-B-IPF 0.28 0.24 0.29 0.43 0.34 0.40 0.16 0.20
T#-IPF-B-IPF 0.30 0.24 0.29 0.18 0.33 0.39 0.15 0.19

T-IPF-B-PUMS 0.18 0.05 0.24 0.18 0.33 0.38 0.15 0.21
T⁄-IPF-B-PUMS 0.41 0.25 0.29 0.47 0.49 0.45 0.18 0.22
T#-IPF-B-PUMS 0.31 0.24 0.29 0.18 0.37 0.42 0.16 0.22
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Table 6
Difference between true controlled tables and erroneous tables.

Case ID Household size Dwelling type Age Gender Average 1a Average 2b

1 0.27 0.09 0.20 0.01 0.14 0.18
2 0.45 0.61 0.41 0.04 0.38 0.53
3 0.07 0.22 0.19 0.06 0.14 0.15
4 0.07 0.35 0.24 0.03 0.17 0.21
5 0.25 0.77 0.18 0.05 0.31 0.51
6 0.31 0.69 0.17 0.05 0.31 0.50
7 0.25 0.13 0.19 0.04 0.15 0.19
8 0.23 0.18 0.14 0.04 0.15 0.21
9 0.26 0.71 0.53 0.03 0.38 0.49

10 0.20 0.25 0.21 0.02 0.17 0.23
11 0.04 0.04 0.04 0.01 0.03 0.04
12 0.17 0.68 0.29 0.03 0.29 0.43

a Average 1 is the average of all four attributes listed in the table.
b Average 2 is the average of ‘‘household size” and ‘‘dwelling type”.
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more accurate) and the value in the second row of any group would be the highest (more error or less accurate). Therefore, it
is important to be cognizant of the errors in the target-year controls despite using multi-level population synthesis methods
as well as more-accurate base-year synthetic population as seed data.

It is also of interest to assess how the error in the control tables translates into errors in the synthetic populations. As the
errors are introduced by replacing the true tract-level marginal tables with the corresponding one from the county, the mag-
nitudes of the errors are not equal across the tracts. Table 6 presents the errors between the true and approximate (i.e.,
county level) control tables for the twelve census tracts. These errors are calculated using procedures previously described.
The table also presents the average of these errors across the different control tables. Specifically, Average 1 is calculated
across all four control tables and, hence, it may be interpreted as the ‘‘input” error (or discrepancy) introduced in populations
employing the FBS and approximate-household and person controls for target year synthesis (T-FBS1). Average 2 is calcu-
lated across the two household-level control tables and, hence, it may be interpreted as the input error (or discrepancy)
introduced in populations employing only approximate household controls only for target year synthesis (T-FBS0 and T-IPF).

The loss of accuracy is calculated as follows. First, for each marginal table, the difference in errors between the population
synthesized with the true controls and the one synthesized with the approximate controls (all control tables are approxi-
mate) is calculated (for each base year population and target year synthesis approach). This difference is averaged across
all marginal tables and is defined as the loss of accuracy for the census tract. Fig. 5 plots the input error (discrepancy) against
the loss of accuracy for each census tracts (the numbers within the charts identify the census tracts) and for each of the fif-

teen types of synthetic populations (five ways of generating the seed data � three sets of methods and controls for the target
year). Fig. 6 plots discrepancy against loss of accuracy for the cases in which only one control table (household size) was
assumed to be approximate (Fig. 5 corresponds to the cases in which all control tables are approximate). By comparing Figs. 5
and 6, it is interesting that the slope of the estimated linear function between the discrepancy and the loss of accuracy in
Fig. 5 is larger than the one in Fig. 6, which reflects that more inaccurate tables leads to additional loss of accuracy.

Note that census tract 11 is most similar to the county in which it is located (based on Table 6). Therefore, when the tract-
level controls are replaced by the county level data, the input errors introduced are small and this translates into a small loss
of accuracy in the synthetic populations. However, tract 2 is most dissimilar to the county in which it is located. Therefore,
when the tract-level controls are replaced by the county level data, the input errors introduced are large and this translates
into a larger loss of accuracy in the synthetic populations. In Figs. 5 and 6, tract 11 shows up in the bottom left corner of the
charts and tract 2 is located in the top-right corner. In general, the loss of accuracy is greater with greater input errors and
this relationship appears to be linear.

It is also useful to acknowledge that this analysis assumes that all marginal tables are equally important and therefore a
simple average of the errors across these tables may be used as an indicator of the overall population accuracy. Conceptually,
this analysis can also be performed with a weighted average if accuracy in certain attributes is more important than others.
5.4. Overall accuracy assessment

The previous sections presented the marginal effects of each of three factors affecting the accuracy of target-year popu-
lations independently. In this section, we present a statistical comparison of the accuracies of all 540 synthetic target-year
populations (45 target-year populations for each twelve census tracts). This is accomplished by running a regression model
(Table 7) on the tract-level errors for each synthetic population (averaged across all marginal tables available for validation,
see Fig. 2) against the key characteristics of the method used to synthesize the corresponding target-year population. These
key characteristics include seed data (5 types), target-year synthesis method (3 types), and the discrepancy introduced in
control table (zero if true controls were used).



Fig. 5. Impact of inaccurate control tables on the change of accuracy of target-year populations.
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To examine the impact of seed data, B-PUMS was used as the reference (coefficient is zero). The coefficients on each of the
other four base-year synthetic populations are negative indicating that using a synthesized based year population leads to
more accurate (less error) target-year populations instead of simply using the base-year PUMS data as the seed. We conclude
that over a ten-year forecast horizon and for the range of changes seen in the census tracts analyzed, the use of base-year
synthesis data do indeed outperform the use of PUMS. The reader will recall that we had also discussed situations in which
the use of PUMS could outperform the use of base-year synthetic data (see Section 2). Further, the coefficients are decreasing
(more negative) from B-IPF to B-FBS2. This indicates that controlling for more attributes for the base-year does statistically
improve the accuracy of the target-year populations.

To examine the effect of target-year controls and data-fusion methodology, the use of household-only controls and IPF
was taken as the reference (T-IPF). The coefficient on T-FBS1 is negative and significant indicating that controlling for more



Fig. 6. Impact of inaccurate household-size control on the change of accuracy of target-year populations.
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target-year attributes also improves the accuracy of the synthetic population. The coefficient on T-FBS0 was estimated to be
statistically insignificant. This indicates that all else being equal, the use of FBS and IPF with the same household-only con-
trols would output target populations with similar accuracy.

The coefficient on discrepancy was estimated to be 0.441 and 0.278 for cases with multiple erroneous controls and cases
with only household size control respectively. This implies that increased errors in the projection of the control totals will
increase the errors in the synthetic population for the target year. Further, multiple erroneous tables can lead to an even
greater increase in the error of the synthesized populations.

It is useful to note that, the regression model also controls for target-year population size and absolute change in popu-
lation from base year (%) for each tract recognizing that the errors could be impacted by both the size of the population being



Table 7
Regression results for the overall accuracy assessment.

Explanatory variables Coefficients t value P(>|t|)

Intercept 2.24E�01 30.024 <2E�16

Seed data from base year (B-PUMS as the reference)
B-FBS2 �5.88E�02 �8.695 <2E�16
B-FBS1 �4.45E�02 �6.586 1.09E�10
B-FBS0 �3.13E�02 �4.628 4.64E�06
B-IPF �2.24E�02 �3.314 9.83E�04

Target year methods (T-IPF as the reference)
T-FBS1 �1.27E�02 �2.417 1.60E�02
T-FBS0 �3.56E�03 �0.679 0.50

Discrepancy for cases with multiple erroneous controls 4.41E�01 29.325 <2E�16
Discrepancy for cases with erroneous household size control 2.78E�01 14.059 <2E�16
Target year population size �9.86E�06 �11.181 <2E�16
Absolute change in population from base year (%) 1.13E�03 9.474 <2E�16
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synthesized and the growth of the zone relative to the base year. The results indicate that zones with more population have
lower error (note that the error represents a fraction as defined in Section 3) and that zones that have experienced a greater
increase in population have greater errors.

Overall, the statistical modeling results empirically demonstrate the need for improved (more accurate) base-year pop-
ulation synthesis, multiple target-year controls, and accurate control-table projections for improving the accuracy of the
target-year population. These results are obtained after controlling for differences in population sizes and growth patterns
across the zones.

6. Summary and conclusions

The application of disaggregate models for predictions and policy evaluations requires as inputs detailed information on
the socio-economic characteristics of the target-year population. Although the IPF-based procedure is most popularly used,
this is limited by the need to restrict all controls to the same universe. More recently, new methods have been developed to
incorporate multi-level controls in population synthesis. However, there is limited documentation of the application of IPF
and other methods in the context of target-year synthesis. This study contributes by presenting an empirical assessment of
target year populations synthesized with different seed data, data-fusion methods, and control tables. Forty-five synthetic
populations were synthesized for 12 census tracts in Florida. The year 2000 was taken as the base year and the 1990 as
the target year.

The empirical results indicate the value of synthesizing accurate base-year populations by accommodating multi-level
controls. Target year populations synthesized with more accurate base-year populations as seed data are shown to be more
accurate (over a ten-year projection horizon and for the range of population change observed in the census tracts analyzed).
The populations synthesized (target year) with multi-level controls do perform better in replicating certain attributes than
those synthesized with only household level controls. Finally, errors in the target year control tables significantly reduce the
accuracy of the synthesized populations. The magnitude of the overall error in the synthesized population appears to be lin-
early propagated according to the magnitude of the input errors introduced via the control tables. In sum, accurate base-year
population synthesis and accurate projections of target year controls are keys to ensuring the accuracy of target-year
populations.

It is anticipated that future studies will examine the accuracy of population estimates obtained using synthesis methods
other than IPF and FBS. Examining the accuracy of populations synthesized with controls at different spatial scales is also of
interest. In all these analyses it would be of interest to examine alternate measures of error/accuracy of the synthetic pop-
ulation. Finally, it is also important to feed alternate populations into travel demand models to assess the impacts of pop-
ulation errors on travel-demand estimates.
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